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Processing maps have been built for > 30 years to predict the stable conditions for metal
forming at high temperatures and strain rates. These maps, which also include efficiency
conditions, are based on the stability criterion of Ziegler–Prasad (Z–P) within the framework of
the dynamical materials model (DMM). In the present work, this criterion is drastically
modified by introducing a Garofalo equation in the expression of the dissipative co-content, J,
maintaining its definition in the framework of the DMM. This modification applies to its
derivative with respect to the strain rate and also to the definition of efficiency, g. This new
parameter developed in this work, named rho, q, is different from the stability parameter, xi, n,
of the Z–P criterion since it is based on different constitutive equations. Rho is based on a
Garofalo equation and xi on a power law equation. Both are obtained from experimental data
and give rise to different stability maps that can be applied to any polycrystalline metallic
material. In this work, a well-documented Ti-10V-4.5Fe alloy has been chosen to contrast the
differences and similarities between the two methods of characterizing the stability conditions.
Special emphasis is given to the predictions for the optimum forming temperatures.
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I. INTRODUCTION

FOR more than 30 years several models have been
developed for the determination of the most stable areas,
or zones of stability, in the process of hot working of
metallic materials. There has also been interest in
analyzing the zones of greater thermodynamic efficiency
of these processes, something necessary for the opti-
mization and research on new materials. Consequently,
these models have been used to calculate the values of
the efficiency of the process of plastic flow of hot
working of polycrystalline metallic materials. These
calculations of efficiency and stability of the mentioned
processes can be represented in maps as the temperature
versus true strain rate (plane T; _e) of the processes. This
gives rise to efficiency and stability maps that, joined,
constitute the so-called processing maps.

The theoretical frame of reference for the study of
stability of dynamical systems starts with the theoretical
works of Lyapunov in 1892, first through his PhD

thesis[1] and later through various works,[2,3] and in the
theoretical work of Ziegler.[4] This last work helped to
approximate the theoretical framework to a more
realistic referential frame than that of the general works
of Lyapunov that were more theoretical. On the other
hand, Ziegler uses the concepts of thermodynamics of
irreversible processes and also thermomechanics and
mechanics of continuous media.
The criteria of Lyapunov and those of Ziegler predict

different conditions of temperature and strain rate for
the stability of materials but both are valid to study the
hot-working behavior of materials. In the present work,
the Lyapunov criteria are not considered since this was
done in a previous publication by Rieiro et al.[5] In the
present work, only the stability criterion of Ziegler[4] is
analyzed, which is related to plastic flow at large strains.
Ziegler uses the mechanics of the continuum for the case
of large plastic flow and especially the thermodynamics
of irreversible processes, considering extreme principles.
Later, and using the previously mentioned frame-

works, the dynamic materials model, DMM, was
introduced, attributed to Prasad.[6] This model, over
the years, has suffered criticism, modifications, exten-
sions and reviews by very different researchers, but it
resists as a model to evaluate the stability (among other
objectives of the model). Because of their importance in
clarifying DMM, the works of Gegel, Malas et al.,
should be mentioned.[7,8]
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The DMM is based on the previously referenced
theoretical frameworks,[6–8] and a line of stability
criteria applied to specific metallic materials under
hot-forming conditions is set. The DMM is the synthesis
and confluence of the dynamic theory of material
systems based on concepts of energy combined with
thermodynamics: the thermodynamics of irreversible
processes and the theory of the stability of dynamic
systems in the mechanics of continuous medium applied
to large plastic flow.

The scope of the DMM is much broader than simply
obtaining forming maps that are conceived as a synthe-
sis of stability maps and efficiency maps. Over the years,
this model has by far been the most used in the literature
to draw processing maps in the field of plastic flow for
the hot forming of polycrystalline metallic materials.
The theoretical framework of Ziegler or that of Lya-
punov can be applied, although with different results, to
the concepts of DMM.

Two contributions of Prasad, Kumar and others
should be clearly differentiated. The first, and most
important, is the application of the concepts of stability
of Ziegler (and of Lyapunov) to the field of hot working
of materials. The second contribution is the construction
of stability maps where Prasad and Kumar identify the
parameters describing the plastic deformation, within
the DMM, with the stability equations of Ziegler. They
use an equation that relates temperature, T, stresses, r,
and strain rates, _e, which gives rise to the analysis of
constitutive equations. This last contribution led to
numerous contradictions and critiques since these
authors propose a power law as the constitutive equa-
tion. More specifically, they propose a power law for
each of the ranges of strain rate and temperature that
are divided the experimental data. In some cases, the
authors use constitutive equations created ad hoc from
polynomial expressions dependent on temperature,
stress and strain[9] although the theoretical basis is the
power law within the framework of the DMM. As
pointed out by Murty et al., 1999–2005, in several of
their works,[10–13] when a power law is used, the strain
rate sensitivity, m, and other parameters, turns out to be
constant.

The Garofalo equation is admitted as a constitutive
equation that adjusts large ranges of variables for hot
forming of polycrystalline metallic materials.[14,15] On
the other hand, it is important that the results of the
application of a constitutive equation have behaviors
that coincide with those that can be obtained from
microstructural or atomistic models. We considered that
it was necessary that the framework for assessing the
stability conditions of the hot-working process be based
on the work of Raj.[16,17] and Raghunhat et al.[18] Raj
has modeled atomistic mechanisms that are responsible
for the microstructural damage caused by the hot-work-
ing process and has characterized the temperature and
deformation rate conditions where this damage occurs.
Raghunhat et al.[18] have interpreted these conditions in
the form of processing maps, as that given in Figure 1,
in terms of ductile fracture due to voids, occurring at
high strain rates and low temperatures, and the forma-
tion of wedge cracking at grain boundary triple

junctions, occurring at low strain rates and high
temperatures. The area limited by the boundary condi-
tions for these two damage processes is referred to ‘‘as
safe for hot forming’’ while the upper limit of strain rate
is set by the formation of ‘‘adiabatic shear bands.’’
In the safe or stable regime, two processes occur.[16,17]

One called dynamic recovery occurs at low strain rates
and low temperatures, and the other, called dynamic
recrystallization, occurs at high temperatures and high
strain rates. The different domains shown by the power
dissipation maps can be identified based on the corre-
sponding efficiency variations of the microstructural
characteristics, as indicated by Genesan et al.[19]

Changes in microstructures, modification of treatment
and other processes can modify this general theoretical
framework, but it is a good reference to consider.
In the present work a criterion is built, in the

framework of DMM, based on the Ziegler-Prasad
theory, using the Garofalo equation as a constitutive
equation. This equation replaces the power law equation
used by Prasad et al.[6–8] It should be noted that the
criterion proposed in this work is different from the Z–P
criterion and also different from the xi, n, stability
parameter of Prasad.[20,21]

The Garofalo equation, due to its wide range of
applicability of the thermomechanical variables, will
avoid the polynomials built ‘‘ad hoc’’ and also the use of
a power law. The Garofalo equation is widely used and
is accepted as the best representative algebraic expres-
sion of the behavior of the thermomechanical variables
for plastic flow for large strains in the hot-forming
process as discussed in the works of Wang et al.,[22] and
Wan et al.,[23] Section III describes the introduction of
the Garofalo equation in the fundamental equations of
the Ziegler–Prasad theory in the framework of DMM.
This step has been put aside over the years because of
the mathematical complexity of the problem, but it is
recognized that the Garofalo equation is the correct one
to correlate the data. We have solved the mathematical

Fig. 1—Interpretation of the safe and unsafe regions according to
the work of Raj[16,17] and Raghunhat et al.[18]

METALLURGICAL AND MATERIALS TRANSACTIONS A VOLUME 51A, NOVEMBER 2020—5837



problem in some aspects analytically and in others
through the application of numerical calculation meth-
ods. It was necessary to use simple variable changes, the
chain rule for derivation of compound functions and the
Leibniz rule for differentiation under the integral sign.
This is a paramount work, and the details of the steps to
reach these equations are given in the Appendix.

An investigation of the hot-working behavior of
Ti-10V-4.5Fe-1.5Al alloy by Balasubrahmanyam and
Prasad[24] (B–P) was selected because data of T; r; _ef g
are given explicitly in the form of tables. This avoids
extracting data from graphs, which always has errors
not allowing the elaboration of the procedures
described in this work and a correct comparison with
other interpretations procedures. The same procedure
can be followed to study the hot-working behavior of
any material that deforms plastically just by consider-
ing the corresponding values of the Garofalo param-
eters. It can also be applied to compression, torsion or
tensile tests.

The objective of the present work, therefore, is linked
to two secondary objectives. The first is to achieve
theoretical improvements, within the framework of the
DMM, by substituting the power law equation by a
Garofalo equation, capable of predicting wide ranges of
the thermomechanical variables for hot forming. The
second objective is to be able to develop a methodology
that reduces the possible numerical errors that can occur
in the processes of generation of isolines (contour
curves) in the stability maps. Therefore, the maps
generated by Prasad et al. using the xi parameter are
replaced by those generated using a new stability rho, q,
parameter, but both under the general Ziegler-Prasad
criterion.

II. GENERAL THEORETICAL FRAMEWORK

Ziegler[4] developed a theoretical model for plastic
flow, based on the physical laws of thermodynamics of
irreversible processes. Ziegler arrives at a stability
condition for the dissipation function in relation to the
variability of the thermodynamic function of the system
as follows:

@D

@R
>

D

R
½1�

with D being the dissipation function of the system and
R a distance in velocity space.[4]

This expression is used in general works in the
framework of DMM, as for instance in the works of
Lu et al.[9] and Sahoo et al.[25] and is transformed into (R
= _eÞ:

@D

@ _e
>

D

_e
½2�

From Eq. [2] it is deduced that the irreversible force
that directs the dynamics of the system increases with
the deformation rate. In addition, the law of increase
must be logarithmic as it occurs in many physical laws:

@Ln Dð Þ
@Ln _eð Þ >1 ½3�

The conditions of stable plastic flow, or the stability
criterion of Ziegler corresponding to the dynamic
evolution of physical systems (Eq. [2]), are applied by
Prasad et al. to any material by defining, in the DMM
framework, the dissipative energy content D. At the end
of this process of applying the DMM to Eq. [2], the
criterion for stability, xi, known as the stability criterion
of Ziegler–Prasad, is reached.
Kumar and Prasad, and their co workers,[6,26–31]

developed a practical criterion to analyze the stability of
the various regions of strain rate and temperature
during the hot-working process. They started from the
dissipated power, P(i), that in the framework of DMM
is fractioned in two parts. One is J, whose original
energy is a potential energy, and the other is G, whose
original energy is a kinetic energy. Under the DMM
they are named J, the dissipator co-content, and G, the
dissipator content, according to the relation:

P ¼ Gþ J ¼ r � _e ¼
Z _e

0

rd_eþ
Zr

0

_edr ½4�

with

J ¼
Zr

0

_edr ½5�

being responsible for the energy dissipation during hot
working through a microstructural change of the mate-
rial. Therefore, the dissipation function in relation to
the plastic flow stability is represented by J in the
framework of DMM and the dissipation function of
Ziegler, D is substituted by J, being D = J. After
some pertinent substitutions, as detailed in Reference
9, the so-called Ziegler–Prasad criterion is obtained:

@J

@ _e
>

J

_e
½6�

This equation can be formulated in the form:

@Ln Jð Þ
@Ln _eð Þ>1 ½7�

or also in a form that is interesting for this work:

@J

@ _e
� J

_e
>0 ½8�

This is therefore the criterion developed by Prasad
and Kumar to study stability that is also called the
Ziegler–Prasad criterion (Eqs. [6] and [8] are different
forms of the same criterion). Up to here, the criterion
can be considered as valid. The problem arises when
concrete constitutive equations for deformation are used
to have a practical criterion for stability. Our model,
which will be described later, arises from Eq. [8],
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defining a coefficient rho that is derived from the
application of DMM to the Ziegler theory by Kumar,
Prasad et al. in the form:

q ¼ @J

@ _e
� J

_e
½9�

with the condition for the stability q>0. This equation
is valid for a power law, for Garofalo or for other
constitutive equation, but none is superior to the
Garofalo equation in their capability to fit large ranges
of experimental data of T, r and _e.[14,32–36]

The condition of Eq. [9] is defined before any
constitutive equation that could be used to describe
the thermomechanical process. To obtain a practical
expression for J and G, Kumar and Prasad, and others,
used a power law since it is necessary to define a
concrete constitutive equation.

The attainment of the stability expression of Prasad,
or the Xi equation, from the concepts of the DMM and
the use of a power law equation is given in Appendix A.
This expression,

n _eð Þ ¼
@ ln m

mþ1

� �� �

@ln _eð Þ þm<0; ½10�

is given in most of the hot-working publications that
deal with stability studies[37–42] and will be substituted in
our model by the stability parameter rho as will be
shown later.

It is considered that for n _eð Þ<0 microstructural insta-
bilities are present during hot working. However, strictly,

m = mPL has a constant value, and since
@ ln m

mþ1ð Þð Þ
@ ln _eð Þ ¼ 0

then m<0. This is an inconsistency because experimen-
tally m is always higher than zero. Other inconsistencies
were pointed out by other authors such as Montheillet
et al.,[43] Murty et al.[11] and Ghosh.[44]

To avoid the inconsistency of the constant value of m
with thermomechanical variables, Prasad et al.,[21, 28–30]

among others, divide or chop the variable range in small
terms which implies large potential numeric errors. They
impose a variability of m, creating polynomial consti-
tutive equations without a physical basis.

III. PROPOSED MODEL OF STABILITY
THROUGH THE USE OF A GAROFALO

EQUATION

As mentioned, the use of a power law has important
inconsistencies. One way to avoid this is by using a
Garofalo equation that will allow a dependency of m
with T and _e in a natural way. This is the equation that
we have chosen as the best of the equations susceptible
to being a constitutive equation, with physical sense and
without the use of ‘‘ad hoc’’ polynomials. On the other
hand, this necessarily implies rejecting the widespread
use of power laws.

The supremacy of the Garofalo equation is due to the
ability to obtain information of the material processing
by means of its parameters.[45] This is because, despite

being a phenomenological equation, it has a strong
theoretical basis as discussed by Rieiro et al.[14,33,34] It
also has a high capacity to represent the phenomena of
plastic deformation by hot working for wide ranges of
stress, temperature and strain rates.[14,32–36] This equa-
tion is also proposed by many authors when analyzing a
wide range of stress values.[22, 23, 39,40,46]

The Garofalo equation has the form:

_e ¼ AG � e�
QG

R�T � sinh aG � r
� �� �nG ½11�

where AG;QG; aG; nG
� 	

are constant parameters at a
given value of strain e, and the only thermomechanical
variables involved in the equation are _e;T; rf g. This
equation is adequate for a given value of strain, or for
steady state (when it is present). Usually, the maximum
or peak stress value is used, as shown in various works,
but it is also possible to take data values for different
strains.[5,14,32–35]

The original Garofalo equation is not dependent on e
but the validity of the equation at various strains has been
proved,[5,32–35] extending the equation to be a deforma-
tion-dependent constitutive equation of the form:

_e ¼ AG eð Þ � e�
QG eð Þ
R�T � sinh aG eð Þ � r

� �� �nG eð Þ ½12�

where r; T; _e; ef g are the thermodynamic variables
involved in processing and AG eð Þ;QG eð Þ; aG eð Þ; nGðeÞ

� 	
are the Garofalo parameters that depend on strain. The
index G stands for Garofalo in order to differentiate the
equations involving a power law (PL).
The experimental data at a given strain can be easily

adjusted using the Garofalo equation as the best
adjusted function that minimizes the adjustment errors
by the methods of non-linear least squares. This will
allow us to obtain forming maps for each strain. The
method is simple and efficient, with adequate statistical
support to assess the quality of the results. The priority
and primacy of the Garofalo equation are emphasized
by many authors,[22,23,46] among others.
The use of the Garofalo equation, as will be seen later,

leads to the construction of contour maps for functions
that evaluate stability or efficiency, in a continuous
form. The maps do not have discontinuity or interpo-
lation error inter-zones or calculation errors.
To develop an algorithm for the rho parameter,

defined in Eq. [9], it was previously necessary to define
the best expression for the dissipator co-content, J, and
the best procedure for the calculation of the derivative,
dJ=d_e, at constant strain and temperature. The calcula-
tion of J and the efficiency, g, using the Garofalo
equation, requires operating with complicated integral
expressions or derivative expressions. The use of an
algorithm is a common praxis in this kind of mathe-
matical problems in order to simplify these operations.
This will also help to reach an expression for the
stability control parameter rho, q, in our new model,
which can be compared to Eq. [10]. In this work, an
algorithm optimum for the given experimental stresses,
strain rates and temperatures is used. Three more
algorithms have been tried to verify the quality of the
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numerical or analytical results, and all verifications have
been satisfactory.

From J ¼
Rr
0

_edr; the following variable change can be

made: x ¼ aG � r. It is then obtained:

J ¼
ZaG�r

0

_e
dx

aG
¼
ZaG�r

0

AG � e�
QG

R�T � sinh aG � r
� �� �nG � dx

aG
½13�

This expression can be rewritten in the following
form:

J ¼ AG � e�QG

R�T

aG

 ! Zsinh�1 h _e;Tð ÞGð Þ

0

sinh xð Þ½ �n
G

�dx ½14�

where h _e;Tð ÞG
� �

¼ _e�e
QG

R�T
AG


 � 1=nG
� �

. This expression is

introduced by its utility for the calculation of results in

the plane _e;Tf g and is similar to the expression hG
� �

¼
Z
A

� �1
n used by Wang et al.[22,23] For Z = Z _e;Tð Þ, then

h _e;Tð ÞG
� �

¼ Z _e;Tð Þ
A

� �1
n

.

Notably, the identity aG � r ¼ sinh�1 h _e;Tð ÞG
� �

has
been used. On the other hand, it is evident that,
with slight equivalent algebraic transformations (ex-
ternal to the integral), the calculation of J=_e, the

second term of Eq. [9], leads to h _e;Tð ÞG
� �nG

¼ _e�e
QG

R�T
AG


 �

and therefore:

J=_e ¼ AG � e�QG

R�T

aG � _e

 ! Zsinh�1 h _e;Tð ÞGð Þ

0

sinh xð Þ½ �n
G

�dx

¼ 1

aG � h _e;Tð ÞG
� �nG

0
B@

1
CA �

Zsinh�1 h _e;Tð ÞGð Þ

0

sinh xð Þ½ �n
G

�dx

giving:

J=_e ¼ 1

aG � h _e;Tð ÞG
� �nG

0
B@

1
CA �

Zsinh�1 h _e;Tð ÞGð Þ

0

sinh xð Þ½ �n
G

�dx

½15�

Once J is determined, the calculation of the efficiency
g is straightforward since:

g ¼ J

Jmax
¼ J

_e�r
2

� � ¼ 2 � J
_e � r ½16�

Every expression of J will lead to an expression
associated with the efficiency.

gG ¼
2 � AG�e�

QG

R�T
aG


 �R sinh�1 h _e;Tð ÞGð Þ
0 sinh xð Þ½ �n

G

�dx

_e � 1
aG � sinh

�1 h _e;Tð ÞG
h i

¼ 2 �
R sinh�1 h _e;Tð ÞGð Þ
0 sinh xð Þ½ �n

G

�dx

h _e;Tð ÞG
� �nG

� sinh�1 h _e;Tð ÞG
h i ½17�

Once the parameters J and g are calculated, it is
possible to obtain the stability parameter rho that
substitutes the parameter xi, in the equation of Prasad,
Eq. [10].
As observed in Eq. [9], q ¼ @J

@ _e � J
_e. A derivation of the

term @J
@ _e (for a given strain and temperature) is given in

Appendix B as:

@J

@ _e
¼ 1

nG � aG � h _e;Tð ÞGffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h _e;Tð ÞG2

q ½18�

On the other hand, the term J
_e is given in Eq. [15]. It is

finally reached:

q ¼ 1

nG � aG � h _e;Tð ÞGffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h _e;Tð ÞG2

q � nG

h _e;Tð ÞG
� �nG

0
B@

1
CA

2
64

�
Zsinh�1 h _e;Tð ÞGð Þ

0

sinh xð Þ½ �n
G

�dx

3
775>0

½19�

The developed calculation algorithm presents two
parts. A first one, between the square brackets, has been
fully analytically developed. The other involves the
calculation of an integral for each value of _e;Tf g}. Since
nG is a real number, the analytic calculation of the
integral containing this number is a difficult task.
Momeni et al.[47] use a hypergeometric function to solve
the problem but they do not find an explicit analytic
expression. Therefore, it is convenient to use numerical
calculations through current programs as MATLAB,
Mathcad and others. The steps to reach this expression
that will be used to draw stability maps are given in
Appendix C.

IV. METHODOLOGICAL ASPECTS
AND IMPLEMENTATION OF SOFTWARE

To define the behavior of materials in the hot-forming
process, it is necessary to obtain safe and reliable
parameters of the Garofalo constitutive equation. In
numerous works, like that of Hamada et al.,[48] the
complicated process that may be used to obtain the
parameters of the Garofalo equation by means of
adjustments by steps in the framework of linear pro-
cesses can be observed; this is typical of a power law
approximation. Also, Babu et al.[49] use the Garofalo
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constitutive equation but the parameters are obtained
by a power law approximation. This leads to wrong
values of the activation energy or the pre-exponential
factor as shown by Wang et al.[50]

In this work, the parameters of the Garofalo equa-
tion, {A, Q, n, a}, are determined by a non-linear
method involving an algorithm specifically developed
for the treatment of this equation, named the RCR
(Rieiro–Carsi–Ruano) method described previ-
ously.[5,14,32–34] This method allows for an automatic
procedure divided into several steps in MATLAB
programs for calculation of the values of this equation
for any material.

A new criterion for the efficiency and stability for hot
working of metallic materials based on the Ziegler–Pra-
sad criterion is introduced in this investigation. This
stability criterion is given by the equation dJ

d_e � J
_e>0.

In the work relative to the Lyapunov criterion,[5] we
compared our results on the magnesium alloy AZ31
with those of other authors on the same alloy. In the
present work, we preferred to use data of other authors
and have a direct comparison of their stability, xi,
criterion with our new, rho, criterion introducing the
Garofalo equation. Notably, both criteria are based on
the criterion deduced within the framework of the
Ziegler theory and in the framework of the DMM.

Other particularly important methodological aspects
are those that involve the implementation of calculation
algorithms in efficient programs and the methodology
used to validate and evaluate the results. We used
MATHCAD v. 7.0 software to implement the algo-
rithms for calculation of the efficiency as well as to build
stability maps. This software is simple and effective, and
graphic representations are easy to obtain.

V. RESULTS

Compression Tests from the Work of Balasubrah-
manyam and Prasad[24] (B–P) on Ti-10V-4.5Fe-1.5Al
alloy were chosen to compare the stability maps by the
two mentioned models: that of Prasad et al.[20,21] and
our model incorporating a Garofalo equation. In the
work of B–P, data were obtained in the form of tables at
a large range of strain rates, from 0.001 to 100 s�1, and
temperatures, 650 �C to 900 �C (923 K to 1173 K),
which allow a fair comparison. Cylindrical specimens of
10 mm diameter and 15 mm height were machined from
the hot-rolled rod. The specimens were solution
annealed at 765 �C for 30 min and water quenched.
The microstructure consisted of single-phase grains of
about 60 lm in size. The B–P data are tabulated at
strains of 0.1 to 0.5. At each strain 36 data points are
given. This is an adequate amount of data to perform a
statistic of control errors. The data at strains of 0.2 and
0.4 are given in Table I.

These strains were chosen by Balasubrahmanyam and
Prasad[24] to draw their maps, and for comparison we
calculate our maps for the same strains. At 0.2 the
material has just passed the peak stress and at 0.4 enters
into steady state and shows a better statistical quality fit
than at other strains.

The RCR method (in the MATLAB code and/or
QBASIC code)[14,32–36] was applied to these data to
obtain the parameters of the Garofalo equation. This
method also gives the parameters controlling the quality
and precision of the adjustment. The results are given in
Table II.
The statistical parameters of the table refer to the

coefficient of determination, R2, the Fisher–Snedecor
parameter, F, the sum of square errors, SSE, and the
variance, r2. These parameters are very significant, and
therefore the adjustment can be considered as very
good.
The stability map using the Garofalo equation and

the parameter rho (Eq. [19]) is given in Figure 2 at e =
0.2 and 0.4.
In Figure 2, the evolution of q is plotted against the

temperature and the strain rate. When the units of r are
MPa and those of _e are s�1, the units of rho are

q½ � ¼ Energy

Volume
; in our case, the units are Joule/m3.

The figure shows the more stable region, which is that
situated between the two lines of the rho value equal to
7.5 at e = 0.2 and 5.5 at e = 0.4. The optimum
thermomechanical conditions for hot working this
material given as a dotted line is situated in the center
of the more stable band. The band of greater safety or
greater potential for stability has an amplitude of 80 �C
to 130 �C in temperature (80 K to 130 K). This band is
established by a functional relationship between the
logarithm of the strain rate (in s�1) and the temperature
(in �C or K) in the following form for e = 0.2:

log10 _eð Þ ¼ �0:000008436 � T2 þ 0:024924924 � T
� 14:237789312 ½20�

The relation is parabolic and significantly marked
with R2 = 0.9998. This gives an optimum stability
temperature of 775 �C (1048 K) for 1 s�1.
For the strain of e = 0.4:

log10 _eð Þ ¼ �0:000010327 � T2 þ 0:026502485 � T
� 14:974929664 ½21�

In this case, R2 = 0.9997. This gives for 1 s�1 an
optimum stability temperature of 840 �C (1113 K).
There are no markedly unsafe areas or areas suscep-

tible to instability in front of a punctual disturbance, but
the two triangular regions situated in the two corners
(upper left and lower right), colored in red, are the less
stable regions in the map. The area in the upper left
corner, at high strain rates and low temperatures, is
susceptible to developing processes of adiabatic shear
bands or of ductile fracture due to formation of voids
according to Figure 1. In addition, the small area in the
lower right corner is a zone of less stability, which is
susceptible to reaching instability in the event of
disturbances, punctual or local, due to wedge cracking.
Regarding the efficiency, the maps obtained at e= 0.2

and 0.4 by Eq. [17] are given in Figure 3. The maps
show that, for a given strain rate, the efficiency increases
with an increase of temperature, which is typical of all
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physical systems. On the other hand, for a given
temperature, the efficiency increases for decreasing
strain rates, which is in agreement with the fluid and
plastic flow processes.

For comparison, an adapted version of the processing
maps of B–P[24] (Figure 6(a) through (b) in their work),
obtained by application of Eq. [10], is given in Figure 4
at e = 0.2 and 0.4. The maps are based on the same
Ziegler–Prasad criterion as that used in our rho model.
The difference is that the model applied by B–P used a
power law to arrive to the xi stability condition, and we
used the Garofalo equation to arrive at the rho stability
condition.

Notably, the contours of Figure 4 represent constant
efficiency in percent while those of Figure 3 represent
constant efficiency marked per unit. B–P superimpose a
region that they define as unstable on the efficiency map
of Figure 4, without qualifying it, which is between
about 670 �C to 900 �C and 7 to 100 s�1. The authors

show overlapping areas of instability but they do not
qualify the rest of the areas in the map. We consider that
these large areas have zones that are more or less safe or,
according to their description, more or less unstable.
However, the authors do not perform a quantification.
In other words, the work does not provide the necessary
information to contrast the contour lines of the param-
eter xi, (Eq. [10]), which measures the stability, with the
contour lines of the parameter that measures the
efficiency.
This approach to obtaining the forming maps as an

overlap of the efficiency and the stability, but only
pointing out some significant areas or domains, is
common in the literature.[51] A complete review includ-
ing the power law methodology and the use of consti-
tutive equations of the polynomial type of order three
adjusted to the stress is given in the work of Zhang
et al.[52]

In contrast, our stability maps (Figure 2) identify the
safest areas as those that reach the stability condition
with most intensity. In addition, the rho parameter is
modeled with its corresponding units, being able to
relate these values to the inequality that defines the
stability. We qualify as less safe or less stable zones
those that are close to zero. This is an absolute novelty
in the capacity of predicting the forming behavior of
materials.
On the other hand, the unstable region between 670

�C and 900 �C (943 to 1173 K) for strain rates of about
10 to 100 s�1 (log 1 to log 2) determined by B–P
(Figure 4) does not agree with the less stable of our
maps in Figure 2. Furthermore, most of its unstable area
is in an area on our maps that is identified as reasonably
stable, with high values of the rho parameter. This is in
agreement with the studies of Raj[16, 17] and Raghunhat
et al.[18] (Figure 1) that predict dynamic recrystallization
processes that develop in a stable manner.

Table I. Data of Balasubrahmanyam and Prasad[24] for the Ti-10V-4.5Fe-1.5Al Alloy at e = 0.2 and 0.4

T (�C) e9 (s�1)
r (MPa)
e = 0.2

r (MPa)
e = 0.4 T (�C) e9 (s�1)

r (MPa)
e = 0.2

r (MPa)
e = 0.4

650 0.001 110.6 102.7 800 0.001 27.9 28.3
650 0.01 212.3 176.2 800 0.01 59.3 59.0
650 0.1 332.2 269.7 800 0.1 118.9 117.7
650 1.0 498.3 370.8 800 1.0 206.4 202.9
650 10.0 681.7 548.8 800 10.0 319.0 308.7
650 100.0 882.7 669.4 800 100.0 420.1 396.5
700 0.001 70.8 64.6 850 0.001 21.8 22.1
700 0.01 132.7 125.9 850 0.01 43.0 44.0
700 0.1 224.9 213.2 850 0.1 85.6 85.0
700 1.0 339.1 284.1 850 1.0 168.5 163.5
700 10.0 541.2 447.5 850 10.0 267.4 254.1
700 100.0 679.1 550.9 900 100.0 350.7 341.6
750 0.001 47.1 45.7 900 0.001 17.8 18.4
750 0.01 80.6 79.2 900 0.01 35.0 35.9
750 0.1 155.1 152.3 900 0.1 69.3 69.0
750 1.0 252.8 233.1 900 1.0 140.6 136.1
750 10.0 439.5 372.2 900 10.0 221.5 213.1
750 100.0 536.1 462.0 900 100.0 279.9 281.8

Table II. Garofalo Parameters and Statistics of the
Adjustment of the Data of Balasubrahmanyam and Prasad[24]

at e = 0.2 and 0.4 for the Ti-10V-4.5 Fe-1.5Al Material

Parameters
Values
e = 0.2

Values
e = 0.4

A (s�1) 4.440237620E+12 4.2010252E+10
ln(A) 29.12172901 24.4611795
Q (kJ/mol) 249.061 222.489
n 3.710 3.556
a (MPa�1) 0.00338 0.005060
R2 0.989 0.99365
F (exper) 952.169 1669.665
F (theor) 2.901 2.901
SSE 0.193 0.11043
r2 0.193 0.11043
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In addition, their maps in Figure 4 show a peak of
efficiency at about 860 �C (1133 K) and 10�2 s�1. In our
map in Figure 2, that peak is not present, which, on the
other hand, is reasonably expected. That peak in their
work implies that higher efficiencies can be achieved by
reducing temperatures, which in this context does not
seem reasonable.

In absolute values, the difference between their
efficiencies at e = 0.2 and those of our work, at
maximum, differs from 48 to 42 pct. This difference of
about 6 pct, which is about the same at e = 0.4, is
understandable owing to the interpolation errors. This is
due to the partial adjustment or fit of the strain rate
sensitivity, m, using power laws by zones or intervals
and then pretending to build a single map with the
values of the different zones. Those interpolation errors
can easily reach values of 5 to 7 pct. The first problem is
that a partial adjustment of data by third order

polynomials, or with different values for Q, n and A
(parameters that defined the power law equation), is
very difficult. These polynomials have to be forced to
converge at a point on the border of two regions. This
disagreement is one of the main sources of errors. The
modeling with the power law equation, together with the
use of third-degree interpolation polynomials, could
explain the differences between their and our maps.
It is interesting to compare our efficiency maps in

Figure 3 obtained at e = 0.2 (a) and at e = 0.4 (b). The
maximum and minimum values given in the maps at e=
0.2 are 0.42 and 0.22, respectively, in contrast to 0.43
and 0.20 at e = 0.4. In Figure 4(a) at e = 0.2, the
maximum and minimum values in efficiency are 0.48 and
0.12, and in Figure 4(b) at e = 0.4, the maximum and
minimum values in efficiency are 0.46 and 0.14. It is then
concluded that the differences are small between defor-
mation 0.2 and deformation 0.4, both in the work of

Fig. 2—Stability map using the Garofalo equation and the rho parameter for the R2 criterion for the alloy Ti-10V-4.5Fe-1.5Al obtained using
data from Table I,[24] (a) at e = 0.2 and (b) at e = 0.4. The dotted line corresponds to the more stable conditions.

Fig. 3—Efficiency map for the alloy Ti-10V-4.5Fe-1.5Al obtained using data from Table I. [24] at (a) e = 0.2 and (b) e = 0.4. The number over
the contour lines gives the efficiency value expressed in parts per unit.
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B–P and in ours. The differences in efficiencies between
the two works are small if the island of efficiency, 0.48,
in Figure 4(a), which has a difficult physical justification,
is not considered. The percentage of differences in
maxima between the work of B–P and ours is 5 and 10
pct for deformations of 0.4 and 0.2, respectively. In the
minimum, the percentage of differences is 11 and 17 pct
for deformations of 0.4 and 0.2, respectively.

Regarding the instability, the maps of B–P[24]

(Figure 4), which were built using a power law for the
calculation of g and J, provide little information.
Almost the same instability zones are present at e =
0.2 and 0.4. In both cases the maps show quasi-rectan-
gular areas. For e = 0.2 the rectangle has sides (0.8 to 2)
in log10 of the strain rate and from 670 �C to 900 �C
(943 K to 1173 K), and for deformation (0.4) the
rectangle has sides (0.8 to 2) in log10 of the strain rate
and 700 �C to 900 �C (973 K to 1173 K).

In contrast, our maps in Figure 2 that were built
from Eqs. [17] and [19] provide a large amount of
information regarding the instability at these two
strains that is obtained from the evaluation of the
rho parameter in the R2 model. Figure 2 shows that the
maximum value of the rho parameter at e = 0.2 is
larger than at e = 0.4 (7.97 vs. 5.78). This means that
the zone of higher stability (around the dotted line) is
safer at e = 0.2 than at e = 0.4 since the rho
parameter has decreased by 27 pct. The figure also
shows that the minimum value of the rho parameter at
e = 0.2 is larger than at e = 0.4 (0.58 vs. 0.20), which
indicates that at this strain the less stable zone may
become unstable more easily. On the other hand, a
comparison of our stability maps at e = 0.2 and 0.4 in
this figure allows us to conclude that the maximum
stability temperature, at a given strain rate, at e = 0.4
is higher than at e = 0.2. For instance, at _e ¼ 1 s�1 the
maximum stability temperature is 775 �C (1048 K) at e
= 0.2 while at e = 0.4 it is 835 �C (1108 K).

Notably, there is no coincidence of the maps in
Figure 4 with our maps regarding the zone of instability,
or with the sense of the evolution of this instability. It is
difficult to assume that their zone of stability is
homogeneously uniform differentiating only the best
working area in their efficiency map.
It has to be also noted that we have adjusted the

Garofalo equation with the parameters given in Table II
for e = 0.2 and 0.4. At each of these strains, the
adjustment has high statistical quality, and the values
may be applied at all ranges of the thermomechanical
variables. In contrast, the work of B–P[24] uses a power
law with the parametersA, n andQ that are dependent on
the temperature and strain rate but not dependent on the
deformation, as may be expected from a constitutive
equation. The authors find values of n of about 3 below
0.1 s�1 and about 8 at high strain rates. For this reason,
the activation energy is strongly influenced by the stress
chosen being 183 kJ/mol below 250 MPa and 398 kJ/mol
at high stresses. Once again, the arbitrary partitions of
these authors can cause large numeric errors because of
the use of polynomials for adjusting each interval of
application of the power law and applying interpolation
algorithms that have to join values of n or m of different
zones. Therefore, the contour lines of the maps must be
forced, providing situations of difficult assimilation in the
continuity of the material processes.
Despite the differences between the two methods,

there are also important coincidences. Their stability
zones, indicated as most stable, have a 70 to 80 pct
coincidence with our most secure zones, although they
do not qualify the differential quality of the stability.

VI. CONCLUSIONS

(1) A new model of stability is proposed through the
introduction of the Garofalo equation in the

2

Lo
g 

[s
tra

in
ra

te
(s

-1
)]

650 700 750 800 900850
-3

-2

-1

0

1

2

Temperature, ºC

Most unstable region

Maximum η (=48%)

η=46%

Minimum η (=12%)
in this region

Temperature, ºC
650 700 750 800 900850

-3

-2

-1

0

1

Lo
g 

[s
tra

in
ra

te
(s

-1
)]

Most unstable region

Maximum η (=46%)

Minimum η (=14%)
in this region

(a) (b)

Fig. 4—Adapted version of the processing maps of Balasubrahmanyam and Prasad[24] (Fig. 6(a) through (b) in their work) for the
Ti-10V-4.5Fe-1.5Al alloy at (a) e = 0.2 and (b) e = 0.4. The numbers on the isolines correspond to the efficiency in percent. The regions limited by
thick continuous lines are regions of instability, and the regions limited by thick dashed lines are regions of maximum or minimum efficiency, g.
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general criterion of Ziegler–Prasad all under the
framework of the DMM. The inconsistencies of
using a power law and the xi stability criterion are
eliminated, and a dependence with the tempera-
ture and the strain rate of the parameters involv-
ing strain rate sensitivity, efficiency and stability is
naturally introduced.

(2) The new proposed model and the new rho
stability criterion are able to assess and predict
the behavior of any material identifying areas that
are safe for hot forming and other less stable and
more insecure (unsafe) zones.

(3) Our approach, and that of Prasad and Kumar, is
based on the same basic stability criterion of
Ziegler. However, we utilize the Garofalo equa-
tion in the entire range of the variables with
continuous variations of the stability lines. This
procedure avoids the formation of anomalous
structures in the form of islands or complex
structures in the maps in contradiction to the
bases of the mechanics of continuous media.

(4) Our stability maps give zones of high and low
stability, bands of high stability and a line of
maximum stability in the space {T, _e}, which
agree well with the atomistic analysis of Raj.
Furthermore, the influence of the forming vari-
ables on the stability can be assessed as a function
of strain.

(5) While the efficiencies in the literature are evalu-
ated in a dimensionless parameter, percent or per
unit, the stability parameter that we define as rho
is quantified in the dimension energy/volume or
energy density in volume (Joules/m3). This allows
us to assess the stability intensities, evaluating the
maximum and minimum values of the parameter
rho on the map and the ease of taking out the
material from the stability.

(6) Applying this new rho stability criterion to a
Ti-10V-4.5Fe-1.5Al alloy studied by Balasubrah-
manyam and Prasad, the optimum thermome-
chanical conditions for hot working can be
determined. Specifically, at e = 0.2, for 1 s�1

the model predicts an optimum stability temper-
ature of 775 �C (1048 K).
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APPENDIX

Stability Expression of Prasad from the Concepts
of the DMM and the Use of a Power Law Equation

Using the power law equation:

_e ¼ APL � e�
QPL
R:T � rnPL ½A1�

and the concepts of the DMM, Prasad et al. obtained
the following equations (where the subindex PL indi-
cates that it has been obtained by adjusting the data
to a power law constitutive equation):

G ¼ P � nPL
nPL þ 1

¼ P

mPL þ 1
½A2�

J ¼ P � mPL

mPL þ 1
¼ P

nPL þ 1
½A3�

Here, APL; QPL; nPLf g are constant values (parame-
ters) in the equation, for a given value of strain. The fit
of Eq. [A1] to the experimental set of data values
_e; r;Tf g (N values of the mentioned sets of three

variables) results in obtaining values of the constants
for a given value of strain.
The maximum value of J is Jmax ¼ P

2, which is
reached for m = 1. Furthermore, for this value
Jmax ¼ Gmin ¼ P

2. This has two consequences. It is valid
strictly when the power law is justified, which is in
short ranges of the thermodynamic variables of the
system. It is worth noting that it would be recom-
mendable to use the total power P as the denominator
for the normalization of the efficiency instead of Jmax.
This would make the efficiencies of J and G compara-
ble and would rationally normalize the concept of
efficiency. In addition, this would allow distinguishing
the power used in changing the form from that in
modifying the microstructure.
According to the DMM, the efficiency g is an

important parameter that synthesizes the information
of the dissipative co-content and the relations of the
plastic creep with the evolution of the microstructure. It
is defined as:

gJ=Jmax
¼ J

Jmax
½A4�

Therefore, the efficiency of the dissipative co-content
referred to its maximum performance using the values of
m obtained from the power law is the following:

gPLJ=Jmax
¼

P � mPL

mPLþ1
P
2

¼ 2 �mPL

mPL þ 1
½A5�

Continuing with the application of the power law in
the framework of DMM, from the stability criterion in
its simpler form it is obtained that:

@Ln Jð Þ
@Ln _eð Þ>1 ½A6�

and using J obtained from the power law:

J ¼ mPL

mPL þ 1
� r � _e ½A7�
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All these expression from Eqs. [A1] to [A7] are given
in References 33, 34 and many other works.

It is easy to see that ln Jð Þ ¼ ln m
mþ1

� �
þ ln rð Þ þ ln _eð Þ

and with the calculation of derivative operations of
Eq. [16], it is obtained directly that
@ ln m

mþ1ð Þð Þ
@ln _eð Þ þ @ln rð Þ

@ln _eð Þ þ
@ln _eð Þ
@ln _eð Þ<1; therefore, it is obvious that

@ ln m
mþ1ð Þð Þ

@ln _eð Þ þ @ln rð Þ
@ln _eð Þ <0. Now, using a power law, where m

= @ln rð Þ
@ln _eð Þ, the stability expression, named the Prasad or xi

equation, which is well known to all researchers in this
field, is finally obtained:

n _eð Þ ¼
@ ln m

mþ1

� �� �

@ln _eð Þ þm<0 ½A8�

Algorithms Used for Determination of the Stability
and Efficiency Equations

The determination of the dissipator co-content, J, was
carried out, as mentioned in the text, using the equation

J ¼
Rr
0

_e � dr and the variable change x ¼ a � r. This

value of J with this variable change, or algorithm, was
named J(1). Notably, the generalized Leibniz rule was
applied to reach these expressions since it was necessary
to derive inside the integrals. If a transformation from
the variable r to the variable _e is chosen, and the

expression a � r ¼ sinh�1 h _e;Tð ÞG
� �

where h _e;Tð ÞG
� �

¼

_e�e
QG

R�T
AG


 � 1=nG
� �

is used, the following expression J=_e is

obtained:

J=_e ¼ 1

aG � h _e;Tð ÞG
� �nG

0
B@

1
CA �

Zsinh�1 h _e;Tð ÞGð Þ

0

sinh xð Þ½ �n
G

�dx

½B1�

being

J ¼ AG � e�QG

R�T

aG

 ! Zsinh�1 h _e;Tð ÞGð Þ

0

sinh xð Þ½ �n
G

�dx ½B2�

From this expression, substituting directly in the
definition of efficiency, Eq. [17] in the text, we obtain:

gG ¼ 2 �
R sinh�1 h _e;Tð ÞGð Þ
0 sinh xð Þ½ �n

G

�dx

h _e;Tð ÞG
� �nG

� sinh�1 h _e;Tð ÞG
h i : ½B3�

The application of the Leibniz generalized rule is
needed to obtain the expression of dJ=d_e (for a given
strain and temperature) as: dJ=d_e ¼ _e � @r _e;Tð Þ=@ _e ¼

1= nG � aG
� �� �

� h _e;Tð ÞG=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h _e;Tð ÞG

� �2r !
. Substitut-

ing this expression in Eq. [9], it is finally obtained:

q ¼ 1

nG � aG � h _e;Tð ÞGffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h _e;Tð ÞG2

q � nG

h _e;Tð ÞG
� �nG

0
B@

1
CA

2
64

�
Zsinh�1 h _e;Tð ÞGð Þ

0

sinh xð Þ½ �n
G

�dx

3
775

½B4�

Construction of Efficiency and Stability Maps

An important methodological aspect is that related to
software for the execution of the calculations that are
necessary for the preparation of efficiency and stability
maps. This is a non-trivial aspect due to the large size
and complexity of multiple formulas with hyperbolic
expressions, with direct and inverse functions, and all
this combined with the calculations of derivatives and
expressions. This can lead to the generation of different
kinds of errors: truncation, rounding and cumulative.
For developing the algorithm of the efficiency and

stability maps, we use the MATHCAD Professional 7.0.
The program starts by defining the input parameters,
which are the four adjustment coefficients of the
Garofalo equation AG;QG; nG; aG

� 	
. We give an exam-

ple of the use of the program for an ideal material:
INPUT DATA (example for strain e = 0.2):
q: = 59527.10721895 (effective activation energy in

calories/mol K).
n: = 3.7104796 (exponent of the hyperbolic sine

function).
al: = 0.00338 (a = cofactor of true stress).
A = exp(29.121729) a: = 4.44023758 1012 (coefficient

A or entropy factor).
The definition of the indexes is as follows. For the

temperature and the strain rate, we use the index i and j,
respectively. The range goes from 0 to about 40 for the
temperature (for large temperature ranges of about 300
K) and from 0 to about 80 for the strain rate (for large
strain rate intervals of about 5 orders of magnitude).
The mesh size factor i 9 j should be>3000 in these cases
to have a good resolution in the maps.
The expression in the Mathcad program to determine

the interval for the strain rate is:

Ej :¼ exp xþ j

z


 �

The value of x corresponds to ln of the lowest value of
the strain rate, or j = 0, and ln of j/z corresponds to the
highest value, or j=80.For an interval of 0.001 to 100 s�1

and j = 0 to 80, this expression becomes:

Ej :¼ exp �6:9078þ j
6:9487

� �
, since � 6.9078 +80/6.9487

=4.6052= ln100, being ln 0.001=� 6.9078.Obviously,
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we have identified ln _ej
� �

¼ ln Ej

� �
¼ xþ j

z

� �
, and with the

result in this case E0: = 0.001 and E80: = 100.0.
The expression to determine the interval for temper-

atures is:
Ti: = y+w i.
The value of y corresponds to the lowest temperature

in K, or I = 0, and w i for the highest, or I = 40. For
instance, for an interval of 900 to 1200 K and I = 0 to
40, this expression becomes:

Ti: = 900 + 7.5 i, since 900 + 7.5 40 = 1200, and
therefore T0 = 900 K and T40 = 1200 K.

With this information it is possible to build the maps
in a MATHCAD Professional 7.0. program. However,
in case of any complications, and by prior request, we
have made the program available for those interested in
drawing these new maps. The importance of the correct
determination of the Garofalo equation parameters
before launching the program must be noted.
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