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ABSTRACT

Existing and upcoming instrumentation is collecting large amounts of astrophysical data, which require efficient and fast analysis
techniques. We present a deep neural network architecture to analyze high-resolution stellar spectra and predict stellar parameters such
as effective temperature, surface gravity, metallicity, and rotational velocity. With this study, we firstly demonstrate the capability of
deep neural networks to precisely recover stellar parameters from a synthetic training set. Secondly, we analyze the application of this
method to observed spectra and the impact of the synthetic gap (i.e., the difference between observed and synthetic spectra) on the
estimation of stellar parameters, their errors, and their precision. Our convolutional network is trained on synthetic PHOENIX-ACES
spectra in different optical and near-infrared wavelength regions. For each of the four stellar parameters, Teff , log g, [M/H], and v sin i,
we constructed a neural network model to estimate each parameter independently. We then applied this method to 50 M dwarfs with
high-resolution spectra taken with CARMENES (Calar Alto high-Resolution search for M dwarfs with Exo-earths with Near-infrared
and optical Échelle Spectrographs), which operates in the visible (520–960 nm) and near-infrared wavelength range (960–1710 nm)
simultaneously. Our results are compared with literature values for these stars. They show mostly good agreement within the errors,
but also exhibit large deviations in some cases, especially for [M/H], pointing out the importance of a better understanding of the
synthetic gap.

Key words. methods: data analysis – techniques: spectroscopic – stars: fundamental parameters – stars: late-type – stars: low-mass

1. Introduction

The determination of stellar parameters in M dwarfs has always
been challenging. M dwarfs are smaller, cooler, and fainter

than Sun-like stars. Due to their faintness, higher stellar activ-
ity with sometimes strong magnetic fields, stronger line blends,
and the lack of true continuum, well-established photometric
and spectroscopic methods are brought to their limits. In the
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literature there are several methods to estimate M-dwarf param-
eters such as effective temperature Teff , surface gravity log g,
and metallicity. In particular, the measurement of spectral line
pseudo-equivalent widths (pEWs) is a widely used method for
metallicity determination. Neves et al. (2013, 2014) measured
pEWs for the HARPS guaranteed time observations of M dwarfs
and calibrated them with photometric relations from Neves et al.
(2012) for metallicity and from Casagrande et al. (2008) for
effective temperature. Metallicity relations based on equivalent
widths were derived by Newton et al. (2014) using low-resolution
spectra (R ∼ 2000) in the J, H, and K bands. They calibrated
their method with binary systems with an F-, G-, or K-type pri-
mary and an M-dwarf secondary. Pseudo-EWs in the K- and
H-band and H2O indices were measured by Khata et al. (2020)
to determine metallicities and effective temperatures as well as
radii, luminosities, spectral types, and absolute magnitudes for
53 M dwarfs. Combining pEWs with empirical calibrations and
spectral synthesis, Veyette et al. (2017) derived Teff and Ti and
Fe abundances for 29 M dwarfs with high-resolution Y-band
spectra.

A method considered to be very precise is the calibration
with M dwarfs that have an F, G, or K binary companion with
known metallicity. Many of the above mentioned relations were
calibrated using FGK+M binary systems (e.g., Newton et al.
2014). Mann et al. (2013a) identified metallicity sensitive fea-
tures in low-resolution visible, J-, H-, and K-band spectra of
112 late-K to mid-M dwarfs in binary systems with higher mass
companions, from which they derived different metallicity cali-
brations. The same relations were used by Rodríguez Martínez
et al. (2019) to determine metallicities from mid-resolution
K-band spectra for 35 M dwarfs of the K2 mission. Other photo-
metric calibrations using FGK+M binary systems are presented
by Bonfils et al. (2005), Casagrande et al. (2008), Johnson &
Apps (2009), Schlaufman & Laughlin (2010), and Neves et al.
(2012), among others. Several spectroscopic calibrations can be
found in Rojas-Ayala et al. (2010), Dhital et al. (2012), Terrien
et al. (2012), Mann et al. (2014, 2015), and Montes et al. (2018).

Another approach to determine stellar parameters for
M dwarfs is the calculation of different kinds of spectral indices.
Many of these indices were calibrated using FGK+M bina-
ries, as mentioned above. Gaidos & Mann (2014) derived Teff

from K-band M-dwarf spectra by calculating spectral curva-
ture indices. For metallicity they used relations of atomic line
strength based on Mann et al. (2013a). Also working in the
K band, Rojas-Ayala et al. (2012) calculated the H2O-K2 index,
quantifying the absorption from H2O opacity, to determine Teff

from low-resolution (R ∼ 2700) M-dwarf spectra. Newton et al.
(2015) measured 13 spectral indices and 26 pEWs in the near-
infrared H band to estimate metallicities of the MEarth transiting
planet survey and the cool Kepler objects of interest. For tem-
perature determination they employed the H2O-K2 index from
Rojas-Ayala et al. (2012) and spectral indices from Mann et al.
(2013b). Molecular indices of CaH and TiO were calculated by
Woolf & Wallerstein (2006) to derive a relation between those
indices and metallicities for 76 late-K and M dwarfs. To test their
results, they compared measurements of several M dwarfs with
higher mass companions to the metallicities of the primaries and
find good agreement. Johnson et al. (2012) combined several
existing photometric relations to derive the stellar properties of
KOI-254.

Stellar parameters can also be derived from interferomet-
ric measurements. However, only a limited number of stars is
accessible for such observations, since they have to be bright
and nearby. Boyajian et al. (2012) present interferometric angular

diameters for 26 K and M dwarfs measured with the CHARA
array and for seven K and M dwarfs from the literature. With
parallaxes and bolometric fluxes they computed absolute lumi-
nosities, radii, and Teff . They also calculated empirical relations
for K0 to M4 dwarfs to connect Teff , radius, and luminosity to
broadband color indices and [Fe/H]. Maldonado et al. (2015)
estimated Teff from pEWs calibrated with interferometric tem-
peratures from Boyajian et al. (2012) and metallicities from
pEWs calibrated with the Neves et al. (2012) relations. They
constructed a mass-radius relation using interferometric radii
(Boyajian et al. 2012; von Braun et al. 2014) and masses from
eclipsing binaries (Hartman et al. 2015). From this they calcu-
lated surface gravities, log g. Other works that derived Teff from
angular diameters include, for example, Ségransan et al. (2003),
Demory et al. (2009), von Braun et al. (2014), and Newton et al.
(2015). Of them, Ségransan et al. (2003) also determined log g
from their measured masses and radii.

A not very commonly used method for stellar parameter
determination is the principle component analysis. Paletou et al.
(2015) and He & Zhao (2019) show that this method could in
principle be used to derive effective temperature for K- and
M-type stars and abundances for dwarfs and giants, respectively.

With the improvement of synthetic models for cool stellar
atmospheres, model fits to low- or high-resolution spectra are
getting more powerful. Several model sets are based on the stel-
lar atmosphere code PHOENIX (Hauschildt 1992, 1993). The
BT-Settl models (Allard et al. 2012, 2013) were used by Veyette
et al. (2017) and Rajpurohit et al. (2018), who determined Teff ,
log g, and metallicities for M dwarfs from CARMENES high-
resolution spectra (Reiners et al. 2018). Gaidos & Mann (2014)
and Mann et al. (2015) also derived Teff of M dwarfs from fitting
BT-Settl models, but to low-resolution visible SNIFS spectra.
Kuznetsov et al. (2019) determined Teff , log g, [Fe/H], and v sin i
of 153 M dwarfs by fitting mid-resolution visible spectra from
X-shooter at VLT using BT-Settl models.

Zboril & Byrne (1998) (see also Zboril et al. 1998) fitted
PHOENIX models (Allard & Hauschildt 1995) to derive log g
and [M/H] for 11 M dwarfs with high-resolution visible spectra.
To estimate Teff they used photometric indices. Bean et al. (2006)
generated synthetic spectra based on the PHOENIX NextGen
models (Hauschildt et al. 1999) using the stellar analysis code
MOOG (Sneden 1973) to determine Teff and [M/H] for three
planet-hosting M dwarfs. After several recent updates of line
lists and the equation of state, the PHOENIX models were used
by Passegger et al. (2018) (PHOENIX-ACES, see Husser et al.
2013), Passegger et al. (2019), and Schweitzer et al. (2019) (both
using the SESAM equation of state, see Meyer 2017) to derive
Teff , log g, and [Fe/H] of M dwarfs observed with CARMENES
in the visible and near-infrared wavelength ranges. Birky et al.
(2017) determined the same parameters for late-M and early-L
dwarfs from fitting PHOENIX models to high-resolution near-
infrared APOGEE spectra (R ∼ 22 500). Another source for
synthetic models widely used are the MARCS model atmo-
spheres (Gustafsson et al. 2008). Önehag et al. (2012) used
MARCS atmospheres together with the SME package (Valenti &
Piskunov 1996; Valenti & Fischer 2005) to calculate synthetic
models with specific parameters on the fly and to fit them to high-
resolution J-band spectra of eight M dwarfs. Souto et al. (2017)
generated synthetic spectra using the Turbospectrum code
(Alvarez & Plez 1998; Plez 2012) and MARCS atmospheres
and fitted them to high-resolution APOGEE spectra of two
M-dwarf exoplanet hosts to determine 13 element abundances.
Souto et al. (2018) employed MARCS and BT-Settl model atmo-
spheres (Allard et al. 2013) together with Turbspectrum to
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find Teff , log g, and eight element abundances of the exoplanet
host Ross 128 (M4.0 V). Recently, Souto et al. (2020) used the
Turbospectrum code and MARCS atmospheres with updated
APOGEE atomic and molecular line lists (Shetrone et al. 2015)
to calculate synthetic spectra and fitted them to 21 M-dwarf
high-resolution H-band spectra observed with APOGEE.

In recent years, machine learning (ML) has proved to be a
powerful tool in many fields and also found its way into astro-
physics and stellar parameter determination. Machine learning
techniques are used in several areas of astrophysics, such as
galaxy morphology prediction (Dieleman et al. 2015) and classi-
fication (Wu et al. 2018), detection of bar structures in galaxy
images (Abraham et al. 2018), determining the evolutionary
states of red giants from asteroseismology (Hon et al. 2017), and
classifying variable stars from analysis of light curves (Mahabal
et al. 2017). Early applications of neural networks to character-
ize stellar spectra can be found in von Hippel et al. (1994), Gulati
et al. (1994), and Singh et al. (1998), for example. Bailer-Jones
et al. (1997) trained an artificial neural network with synthetic
spectra to determine Teff , log g, and [M/H] for over 5000 stars of
spectral types B to K.

Sharma et al. (2019) compared different ML algorithms, such
as artificial neural networks (ANN), random forests, and convo-
lutional neural networks, to classify stellar spectra. They report
that their convolutional neural network achieved better accuracy
than the other ML algorithms, and point out the importance of
a sufficiently large training set. Sarro et al. (2018) used genetic
algorithms for selecting features such as equivalent widths and
integrated flux ratios from BT-Settl model atmospheres. They
estimated Teff , log g, and [M/H] for M dwarfs with eight different
regression models and ML techniques, and compared the results
to classical χ2 and independent component analysis coefficients.
Whitten et al. (2019) present the Stellar Photometric Index Net-
work Explorer (SPHINX), an artificial neural network approach to
estimate Teff and [Fe/H] from J-PLUS broad- and intermediate-
band optical photometry, and synthetic magnitudes. SPHINX
is able to successfully estimate temperatures and metallicities
for stars in the range 4500 K < Teff < 8500 K and down to
[Fe/H] ∼−3.
The Cannon (Ness et al. 2015) and The Cannon2 (Casey

et al. 2016) were designed to derive stellar parameters from
APOGEE spectra. The Cannon is a data-driven approach that
is trained with observed spectra with known parameters from
the APOGEE pipeline. For training they used only 542 reference
stars. They show that The Cannon is able to provide accurate
Teff , log g, and [Fe/H] for all 55 000 stars of APOGEE DR10,
even for those with low signal-to-noise ratio (S/N) around 50.
Birky et al. (2020) also used The Cannon and determined Teff ,
log g, [Fe/H], and detailed abundances for 5875 M dwarfs from
the APOGEE and Gaia DR2 surveys.

Fabbro et al. (2018) trained the convolutional neural net-
work StarNet on observed APOGEE spectra as well as syn-
thetic MARCS and ATLAS9 model atmospheres. They applied
StarNet to 148 724 and 21 787 stars, respectively, with tempera-
tures between 4000 K and 5000 K, and measured Teff , log g, and
[Fe/H]. They find that StarNet is capable of deriving parame-
ters close to those determined from the APOGEE pipeline when
trained with observed spectra, although there are some larger
differences for lower metallicities and higher temperatures. For
StarNet trained on synthetic spectra the intrinsic error is about
twice as large than for observed spectra, although the resulting
parameters are very similar. Additionally, Fabbro et al. (2018)
gave a detailed description on neural networks. Leung & Bovy
(2019) also derived stellar parameters for the whole APOGEE

dataset using the Bayesian neural network astroNN, which was
trained with observed spectra from the APOGEE pipeline over
the full spectral range. Additionally, they determined 19 individ-
ual element abundances from specific wavelength ranges using
mini-networks.

Recently, Antoniadis-Karnavas et al. (2020) present their ML
tool ODUSSEAS, which is based on measuring pEWs of more than
4000 absorption lines in the optical. They trained their neural
network with a set of HARPS spectra consisting of only 45 train-
ing and 20 test spectra. ODUSSEAS can be applied to spectra with
different resolutions because the tool adjusts the resolution of the
HARPS spectra in the training step. Thanks to this capability,
Antoniadis-Karnavas et al. (2020) successfully derived Teff and
[Fe/H] for several M dwarfs observed with different instruments.

In the study presented here we follow two main interests.
First of all, we are interested in providing insights into the
capability of deep learning (DL, Sect. 2.1) to create models
able to learn stellar parameters when different configurations
(i.e., architectures, wavelength windows, combinations of stellar
parameters) are considered. Despite the regularly found astro-
physical applications of DL models (Li et al. 2017; Fabbro et al.
2018; Shallue & Vanderburg 2018), we want to gain better under-
standing of the effects that different DL architectures have in the
model creation, as well as to understand the significance of dif-
ferent spectral windows adopted to create models. The second
interest is about considering the uncertainty induced when the
training process is carried out on synthetic spectra and param-
eter estimation is made for observed spectra, which is not the
common way of using DL models. To do this we applied the
DL method to a test sample of 50 M dwarfs with high-resolution
and high-S/N spectra to demonstrate the applicability of ANNs,
trained with synthetic PHOENIX-ACES models (Husser et al.
2013), to observed spectra.

In Sect. 2 we explain the DL procedure and our ANN
architecture. Section 3 describes the PHOENIX-ACES synthetic
model grid that we used for training the neural network, our
strategy of spectrum preparation, the stellar sample, and the
application of our neural network. The derived stellar parameters
are presented in Sect. 4, together with a literature comparison
and discussion. Finally, in Sect. 5 we give a short summary of
this work.

2. Method

2.1. Deep learning

Artificial intelligence is a broad area of computer science that
develops systems able to perform tasks that are regularly seen
to require human intelligence (McCarthy & Hayes 1981; Steels
1993; González-Marcos et al. 2013). Machine learning is an arti-
ficial intelligence technique looking to develop algorithms that
can be “taught” how to learn patterns from data, instead of just
transforming them. The ANN stands for a family of ML methods
aiming to learn from data in a way inspired by the human brain
structure (Zhang et al. 1998; Anthony & Bartlett 2009; Gong
& Ordieres-Meré 2016). An ANN is constructed from different
layers that are composed of a collection of artificial neurons or
nodes. A node is characterized as a linear function of its input
signals with weights. It is activated by a nonlinear activation
function that can adopt different expressions. Some of the most
commonly used functions are linear, rectified linear unit (ReLU),
sigmoid, or softmax.

Deep learning is a subset of ML methods that enables com-
putational models consisting of multiple processing layers to
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Fig. 1. Generic architecture for DL models in this work.

learn representations of data with multiple levels of abstraction
(LeCun et al. 2015; Schmidhuber 2015; Zheng et al. 2018). The
main difference between traditional ML and DL techniques is
that in ML the feature identification needs to be established by
the user, whereas in DL the features are explored in an automatic
way by means of different techniques, such as convolutional
transformations of the input space data.

2.2. ANN architectures

The DL techniques employed in this paper utilize two different
processing units to carry out the process. Firstly, a convolutional
block creates feature sets starting from a single wavelength range
of the one-dimensional spectrum, in this case a synthetic model
created with known stellar parameters, and it ends with a large
set of created features. Next, an ANN block implements a regres-
sive modeling approach against the stellar parameter of interest
(see Fig. 1).

The ANN is built of neuron nodes organized by layers
where every node is fully connected together with a feed-forward
sequence, meaning that every output signal of the previous layer
is connected to each node of the following layer. Regarding the
layer structure of the ANN, its input layer is the set of created
features from the previous convolutional block, and the output
layer is the predicted stellar parameter. In between those layers,
there are several hidden layers consisting of neurons. The more
hidden layers the ANN contains, the “deeper” it is. This struc-
tural configuration of DL models enables the processing of data
with a nonlinear approach, not only because of the convolutional

nature of its preprocessing steps, but also because the activation
functions in the neurons of these ANNs are commonly nonlinear,
such as the ReLU (Petersen & Voigtlaender 2018).

Regarding the convolutional block, the input layer is the
one-dimensional synthetic spectrum, and is followed by sev-
eral convolutional layers. In these layers the weights are applied
as multipliers with tunable coefficients. When considered as a
matrix operation, they can be seen as a filter to the input sig-
nal (the normalized flux values of the spectrum). These filters
scan across the previous layer and convolve a certain section
of the input with the weights to extract features from the previ-
ous layer. Later on, the ANN learns which features are the most
relevant, and it correspondingly adjusts the filter coefficients.
During or just after the convolutional layers a pooling layer
can be included. The function of pooling layers is to progres-
sively reduce the spatial size of the representation to decrease
the amount of free parameters and computation in the network.
It can be imagined as a window sliding across the previous
convolutional layer, which calculates a function value of each
sub-region (e.g., its average, its maximum, etc.). By selecting
the maximum value, the designer of the DL architecture extracts
the strongest overall features from the convolutional layer. In this
case the layer is called max pooling layer. A structural schematic
is presented in Fig. 1.

2.3. Training

The DL model has a number of tunable parameters. In the fol-
lowing we refer to them as model parameters, in contrast to
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stellar parameters, which are the output of the DL model. These
model parameters include number and length of filters in each
convolutional layer, filter coefficients, pooling window size, and
number and weights of connection nodes in the fully connected
layers. At the beginning of the training phase the weights and
coefficients are randomly set and get improved during the train-
ing. The training requires a reference set, which consists of
a large number of observed or, in our case, synthetic spectra
with known stellar parameters. Although there is not an explicit
formula linking the number of training samples and the error
quantifying the performance of the model, still such a relation-
ship does exist. The higher the number of training samples, the
easier to get models with acceptable mean square error (MSE)
and the more accurate the final stellar parameters will be. The
way to increase the number of such training dataset is to reduce
the parameter’s step size in the training grid, for example by
interpolation (see Sect. 3.2). A limitation on the maximum num-
ber of training samples is given by the computing feasibility
according to the available resources (GP-GPU memory and data
transfer throughput). Also, since the DL is able to interpolate
between the synthetic grid points to some extent, minimizing
the step size would not add any additional value to the derived
parameters.

The reference set is divided into a training set (95%) and a
validation set (5%). During the training process the whole train-
ing set is fed into the DL model, all weights and filters are applied
to the input flux in each layer, and stellar parameters are pre-
dicted. The obtained output depends on the model parameters
but also on the DL architecture, such as the number of convo-
lutions, pooling layers, the number of layers of the ANN, and
the chosen type of activation functions. After the whole training
set is processed, the output stellar parameters are compared to
the known input stellar parameters, and the training error is esti-
mated. This error is used to modify all the DL model parameters
through a backward propagation using a gradient-based algo-
rithm and a new training cycle starts. Each of those cycles are
called an “epoch.”

Additionally, after each epoch the whole validation set is sent
through the DL model to determine the validation error, which
is estimated to be the MSE. In this case the background idea is
not to correct the error, but to have an independent estimation
of the error to be measured through epochs and to avoid over-
fitting of the training dataset. Over-fitting happens when the DL
model describes the random variations in the dataset (e.g., tiny
molecular features that appear as noise to the DL model) instead
of the relations between variables (here, the stellar parameters).
In this way the DL model moves from a regression into a mem-
ory tool. Obviously, this evolution negatively impacts the ability
of the model to generalize to new data. With the validation set,
the learned DL model is evaluated regarding its performance on
unseen data. We created a regression approach able to estimate
stellar parameters and not a system to identify or classify the
training dataset like a memory. Keeping the validation error con-
sistently decreasing indicates that the adjustment of weights and
coefficients progresses in the right direction to improve the DL
model.

The training continues until the minimum of the valida-
tion error is reached and, then, all weights and coefficients are
fixed. It was commonly found after around 15 epochs. How-
ever, to be conservative, the algorithm usually ran between 35
and 50 epochs. The architecture, that is the number of layers and
sequence of convolutions, was provided before the training starts
and was kept fixed during the process.

2.4. Testing

The trained DL model is then applied to the test set, which in
this case was a randomly generated set of 100 synthetic spectra,
not related to the reference set (i.e., never seen before, neither for
training nor for validation). From this set, which is preserved
during all the experiments, the quality of the created models
is measured through the test error. If the DL model performs
well, which means that the average of the test error is lower than
an adopted threshold depending on the stellar parameter under
consideration, the training phase is considered complete and the
DL model is applied to predict stellar parameters in observed
spectra.

In our particular case, for each stellar parameter, an individ-
ual DL model was built to predict Teff , log g, [M/H], and v sin i
separately, although several experiments were also conducted for
predicting several parameters from the same model. The analy-
sis of the architectures for each of these models is presented in
Sect. 4.1.

3. Analysis

3.1. Observational sample

To test our DL method we used the same template spectra as in
Passegger et al. (2019, in the following referred to as Pass19) and
applied it to the first 50 stars listed in their Table B.1. The stellar
sample that we used in this work is presented in Sect. 4 together
with the results.

The spectra were observed with the CARMENES1 instru-
ment, installed on the Zeiss 3.5 m telescope at the Calar Alto
Observatory, Spain. CARMENES combines two highly stable
fiber-fed spectrographs covering a spectral range from 520 to
960 nm in the visible (VIS) and from 960 to 1710 nm in the
near-infrared (NIR), with spectral resolutions of R ≈ 94 600
and 80 500, respectively (Quirrenbach et al. 2018; Reiners et al.
2018). The primary goal of this instrument is to search for
Earth-sized planets in the habitable zones of M dwarfs.

For a detailed description on data reduction we refer to
Zechmeister et al. (2014), Caballero et al. (2016), and Pass19.
As in the latter we used the high-S/N template spectrum for each
star. These templates are a byproduct of the CARMENES radial
velocity pipeline serval (SpEctrum Radial Velocity AnaLyser;
Zechmeister et al. 2018). In the standard data flow, the code
constructs a template for every target star from at least five indi-
vidual spectra to derive the radial velocities of a single spectrum
by least-square fitting against the template. For our sample, this
results in an average S/N of around 159 for the VIS and 328 for
the NIR.

Before creating the templates, the near-infrared spectra were
corrected for telluric lines. We did not use the telluric correction
for the visible spectra because the telluric features are negligible
in the investigated ranges. The telluric correction is explained
in detail by Nagel et al. (2020). A telluric absorption spectrum
was modeled for each observation using the telluric-correction
tool Molecfit (Kausch et al. 2014; Smette et al. 2015) and then
subtracted from the observed spectrum. The result is a telluric-
free observed spectrum that can then be used to construct a
template.

1 Calar Alto high-Resolution search for M dwarfs with Exo-earths with
Near-infrared and optical Échelle Spectrographs, http://carmenes.
caha.es

A22, page 5 of 16

http://carmenes.caha.es
http://carmenes.caha.es


A&A 642, A22 (2020)

Table 1. PHOENIX grid for DL training.

Parameter Minimum Maximum Step size

Teff [K] 2300 4500 25
log g [dex] 4.2 5.5 0.1
[M/H] [dex] −1.0 +0.8 0.1
v sin i [km s−1] 1.5 3.0 0.5

3.0 6.0 1.0
6.0 10.0 2.0
10.0 60.0 5.0

3.2. Synthetic model grid

To train the neural network, we used synthetic model spectra.
The advantage of this approach is that we could generate a large
enough number of model spectra and did not have to rely on a
limited sample of observations with well known stellar param-
eters. On the other hand, although significant improvements
were made in the past years (Allard et al. 2013; Husser et al.
2013), synthetic models still cannot fully model stellar atmo-
spheres, especially in the low-temperature range. This is shown
by Pass19, for example.

In this work we used the PHOENIX atmosphere code
(Hauschildt 1992, 1993; Hauschildt & Baron 1999), in particular
the PHOENIX-ACES models presented by Husser et al. (2013).
The code generates one-dimensional model atmospheres. They
can be computed in local thermodynamical equilibrium (LTE)
or non-LTE radiative transfer mode for main sequence stars,
brown and white dwarfs, giants, accretion disks, and expanding
envelopes of novae and supernovae. As an end product, one- or
three-dimensional synthetic spectra can be calculated.

Several model atmosphere grids used the PHOENIX code
as a basis. This includes the NextGen (Hauschildt et al. 1999),
AMES (Allard et al. 2001), BT-Settl (Allard et al. 2011), and
PHOENIX-ACES models (Husser et al. 2013). The latter ones
were especially designed for cool dwarfs (Teff ≥ 2300 K), as they
used a new equation of state that accounts for molecule forma-
tion in low-temperature stellar atmospheres. The grid that we
used in this work is based on the PHOENIX-ACES model grid.

The existing grid (step size of 100 K for Teff , and 0.5 dex
for log g and [M/H]) of stellar spectra was linearly interpo-
lated between the grid points using pyterpol (Nemravová
et al. 2016). As shown in Pass19, linear interpolation between
these grid points produces synthetic spectra that are numerically
equivalent to results of simulated spectra. The final grid char-
acteristics used for analyzing the DL modeling capabilities can
be seen in Table 1. However, to train models to be applied to
the observed spectra, additional restrictions must be considered
because the whole grid can provide extra combinations of param-
eters that are not realistic for M stars. The restrictions regarding
the relationship between Teff , log g, [M/H], and age of the stars
were implemented according to Bressan et al. (2012) and are
explained in Sect. 4.2.

3.3. Spectrum preparation

Before we started the training, the synthetic spectra were
adjusted to the observations. We did this in several steps. First,
we accounted for instrumental broadening by convolving the
synthetic models with a Voigt profile. Our code is based on
libcerf (Johnson et al. 2019). The corresponding values for the

Table 2. Analyzed spectral windows.

λstart [Å] λend [Å] Chunk size [λ points]

7050 7075 2048
7081 7115 2048
7121 7175 4096
7640 7725 4096
8160 8225 4096
8401 8480 4096
8485 8530 4096
8640 8710 4096
8800 8835 2048

1024
512
256

9719 9735 1024
9822 9847 2048
10570 10600 1024
10650 10675 1024
10760 10790 1024
11120 11135 512
11763 11795 1024
12510 12540 2001

1024
512
256

15146 15175 512

Gauss and Lorentz part of the Voigt function were taken from
Nagel et al. (2020), who investigated the instrumental profiles of
the CARMENES VIS and NIR channels separately.

Second, to account for different stellar rotation rates (v sin i),
the synthetic spectra of the finer grid were broadened using our
own broadening function in order to speed up the process. It is
a Fortran translation of the rotational_convolution func-
tion of Eniric (Figueira et al. 2016). We kept a limb darkening
coefficient of 0.6, which was the default value proposed in the
paper.

Because of the high-S/N of the observed CARMENES spec-
tra (S/N > 150), we decided not to include any noise in the
synthetic spectra. By using regression models to derive stellar
parameters for hotter stars, González-Marcos et al. (2017) show
that adding noise to a spectral training set does not improve the
results for S/N > 50.

Since the CARMENES caracal pipeline produces only
flat-relative normalized spectra, we applied a continuum normal-
ization. We used the Gaussian Inflection Spline Interpolation
Continuum (GISIC) routine2 developed by D. D. Whitten and
designed for spectra with strong molecular features. The spec-
trum was smoothed using a Gaussian, then molecular bands
were identified from a numerical gradient and continuum points
were selected. A cubic spline interpolation was performed to
normalize the continuum over the whole spectral range (see
Table 2). The same procedure was also applied to the observed
CARMENES spectra for each spectral range of interest. To pre-
vent the possible edge effects of the normalization we extended
every window by 5 Å on each side.

Finally, because of the spatial motion of the stars, an abso-
lute radial-velocity correction was required for the observed

2 https://pypi.org/project/GISIC/
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Fig. 2. Example of one spectral window used with different chunks of size 512 points indicated by the vertical dashed lines.

spectra. We used a method similar to the one implemented in
serval, which employs the cross-correlation (crosscorrRV
from PyAstronomy, Czesla et al. 2019) between a PHOENIX
model spectrum and the observed spectrum. By applying
the radial velocity correction, the wavelengths were shifted
and, therefore, the wavelength grid was different for each
CARMENES spectrum. Because we needed a universal wave-
length grid in order to apply the DL models, we linearly inter-
polated the wavelength grid of the observations to the original
wavelength grid of the synthetic models. The process ended up
with 449 806 synthetic model spectra for training the DL models.

3.4. Implementation

Regarding the implementation of the algorithm, we used
TensorFlow v2, which is the premier open-source DL frame-
work commonly available. It was developed and maintained by
Google (Abadi 2015) and, since its direct usage can be chal-
lenging, a front-end framework named Keras was used as well
(Chollet 2015).

The adoption of the TensorFlow framework for DL model
creation enables the usage of accelerated hardware based on
the Nvidia general-purpose graphics processing unit (GPU)
cards, which outperforms the central processing unit computa-
tion (CPU) time by around a factor of twenty (Mittal & Vaishay
2019). In this application, we used GPU cards with 11 GB of
RAM and 4352 computing cores. The training time for a model
experiencing proper convergence depended on the training data
size, but also on the architecture and number of epochs, and it
varied between 45 min to several hours.

3.5. Different DL approaches

Different DL architectures were considered, some of them
inspired by literature such as Sharma et al. (2019), StarNet
(Kielty et al. 2018), and many other homemade architectures.
To this end, a flexible python code was implemented where the
topology for the convolutional structure and for the ANN lay-
ers were passed as parameters. In this way it was possible to
distribute the computations among different computing nodes
to increase parallelism, as well as keeping the software easy to
maintain.

We used different spectral windows to derive the models.
These were taken from Pass19 and are summarized in Table 2.
For each window we considered a certain chunk size, which
refers to the number of wavelengths points within the window.
For some windows we used several chunk sizes, ranging from
256 to 4096 wavelength points, to explore the impact on the
DL model and its predictions of the stellar parameters. Figure 2
shows an example for such a spectral window with different
chunks marked. Three approaches were defined for the analysis
as follows.

In approach A, we trained a DL model for one spectral win-
dow and predicted each stellar parameter individually. We modi-
fied the DL architecture by varying the number of convolutional,
pooling, and ANN hidden layers. The different architectures
ranged from just three convolutional layers with one max pooling
layer, passing the flattened vector of features to an ANN having
three hidden layers, to eight convolutional layers with and with-
out intermediate pooling layers, both maximum and averaged.
The feature vector was fed into an ANN having five hidden lay-
ers. The convolutional layers had implemented strategies from a
few replications per layer and increasing as they moved over the
layers and vice versa. In this way we investigated a possible dif-
ference in predictions depending on the architecture and spectral
window used.

In approach B, different combinations of stellar parameters
were analyzed. In this approach we derived a DL model for indi-
vidual parameters, for both Teff and log g, and for [M/H] and
v sin i, as well as for all the four parameters at the same time.
Also here we determined predictions for the spectral windows
in Table 2 and investigated different architectures. From this
approach we see how a combined DL model impacted the stellar
parameter predictions.

In approach C, we derived a DL model for each stellar param-
eter separately, but we combined spectral windows. For example,
we combined the window starting at 8800 Å with the window
starting at 12 510 Å to investigate the differences in the pre-
dictions when more spectral information is used. Also, other
window couplings were analyzed, such as the combination of
all the VIS channel windows, and all the NIR channel windows.
Again, we determined DL models for different architectures.

As a summary, more than 2000 different DL models were
created, and for selecting the most suitable ones, specific quality
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Table 3. Quality criteria and number of suitable models trained from
PHOENIX.

Parameter Error No No No

threshold models architectures windows

Teff 25 K 89 22 11
log g 0.05 dex 101 15 7
[M/H] 0.05 dex 95 18 9
v sin i 1 km s−1 113 16 10

criteria were defined. Every model was applied across the test
sample to estimate the quality of the forecast. This error thresh-
old was used as quality criteria to select them for further usage
over the observed spectra. The number of selected models, as
well as the quality criteria, are shown in Table 3. The thresh-
olds for defining a good quality model were adopted from the
MSE criterion, ranging between 5× 10−4 and 10−5. The aim was
to produce a difference between real and estimated parameters
less than the threshold presented in Table 3, independently of
the value of the parameter. As an example, the prediction quality
for the test dataset for some of the models is plotted in Fig. 3.

3.6. Application to CARMENES spectra

The synthetic gap is well-known in ML and refers to the dif-
ferences in feature distributions between synthetic and observed
data (Fabbro et al. 2018). Because the spectra are high-
dimensional data with, in our case of synthetic spectra, up
to 4096 flux values (i.e., dimensions) per spectral window,
dimensional reduction is necessary to visualize the data in low-
dimensional space. So we verified the synthetic gap by using
a nonlinear projector from high-dimensional flux space into a
two-dimensional space that preserved the local topology in order
to understand similarities between PHOENIX and CARMENES
spectra families. We decided to use the Uniform Manifold
Approximation and Projection (UMAP; McInnes et al. 2018)
with a metric that is a correlation between the spectra.

As can be seen in Fig. 4, only four of our investigated
CARMENES spectra are close to the PHOENIX family (we
plotted only a subset of the full PHOENIX grid for visibility).
However, there is a significant set of CARMENES spectra (46
of 50) far away from the PHOENIX sample set used to train the
DL, meaning that the flux features described by synthetic and
observed spectra are significantly different. These large devi-
ations can be explained by the synthetic gap. Due to the fact
that synthetic spectra are not perfect, it is expected that the fea-
ture distributions of synthetic and observed spectra do not match
completely, meaning that not all CARMENES spectra would fall
right within the PHOENIX spectra in Fig. 4. However, such
a big difference as observed here indicates significant differ-
ences between those two spectral families and will transform
into higher uncertainties on the stellar parameters derived using
these synthetic spectra. To assess the possible relevance of the
noise in this work we also added white Gaussian noise (S/N =
50, 100, 150) to the PHOENIX set and compared the resulting
UMAP projections. All the noisy PHOENIX spectra show a sim-
ilar behavior as the noise-free spectra. In our case, an S/N of 150
served as a lower limit for the CARMENES spectra, since most
of the observed spectra used in this work have higher S/N. The
noisy PHOENIX spectra are not closer to the observed data in

the UMAP, indicating that noise is not responsible for the syn-
thetic gap. We note that, since this is a dimensional projection,
the axes in Fig. 4 are not labeled, because they do not have a
specific meaning here.

Being aware of such a gap, all accepted DL models from all
three DL approaches described in Sect. 3.5 were applied to the 50
CARMENES spectra in order to estimate the stellar parameters.
The parameter estimations from each DL model were collected
and the probability density function was determined using the
Kernel Density Estimate (KDE; Rosenblatt 1956; Parzen 1962).
Based on such a density of probability function, the maximum
was retained as the confident estimation for the parameter. This
was done for each star and each stellar parameter separately. For
providing the uncertainty for each star and parameter, the 1σ
thresholds of the predictions were calculated. An example for a
representative star is presented in Fig. 5. We included the stellar
parameters derived by Pass19 for comparison.

4. Results and discussion

4.1. Performance of different DL approaches

When we apply our three DL approaches (A, B, C) to the
PHOENIX test set, the predicted stellar parameters show that
there is only little, if any, influence from the DL architecture, as
all of them are able to produce good quality DL models. There
are also minimal differences when considering stellar parame-
ters derived from different windows. Therefore, we conclude that
there is enough spectral information to determine stellar param-
eters from any window, no matter what chunk size, since also
no particular improvement is found when several windows were
joined. The DL models are able to successfully predict individ-
ual stellar parameters. Obviously, this only refers to PHOENIX
models and cannot be translated to the observed spectra because
of the particular effects of the synthetic gap, and some other
factors, such as measuring at specific wavelength ranges, tel-
luric correction or different S/N. Nevertheless, when estimating
the information content of stellar spectra from a purely theo-
retical point of view, similar results are obtained. For example,
Hafner & Wehrse (1994) estimated to be able to retrieve more
than ten parameters in a 1000 Å wide chunk in which the res-
olution is only a quarter of that of CARMENES. Therefore, a
key lesson learned is related to the capability of the DL models
to disentangle the specific effects found in the spectra by indi-
vidual parameters even if a very small chunk of the spectrum is
considered. Indeed, no particular attention to the DL architec-
ture is required as all of those tested are capable of performing
well.

During our tests, we also trained models predicting all
four stellar parameters simultaneously, as it is done by The
Cannon. However, we find that these models always give worse
predictions, meaning higher validation errors, than individual
ones. Therefore, we decided to estimate each stellar parameter
individually.

4.2. Performance on CARMENES spectra

To address the second goal of this work (evaluate its applica-
tion to observed spectra and the impact of the synthetic gap on
the estimation of stellar parameters), we applied all trained mod-
els matching the quality criteria (see Table 3) to the observed
CARMENES spectra, collected the results for each star, and
drew statistical distributions for each parameter. This technique
has the advantage of estimating uncertainties for each star and
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Fig. 3. Differences between input and output stellar parameters for the test set for an example DL model. The red line shows the average of all
points and the blue shaded area is the 95% confidence region.

stellar parameter by calculating the 1σ deviations for each
distribution.

Figure 6 shows a comparison between our estimated [M/H]
and literature values, color-coded with our derived Teff . The
degeneracy at low Teff and high [M/H] is evident in the top panel.
This behavior was described already, for example in Passegger
et al. (2018) and Pass19, who decided to break the degeneracy
by determining log g independently from evolutionary models.
In contrast to Pass19, who used the PARSEC v1.2S evolutionary
models (Bressan et al. 2012; Chen et al. 2014, 2015; Tang et al.
2014) to derive log g depending on Teff and metallicity suggested
by their downhill simplex method, we used the PARSEC library
to constrain our synthetic model grid with which we trained
our DL models. In this way we could remove stellar parameter
combinations that are physically unrealistic for M dwarfs (i.e.,
they correspond to objects far away from the main sequence)

and helped the DL to break the degeneracy. After applying this
constraint, we tested our improved approach and trained new
DL models for the wavelength window 8800–8835 Å, since this
window shows the smallest MSE from all windows we investi-
gated. Using the same quality criteria as presented in Table 3, we
ended up with more than 200 accepted DL models for each stel-
lar parameter. We find that constraining the synthetic model grid
is indeed capable of breaking the observed parameter degeneracy
(see bottom panel of Fig. 6). The hereby estimated stellar param-
eters, together with their uncertainties for the 50 CARMENES
stars, are presented in Table 4.

4.3. Literature comparison

We compared our results to values from the literature, as shown
in Fig. 7. To increase readability of the plots we present our
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Fig. 4. Representative UMAP two-dimensional projection of
CARMENES (blue) and PHOENIX spectra (S/N =∞ in yellow, S/N =
150 in gray) built with the flux values from the 8800–8835 Å window.
Only four CARMENES spectra show similarities with the PHOENIX
feature distribution, while the rest are considerably different. Other
spectral windows show a similar behavior.

errorbars in gray. We differentiated between several determina-
tion methods to visualize possible biases.

4.3.1. Effective temperature

The comparison of our estimated Teff to the following literature
works is shown in the top left plot of Fig. 7. Synthetic model fits
were performed by Pass19. As mentioned above, Gaidos & Mann
(2014) and Mann et al. (2015) derived Teff from visual spectra
using BT-Settl model fits. Our values are mostly consistent with
these works within their errors. Spectral indices and pEWs were
used by Rojas-Ayala et al. (2012), Maldonado et al. (2015), and
Terrien et al. (2015). The latter study determined three differ-
ent values of Teff and [M/H] in the J, H, and K bands. We took
the values from the K band for comparison, because they report
those values to be the most reliable. Gaidos & Mann (2014) cal-
culated spectral curvature indices in the near-infrared for stars
without visual spectra. In comparison, values from Rojas-Ayala
et al. (2012) and Gaidos & Mann (2014) agree well with our
results within their errors. We find no correlation with K-band
Teff from Terrien et al. (2015), which basically form a straight
line around 3300 K.

Houdebine et al. (2019) determined Teff using photometric
colors. Their results are fairly consistent with our estimates in
the temperature range below 3800 K, but tend to be considerably
lower for higher temperatures. In general, there seems to be no
bias regarding different determination methods, since all results
follow the same pattern (except for Terrien et al. 2015).

There is one significant outlier, which is marked with a
purple circle. This is GJ 87, for which we estimated a Teff of
3990+106

−68 K, whereas several other works report temperatures
345 K cooler on average (Pass19: 3605±54 K; Maldonado et al.
2015: 3562±68 K; Gaidos & Mann 2014: 3783±94 K; Mann et al.

2015: 3638±62 K; Houdebine et al. 2019: 3645±33 K). However,
log g, [M/H], and v sin i (see below) are consistent with literature
values within their errors. From the spectral type (M1.5 V) and
its nearly solar metallicity (+0.07 dex), a temperature of around
3700 K would be more fitting (see Fig. 8 in Passegger et al. 2018),
as reported in the literature. At this point we find no explanation
for the large deviation in temperature, since this star is not young
(e.g., Pass19 assumed 5 Gyr) and shows no magnetic activity.

Unfortunately, there are only three stars that we have in
common with Antoniadis-Karnavas et al. (2020), who estimated
their stellar parameters with the ML tool ODUSSEAS. For these
stars we derived about 150 K higher temperatures than with
ODUSSEAS. Also other literature values for these stars show
higher temperatures and match better with our results.

4.3.2. Surface gravity

For log g (Fig. 7, top right), results from synthetic model fits
come from Pass19. To obtain log g values for the other literature
results, we calculated log g from the masses and radii the respec-
tive studies provide. Mann et al. (2015) determined the stellar
mass from a mass-luminosity relation (Delfosse et al. 2000), and
the stellar radius from employing the Stefan-Boltzmann law with
Teff derived from BT-Settl fits and spectroscopically measured
bolometric fluxes. Gaidos & Mann (2014) derived stellar masses
in the same way as Mann et al. (2015). For the stellar radius
they used the radius-temperature relationship from Mann et al.
(2013b). Maldonado et al. (2015) determined stellar masses from
empirical photometric relations and stellar radii from a mass-
radius relationship involving interferometric measurements and
eclipsing binaries. Their results are marked as “interferometric”
in the plot. Although most values group along the 1:1 correlation
and coincide with literature within their errors, we tentatively
estimated lower log g compared to literature.

4.3.3. Metallicity

Since our [M/H] results directly translate into identical [Fe/H]
values we can compare these with literature [Fe/H] results. Con-
versely, literature values of [Fe/H] are often interpreted as a
proxy for [M/H]. The different measurements are distinguished
in the bottom left plot of Fig. 7. As mentioned in Sect. 1,
spectral indices, pEWs, and relations of atomic line strength to
determine metallicity were used by Rojas-Ayala et al. (2012),
Maldonado et al. (2015), Mann et al. (2015), and Gaidos &
Mann (2014). Besides, Terrien et al. (2015) used both pEWs
and spectral indices. Dittmann et al. (2016) derived [Fe/H] from
color-magnitude metallicity relations. From these studies, only
Rojas-Ayala et al. (2012), Terrien et al. (2015), and Pass19
provide [M/H], while all others claim [Fe/H].

All our metallicities seem to be constrained to the range
0.0 dex < [M/H] < +0.4 dex, in contrast to literature values, which
lie in a wider range between –0.4 dex and +0.5 dex. Ignoring
data points from Pass19 (i.e., “fit [M/H]”), all other literature
values are more metal-poor compared to our estimations or,
equivalently, our metallicities are too high. Similar to Teff , the
three points of Antoniadis-Karnavas et al. (2020) lie in the lower
range, presenting metallicities lower than ours and other litera-
ture, which might indicate that they tentatively derived too low
values.

4.3.4. Rotational velocity

We compared our derived v sin i values with those from Reiners
et al. (2018), who determined v sin i from CARMENES spectra
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Fig. 5. DL estimations distribution for the CARMENES star GJ 169.1A (J04311+589). The KDE maximum (i.e., our adopted estimations, red lines)
is shown together with the 1σ uncertainties (magenta lines) and results from Pass19 (green lines). The dark blue curve represents the Gaussian
kernel density estimate. We used the default rules from the seaborn distplot function: Freedman-Diaconis’ (Freedman & Diaconis 1981) for
the histogram bin width and Scott’s rule (Scott 1979) for the kernel size.

as well. They used a cross-correlation method from several
lines in spectral orders of low telluric contamination and high-
S/N and provided errors only for v sin i > 2.0 km s−1, which
is the lower detection limit with the CARMENES VIS spec-
tral resolution. For our sample, these orders are located at
wavelengths λ< 6850 Å. This might explain the differences that
we get when we compare v sin i. The comparison in the bot-
tom right plot of Fig. 7 shows that our DL approach slightly
overestimates v sin i. However, the values are mostly consis-
tent within their errors. There are several mechanism that can
contribute to the broadening of spectral lines, such as mag-
netic activity, pressure broadening, and stellar rotation. For
the first two the strength of the broadening depends on the
properties of the considered atomic species. Only stellar rota-
tion affects all lines in the same way, so it is appropriate to

derive v sin i from several lines individually instead of only
one small wavelength chunk, as it was done in this work.
However, our focus lies toward stellar parameters Teff , log g,
and [M/H].

4.4. Uncertainties, errors, and the synthetic gap

Error estimation is almost as challenging as stellar parameter
determination itself. There are several ways that authors use to
quantify errors in their works. In Pass19 the uncertainties were
calculated by measuring the standard deviations of the differ-
ences between input and output stellar parameters for 1400 noise
perturbed synthetic spectra. These uncertainties represent mea-
surement errors of the method itself, but do not take into account
the effects of the synthetic gap. For pEW methods, such as
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a

Fig. 6. Literature comparison for [M/H] with Teff color-coded, before
(top) and after (bottom) applying the PARSEC constraint on the syn-
thetic grid.

Maldonado et al. (2015), the measurement error in the stellar
parameters is directly derived from uncertainties in the pEWs.

Mann et al. (2015) discussed different sources of uncer-
tainties, taking into account measurement errors and errors
from calibrations and photometric zero points. In other works
(e.g., Houdebine et al. 2019), the error is stated as the differ-
ence between their results and the literature, which cannot be
considered as a measurement or a systematic error.

Antoniadis-Karnavas et al. (2020) estimated their uncer-
tainties by including the intrinsic uncertainties of the HARPS
reference dataset, since these were used in the training pro-
cess of the ML algorithm and, therefore, introduced noise. This
approach can be seen as an attempt at error propagation and mea-
sured the influence on the predicted stellar parameters, meaning
a unique global standard deviation for all the estimated parame-
ters. Fabbro et al. (2018) estimated the prediction error for each
stellar parameter by adding in quadrature statistical and intrinsic
errors. The statistical error was computed from an error spec-
trum, giving an approximation of the error on the predicted
output stellar parameter. The intrinsic error was empirically
measured from a synthetic test sample.

What a real measurement should attempt to quantify is not
only the measurement error but also any type of systematic
error. In the case of spectral analyses, one source of systematic
errors are the uncertainties inherent in the use of model atmo-
spheres and the derived synthetic spectra. This becomes evident
when comparing results of the post-2012 analyses cited in the
introduction with those from the decades prior to the BT-Settl
models. Important studies based on the previous model gen-
erations are, for example, Leggett et al. (2001, 2000) for the
AMES-Dusty models (Allard et al. 2001), Gizis (1997) for the
NextGen grid (Hauschildt et al. 1999), Leggett et al. (1996)
and Jones et al. (1996) for the so called base grid (Allard &
Hauschildt 1995), and Kirkpatrick et al. (1993) for the initial gen-
eration of this line of models (Allard 1990). Typically, the cited
errors are smaller than the changes that happen when chang-
ing the set of model atmospheres. Obviously, the models have
improved over the years, both in quality and the amount of details
in the implemented physics. However, it is not guaranteed that
future improvements in the models will not change the results
significantly.

In this work, the synthetic gap gives us a valuable hint on
the systematic error. Since it tells us how far away the mod-
els are from the observed spectra, the synthetic gap can serve
two purposes. The obvious one is a call to improve the model
atmospheres and synthetic spectra. Currently, we know which
spectral chunks performed the best, that is that they show the
smallest MSE during training. In the future we will investigate
the variation of the synthetic gap over all the wavelength regions
investigated by Passegger et al. (2018) and Pass19 (see Table 2),
but this is beyond the scope of this paper. Identifying the reasons
why some regions can be fitted well, yet showing a large syn-
thetic gap, will point toward potential areas of improvement in
the synthetic spectra. The other aspect is a warning toward those
who use models: no synthetic spectrum is perfect even if a χ2-fit
produces excellent agreement.

Another source of uncertainty is using a too small sample of
reference stars for training. For example, Antoniadis-Karnavas
et al. (2020) used only 65 stars in the training set. As discussed
by Fabbro et al. (2018), it is necessary for a deep neural net-
work to have a large training set that spans over the whole stellar
parameter range. If there were only a few spectra available for a
certain region of the parameter space, such as low temperatures,
this would translate into less accurate estimations for stars in this
region. This lack of information could become important when
using observed spectra as a training set, since there might not
be enough observations available to span the whole parameter
space.

Furthermore, a possible misplacement of the continuum,
especially for late-type stars, should be taken into account when
estimating uncertainties. In our case, we used rather small wave-
length ranges of a few 10 Å, and treated the continuum of the
synthetic and observed spectra in the same way. As can be seen
in Fig. 2, the GISIC algorithm did a good job in normalizing
both spectra within this wavelength range. Therefore, we expect
the uncertainty coming from a possible continuum misplacement
of either spectrum to be negligible. However, because of the way
we estimated our errors, those kind of uncertainties were already
included.

5. Summary and conclusions

We present a deep learning neural network technique to estimate
the stellar parameters Teff , log g, [M/H], and v sin i for M dwarfs
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Table 4. Sample of CARMENES stars and derived parameters with 1 σ uncertainties.

Karmn Name GJ Spectral type Teff [K] log g [dex] [M/H] [dex] v sin i [kms−1]

J00051+457 GJ 2 2 M1.0 V 3738+60
−35 4.68+0.03

−0.07 0.16+0.06
−0.12 4.1+1.7

−1.0
J00067–075 GJ 1002 1002 M5.5 V 2949+114

−87 5.13+0.06
−0.22 0.31+0.16

−0.44 4.9+3.0
−3.0

J00162+198E LP 404-062 1006B M4.0 V 3340+62
−84 4.80+0.15

−0.09 0.31+0.09
−0.26 4.3+2.6

−1.7
J00183+440 GX And 15A M1.0 V 3704+57

−43 4.71+0.05
−0.06 0.00+0.08

−0.08 3.2+1.8
−0.8

J00184+440 GQ And 15B M3.5 V 3223+69
−46 4.96+0.12

−0.09 0.07+0.11
−0.20 5.7+1.3

−2.8
J00286–066 GJ 1012 1012 M4.0 V 3430+81

−54 4.74+0.12
−0.08 0.30+0.07

−0.20 4.5+2.0
−1.8

J00389+306 Wolf 1056 26 M2.5 V 3592+57
−43 4.72+0.07

−0.07 0.16+0.05
−0.12 4.1+1.3

−1.5
J00570+450 G 172-030 ... M3.0 V 3372+57

−46 4.82+0.13
−0.06 0.20+0.07

−0.16 4.5+1.6
−1.7

J01013+613 GJ 47 47 M2.0 V 3532+52
−30 4.77+0.09

−0.07 0.09+0.06
−0.13 4.1+1.3

−1.4
J01025+716 BD+70 68 48 M3.0 V 3668+76

−53 4.66+0.07
−0.06 0.28+0.06

−0.14 4.1+1.8
−1.3

J01026+623 BD+61 195 49 M1.5 V 3698+58
−34 4.64+0.08

−0.02 0.22+0.07
−0.12 4.4+1.8

−1.0
J01048–181 GJ 1028 1028 M5.0 V 3027+96

−73 5.04+0.09
−0.19 0.38+0.12

−0.40 4.5+3.3
−2.6

J01125–169 YZ Cet 54.1 M4.5 V 3075+68
−57 5.06+0.11

−0.10 0.14+0.12
−0.31 6.0+1.9

−2.3
J01339–176 LP 768-113 ... M4.0 V 3268+37

−59 4.94+0.11
−0.07 0.17+0.07

−0.21 5.4+2.0
−1.2

J01433+043 GJ 70 70 M2.0 V 3531+60
−37 4.75+0.09

−0.07 0.10+0.06
−0.11 4.3+1.5

−1.5
J01518+644 G 244-037 3117A M2.5 V 3581+51

−39 4.70+0.09
−0.05 0.20+0.06

−0.12 4.4+1.3
−1.6

J02002+130 TZ Ari 83.1 M3.5 V 3074+60
−62 5.07+0.10

−0.10 0.18+0.11
−0.32 6.4+2.2

−2.0
J02015+637 G 244-047 3126 M3.0 V 3528+58

−48 4.72+0.09
−0.07 0.21+0.06

−0.14 4.0+1.5
−1.5

J02070+496 G 173-037 ... M3.5 V 3382+36
−56 4.86+0.13

−0.06 0.13+0.07
−0.16 5.2+1.3

−1.8
J02088+494 G 173-039 3136 M3.5 V 3300+23

−27 4.87+0.06
−0.08 0.39+0.09

−0.13 25.9+1.9
−1.1

J02123+035 BD+02 348 87 M1.5 V 3990+106
−68 4.61+0.05

−0.05 0.07+0.08
−0.13 3.2+2.1

−1.2
J02222+478 BD+47 612 96 M0.5 V 3926+70

−51 4.61+0.05
−0.04 0.19+0.07

−0.16 4.4+1.9
−1.2

J02336+249 GJ 102 102 M4.0 V 3180+36
−65 5.03+0.08

−0.10 0.18+0.09
−0.24 6.9+2.2

−1.5
J02358+202 BD+19 381 104 M2.0 V 3648+55

−46 4.67+0.08
−0.05 0.23+0.06

−0.16 3.8+2.0
−1.0

J02362+068 BX Cet 105B M4.0 V 3354+85
−55 4.80+0.12

−0.10 0.30+0.07
−0.24 4.5+2.4

−1.6
J02442+255 VX Ari 109 M3.0 V 3442+55

−45 4.79+0.12
−0.06 0.14+0.05

−0.15 4.3+1.5
−1.6

J02519+224 RBS 365 ... M4.0 V 3253+21
−33 4.81+0.06

−0.05 0.40+0.07
−0.11 28.8+1.5

−1.4
J02565+554W Ross 364 119A M1.0 V 4048+90

−68 4.59+0.04
−0.06 0.25+0.10

−0.17 4.6+2.3
−1.7

J03133+047 CD Cet 1057 M5.0 V 3056+84
−68 4.98+0.10

−0.18 0.40+0.10
−0.38 4.8+3.2

−2.7
J03181+382 HD 275122 134 M1.5 V 3819+66

−51 4.61+0.06
−0.03 0.27+0.10

−0.15 4.3+2.0
−1.3

J03213+799 GJ 133 133 M2.0 V 3609+57
−36 4.72+0.07

−0.06 0.09+0.06
−0.11 3.8+1.6

−1.1
J03217–066 G 077-046 3218 M2.0 V 3577+53

−33 4.71+0.09
−0.05 0.20+0.06

−0.12 4.6+1.3
−1.4

J03463+262 HD 23453 154 M0.0 V 3943+71
−53 4.63+0.03

−0.05 0.20+0.10
−0.13 5.2+1.7

−1.5
J03473–019 G 080-021 ... M3.0 V 3432+28

−26 4.88+0.11
−0.07 0.20+0.09

−0.18 9.5+1.4
−1.4

J03531+625 Ross 567 ... M3.0 V 3553+66
−40 4.75+0.09

−0.07 0.11+0.07
−0.14 4.1+1.2

−1.6
J04225+105 LSPM J0422+1031 ... M3.5 V 3445+67

−48 4.70+0.09
−0.08 0.32+0.06

−0.17 4.2+2.1
−1.5

J04290+219 BD+21 652 169 M0.5 V 4210+68
−89 4.60+0.03

−0.07 0.13+0.14
−0.18 5.9+2.0

−2.2
J04311+589 STN 2051A 169.1A M4.0 V 3277+42

−75 4.80+0.13
−0.10 0.26+0.06

−0.22 5.2+1.7
−2.7

J04376–110 BD-11 916 173 M1.5 V 3633+60
−37 4.71+0.06

−0.07 0.15+0.06
−0.13 3.7+1.4

−1.3
J04376+528 BD+52 857 172 M0.0 V 4090+61

−65 4.63+0.02
−0.05 0.08+0.09

−0.14 4.9+1.7
−1.3

J04429+189 HD 285968 176 M2.0 V 3635+53
−44 4.68+0.07

−0.05 0.20+0.06
−0.12 4.1+1.5

−1.4
J04429+214 2M J04425586+2128230 ... M3.5 V 3396+71

−43 4.78+0.13
−0.06 0.21+0.08

−0.15 4.6+1.5
−2.0

J04520+064 Wolf 1539 179 M3.5 V 3334+70
−54 4.78+0.13

−0.08 0.27+0.07
−0.18 4.8+1.8

−2.2
J04538–177 GJ 180 180 M2.0 V 3634+57

−40 4.73+0.05
−0.07 0.08+0.06

−0.12 3.4+1.9
−0.8

J04588+498 BD+49 1280 181 M0.0 V 4008+66
−60 4.62+0.03

−0.05 0.17+0.10
−0.14 5.3+1.8

−1.4
J05019+011 LP 656-038 3323 M4.0 V 3247+37

−38 4.92+0.13
−0.05 0.30+0.07

−0.19 9.8+1.6
−1.5

J05019–069 1RXS J050156.7+010845 ... M4.0 V 3143+56
−59 5.04+0.10

−0.11 0.14+0.11
−0.25 6.3+1.2

−2.8
J05033–173 LP 776-049 3325 M3.0 V 3385+54

−52 4.84+0.12
−0.07 0.09+0.07

−0.16 5.0+0.9
−2.4

J05062+046 RX J0506.2+0439 ... M4.0 V 3204+27
−35 4.86+0.06

−0.07 0.39+0.09
−0.12 28.5+2.0

−1.2
J05127+196 GJ 192 192 M2.0 V 3610+51

−36 4.72+0.06
−0.07 0.10+0.07

−0.12 3.4+1.9
−0.9
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Fig. 7. Comparison of the results of this work with values from the literature. For better readability, the errorbars of this work are plotted in
gray. Different symbols mark different determination methods of literature values. The ellipse in the top left panel marks the outlier star GJ 87
(J02123+035). Legend: fit (synthetic model fit): Passegger et al. (2019), Gaidos & Mann (2014) (Teff VIS), Mann et al. (2015) (Teff); spec (pEWs,
spectral indices, spectroscopic relations): Rojas-Ayala et al. (2012); Maldonado et al. (2015), Gaidos & Mann (2014) (Teff NIR, log g, [Fe/H]), Mann
et al. (2015) (log g, [Fe/H]), Terrien et al. (2015); ML: Antoniadis-Karnavas et al. (2020); phot (photometric): Dittmann et al. (2016); Houdebine
et al. (2019); interfer (interferometry): Maldonado et al. (2015).

from high-S/N, high-resolution, optical, and near-infrared spec-
troscopy. The DL models were trained with PHOENIX-ACES
synthetic spectra, which has the advantage that it is possi-
ble to generate a sufficient number of spectra with known
stellar parameters. We investigated different architectures and
analyzed different spectral windows, which showed only neg-
ligible effects on the estimated stellar parameters. We find
that all DL models produced only small training and valida-
tion errors, meaning that the DL models are able to estimate
stellar parameters from synthetic spectra with high precision
and accuracy. In other words, the information content of syn-
thetic spectra (the determination of which is a fundamental

astrophysical question) is sufficient to determine the four stel-
lar parameters and is independent of the considered spectral
windows.

After constraining the synthetic grid to the M-dwarf param-
eter space using PARSEC evolutionary models, we trained new
DL models on one spectral window and tested their perfor-
mance on 50 high-resolution CARMENES spectra. Although
our results are in good agreement with the literature in most
cases (especially for Teff and log g), significant deviations are
found for the metallicity. We attribute those deviations to the
synthetic gap, the difference of spectral feature distribution
between synthetic and observed spectra.
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To avoid uncertainties introduced by the synthetic gap, we
conclude that it seems more practical to use observed spectra
with known stellar parameters for training. However, the ques-
tion arises where those “known” parameters come from, since
they have to be derived by some method as well, which again
introduces uncertainties. Also, it might be difficult to find a suf-
ficient number of observed spectra covering the whole parameter
range to properly train an accurate DL model.

A more detailed study is necessary to quantify the effect of
the synthetic gap on stellar parameter determination and get to
the bottom of its sources. For this study the main aim was to
validate the DL method, which delivers satisfying results using
synthetic models. However, shortcomings are identified when
applying the trained DL models to observed spectra. Therefore,
we will investigate the synthetic gap and its effect on [M/H] in
more detail in a following study. We will also add noise to the
synthetic spectra, which will help to simulate a more realistic
setup in the training step, however, this will have no signifi-
cant influence on the synthetic gap. In summary, we present
a method to derive stellar parameters with DL models trained
on synthetic spectra and estimated the uncertainty related to the
synthetic gap. This work should also be seen as a word of caution
toward scientists employing synthetic spectra uncritically in their
work, since even apparently perfect fits do not necessarily pro-
vide perfect results, which should be accounted for with larger
error estimates.
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