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ABSTRACT: Complex OsH6(PiPr3)2 is an efficient catalyst precursor for the addition of 

pinacolborane and catecholborane to the C-N triple bond of alkyl nitriles. In this way, a variety 

of N,N-diborylamines have been isolated and fully characterized, including thirteen derivatives 

not described so far. The range of nitriles used is wide and comprises substrates having 

unfunctionalized linear and branched chains, and functionalized chains with methoxide, 

trifluoromethyl, aryl, pyridyl, benzoyl, or cyanide groups. Kinetic studies demonstrate that the 

overall process consists of two consecutive irreversible reactions: the catalytic metal-promoted 

monohydroboration of the nitrile to afford the borylimine and the metal-free stoichiometric 
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hydroboration of the latter to give the diborylamine. The mechanism of the hydroboration has 

been established by combining the kinetic analysis of the catalysis, stoichiometric reactions, and 

DFT calculations. The rate determining step of the catalysis is the insertion of the C-N triple 

bond of the nitrile into the Os-B bond of an osmium-σ-borane intermediate and is regio-directed 

by the nucleophilicity of the nitrogen atom and the electrophilicity of the carbon atom of the 

nitrile. 

INTRODUCTION 

Borylamines are excellent tools to build C–C bonds and useful synthetic surrogates which 

easily undergo transformations into a wide array of functional groups.1 The most economical and 

eco-friendly route for their preparation is without a shred of doubt the direct borylation of C–N 

multiple bonds, since it employs mild reaction conditions, offers excellent functional group 

tolerance, and leads to high purity products.2 

Dihydroboration of nitriles results in the formation of N,N-diborylamines (eq 1).3 Reactions are 

typically performed using catalysts, mainly based on transition metal complexes; although over 

the last years, they have been extended to some main-groups metals4 and f-block elements.5 It is 

usually assumed that the addition of both borane molecules to the C–N triple bond takes place 

with the participation of a catalyst. Transition metal catalysts include complexes of 3d and 4d 

elements, while efficient compounds of 5d metals are unknown. The former are based on Mn, 

Co, and Ni. Baik, Trovitch, and coworkers have reported a β-diketiminate-manganese-hydride 

catalyst. For this particular case, experimental and computational results suggest that the 

dihydroboration of nitriles involves insertion of the C–N triple bond of the nitrile into the Mn–H 

bond, followed by σ-bond metathesis between amide intermediates and the incoming 

pinacolborane (HBpin).6 This research group has also discovered a cobalt(II) catalyst. 
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Computational evaluation of the reaction coordinate points out that the B–H addition and nitrile 

insertion steps could take place on an antiferromagnetically coupled triplet spin manifold.1f Fout 

and coworkers have extended the use of a cobalt(I) catalyst for the anti-Markovnikov 

hydroboration of terminal alkenes to the dihydroboration of nitriles,7 whereas Hayrapetyan, 

Khalimon, and coworkers have employed the commercially available Co(acac)/dpephos system 

for this reaction.1g Nakajima, Shimada, and coworkers have observed that simple nickel salts, 

Ni(acac)2 and its derivatives, are efficient for hydroboration of nitriles with catecholborane 

(HBcat).8 Catalysts of 4d metals are centered on Mo and Ru. Nikonov’s group has reported that 

imido-molybdenum(IV)-hydride complexes also catalyze the dihydroboration of a variety of 

nitriles with HBcat. Mechanistic studies suggest that the catalysis proceeds through a series of 

agostic borane-amido and borylimino intermediates. No evidence for the B–H oxidative addition 

to the Mo(IV) center to afford boryl species was found.1b,9 Ruthenium compounds have been 

employed by the groups of Szymczak,10 Gunanathan,11 and Tobita.1e In addition, Nakazawa and 

coworkers have developed an iron-indium cooperative system efficient for both dihydroboration 

of nitriles and dihydro(boration-silylation) of acetonitrile.12 We here describe the features of the 

first osmium catalyst, which is also the first one of a 5d metal, and demonstrate that only the 

addition of the first borane molecule to the nitrile is a catalytic metal-promoted process, while 

the second addition is a metal-free stoichiometric reaction. 

 

Osmium complexes have been comparatively much less employed than derivatives of the other 

platinum group metals in catalysis,13 with the notable exception of the Sharpless dihydroxylation 

and reactions akin to that.14 However, some of them are reaching significant relevance as useful 

tools in organic synthesis15 and particularly for acceptorless dehydrogenative processes.13d,16 The 
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success of osmium-polyhydride compounds in the dehydrogenation of amine boranes17 and 

liquid organic hydrogen carriers such as alcohols,18 cyclic amines,18c,19 and formic acid20 is 

remarkable. 

Complex OsH6(PiPr3)2 (1) occupies a particularly privileged position within the chemistry of 

platinum groups metals because of its ability to carry out stoichiometric transformations, 

especially σ-bond activation reactions.21 On the other hand, the catalytic properties of this 

polyhydride have been unexplored until recently, except for its use in promoting the classical 

Tishchenko dimerization of aldehydes.22 We have recently shown that complex 1 is also an 

efficient and stable catalyst for the selective preparation of symmetrical and asymmetrical 

secondary amines by means of the hydrogenation of alkyl nitriles, under 4 bar of hydrogen.23 We 

have now discovered that this hexahydride is an efficient catalyst precursor for the 

dihydroboration of a wide variety of alkyl nitriles with both HBpin and HBcat. This paper shows 

the scope of the catalysis, its kinetic analysis, and the mechanism of the metal-promoted B–H 

addition to the C–N triple bond. 

RESULTS AND DISCUSSION 

Reaction Conditions and Scope. We initially studied the dihydroboration reactions with 

HBpin and started by optimizing the temperature and the catalyst loading to obtain the 

diborylamines in high yield, in a general way. For that purpose, we selected propionitrile as 

model substrate and performed the reactions in NMR tubes, under an argon atmosphere, with 

0.34 M and 0.68 M solutions of nitrile and borane, respectively, in toluene-d8 as solvent. The 

amount of diborylamine formed was quantified by 1H NMR spectroscopy using mesitylene (0.34 

M) as an internal standard (Table 1). Under the above-mentioned conditions, the reaction does 

not work in the absence of 1, at 50 ºC. However, the diborylamine is formed in 32% yield, after 
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24 h, in the presence of 2 mol% of the hexahydride compound, at the same temperature. An 

increment of the amount of catalyst precursor to 5 mol% increases the yield to 87%, which 

further rises up to 92% with a slight increase of the temperature to 60ºC. In view of these results, 

we decided to carry out the dihydroboration of nitriles using 5 mol % of the hexahydride 

complex, at 60 ºC. 

Table 1. Optimization for the Catalytic Dihydroboration of Alkyl Nitrilesa 

 

Entry 1 (mol %) T (ºC) Yield (%)b 

1 0 50 0 

2 2 50 32 

3 5 50 87 

4 5 60 92 

aReaction conditions: propionitrile (12.3 μL, 
0.17 mmol), HBpin (50 μL, 0.34 mmol), 
mesitylene (24 μL, 0.17 mmol), in 0.5 mL of 
C7D8, for 24 h. bYields were determined by 1H 
NMR spectroscopy using mesitylene as an 
internal standard. 

 

Scheme 1 shows the diborylamines generated under the selected conditions. Complex 1 

displays good tolerance to functional groups. Accordingly, it promotes the dihydroboration of a 

noticeable variety of alkyl nitriles, including unfunctionalized substrates of linear and branched 

chains, among others, the challenging trisubstituted pivalonitrile, and functionalized alkyl nitriles 

with methoxide, trifluoromethyl, aryl, pyridyl, benzoyl, or cyanide groups. The corresponding 

sixteen diborylamines were formed, in all cases, in excellent yields after 24 or 48 h (checked by 

1H-NMR) and were isolated in moderate to good yields. These results therefore confirm the wide 
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scope and functional group tolerance of the transformation. In this context, it is noteworthy the 

preparation of the unpublished products N,N-di(pinacolboryl)- hexylamine, 3,3,3-

trifluoropropylamine, 3-phenylpropylamine, 4-methylphenethylamine, 2-(pyridin-3-

yl)ethylamine, 2-(3-benzoylphenyl)-propyl)amine, 4-(di(pinacolboryl)amino)butanenitrile, and 

N,N,N’,N’-tetra(pinacolboryl)-1,4-diamine. Particularly remarkable is the sequential 

tetrahydroboration of succinonitrile, which allows the quantitative formation of the 

dihydroboration amino-nitrile product and its isolation in 86% yield. 

Scheme 1. Dihydroboration of Nitriles with Pinacolboranea 

 
aReaction conditions: nitrile (0.17 mmol), HBpin (0.34 mmol), mesitylene (0.17 mmol), 1 (8.5 x 
10-3 mmol, 5 mol%), in 0.5 mL of C7D8, at 60 ºC for 24 h. Yields were determined by 1H NMR 
spectroscopy using mesitylene as internal standard. Isolated yields are given between brackets. 
bYield after 48 h. cHBpin (0.68 mmol). dHBpin (0.68 mmol) for 48 h. 

Having demonstrated the ability of 1 to promote the dihydroboration of alkyl nitriles with 

HBpin, we next decided to explore the dihydroboration with HBcat. The reactions were 
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performed under our standard optimized conditions except for the temperature, which was 

lowered to 50 ºC in order to prevent partial decomposition of the borane. Similar to the process 

involving HBpin, two molecules of HBcat were efficiently added to the C–N triple bond of the 

same alkyl nitriles, in the presence of the hexahydride complex. In the absence of the catalyst 

precursor, the addition did not take place in this case either. A noticeable difference between the 

RCH2N(Bpin)2 and RCH2N(Bcat)2 amines is the insolubility of the latter in the reaction medium, 

which facilitates their isolation. As a consequence, twelve RCH2N(Bcat)2 amines were isolated in 

good yields, after 24 h; some of them not described so far (Scheme 2). 

Scheme 2. Dihydroboration of Nitriles with Catecholboranea 

 

aReaction conditions: nitrile (0.23 mmol), HBcat (0.46 mmol), mesitylene (0.23 mmol), 1 (1.15 x 
10-2 mmol, 5 mol%), in 0.5 mL of C7D8, at 50 ºC for 24 h. Isolated yields are given between 
brackets. bYields were determined by 1H NMR spectroscopy using mesitylene as an internal 
standard. 

Kinetic Analysis. In order to gain insight into the intimate details of the dihydroboration, the 

kinetics of the addition of HBpin to 3-phenylpropanenitrile in toluene-d8 was studied, under 

pseudo-first order conditions. The transformation was followed by 1H NMR spectroscopy in the 

344–369 K temperature range, for concentrations of catalyst precursor and borane between 4.6 x 
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10-3 and 7.6 x 10-3 M and 1.52 and 3.03 M, respectively, and the initial concentration of nitrile of 

7.6 x 10-2 M. The spectra revealed that the dihydroboration is a process consisting of two 

consecutive irreversible reactions (eq 2), namely the monohydroboration of the nitrile to afford 

the borylimine (k1) and the hydroboration of the latter to give the diborylamine (k2). Figure 1 

shows the course of one of the reactions. 

 

 

Figure 1. Composition of the reaction mixture as a function of time for the dihydroboration of 

PhCH2CH2CN (7.6 x 10-2 M) with HBpin (2.62 M) catalyzed by 1 (7.6 x 10-3 M) at 353 K.  

The change in nitrile, borylimine, and diborylamine concentrations over the time accordingly 

fits to eqs 3-5:24 

 RCN RCN        (3) 
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 (5) 
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 k1a
obs = k1[HBpin]b        (7) 

whereas 

 k2
obs = k2a

obs[Os]c        (8) 

and 

 k2a
obs = k2[HBpin]d        (9) 

Values of k1
obs and k2

obs obtained according to eqs 3-5 for the respective concentrations of 

catalyst precursor and borane, in the studied temperature range, are collected in Table 2. 

Table 2. Kinetic Data for the Dihydroboration of 3-Phenylpropanenitrile (7.6 x 10-2 M in 

Toluene-d8 Promoted by 1 

T 
(K) 

1 
(103 M) 

HBpin 
(M) 

k1
obs 

(104 s-1) 
k1a

obs 
(102 M-1s-1) 

k1 
(102 M-2s-1) 

k2
obs 

(104 s-1) 
k2 

(104 M-1s-1) 

353 7.6 1.52 (3.0 ± 0.1) (3.9 ± 0.4) (2.6 ± 0.3) (4.4 ± 0.4) (2.9 ± 0.3) 

353 6.9 1.52 (2.7 ± 0.1)  (3.9 ± 0.4) (2.6 ± 0.3) (4.4 ± 0.4) (2.9 ± 0.3) 

353 6.1 1.52 (2.5 ± 0.1)  (4.1 ± 0.4) (2.7 ± 0.3) (4.5 ± 0.5) (3.0 ± 0.3) 

353 5.3 1.52 (2.1 ± 0.1) (4.0 ± 0.4) (2.6 ± 0.3) (4.5 ± 0.5) (3.0 ± 0.3) 

353 4.6 1.52 (1.9 ± 0.1)  (4.1 ± 0.4) (2.7 ± 0.3) (4.5 ± 0.5) (2.9 ± 0.3) 

353 7.6 1.93 (3.5 ± 0.1) (4.6 ± 0.5) (2.4 ± 0.2) (6.3 ± 0.6) (3.3 ± 0.3) 

353 7.6 2.34 (4.1 ± 0.2) (5.3 ± 0.5) (2.3 ± 0.2) (7.3 ± 0.7) (3.1 ± 0.3) 

353 7.6 2.62 (4.7 ± 0.2) (6.1 ± 0.6) (2.3 ± 0.2) (8.7 ± 0.9) (3.3 ± 0.3) 

353 7.6 3.03 (5.4 ± 0.1) (7.1 ± 0.7) (2.4 ± 0.2) (10.0 ± 1.0) (3.3 ± 0.3) 

344 7.6 1.52 (1.4 ± 0.1) (1.9 ± 0.2) (1.2 ± 0.1) (2.6 ± 0.3) (1.7 ± 0.2) 

348 7.6 1.52 (2.2 ± 0.1) (2.9 ± 0.3) (1.9 ± 0.2) (3.4 ± 0.3) (2.2 ± 0.2) 

362 7.6 1.52 (6.1 ± 0.3) (8.0 ± 0.8) (5.3 ± 0.5) (8.7 ± 0.9) (5.7 ± 0.6) 

369 7.6 1.52 (10.9 ± 0.6) (14.2 ± 1.4) (9.4 ± 0.9) (15.3 ± 1.5) (10.1 ± 1.0) 

 



 10

A plot of log(k1
obs) versus log[Os] for a borane concentration of 1.52 M yields a straight line of 

slope 0.9 (Figure S87). Thus, the values of k1a
obs given in Table 2 were obtained from eq 6 for a = 

1. Similarly, the plot of log(k1a
obs) versus log[HBpin] yields a straight line of slope 0.9 (Figure 

S88), indicating that also b = 1 in eq 7. Accordingly, the plot of k1a
obs versus [HBpin] (Figure 2) 

provides a value of 2.3 ± 0.2 × 10-2 M-2 s-1 for k1 at 353 K. The activation parameters obtained 

from the Eyring analysis (Figure 3) are ΔH⧧ = 19.3 ± 2.5 kcal mol−1 and ΔS⧧	= −11.3 ± 7.0 cal 

mol−1 K−1, which yield a ΔG⧧ value of 22.7 ± 4.6 kcal mol−1 at 298 K.  

 

 

Figure 2. Plot of k1a
obs versus [HBpin] for the monohydroboration of PhCH2CH2CN (7.6 x 10-2 

M) with HBpin promoted by 1 (7.6 x 10-3 M) in toluene-d8 at 353 K.  

  

Figure 3. Eyring plot for the monohydroboration of PhCH2CH2CN promoted by 1 in toluene-d8. 

0

2

4

6

8

0 1 2 3

k 1
aob

s
(1

0
2

M
-1

s-1
)

[HBpin]

-10.5

-9.5

-8.5

2.67 2.77 2.87

ln
(k

1/
T

)

1000/T (K-1) 



 11

Rate constant k2
obs is independent of the concentration of the catalyst precursor within the 

experimental error (Figure 4), in agreement with c = 0 in eq 8; i. e., k2
obs = k2a

obs. This result 

firmly demonstrates that, in contrast to the monohydroboration of the nitrile, the hydroboration 

of the borylimine is a metal-free stoichiometric reaction. On the contrary to eq 8, the plot of 

log(k2a
obs) versus log[HBpin] yields a straight line of slope 1.2 (Figure S89), in accordance with d 

= 1 in eq 9. Thus, the plot of k2
obs versus [HBpin] (Figure 5) provides a value of 3.3 ± 0.3 × 10−4 

M-1 s-1 for k2 at 353 K. In this case, the activation parameters obtained from the corresponding 

Eyring analysis (Figure 6) are ΔH⧧ = 17.1 ± 2.3 kcal mol−1 and ΔS⧧	= −26.4 ± 6.5 cal mol−1 K−1, 

which yield a ΔG⧧ value of 24.9 ± 4.6 kcal mol−1 at 298 K.  

 

Figure 4. Plot of k2
obs versus [Os] for the transformation of PhCH2CH=CNBpin into 

PhCH2CH2CN(Bpin)2 in toluene-d8 at 353 K).  
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Figure 5. Plot of k2a
obs versus [HBpin] for the transformation of PhCH2CH=CNBpin into 

PhCH2CH2CN(Bpin)2 in toluene-d8 at 353 K. 

 

Figure 6. Eyring plot for the transformation of PhCH2CH=CNBpin into PhCH2CH2CN(Bpin)2 in 

toluene-d8. 
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should involve the initial formation of trihydride-azavinylidene intermediates B which could 

subsequently react with the boranes to give the borylimines and regenerate the tetrahydride A. In 

the second one, the coordination of a borane to the latter should lead to trihydride-

dihydrideborate compounds C, which could subsequently react with the nitriles to yield the 

borylimines and recover the tetrahydride (cycles a and b, respectively, in Scheme 3). Both 

mechanisms are consistent with the kinetic results, although the rate determining step in each 

cycle should be different. While the reactions of the trihydride-azavinylidene intermediates B 

with the boranes should be the slow step for the azavinylidene route, the reactions of the 

trihydride-dihydrideborate species C with the nitriles should be the step with the highest 

activation energy for the dihydrideborate route. 

Scheme 3. Possible Catalytic Cycles for the Nitrile Monohydroboration Promoted by 1 

 

Previous DFT calculations have suggested that the insertion of the alkyl nitriles into one of the 

Os-H bonds of tetrahydride A, to afford trihydride-azavinylidene B, has to overcome a barrier of 

about 18 kcal mol-1,23 while the coordination of the borane to the unsaturated species A is a 

barrierless process. According to this, under the same conditions, the formation of 

dihydrideborate intermediates C should be kinetically favored with respect to azavinylidene 

species B and therefore cycle b should be the predominant one in the catalysis. In order to 
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confirm this preference, we studied three different competitive reactions pivalonitrile-HBpin at 

60 ºC, pivalonitrile-HBcat at 50 ºC, and 3-phenylpropanenitrile-HBpin at 30 ºC. In all cases the 

treatment of 1 with these equimolecular nitrile-borane combinations leads to mixtures of the 

hexahydride precursor and the trihydride-dihydrideborate compounds. No traces of the 

alternative trihydride-azavinylidene complexes were detected. 

Once the preference for cycle b was experimentally confirmed, we decided to analyze the 

reactions of the dihydrideborate intermediates C with the nitriles. Complexes C are 

coordinatively saturated species. Two ways are the most probable for their activation: rupture of 

one of the Os–H–B bridges by direct nucleophilic attack of the nitrile to the boron atom and 

dissociation of a hydrogen molecule. To gain more insight into it, we carried out DFT 

calculations at the dispersion-corrected PCM(toluene)-B3LYP-D3/def2-SVP level (see 

computational details in the Supporting Information) using dihydridepinacolborate and 

acetonitrile as models of dihydrideborate and nitrile, respectively. The changes in free energy 

(ΔG) were calculated in toluene at 298.15 K and 1 atm. 

The nucleophilic attack of the nitrile to the boron atom of the dihydrideborate C produces a 

tetrahydride-nitrileborane adduct (see Figure S90), which lies 24.7 kcal mol-1 above the separate 

reactants C + MeCN. This intermediate has to overcome an additional barrier of 7.7 kcal mol-1 to 

yield the borylimine, i.e., the activation energy through this pathway of 32.4 kcal mol-1 is too 

high compared to that observed experimentally. So, it can be safely ruled out. 

We then turned our attention to the alternative pathway involving an initial H2 release. Figure 7 

shows the computed energy profile for this dissociative route, whereas Scheme 4 gathers all the 

intermediates involved in the catalytic cycle. The creation of a coordination vacancy in the 

saturated dihydrideborate C by dissociation of a hydrogen molecule takes place through the 
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Kubas type dihydrogen (dH-H = 0.923 Å)20 σ-borane (dB-H = 1.351 Å)25 intermediate D, which lies 

6.3 kcal mol-1 above the initial dihydrideborate C. The dissociation of the coordinated 

dihydrogen molecule, to afford the unsaturated species E, produces a destabilization of 6.8 kcal 

mol-1. Therefore, the H2 release is an endergonic process (ΔGR = 13.1 kcal mol-1). The 

coordination of the nitrile to E is a strongly exergonic process (ΔGR = –7.5 kcal mol-1) and leads 

to the key intermediate of the process F, which lies 5.6 kcal mol-1 above the trihydride-

dihydrideborate C. The insertion of the coordinated nitrile into the Os–B bond of the Os-σ-

borane unit of F initially gives G, which subsequently evolves to H, by rupture of the boron-

hydride interaction. The regioselectivity of the insertion is consistent with the nucleophilicity of 

the nitrogen atom and the electrophilicity of the carbon atom of the nitrile.26 The computed 

barrier for this step is 15.9 kcal mol-1; i. e., 21.5 kcal mol-1 with respect to the separate reactants 

C + MeCN, and constitutes the rate-determining step of the transformation. The value is fully 

consistent with that experimentally obtained from Figure 3. The coordination of the previously 

released hydrogen molecule to the unsaturated center of H affords the bis(Kubas-type 

dihydrogen) intermediate I (dH-H = 0.899 and 0.920 Å), which undergoes an almost barrierless 

(ΔG≠ = 2 kcal mol-1, via TSI-J) homolytic cleavage of both dihydrogen ligands to give the 

pentahydride J, having a typical dodecahedral structure of the eight-coordinate osmium-

polyhydrides.27 Final reductive elimination via TSJ-K (ΔG≠ = 9.5 kcal mol-1) followed by 

dissociation of the readily formed borylimine regenerates the active tetrahydride catalyst A.  
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Figure 7. DFT-Computed energy profile for the catalytic monohydroboration of acetonitrile with 

HBpin via the dissociative route. Relative free energies (ΔG, at 298.15 K) are given in kcal mol-1 

and were computed at the PCM(toluene)-B3LYP-D3/def2-SVP level. 
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Scheme 4. Catalytic Cycle for the Monohydroboration of Alkyl Nitriles Promoted by 1 
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Concluding remarks 

This work reveals the discovery of the first catalyst of a 5d metal for the preparation of 

diborylamines through the addition of pinacolborane or catecholborane to the C-N triple bond of 

nitriles. Accordingly, we have demonstrated that the hexahydride complex OsH6(PiPr3)2 

efficiently promotes the dihydroboration of alkyl nitriles of unfunctionalized linear and branched 

chains, and functionalized chains with methoxide, trifluoromethyl, aryl, pyridyl, benzoyl, or 

cyanide groups. The N,N-diborylamines, including thirteen new products not described so far, 
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are generally isolated in high yields. A detailed kinetic study of the catalysis points out that the 

dihydroboration is a process consisting of two consecutive irreversible reactions, namely the 

catalytic metal-promoted monohydroboration of the nitrile to afford the borylimine followed by 

the metal-free stoichiometric hydroboration of the latter to give the diborylamine. 

The formation of the borylimine takes place through saturated trihydride-dihydroborate 

intermediates OsH3{κ2-H,H-(H2BR2)}(PiPr3)2 (BR2 = Bpin, Bcat), which are generated by 

coordination of the boranes to the true catalyst, the tetrahydride OsH4(PiPr3)2. DFT calculations 

suggest that these intermediates evolve to unsaturated σ-borane species, which coordinate the 

nitrile. By comparing the overall computed barrier with the activation energy experimentally 

obtained for the monohydroboration reaction, it is found that the insertion of the C-N triple bond 

of the coordinated nitrile into the Os–B bond of the osmium-σ-borane unit constitutes the rate 

determining step of the catalysis. The process is regio-directed by the nucleophilicity of the 

nitrogen atom and the electrophilicity of the carbon atom of the nitrile. 

In summary, a very efficient catalyst of a 5d transition element for the dihydroboration of a 

wide range of alkyl nitriles has been discovered and the mechanism of the catalysis has been 

established by combination of experimental and computational evidence. 

Experimental Section 

General Information. All reactions were performed with rigorous exclusion of air at an 

argon/vacuum manifold using standard Schlenk-tube or glovebox techniques. Toluene and 

pentane were obtained oxygen- and water-free from an MBraun solvent purification apparatus. 

Complex 1 was prepared according to the published method.28 Nitriles were purchased from 

commercial sources and distilled in a Kugelrohr distillation oven. NMR spectra were recorded on 

a Bruker ARX 300, Bruker Avance 300 MHz, or a Bruker Avance 400 MHz instruments. 
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Chemical shifts (expressed in parts per million) are referenced to residual solvent peaks (1H, 

13C{1H}), external H3PO4 (31P{1H}), BF3·OEt2 (11B), or CFCl3 (19F). Coupling constants are given 

in Hertz. High-resolution (HR-MS) electrospray mass spectra were acquired using a MicroTOF-

Q hybrid quadrupole time-of-flight spectrometer (Bruker Daltonics, Bremen, Germany). DFT 

computational details are given in the Supporting Information. 

General Procedure for the Catalytic Hydroboration of Nitriles with Pinacolborane. The 

particular nitrile (0.17 mmol), pinacolborane (50 μL, 0.34 mmol), and mesitylene (24 μL, 0.17 

mmol) were added to an NMR tube containing a solution of 1 (4.4 mg, 8.5 x 10-3 mmol, 5 mol%) 

in 0.5 mL of C7D8, under argon atmosphere. The mixture was heated at 60 ºC, in an oil bath, for 

24 h. After this time 1H NMR were measured and yields were calculated based on the integration 

of characteristic peaks of the amines formed against the methyl resonances of the internal 

standard. After the crude was checked by 1H NMR, the reaction mixture was transferred to a vial 

in the glove box and the solvent was removed under vacuum. A saturated solution of the mixture 

in pentane was kept at -30 ºC for 24 h; during this time colorless crystals of the diborylamines 

appeared, which were characterized by 1H and 13C{1H} NMR. The unpublished diborylamines 

were also characterized by HR-MS. It should be noted that diborylamines are sensitive to 

moisture. Thus, its characterization and isolation were performed with rigorous exclusion of air. 

General Procedure for the Catalytic Hydroboration of Nitriles with Catecholborane. The 

respective nitrile (0.23 mmol), catecholborane (50 μL, 0.46 mmol), and mesitylene (32 μL, 0.23 

mmol) were added to an NMR tube containing a solution of 1 (5.9 mg, 1.15 x 10-2 mmol, 5 

mol%) in 0.5 mL of C7D8, under argon atmosphere. The mixture was heated at 50 ºC, in an oil 

bath, for 24 h. During the reaction the diborylamines precipitated in the reaction media. The 

mixture was transferred to a vial in the glove box and the solvent was removed under vacuum. 
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The remaining white solid was washed with pentane (3 x 0.5 mL) and dried under vacuum. The 

resulting diborylamines were characterized by 1H and 13C{1H} NMR. It should be noted that 

diborylamines are sensitive to moisture. Thus, its characterization and isolation were performed 

with rigorous exclusion of air. 

Kinetic Experiments. An NMR tube was charged in the glovebox with 3-

phenylpropanenitrile (0.038 mmol, 0.076 M), HBpin (110 – 220 μL, 0.76 – 1.52 mmol, 1.52 – 

3.45 M), complex 1 (2.3 x 10-3 – 3.8 x 10-3 mmol, 4.6 x 10-3 – 7.6 x 10-3 M), and mesitylene 

(0.038 mmol, 0.076 M) as an internal standard and the total volume was made to 0.5 mL with 

C7D8. Complex 1 was taken from a stock solution 0.023 M in C7D8. 3-Phenylpropanenitrile and 

mesitylene were added from a stock solution 0.38 M of both in C7D8. All the experiments were 

done changing either the borane or catalyst concentration keeping constants the other reagents. 

All NMR data were recorded on a Bruker ARX300 operating at 300.13 MHz (1H) and were 

recorded at 353 K unless stated otherwise. 1H NMR spectra were recorded at regular intervals of 

5 min during 2 h (or until 90 % of nitrile was transformed) and changes in the area of nitrile and 

products resonances were monitored. Rate constants k1
obs were obtained according to eq 3 by 

plotting ln([RCN]/[RCN]0) versus time for the different concentrations of 1 and HBpin. Rate 

constants k2
obs were obtained according to eq 5 by least-squares adjustment. 
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Werner, H. Synthesis, Reactivity, Molecular Structure, and Catalytic Activity of the Novel 

Dichlorodihydridoosmium(IV) Complexes OsH2Cl2(PR3)2 (PR3 = P-i-Pr3, PMe-t-Bu2). Inorg. 

Chem. 1991, 30, 288−293. 

  



 30

TOC graphic 

 

 


