

Epidemiological surveillance of Schmallenberg virus in wild ruminants in Spain

Journal:	Transboundary and Emerging Diseases
Manuscript ID	Draft
Manuscript Type:	Original Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Jiménez-Ruiz, Saúl; Instituto e Investigacion en Recursos Cinegeticos Grupo de Investigacion Sanidad y Biotecnologia, ; Universidad de Cordoba Facultad de Veterinaria, Risalde, Maria; Instituto de Investigación en Recursos Cinegeticos, Acevedo, Pelayo; Instituto de Investigación en Recursos Cinegéticos; Escuela Técnica Superior de Ingenieros Agrónomos ARNAL, MARIA; Universidad de Zaragoza Facultad de Veterinaria, Anima Pathology Gómez-Guillamón, Félix; Junta de Andalucía, Consejería de Medio Ambiente Prieto, Paloma; Junta de Andalucía, Parque Natural Sierras de Cazorla, Segura y Las Villas Gens, María José; Dirección General del Medio Natural de la Región de Murcia, Consejería de Turismo, Cultura y Medio Ambiente Cano-Terriza, David; Universidad de Córdoba, Animal Health Department FERNÁNDEZ DE LUCO, DANIEL; Universidad de Zaragoza Facultad de Ciencias Vicente, Joaquín; IREC (CSIC-UCLM-JCCM), SaBio García-Bocanegra, Ignacio; University of Córdoba, Departament of Animal Health
Subject Area:	Arboviruses, Emerging diseases, Veterinary epidemiology, Wildlife, Virus Conservation

1		
2 3	1	Epidemiological surveillance of Schmallenberg virus in wild ruminants in Spain.
4	T	Epidemiological survemance of Seminanenberg virus in who rummants in Spain.
5 6 7	2	Authors: S. Jiménez-Ruiz ^{1,2} , M.A. Risalde ³ , P. Acevedo ² , M.C. Arnal ⁴ , F. Gómez-
8	3	Guillamón ⁵ , P. Prieto ⁶ , M.J. Gens ⁷ , D. Cano-Terriza ¹ , D. Fernández de Luco ⁴ , J. Vicente ² ,
9 10	4	I. García-Bocanegra ^{1*}
11 12 13	5	
14 15	6	Affiliations:
16 17 18	7	¹ Departamento de Sanidad Animal. Facultad de Veterinaria. Universidad de Córdoba
19 20	8	(UCO), 14014 Córdoba, Spain.
21 22	9	² Grupo Sanidad y Biotecnología (SaBio). Instituto de Investigación en Recursos
23 24	10	Cinegéticos IREC (UCLM-CSIC-JCCM), 13071 Ciudad Real, Spain.
25	11	³ Departamento de Anatomía y Anatomía Patológica Comparadas. Facultad de
26 27 28	12	Veterinaria. Universidad de Córdoba (UCO), 14014 Córdoba, Spain.
29	13	⁴ Departamento de Patología Animal. Facultad de Veterinaria. Universidad de Zaragoza
30 31 32	14	(UNIZAR), 50013 Zaragoza, Spain.
33 34	15	⁵ Consejería de Medio Ambiente y Ordenación del Territorio (CMAOT). Junta de
35 36	16	Andalucía, 29010 Málaga, Spain.
37	17	⁶ Parque Natural Sierras de Cazorla, Segura y Las Villas. Junta de Andalucía, 23470
38 39 40	18	Cazorla (Jaén), Spain.
41	19	⁷ Consejería de Turismo, Cultura y Medio Ambiente. Dirección General del Medio
42 43	20	Natural de la Región de Murcia, 30008 Murcia, Spain.
44 45 46	21	
47 48 49	22	
50 51 52	23	
53 54 55 56 57 58 59 60	24	* Corresponding author: Ignacio García-Bocanegra. <i>E-mail</i> : nacho.garcia@uco.es.

25 Summary

Schmallenberg disease (SBD) is an emerging vector-borne disease that affects domestic and wild ruminants. A long-term serosurvey was conducted to assess exposure to Schmallenberg virus (SBV) in all the wild ruminant species present in mainland Spain. Between 2010 and 2016, sera from 1,216 animals were tested for antibodies against SBV using a commercial blocking ELISA. The overall prevalence of antibodies was 27.1% (95%CI: 24.7-29.7). Statistically significant differences among species were observed, with significantly higher seropositivity found in fallow deer (Dama dama) (45.6%; 99/217), red deer (Cervus elaphus) (31.6%; 97/307) and mouflon (Ovis aries musimon) (28.0%; 33/118) compared to Barbary sheep (Ammotragus lervia) (22.2%; 8/36), Iberian wild goat (Capra pyrenaica) (19.9%; 49/246), roe deer (Capreolus capreolus) (17.5%; 34/194) and Southern chamois (Rupicapra pyrenaica) (10.2%; 10/98). Seropositive animals were detected in 81.4% (57/70; 95%CI: 70.8-88.8) of the sampled populations. To the authors' knowledge, this is the first report of SBV exposure in both Barbary sheep and Iberian wild goat. SBV seroprevalence ranged from 18.8% (48/256) in bioregion (BR)2 (north-central, Mediterranean) to 32.3% (31/96) in BR1 (northeastern or Atlantic, Eurosiberian). Anti-SBV antibodies were not found before 2012, when the first outbreak of SBD was reported in Spain. In contrast, seropositivity was detected uninterruptedly during the period 2012-2016 and anti-SBV antibodies were found in yearling animals in each of these years. Our results provide evidence of widespread endemic circulation of SBV among wild ruminant populations in mainland Spain in recent years. Surveillance in these species could be a useful tool for monitoring SBV in Europe, particularly in areas where wild ruminants share habitats with livestock. Further research is warranted to assess the real impact of SBV in wild ruminant populations in Spain.

49 Keywords: vector-borne diseases; Schmallenberg virus; wild ruminants; surveillance;
50 Spain.

52 Introduction

Schmallenberg virus (SBV) is an Orthobunvavirus of the Simbu serogroup (family *Peribunyaviridae*), which is mainly transmitted among domestic and wild ruminant species by biting midges of the genus *Culicoides*. SBV infection can cause an acute non-specific syndrome characterized by fever, reduced milk yield, diarrhea and reproductive disorders, such as abortions, stillbirths and congenital malformations in newborns. SBV was first reported in cattle on the German-Dutch border in summer 2011 and since then, it has emerged and re-emerged in livestock in most European countries incurring significant productivity losses, international trade restrictions and veterinary costs (European Food Safety Authority, 2014; Stavrou, Daly, Maddison, Gough & Tarlinton, 2017). Spain reported the first outbreaks of Schmallenberg disease (SBD) in sheep in 2012 (Jiménez-Ruiz et al., 2019) and in cattle in 2013 (Balseiro, Royo, Gómez Antona & García Marín, 2015) in southern and central regions of the country, respectively. Although no further cases have been reported to date, SBV circulation has been found regionally in livestock, with seroprevalence values ranging between 54.4% and 75.6% (Fernández-Aguilar et al., 2014; Jiménez-Ruiz et al., 2019).

In the last decade, serosurveys in different European countries have evidenced widespread circulation of SBV in wild ruminant species. The high seroprevalence detected in some species (up to 80%) raises the question of whether wild ruminants play a role in the maintenance of SBV in Europe (García-Bocanegra et al., 2017). In Spain, there are seven wild ruminant species, with red deer (*Cervus elaphus*) and roe deer

(Capreolus capreolus) being the most widely distributed. Fallow deer (Dama dama), mouflon (Ovis aries musimon) and Barbary sheep (Ammotragus lervia) are less abundant species, with locally significant populations, while Southern chamois (Rupicapra pyrenaica) and Iberian wild goat (Capra pyrenaica) are more frequent in the mountain ecosystems of northern and Mediterranean Spain, respectively (Palomo, Gisbert & Blanco, 2007). Populations of some of these species have expanded in recent decades, mainly because of ongoing changes in land use and more intensive game management practices (Acevedo et al., 2008; 2011). These epidemiological scenarios have been shown to increase the risk of disease transmission among sympatric species (Carrasco-García et al., 2016; Gortázar, Acevedo, Ruiz-Fons & Vicente, 2006). The present long-term serosurvey study was conducted to assess spatio-temporal trends of SBV exposure in all the wild ruminant species in Spain.

85 Materials and methods

The study area comprised all mainland Spain (southwestern Europe), a country whose wild ruminant populations frequently share habitats with extensively reared domestic ruminants (Colom-Cadena et al., 2018; Kukielka et al., 2013). The Spanish Wildlife Disease Surveillance Scheme divides mainland Spain into five bioregions (BRs 1 to 5; Fig. 1) based on habitat features and epidemiological criteria of the wild species communities (Ministerio de Agricultura, Pesca y Alimentación, 2020a). This zoning has previously been used to improve disease surveillance efforts in wild ruminants in Spain (Boadella et al., 2011; Lorca-Oró et al., 2014; Muñoz et al., 2010).

94 The sample size per BR was estimated assuming a seroprevalence against SBV of
95 20%, with a 95% confidence level and a desired precision of ±5%, based on the highest
96 overall prevalence of anti-SBV antibodies previously reported in wild ruminants in Spain

97 (García-Bocanegra et al., 2017). Within each BR, sampling was stratified according to 98 the representative distribution and population density of the wild ruminant species, and 99 the number of animals was selected to ensure a 95% probability of detecting at least one 100 seropositive individual for an assumed minimum prevalence of 6%. Wild ruminant 101 populations were selected by simple random sampling of hunting estates or game reserves 102 across the study area. Within each sampled population, between 15 and 20 animals were 103 randomly selected whenever possible.

Blood samples from 1,216 free-ranging wild ruminants, including 307 red deer, 246 Iberian wild goats, 217 fallow deer, 194 roe deer, 118 mouflon, 98 Southern chamois and 36 Barbary sheep, were collected from 70 sampling populations between 2010 and 2016. All animals were legally hunted/harvested by hunters or culled as part of population control programs on game reserves. Blood samples were obtained from the thoracic cavity or by puncture of the heart or endocranial venous sinuses (Jiménez-Ruiz et al., 2016). Sera were obtained after centrifugation and kept frozen at -20°C until analysis. Data on sampling site, BR, sampling year, sex and age (yearlings, sub-adults or adults; according to Sáenz de Buruaga, Lucio-Calero & Purroy-Iraizoz (2001)) were recorded for each animal, whenever possible.

Sera were tested for the presence of SBV-specific antibodies against the N protein antigen using multi-species blocking ELISA a (bELISA; INGEZIM SCHMALLENBERG Compac 2.0 13.SBV.K3[®], INGENASA, Madrid, Spain), according to the manufacturers' instructions. In this bELISA, the optical density (OD) values for each serum were converted to a blocking percentage (b%) using the formula $[b\% = (1-(OD_{sample}/OD_{negative control})) \times 100]$. Sera were then classified as negative, doubtful or positive when b% was $\leq 50\%$, 50-55% or $\geq 55\%$, respectively. Sensitivity and specificity values provided by the manufacturers were 99.5% and 99.0%, respectively.

This bELISA test also showed very good agreement (Kappa value = 0.95) with the virus
neutralization test in sera from wild ungulate species (García-Bocanegra et al., 2017).

The seroprevalence of SBV was determined from the proportion of positive bELISA samples to the total number of animals examined, with exact binomial confidence intervals of 95% (95%CI). Associations between serological results (as binomial response variable) and categorical explanatory variables (species, BR, sampling year, sex and age) were initially tested with a Chi-square test or Fisher's test, as appropriate. Those variables yielding *P*-values < 0.20 in bivariate analysis were selected for further analysis. Finally, a generalized linear mixed model (GLMM) was used to determine potential risk factors associated with SBV exposure. A binomial error distribution and a logit link function were selected, and the sampling population was included as a random factor. Tukey's post-hoc test was used to assess differences between categories. The proportion of variation (R^2) explained by the model was calculated using Nakagawa and Schielzeth's method (2013) where marginal R^2 (R^2m) refers to the proportion of variation explained only by fixed factors and conditional R^2 (R^2c) the proportion explained by both fixed and random factors. Values with P < 0.05 were considered statistically significant. Statistical analyses were performed using R software (R Core Team, 2019).

Results

 A total of 330 out of 1,216 analysed sera had antibodies against SBV, giving an overall seroprevalence of 27.1% (95%CI: 24.7-29.7) in wild ruminants in Spain. The distribution of seroprevalences by species, BR, sampling year, sex and age is shown in Table 1. The prevalence of antibodies against SBV according to species was 45.6% in fallow deer, 31.6% in red deer, 28.0% in mouflon, 22.2% in Barbary sheep, 19.9% in Iberian wild goat, 17.5% in roe deer and 10.2% in Southern chamois. At least one

seropositive animal was detected in 57 (81.4%) of the 70 sampled populations (Fig. 1). Seroprevalence values ranged between 18.8% in BR2 and 32.3% in BR1 (Table 1). Distribution of seroprevalence by species and further broken down by sampling year and BR is shown in Table 2. Seropositivity was found in all species in the five BRs, except for the roe deer sampled in BR1. Anti-SBV antibodies were not found before 2012, although seropositivity was detected uninterruptedly in most species between 2012 and 2016. Seroprevalence reached 42.4% in 2013, decreased to 23.3% in 2015 and was 24.7% at the end of the study period, although a heterogeneous temporal trend was observed at species level. Seropositivity in yearling fallow deer and red deer was found every year between 2012 and 2016.

Three (species, BR and year) of five explanatory variables were selected from the bivariate analysis. "Barbary sheep" was removed from multivariate analysis because all the samples (n = 36) from this species were collected in BR5. The GLMM only showed statistical differences between species ($F_{5,1215}$ = 13.155; P< 0.001), not BRs ($F_{4,1215}$ = 0.373; P= 0.827) or sampling years (F_{6.1211}= 0.120; P= 0.653). Significantly higher seropositivity was found in fallow deer, red deer and mouflon compared to the remaining wild ruminant species analysed (Fig. 2). The variation in SBV seroprevalence explained by the model was $R^2m = 0.16$ for fixed factors and $R^2c = 0.34$ for fixed and random factors.

Discussion

Even though different European wild ruminant species have been shown to be susceptible to SBV infection, their role in the epidemiology of this virus has not been well studied. SBV exposure has previously been detected in wild ruminants in different regional studies performed in Spain, with overall prevalence values ranging from 3.4% (12/355) to 9.2% (160/1,744) (Fernández-Aguilar et al., 2014; García-Bocanegra et al.,

2017). The seroprevalence obtained in the present large-scale survey (27.1%) was markedly higher than previously reported and indicates that SBV is widespread in wild ruminant populations throughout the country.

The prevalence of antibodies against SBV in fallow deer (45.6%) was higher than has previously been found in this species in several European countries, where seroprevalence values ranged between 22.7% in Poland and 29.5% in Sweden (García-Bocanegra et al., 2017; Larska, Krzysiak, Kęsik-Maliszewska & Rola, 2014; Larska, Krzysiak, Smreczak, Polak & Zmudzinski, 2013; Malmstem et al., 2017). The prevalence of anti-SBV antibodies detected in red deer (31.6%) was similar to that observed in Poland (30.6%) (Larska et al., 2014), slightly lower than those obtained in France (38.3%) (Rossi et al., 2015), Italy (40.3%) (Chiari et al., 2014) and Belgium (40.5%) (Linden et al., 2012) and higher than reports in other European countries such as Sweden (18.2%) (Malmstem et al., 2017), Slovenia (19.5%) (Vengušt, Žele Vengušt, Toplak, Rihtarič & Kuhar, 2020) and even Spain (13.3%) (García-Bocanegra et al., 2017). In contrast, higher seroprevalence values were reported in both fallow and red deer (56.3% and 71.4%, respectively) in the United Kingdom, although these results should be interpreted with caution given the limited number of samples tested (16 fallow deer and seven red deer) (Barlow, Green, Banham & Healy, 2013). The seropositivity observed in mouflon in our study (28.0%) was also higher than has been found previously in northern (0.0%) and southern (16.4%) Spain (Fernández-Aguilar et al., 2014; García-Bocanegra et al., 2017), although more variable rates for antibodies against SBV were reported in Europe in this species, with seroprevalence values ranging from 1.4% in Poland (Larska et al., 2014) to 75.0% in Germany (Mouchantat et al., 2015). Nonetheless, comparisons between studies should be made with caution, given the differences in sampling periods, numbers of samples examined, study designs and serological methods employed.

Exposure to SBV in roe deer and Southern chamois populations was also confirmed in the present study, with seropositivity rates (17.5% and 10.2%, respectively) lower than those observed in European countries, including Spain (Chiari et al., 2014; Díaz et al., 2015; Fernández-Aguilar et al., 2014; Linden et al., 2012; Malmsten et al., 2017; Morrondo et al., 2017; Rossi et al., 2015; Tavernier et al., 2015; Vengušt et al., 2020). To the best of the authors' knowledge, this is the first report of SBV exposure in Barbary sheep and Iberian wild goat, which increases the number of species susceptible to SBV infection. This is the first study on SBV in Barbary sheep, a wild ruminant from North Africa that was introduced into Europe for big game purposes during the twentieth century and is currently present in isolated populations in Spain, Italy and Croatia (Mori, Mazza, Saggiomo, Sommese & Esattore, 2017). With respect to the Iberian wild goat, an endemic species of the Iberian Peninsula, SBV antibodies were not detected in animals sampled between 2007 and 2010 (García-Bocanegra et al., 2017), before the first SBD outbreak was reported in Europe (EFSA, 2014). Antibodies against SBV were however detected in Alpine ibex (Capra ibex) (33.2%; 67/202), a phylogenetically related *Caprinae* species that inhabits similar mountain ecosystems in other European countries (Rossi et al., 2015).

Fallow deer, red deer and mouflon had significantly higher SBV exposure than the remaining species analysed, which is in accordance with previous observations in the south of the country (García-Bocanegra et al., 2017). The gregarious behavior of these species, their population densities, habitat preferences, as well as the abundance and feeding patterns of competent vectors may explain differences between species. In connection with this, the abundance of wild host species, particularly red deer, was shown to be the most important factor involved in the abundance of *Culicoides* species in Spain (Acevedo et al., 2010). In this country, red deer, fallow deer and mouflon are among the

most important wild ruminant species in terms of abundance, and are the most intensively managed big game species (Garrido, Ferreres & Gortazar, 2019; MAPA, 2020b), although the distribution of the latter is much more localized and scattered than in red deer. These wild ruminant species have also been identified among the preferred hosts for *Culicoides* feeding in Mediterranean ecosystems (Talavera et al., 2015; Talavera, Muñoz-Muñoz, Verdún, Pujol & Pagès, 2018). Our results suggest that wild ruminant communities, particularly when red deer, fallow deer and mouflon are present, may play a role in the maintenance of SBV in Spain, as was previously demonstrated for bluetongue virus (García-Bocanegra et al., 2011), an Orbivirus also mainly transmitted by Culicoides biting midges.

Our results confirm widespread but not homogeneous circulation of SBV in mainland Spain (Table 2; Fig. 1). The differences between BRs, even when not statistically significant, may be explained by the presence/abundance of competent vectors. The lowest seroprevalence found in BR2 (18.8%) is consistent with their lesser abundance in that region, which has been associated with environmental and climatic factors (Calvete et al., 2008; Cuéllar et al., 2018; Pagès et al., 2018). In contrast, the Atlantic climate of BR1 has been shown to increase the abundance of the C. obsoletus group, while the seasonal precipitation and warmer temperatures in BRs 3-5 are predisposing factors for the presence of C. imicola in those regions (Calvete et al., 2008). It should be noted however that local biotic and abiotic conditions may be determinant factors in the epidemiology of SBV in particular scenarios within each BR.

The first seropositive animals were detected in 2012 (Table 1), according to the first reported SBV outbreak in livestock in Spain (Jiménez-Ruiz et al., 2019). Seropositivity increased to 42.4% in 2013, then gradually decreased to 24.7% in 2016. A similar temporal trend was observed in wild ruminants in the south of this country

(declining from 25.5% in 2012/2013 to 16.5% in 2014/2015) (García-Bocanegra et al., 2017). The seroprevalence found in 2013 was also consistent with the high seropositivity (54.4%) reported in domestic ruminants sampled that year in the same area where the first SBV outbreak was reported in Spain (Jiménez-Ruiz et al., 2019). Interestingly, in the present long-term study, anti-SBV antibodies were detected continuously in most of the tested species and in yearling animals between 2012 and 2016 (Table 2), providing evidence of stable, endemic circulation of SBV in wild ruminant populations in the last few years. These findings indicate that it is of interest to include wild ruminants, particularly yearling individuals, in early warning systems in emerging vector-borne disease monitoring programs (Boadella, Díez-Delgado, Gutiérrez-Guzmán, Höfle & Gortázar, 2012; García-Bocanegra et al., 2016; 2017).

In summary, our results highlight the high, widespread and heterogenous spatio-temporal distribution of SBV in wild ruminant species in mainland Spain. The uninterrupted detection of seropositive animals, including individual yearlings, indicates endemic circulation of this virus in wild ruminant populations in the last few years. Our results suggest that wild ruminant species, particularly fallow deer, red deer and mouflon, have a potential role as natural reservoirs of SBV in Spain; however, local interpretations should be made in accordance with the prevailing host community and other biotic and abiotic factors. Surveillance in these species could be a complementary way of monitoring SBV in Europe and preventing SBV circulation in sympatric livestock species. Further research is needed to assess the impact of SBV in wild ruminant populations in Spain.

267 Acknowledgements

268 This work has benefited from the financial aid of research grants funded by269 Spanish Ministry of Economy and Competitiveness (AGL2013-49159-C2-2-R,

AGL2016-76358-R and CGL2017-89866-R). S. Jiménez-Ruiz holds a PhD contract from
the UCLM co-supported by the European Social Fund (2018/12504). We also want to
thank the collaboration of all involved hunting states and game reserves and the dedicated
assistance of their game wardens, as well as to many colleagues and fellow students who
participated in the field sampling.

Conflict of interest statement

The authors have declared that no competing interests exist.

277 Ethical approval

No animals were killed specifically for this study. Serum samples used in this
study were collected from animals legally hunted in complete agreement with Spanish
and European regulations. No ethical approval by an Institutional Animal Care and Use
Committee was deemed necessary. Protocols, amendments and other resources were used
according to the guidelines approved by each Autonomous government following the
R.D.1201/2005 of the Spanish Ministry of Presidency.

284 Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

287 Orcid

52 53	288	Saúl Jiménez-Ruiz: https://orcid.org/0000-0003-2090-9353.
54 55	289	Maria de los Angeles Risalde: https://orcid.org/0000-0001-5105-4824.
56 57	290	Pelayo Acevedo: https://orcid.org/0000-0002-3509-7696.
58 59	291	Maria Cruz Arnal: https://orcid.org/0000-0002-6770-3400.
	231	

1								
2 3 4	292	David Cano-Terriza: https://orcid.org/0000-0001-5657-2567.						
5 6	293	Joaquín Vicente: http://orcid.org/0000-0001-8416-3672.						
7 8	294	Ignacio García-Bocanegra: https://orcid.org/0000-0003-3388-2604.						
9 10 11	295							
12 13 14 15	296	References						
16 17	297	Acevedo, P., Ruiz-Fons, F., Estrada, R., Márquez, A. L., Miranda, M. A., Gortázar, C.,						
18 19 20	298	& Lucientes, J. (2010). A broad assessment of factors determining Culicoides						
21 22	299	imicola abundance: modelling the present and forecasting its future in climate						
23 24	300	change scenarios. <i>PLoS One,</i> 5, e14236.						
25 26 27	301	https://doi.org/10.1371/journal.pone.0014236.						
28 29	302	Acevedo, P., Farfán, M. A., Márquez, A. L., Delibes-Mateos, M., Real, R., & Vargas, J.						
30 31 32	303	M. (2011). Past, present and future of wild ungulates in relation to changes in land						
33 34	304	use. Landscape Ecology, 26, 19-31. https://doi.org/10.1007/s10980-010-9538-2.						
35 36 37	305	Acevedo. P., Ruiz-Fons, F., Vicente, J., Reyes-García, A., Alzaga, V., & Gortázar, C.						
38 39	306	(2008). Estimating red deer abundance in a wide range of management situations						
40 41 42	307	in Mediterranean habitats. Journal of Zoology, 276, 37-47.						
43 44	308	https://doi.org/10.1111/j.1469-7998.2008.00464.x.						
45 46 47	309	Balseiro, A., Royo, L. J., Gómez Antona, A., & García Marín, J. F. (2015). First						
48 49	310	confirmation of Schmallenberg Virus in cattle in Spain: Tissue distribution and						
50 51 52	311	pathology. Transboundary and Emerging Diseases, 62, e62-e65.						
52 53 54	312	https://doi.org/10.1111/tbed.12185.						
55 56								
57 58								
59 60								

Barlow, A., Green, P., Banham, T., & Healy, N. (2013). Serological confirmation of SBV
infection in wild British deer. *Veterinary Record*, 172, 429.
https://doi.org/10.1136/vr.f2438.

Boadella, M., Acevedo, P., Vicente, J., Mentaberre, G., Balseiro, A., Arnal, M.C., ...
Oleaga, Á. (2011). Spatio-temporal trends of Iberian wild boar contact with *Mycobacterium tuberculosis* complex detected by ELISA. *EcoHealth*, *8*, 478-484.
https://doi.org/10.1007/s10393-011-0713-y.

Boadella, M., Díez-Delgado, I., Gutiérrez-Guzmán, A. V., Höfle, U., & Gortázar, C.
(2012). Do wild ungulates allow improved monitoring of flavivirus circulation in
Spain?. *Vector-Borne and Zoonotic Diseases, 12*(6), 490-495.
https://doi.org/10.1089/vbz.2011.0843.

- Calvete, C., Estrada, R., Miranda, M. A., Borras, D., Calvo, J. H., & Lucientes, J. (2008). Modelling the distributions and spatial coincidence of bluetongue vectors Culicoides imicola and the Culicoides obsoletus group throughout the Iberian Medical Veterinary Entomology, peninsula. and 22. 124-134. https://doi.org/10.1111/j.1365-2915.2008.00728.x.
- Carrasco-Garcia, R., Barasona, J. A., Gortazar, C., Montoro, V., Sanchez-Vizcaino, J. M.,
 & Vicente, J. (2016). Wildlife and livestock use of extensive farm resources in
 South Central Spain: implications for disease transmission. *European Journal of Wildlife Research*, 62, 65-78. https://doi.org/10.1007/s10344-015-0974-9.
 - Chiari, M., Sozzi, E., Zanoni, M., Alborali, L.G., Lavazza, A., & Cordioli, P. (2014).
 Serosurvey for Schmallenberg virus in alpine wild ungulates. *Transboundary and Emerging Diseases, 61*, 1-3. https://doi.org/10.1111/tbed.12158.

2 3 4	336	Colom-Cadena, A., Espunyes, J., Cabezón, O., Fernández-Aguilar, X., Rosell, R., &							
5 6	337	Marco, I. (2018). New insights on pestivirus infections in transhumant sheep and							
7 8	338	sympatric Pyrenean chamois (Rupicapra p. pyrenaica). Veterinary Microbiology,							
9 10 11	339	217, 82-89. https://doi.org/10.1016/j.vetmic.2018.03.003.							
12 13 14	340	Cuéllar, A. C., Kjær, L. J., Kirkeby, C., Skovgard, H., Nielsen, S. A., Stockmarr, A.,							
15 16	341	Steinke, S. (2018). Spatial and temporal variation in the abundance of Culicoides							
17 18	342	biting midges (Diptera: Ceratopogonidae) in nine European countries. Parasites &							
19 20 21	343	vectors, 11, 112. https://doi.org/10.1186/s13071-018-2706-y.							
22 23 24	344	Díaz, J. M., Prieto, A., López, C., Díaz, P., Pérez, A., Panadero, R., Fernández, G.							
24 25 26	345	(2015). High spread of Schmallenberg virus among roe deer (Capreolus capreolus)							
27 28	346	in Spain. Research in Veterinary Science, 102, 231-233.							
29 30 31	347	https://doi.org/10.1016/j.rvsc.2015.09.001.							
32 33	348	European Food Safety Authority. (2014). Schmallenberg virus: State of art, EFSA							
34 35 36	349	Journal, 12, 3681. https://doi.org/10.2903/j.efsa.2014.3681.							
37 38 39	350	Fernández-Aguilar, X., Pujols, J., Velarde, R., Rosell, R., Lopez-Olvera, J. R., Marco, I.,							
40 41	351	Cabezón, O. (2014). Schmallenberg virus circulation in high mountain							
42 43	352	ecosystem, Spain. Emerging Infectious Diseases, 20, 1062.							
44 45 46	353	https://doi.org/10.3201/eid2006.130961.							
40 47 48 49	354	García-Bocanegra, I., Arenas-Montes, A., Lorca-Oró, C., Pujols, J., González, M. Á.,							
50 51	355	Napp, S., Arenas, A. (2011). Role of wild ruminants in the epidemiology of							
52 53	356	bluetongue virus serotypes 1, 4 and 8 in Spain. Veterinary Research, 42, 88.							
54 55 56	357	https://doi.org/10.1186/1297-9716-42-88.							
57 58 59	358	García-Bocanegra, I., Cano-Terriza, D., Vidal, G., Rosell, R., Paniagua, J., Jiménez-Ruiz,							
59 60	359	S., & Pujols, J. (2017). Monitoring of Schmallenberg virus in Spanish wild							

1 2							
2 3 4	360	artiodactyls, 2006–2015. PLoS One, 12, e0182212.					
5 6 7	361	https://doi.org/10.1371/journal.pone.0182212.					
8 9 10	362	García-Bocanegra, I., Paniagua, J., Gutiérrez-Guzmán, A. V., Lecollinet, S., Boadella,					
10 11 12	363	M., Arenas-Montes, A., Höfle, U. (2016). Spatio-temporal trends and risk factors					
13 14	364	affecting West Nile virus and related flavivirus exposure in Spanish wild ruminants.					
15 16 17	365	BMC Veterinary Research, 12, 249. https://doi.org/10.1186/s12917-016-0876-4.					
18 19	366	Garrido, J.L., Ferreres, J., & Gortazar, C. (2019). Las especies cinegéticas españolas en					
20 21 22	367	el siglo XXI. Ciudad Real, Spain: Authors. ISBN 978-1676220930.					
23 24 25	368	Gortázar, C., Acevedo, P., Ruiz-Fons, F., & Vicente, J. (2006). Disease risks and					
25 26 27	369	overabundance of game species. European Journal of Wildlife Research, 52, 81-					
28 29	370	87. https://doi.org/10.1007/s10344-005-0022-2.					
30 31 32	371	Jiménez-Ruiz, S., Arenas-Montes, A., Cano-Terriza, D., Paniagua, J., Pujols, J., Miró, F.,					
33 34	372	García-Bocanegra, I. (2016). Blood extraction method by endocranial venous					
35 36 37	373	sinuses puncture in hunted wild ruminants. European Journal of Wildlife Research,					
37 38 39 40	374	62, 775-780. https://doi.org/10.1007/s10344-016-1056-3.					
41 42	375	Jiménez-Ruiz, S., Paniagua, J., Isla, J., Martínez-Padilla, A. B., Risalde, M. A., Caballero-					
43 44	376	Gómez, J., García-Bocanegra, I. (2019). Description of the first Schmallenberg					
45 46 47	377	disease outbreak in Spain and subsequent virus spreading in domestic ruminants.					
47 48 49	378	Comparative Immunology, Microbiology and Infectious Diseases, 65, 189-193.					
50 51	379	https://doi.org/10.1016/j.cimid.2019.06.002.					
52 53 54	380	Kukielka, E., Barasona, J. A., Cowie, C. E., Drewe, J. A., Gortazar, C., Cotarelo, I., &					
55 56	381	Vicente, J. (2013). Spatial and temporal interactions between livestock and wildlife					
57 58 59	382	in South Central Spain assessed by camera traps. Preventive Veterinary Medicine,					
59 60	383	112, 213-221. https://doi.org/10.1016/j.prevetmed.2013.08.008.					

2 3									
4	384	Larska, M., Krzysiak, M., Kęsik-Maliszewska, J., & Rola, J. (2014). Cross-sectional							
5 6	385	study of Schmallenberg virus seroprevalence in wild ruminants in Poland at the end							
7 8 9	386	of the vector season of 2014. BMC Veterinary Research, 10, 967.							
10 11	387	https://doi.org/10.1186/s12917-014-0307-3.							
12 13 14	388	Larska, M., Krzysiak, M., Smreczak, M., Polak, M.P., & Zmudzinski, J.F. (2013). First							
15 16	389	detection of Schmallenberg virus in elk (Alces alces) indicating infection of wildlife							
17 18 19	390	in Biaøowieza National Park in Poland. Veterinary Journal, 198, 279-281.							
20 21	391	https://doi.org/10.1016/j.tvjl.2013.08.013.							
22 23 24	392	Linden, A., Desmecht, D., Volpe, R., Wirtgen, M., Gregoire, F., Pirson, J., Garigliany,							
25 26	393	M. M. (2012). Epizootic spread of Schmallenberg virus among wild cervids,							
27 28	394	Belgium, Fall 2011. Emerging Infectious Diseases, 18, 2006.							
29 30 31	395	https://doi.org/10.3201/eid1812.121067.							
32 33	396	Lorca-Oró, C., López-Olvera, J. R., Ruiz-Fons, F., Acevedo, P., García-Bocanegra, I.,							
34 35 36	397	Oleaga, Á., Pujols, J. (2014). Long-term dynamics of bluetongue virus in wild							
37 38	398	ruminants: relationship with outbreaks in livestock in Spain, 2006-2011. PLoS One,							
39 40 41	399	9, e100027. https://doi.org/10.1371/journal.pone.0100027.							
42 43	400	Malmsten A, Malmsten J, Blomqvist G, NaÈslund K, Vernersson C, HaÈgglund S,							
44 45 46	401	Valarcher, J.F. (2017). Serological testing of Schmallenberg virus in Swedish wild							
47 48	402	cervids from 2012 to 2016. BMC Veterinary Research, 13, 84.							
49 50 51	403	https://doi.org/10.1186/s12917-017-1005-8.							
52 53	404	Ministerio de Agricultura, Pesca y Alimentación. (2020a). Plan Nacional de Vigilancia							
54 55 56	405	Sanitaria en Fauna Silvestre. Retrieved from							
50 57 58	406	https://www.mapa.gob.es/es/ganaderia/temas/sanidad-animal-higiene-							
59 60	407	ganadera/pvfs2020_tcm30-437517.pdf. (Accessed 22nd March 2020).							

3 4	408	Ministerio de Agricultura, Pesca y Alimentación. (2020b). Estadística anual de caza.								
5 6	409	Retrieved from https://www.mapa.gob.es/es/desarrollo-								
7 8 9	410	rural/estadisticas/Est_Anual_Caza.aspx. (Accessed 23rd March 2020).								
10 11 12	411	Mori, E., Mazza, G., Saggiomo, L., Sommese, A., & Esattore, B. (2017). Strangers								
13 14	412	coming from the Sahara: an update of the worldwide distribution, potential impacts								
15 16	413	and conservation opportunities of alien aoudad. Annales Zoologici Fennici, 54, 373-								
17 18 19	414	386. https://doi.org/10.5735/086.054.0501.								
20 21	415	Morrondo, M. P., Pérez-Creo, A., Prieto, A., Cabanelas, E., Díaz-Cao, J. M., Arias, M.								
22 23 24	416	S., Fernández, G. (2017). Prevalence and distribution of infectious and parasitic								
25 26	417	agents in roe deer from Spain and their possible role as reservoirs. Italian Journal								
27 28 29	418	of Animal Science, 16, 266-274. https://doi.org/10.1080/1828051X.2016.1245593.								
30 31	419	Mouchantat, S., Wernike, K., Lutz, W., Hoffmann, B., Ulrich, R. G., Börner, K., Beer,								
32 33 34	420	M. (2015). A broad spectrum screening of Schmallenberg virus antibodies in								
35 36	421	wildlife animals in Germany. Veterinary Research, 46, 99.								
37 38 39	422	https://doi.org/10.1186/s13567-015-0232-x.								
40 41	423	Muñoz, P. M., Boadella, M., Arnal, M., de Miguel, M. J., Revilla, M., Martínez, D.,								
42 43	424	Marín, C. M. (2010). Spatial distribution and risk factors of Brucellosis in Iberian								
44 45 46	425	wild ungulates. BMC Infectious Diseases, 10, 46. https://doi.org/10.1186/1471-								
47 48 49	426	2334-10-46.								
50 51	427	Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R2								
52 53	428	from generalized linear mixed-effects models. Methods in Ecology and Evolution,								
54 55 56	429	4, 133-142. https://doi.org/10.1111/j.2041-210x.2012.00261.x.								
57 58 59	430	Pagès, N., Talavera, S., Verdún, M., Pujol, N., Valle, M., Bensaid, A., & Pujols, J. (2018).								
60	431	Schmallenberg virus detection in Culicoides biting midges in Spain: First								

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30 39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52 53	
54	
55	
56	
57	
58	
59	
60	

laboratory evidence for highly efficient infection of *Culicoides* of the *Obsoletus*complex and *Culicoides imicola*. *Transboundary and Emerging Diseases*, 65, e1e6. https://doi.org/10.1111/tbed.12653.

- Palomo, L. J., Gisbert, J., & Blanco, J. C. (Eds.). (2007). *Atlas y Libro Rojo de los Mamíferos Terrestres de España* (1st ed.). Madrid, Spain: Organismo Autónomo de
 Parques Nacionales. ISBN 9788480147118.
- R Development Core Team. (2019). *R: A language and environment for statistical computing*. Vienna, Austria: R Foundation for Statistical Computing. Retrieved
 from https://www.R-project.org.
- 441 Rossi, S., Viarouge, C., Faure, E., Gilot-Fromont, E., Gache, K., Gibert, P., ... Gauthier,
 442 D. (2017). Exposure of wildlife to the Schmallenberg virus in France (2011–2014):
 443 Higher, faster, stronger (than bluetongue)!. *Transboundary and Emerging*444 *Diseases, 64*, 354-363. https://doi.org/10.1111/tbed.12371.
- 445 Sáenz de Buruaga, M., Lucio-Calero, A., & Purroy-Iraizoz, F. J. (Eds.). (2001).
 446 *Reconocimiento de sexo y edad en especies cinegéticas* (1st ed.). Madrid, Spain:
 447 Edilesa. ISBN 9788480123716.
- 448 Stavrou, A., Daly, J. M., Maddison, B., Gough, K., & Tarlinton, R. (2017). How is Europe
 449 positioned for a re-emergence of Schmallenberg virus?. *The Veterinary Journal*,
 450 230, 45-51. https://doi.org/10.1016/j.tvjl.2017.04.009.
- Talavera, S., Muñoz-Muñoz, F., Durán, M., Verdún, M., Soler-Membrives, A., Oleaga, 451 Á., ... Pagès, N. (2015). Culicoides species communities associated with wild 452 ruminant ecosystems in Spain: tracking the way to determine potential bridge 453 arboviruses. 10, e0141667. 454 vectors for PLoS One. https://doi.org/10.1371/journal.pone.0141667. 455

- Talavera, S., Muñoz-Muñoz, F., Verdún, M., Pujol, N., & Pagès, N. (2018). Revealing potential bridge vectors for BTV and SBV: a study on Culicoides blood feeding preferences in natural ecosystems in Spain. Medical and Veterinary Entomology, 32, 35-40. https://doi.org/10.1111/mve.12263.
- Tavernier, P., Sys, S. U., De Clercq, K., De Leeuw, I., Caij, A. B., De Baere, M., ... Heyman, P. (2015). Serologic screening for 13 infectious agents in roe deer (Capreolus capreolus) in Flanders. Infection Ecology & Epidemiology, 5, 29862. https://doi.org/10.3402/iee.v5.29862.
 - Vengušt, G., Žele Vengušt, D., Toplak, I., Rihtarič, D., & Kuhar, U. (2020). Post-epidemic investigation of Schmallenberg virus in wild ruminants in Slovenia. Transboundary and Emerging Diseases, 1-8. https://doi.org/10.1111/tbed.13495. ζ Lm.

468 Figure legends

Figure 1. Spatial distribution of Schmallenberg virus exposure in the wild ruminant species in
mainland Spain (bioregions 1-5). The species drawings represent the locations of the sampling
populations, as well as the species sampled at each sampling site.

Figure 2. Schmallenberg virus (SBV) seroprevalence in wild ruminant species in Spain showing the variation among the observed results (bELISA) and the differences evidenced by the generalized linear mixed model (GLMM) after controlling for the effects of bioregion and sampling year. **Table 1.** Distribution of the prevalence of antibodies against Schmallenberg virus in wild

 ruminant populations in Spain by category and results of bivariate analysis.

Variable	Category	No. positives/overall [†]	Seroprevalence (95%CI)	<i>P</i> -value
Species	Barbary sheep	8/36	22.2 (11.7-38.1)	< 0.001*
	Fallow deer	99/217	45.6 (39.1-52.3)	
	Iberian wild goat	49/246	19.9 (15.4-25.4)	
	Mouflon	33/118	28.0 (20.7-36.7)	
	Red deer	97/307	31.6 (26.7-37.0)	
	Roe deer	34/194	17.5 (12.8-23.5)	
	Southern chamois	10/98	10.2 (5.6-17.8)	
Bioregion	BR1	31/96	32.3 (23.8-42.2)	0.015*
	BR2	48/256	18.8 (14.4-24.0)	
	BR3	108/362	29.8 (25.4-34.7)	
	BR4	75/255	29.4 (24.2-35.3)	
	BR5	68/247	27.5 (22.3-33.4)	
Year	2010	0/20	0.0 (0.0-16.1)	< 0.001*
	2011	0/44	0.0 (0.0-8.0)	
	2012	60/189	31.8 (25.5-38.7)	
	2013	42/99	42.4 (33.2-52.3)	
	2014	66/175	37.7 (30.9-45.1)	
	2015	119/511	23.3 (19.8-27.1)	
	2016	43/174	24.7 (18.9-31.6)	
Sex	Male	56/197	28.4 (22.6-35.1)	0.280
	Female	53/157	33.8 (26.8-41.5)	
Age	Yearling	34/94	36.2 (27.2-46.3)	0.530
	Sub-adult	15/51	29.4 (18.7-43.0)	
	Adult	51/171	29.8 (23.5-37.1)	

[†]Missing values omitted. *Selected variables for the multivariate analysis.

1	
2	
3	
4	
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 37 38 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 <	
6 -	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

60

Table 2. Spatio-temporal distribution of Schmallenberg virus (SBV) circulation in wild

 ruminant species in Spain. Data are presented as no. of positives/overall (%).

		B. sheep	Fallow deer	I. W. goat	Mouflon	Red deer	Roe deer	S. chamois
	BR1	-	8/20 (40.0)	-	-	14/20 (70.0)	0/20 (0.0)	9/36 (25.0)
	BR2	-	-	15/60 (25.0)	-	10/60 (16.7)	22/74 (29.7)	1/62 (1.6)
Bioregion	BR3	-	45/83 (54.2)	2/70 (2.9)	18/71 (25.4)	37/85 (43.5)	6/53 (11.3)	-
Bio	BR4	-	26/60 (43.3)	23/67 (34.3)	-	20/81 (24.7)	6/47 (12.8)	-
	BR5	8/36 (22.2)	20/54 (37.0)	9/49 (18.4)	15/47 (31.9)	16/61 (26.2)	-	-
	2010	-	7	-	-	0/20 (0.0)	-	-
	2011	0/10 (0.0)	-	-	-	0/23 (0.0)	0/11 (0.0)	-
	2012	1/12 (8.3)	32/44 (72.7)‡	0/22 (0.0)	5/24 (20.8)	12/21 (57.1)‡	1/30 (3.3)	9/36 (25.0)
Year†	2013	3/4 (75.0)	24/52 (46.2)‡	0/7 (0.0)	4/11 (36.4)	9/20 (45.0)‡	2/5 (40.0)	-
	2014	3/4 (75.0)	16/45 (35.6)‡	10/36 (27.8)	3/12 (25.0)‡	27/53 (50.9)‡	7/22 (31.8)	0/3 (0.0)
	2015	1/5 (20.0)	18/59 (30.5)‡	26/103 (25.2)	16/58 (27.6)‡	41/141 (29.1)‡	16/86 (18.6)	1/59 (1.7)
	2016	0/1 (0.0)	9/15 (60.0)‡	13/78 (16.7)	5/13 (38.5)	8/27 (29.6)‡	8/40 (20.0)	-

Ziez Oni

[†]Missing values omitted. [‡]Seropositivity to SBV detected in yearling animals.

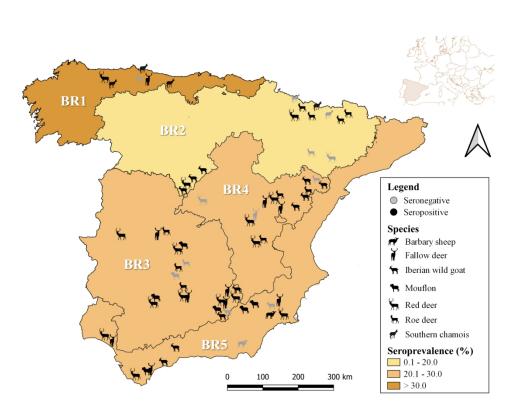


Figure 1. Spatial distribution of Schmallenberg virus exposure in the wild ruminant species in mainland Spain (bioregions 1-5).

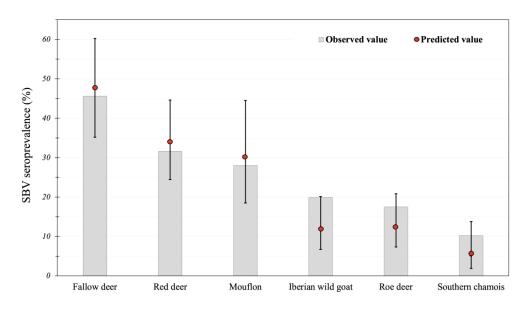


Figure 2. Schmallenberg virus (SBV) seroprevalence in wild ruminant species in Spain showing the variation among the observed results (bELISA) and the differences evidenced by the generalized linear mixed model (GLMM) after controlling for the effects of bioregion and sampling year.