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We analyze the consistency of electroweak breaking within the simplest high-scale SUð3Þc ⊗ SUð2ÞL ⊗
Uð1ÞY type-I seesaw mechanism. We derive the full two-loop renormalization group equations of the
relevant parameters, including the quartic Higgs self-coupling of the Standard Model. For the simplest case
of bare “right-handed” neutrino mass terms we find that, with large Yukawa couplings, the Higgs quartic
self-coupling becomes negative much below the seesaw scale, so that the model may be inconsistent even
as an effective theory. We show, however, that the “dynamical” type-I high-scale seesaw with spontaneous
lepton number violation has better stability properties.
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I. INTRODUCTION

The discovery of a scalar particle with 125 GeV mass
plays a central role within particle physics [1,2]. In
particular, the precise Higgs boson mass measurement
determines the value of the quartic coupling in the scalar
potential at the electroweak scale and allows one to study
its behavior all the way up to high energies. Given the
measured values of Standard Model parameters such as the
top quark and Higgs boson masses, we know that the Higgs
quartic coupling remains perturbative after renormalization
group equations (RGEs) are used to evolve it to high
energies. However, the stability of the fundamental vacuum
may fail at mass scales below the fundamental Planck
scale [3].
Another most important milestone in particle physics has

been the discovery of neutrino oscillations [4,5]. This
implies the existence of neutrino masses [6] and hence
new physics that can produce them [7]. Electroweak
vacuum stability can be substantially affected in the
presence of a dynamical seesaw mechanism [8,9].1

Here we examine more closely the issue of the consis-
tency of the Higgs vacuum within type-I seesaw extensions

of the SUð3Þc ⊗ SUð2ÞL ⊗ Uð1ÞY Standard Model with an
ungauged lepton number [12]. For “sizeable” Yukawa
coupling, Yν ∼Oð1Þ, in order to reproduce the required
neutrino masses, heavy neutrinos must lie at mass scale
MN ∼Oð1014 GeVÞ. This characterizes the case of genuine
“high-scale” type-I seesaw constructions. We stress that
SUð3Þc ⊗ SUð2ÞL ⊗ Uð1ÞY seesaw extensions can be for-
mulated with any number of “right-handed” neutrinos, since
they carry no anomaly. Here for definiteness, we start from
the minimalistic (3,1) model containing only one right-
handed neutrino, in addition to the 3 known left-handed
neutrinos [12]. We start from this “missing partner” seesaw,
aware that, by itself, it does not provide a fully realistic
picture, since only one neutrino mass scale arises at the tree
level [12]. However, there are interesting and realistic
variants where the “missing partner” seesaw scale can be
identified with the “atmospheric scale”, while the “solar”
mass scale is generated by radiative corrections that
could arise, for example, from a “dark matter” sector [13].
We therefore take such “missing partner” seesaw as our
reference scheme.
We show that, although it has better stability properties

than the fully sequential (3,3) seesaw mechanism, for
sizeable magnitudes of the Yukawa couplings the Higgs
potential of the minimal (3,1) seesaw becomes unstable
even below the seesaw scale. The situation can only get
worse by having more right-handed neutrinos, in the (3,2)
seesaw or in the “sequential” (3,3) seesaw. In this sense,
too, it makes sense to take such a “missing partner” (3,1)
seesaw as the reference scheme. An important implication
of this missing partner type-I seesaw is the existence of a
lower bound on the neutrinoless double beta decay rate
even for normal ordered neutrino masses [14].
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1Here we will focus on stability within high-scale seesaw. For
discussions of low-scale seesaw see [10,11].
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We then show explicitly that vacuum stability can be
improved naturally if one implements spontaneous viola-
tion of lepton number. This is characterized by the
existence of a physical Nambu-Goldstone boson, dubbed
majoron [15,16]. We show how the extra scalars required to
implement spontaneous lepton number violation play a key
role to improve stability properties. Indeed, their couplings
can easily restore stability of the electroweak symmetry
breaking even if the lepton number violation scale is high,
as required to fit neutrino masses in this case. We also
analyze the scale at which instability sets in as a function of
the magnitude of the Yukawa coupling relevant for gen-
erating neutrino mass in (3,1), as well as the conventional
(3,3) seesaw case.
This work is organized as follows: In Sec. II we revisit

the vacuum stability problem in the Standard Model
showing that the Higgs quartic coupling becomes negative
when RGEs-evolved to high scales. In Sec. III, we describe
the neutrino mass generation in type-I seesaw and type-I
seesaw with majoron extensions. We then show in Sec. IV
that the vacuum stability problem becomes worse in high-
scale type-I seesaw Standard Model extensions. We then
focus on the majoron extension of the canonical type-I
seesaw. We show how the majoron helps stabilize the Higgs
vacuum, which can be made stable all the way up to Planck
scale. In addition the majoron could provide a viable dark
matter candidate [17–21], thereby solving another basic
problem in particle physics. Finally, we conclude and
summarize our main results in Sec. VIII.

II. HIGGS VACUUM IN THE STANDARD MODEL

Let us briefly revisit the status of the electroweak (EW)
vacuum within the Standard Model. For a long time the
Higgs boson was the “last”missing piece of the theory. The
discovery of a scalar particle with mass mH ≈ 125 GeV at
the Large Hadron Collider (LHC) is very suggestive that it
could be the long-awaited Standard Model Higgs boson.
While further work is still needed to unambiguously
establish this, current data indicates that its couplings
and decay properties are close to the Standard Model
Higgs expectations. If, indeed, this is the case, the next
question is, given that so far we have not seen any evidence
for new particles at the LHC, whether the Standard Model
can be the final theory. The answer is obviously no, since
the Standard Model predicts neutrinos to be massless and
there is no viable Standard Model candidate for cosmo-
logical dark matter.
For the moment we put these two issues aside, and ask

ourselves whether there are other compelling hints that the
Standard Model cannot be the final theory up to Planck
scale. Indeed, there are several other theoretical and
aesthetical arguments against this being the case. For
example, achieving the unification of forces and the
improving the hierarchy/fine-tuning/naturalness problem.
However, the “Higgs discovery” has facilitated us to study

the high energy behavior of the Standard Model. As an
example, in this work we address the stability of Higgs
vacuum at energies far above the electroweak scale.
The detailed analysis of the Higgs vacuum within the

Standard Model has been carried out in [22–27]. For
completeness here we revisit this analysis. This serves us
to calibrate our Renormalization Group analysis against
known results. Although in dedicated Standard Model
studies there are some partial 3-loop results [27], to
compare the seesaw and Standard Model results it will
suffice for us to stay at the two-loop level. In our analysis
we adopt the MS scheme, taking the parameter values at
low scale as the input values [3]. In particular, the Higgs
pole mass is taken as the current best fit value of
mH ¼ 125.18� 0.16 GeV, the top quark pole mass is
taken as mt ¼ 173� 0.4 GeV, and the strong coupling
constant αsðMZÞ ¼ 0.1184� 0.0007. Using these exper-
imental values, we adopt the “On-Shell” renormalization
scheme in order to express the renormalized parameters
directly in terms of the physical observables and then relate
the on-shell parameters to the MS parameters in a way
similar to [27]. In Table I we list the MS input values of the
relevant parameters at the top mass mt scale.
Taking the initial MS values of Table I as input values,

we then RGEs-evolve the Standard Model parameters to
higher scales as shown in Fig. 1.
Taking into account the updated input parameter values,

our two-loop results are in good agreement with earlier
ones. Tiny differences arise mainly due to the increased
current precision of the experimental numbers. We stress

TABLE I. MS values of the main input parameters at the top
quark mass scale, mt ¼ 173� 0.4 GeV.

g1 g2 g3 yt λSM

μðmtÞ 0.462607 0.647737 1.16541 0.93519 0.126115

FIG. 1. The RGEs evolution of the Standard Model gauge
couplings g1, g2, g3, the top quark Yukawa coupling yt, and the
quartic Higgs boson self-coupling λSM.
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that an in-depth reanalysis of the Standard Model Higgs is
not the goal of our paper, but rather the comparison of
Standard Model and seesaw scenarios. Hence, we refrain
from performing a sensitivity analysis of Higgs vacuum
stability and its dependence on the input parameter errors.
Indeed, in the seesaw scenarios of interest to us, such tiny
effects are negligible when compared to the effects of the
new Yukawa couplings.
Notice from Fig. 1 that the StandardModel Higgs quartic

coupling λSM becomes negative at μ ≃ 1010 GeV. This
would imply that the Higgs potential is unbounded from
below and the Higgs vacuum would be unstable. A
dedicated analysis shows that, in fact, the Standard
Model Higgs vacuum is not unstable, but rather metastable2

with a very long lifetime [27].

III. NEUTRINO MASS GENERATION

As already mentioned, the Standard Model cannot be the
final theory up to the Planck scale, as it has massless
neutrinos and no viable candidate for dark matter. Hence
the vacuum stability issue must be reconsidered. We now
do this adopting simple seesaw extensions of the Standard
Model. We show that, above the seesaw scale, the Higgs
vacuum stability can be completely dominated by the new
couplings. Hence it suffices for our purposes to discuss
electroweak vacuum stability at the two-loop level.

A. Dimension-five operator

Within the Standard Model neutrinos are massless.
However, as first noted by Weinberg [28], nonzero masses
will arise from an effective nonrenormalizable dimension-
five operator characterizing lepton number nonconserva-
tion. The effective Lagrangian reads

−Ld¼5
ν ¼ 1

2
ðl̄LHÞ:κ:ðHTlc

LÞ þ H:c:; ð1Þ

where κ is the 3 × 3 symmetric coupling matrix with
negative mass dimension, and, for brevity, we have sup-
pressed the generation indices. When the electroweak
symmetry breaking occurs, the Higgs gets vacuum expect-
ation value (vev) hHi ¼ vffiffi

2
p with v ¼ 246 GeV,H being the

Standard Model Higgs doublet. This leads to a Majorana
mass matrix for the left-handed neutrinos given as

mν ≡ κ
v2

2
;

which leads to light neutrino masses and lepton number
violation by two units. There are many ways to generate κ

as a result of postulating new mediator particles. A very
simple “UV-completion” is the type-I seesaw mechanism.

B. Type-I seesaw mechanism

The most general “type-I seesaw” mechanism is the one
formulated in terms of just the SUð3Þc ⊗ SUð2ÞL ⊗ Uð1ÞY
structure characterizing the Standard Model, without extra
gauge symmetry [12]. One postulates the existence of
gauge singlet “right-handed neutrinos”, νRi

, i ¼ 1; 2;…n,
whose mass term is obviously gauge invariant. Neutrino
masses arise from the exchange of “right-handed neutrino”
mediators whose multiplicity is arbitrary since, as gauge
singlets, they carry no anomaly. The relevant part of the
Lagrangian is written as

−L ¼
X
a;i

Yai
ν l̄a

LH̃νRi
þ 1

2

X
i;j

Mij
Rν

c
Ri
νRj

þ H:c: ð2Þ

where la
L ¼ ðνaL; laLÞT with a ¼ 1, 2, 3 denotes the three

families of left-handed lepton doublets, while i; j ¼
1; 2;…n labels the right-handed singlet neutrinos, and,
as before, H is the Standard Model Higgs doublet. After
electroweak symmetry breaking the full neutrino mass
matrix is expressed as

Mν ¼
�

0 mD

mT
D MR

�
; ð3Þ

where mD ¼ Yνffiffi
2

p v is the “Dirac mass matrix”.

Being SUð3Þc ⊗ SUð2ÞL ⊗ Uð1ÞY invariant, the right-
handed neutrino “Majorana mass matrix” Mij

R entries can
be much larger than the EW scale, jMij

R j ≫ v, implying

j m
aj
D

Mij
R

j ≪ 1. Hence the mass matrix in Eq. (3) can be block-

diagonalized perturbatively in an exponential series,
Eq. (3.1) in [16].3 The two diagonalized blocks correspond
to “light” and “heavy” neutrino mass matrices, denoted as
mab

ν and Mab
N , respectively, which can be written symboli-

cally as:

mab
ν ¼ 1

2

h
Mab

R −
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
R þ 4m2

D

q �abi
;

Mab
N ¼ 1

2

h
Mab

R þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
R þ 4m2

D

q �abi
: ð4Þ

To leading order the mass matrix elements for light
neutrinos mab

ν and heavy neutrinos Mab
N are given as

mab
ν ≃ −mai

DðM−1
R ÞijðmT

DÞjb þ higher order terms; ð5Þ

Mab
N ≃Mab

R þmai
DðM−1

R ÞijðmT
DÞjbþhigher order terms; ð6Þ

2Standard Model vacuum stability is sensitive to input param-
eter values, in particular the top-quark mass.

3We are now using the series expansion in Ref. [16] for the
case of explicit lepton number violation.
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where the negative sign in (5) can be absorbed4 through
field redefinition. The full expression for the diagonalizing
matrix is found in [16], as Eq. (3.5). The light neutrino mass
matrix in (5) is further diagonalized by a unitary matrix Uν

in the light neutrino sector νa; a ¼ 1, 2, 3. This famous
type-I seesaw formula links the smallness of the light
neutrino masses to the heaviness of the right-handed
neutrinos νR.

C. The missing partner type-I seesaw mechanism

As already mentioned, since νR’s are Standard Model
gauge singlets, their number n need not match the number
of left-handed ones. Depending on the value of “n” many
possibilities can be envisaged. Here we consider the case
n ≤ 3 of “high-scale” constructions.5

The observation of neutrino oscillations [4,5] proves
that two of the three “active” neutrinos are massive [6].
However, there is so far no indication for a finite mass for
the lightest neutrino. Indeed, the Katrin experiment has
derived an upper limit of 1.1 eV (at 90% C.L.) on the
absolute mass scale of neutrinos [34] from the Tritium
endpoint spectrum. This bound applies irrespective of
whether neutrinos are Dirac or Majorana particles. On
the other hand, cosmological observations indicate thatP

ma ≤ 0.12 eV [35,36]. Hence, for “sizeable” Yukawa
coupling values, Yν ∼Oð1Þ, this bound is satisfied for
heavy neutrino masses MN ∼Oð1014 GeVÞ.
In order to account for the current oscillation evidence

for neutrino mass it suffices to have a “missing partner”
seesaw mechanism with n ¼ 2, since in this case both solar
and atmospheric scales can be produced by the seesaw.
Following the general formulation in [12] we call such a
scheme in which one left-neutrino has no right partner,
(3,2) seesaw. In this case each right-handed neutrino
mediates the generation of the corresponding scale, solar,
or atmospheric.
Notice, however, that the minimal type-I seesaw mecha-

nism is the one in which only one right-handed neutrino is
added to the Standard Model. This (3,1) scheme is the
minimal “missing partner” seesaw, in which two left-
neutrinos lack a right-partner and remain massless. It
can be viable as part of a bigger scheme in which, for
example, the solar scale arises radiatively, hence accounting
for the small solar/atmospheric scale ratio. Such scheme is
easily obtained by “cloning” the seesaw with some other
sector associated, for example, with dark matter. An
interesting realization is the scotoseesaw, in which the

atmospheric scale is seesaw-induced, while the solar scale
has scotogenic origin [13].
An implication of the missing partner seesaw schemes is

a prediction for the parametermββ describing the amplitude
for neutrinoless double beta decay versus the (relative)
massive neutrino Majorana phase, shown in Fig. 2.
The lower band corresponds to normal mass ordering

and the upper one to inverted. Their narrow widths reflect
the small allowed spread in neutrino oscillation parameters
[6]. Notice that, in contrast to the general “complete” (3,3)
seesaw, in the missing partner there can be no cancellation,
so that nonzero neutrinoless double beta decay is predicted,
even if neutrinos are normal-ordered. The horizontal bands
in Fig. 2 show the reach of present experiments: CUORE
(green, limits: 0.11–0.52 eV) [37], EXO-200 (grey, limits:
0.147–0.398 eV) [38], Gerda-II (yellow, limits: 0.120–
0.260 eV) [39] and KamLAND-Zen (cyan, limits: 0.061–
0.165 eV) [40]. The horizontal lines indicate the maximum
estimated experimental sensitivities6 of upcoming experi-
ments: SNOþ Phase-II (0.019 eV) [41], LEGEND − 1000
(0.015) [42] and nEXO − 10 yr (0.0057) [43]. One sees
from Fig. 2 that, although the upcoming experiments are
only sensitive to inverted ordering, the detectability chan-
ces improve in the “missing partner” as compared to the
expectations of a generic “complete” seesaw mechanism.
This brings hope that upcoming experiments may be able to
measure, for the first time, the relevant Majorana phase.
To sum up, in what follows we take the missing partner

seesaw as our reference benchmark, because of its minimal-
ity and notational simplicity, and also because of the fact
that having extra fermions can only worsen stability of the
Higgs potential. In addition, in the “complete” seesaw
picture one looses the neutrinoless double beta decay
prediction in Fig. 2.
However, in Sec. VII we explicitly compare our results

with those obtained for the sequential (3,3) seesaw.
Moreover, all the relevant renormalization group equations

FIG. 2. Amplitude for neutrinoless double beta decay in
missing partner seesaw. The horizontal bands represent the limits
from current experiments, while the horizontal dashed lines show
the maximum reach of future experiments (see text).

4Note that, even though this negative sign in (5) is physical,
related to theCP properties of the light neutrinos, for our purposes
they will not be relevant.

5Here we discard cases with n > 3 since having extra fermions
can only worsen stability. An interesting example would be the
(3,6) seesaw scheme, which includes the template for the
sequential “low-scale” seesaw, including both the inverse seesaw
[29,30] and the linear seesaw mechanisms [31–33].

6Here we made the most optimistic assumptions concerning
nuclear matrix element uncertainties.
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given in the Appendix assume the conventional (3,3)
seesaw picture.

IV. HIGGS VACUUM STABILITY AND
NEUTRINO MASS

We saw how the Standard Model vacuum is not
absolutely stable. Instead, with the present measured values
of Higgs and top masses, it is metastable; as the quartic
coupling λSM becomes negative around ΛSM

I ∼ 1010 GeV,
the Standard Model instability scale. Before discussing
Higgs vacuum stability within type-I seesaw embeddings of
the Standard Model we first consider the effective
Weinberg operator.

A. Dimension-five operator

We now discuss the running of the quartic scalar
coupling characterizing the EW symmetry breaking sector
of the Standard Model in the context of a dimension-five
operator picture that results effectively at low-energies from
a UV-complete type-I seesaw. Below the scale μ ¼ MR we
integrate out the heavy neutrino νR, so that the theory is
the Standard Model plus an effective dimension-five
Weinberg operator Ld¼5

ν (with κ ¼ YνM−1
R YT

ν ). Below the
scale μ ¼ MR, only the Standard Model couplings and κ
will run. Neglecting the contribution from lepton and light
quark Yukawa couplings, the one-loop RGEs are given by
[44–46] (see also Ref. [10]),

16π2βκ ¼ 6y2t κ − 3g22κ þ λκκ: ð7Þ

As the Standard Model case, here yt also denotes the top
Yukawa coupling and g2 is the SUð2ÞL gauge coupling. We
denote the Higgs quartic coupling in this case as λκ to
distinguish it from the pure Standard Model case. Hence,
due to the large top Yukawa coupling yt, the coupling κ
slowly increases with the energy scale μ. As seen in Fig. 3
[10], the same operator which generates the neutrino
mass below the scale μ ¼ MR, also provides a correction
to the Higgs quartic self-coupling λκ below that scale. The
contribution from the coupling κ on the running of
the Higgs quartic coupling λκ is of order v2κ2 and thus
negligible [47]. As a result, in the effective theory, the
running of λκ below the scale μ ¼ MR will be almost the
same as in the Standard Model.

B. Higgs vacuum stability in type-I seesaw

In what follows, we will be mostly concerned with
the effects of sizable Yukawa couplings in the context of
high-scale missing partner seesaw and their impact on the
stability of the Higgs vacuum. Building upon the dis-
cussion of the previous section, we now turn to the region
above the scale μ ¼ MR. In this case one has the full
theory in which the running of Yukawa coupling Yν will
have an impact on the running of the Higgs quartic
coupling which we now call λ. This is done so as to
distinguish it from both the Standard Model case as well
as from the regime where the renormalization group
running is performed only with the effective Weinberg
operator. Within the type-I seesaw picture, below and
above the seesaw scale μ ¼ MR, there will be contribu-
tions on Higgs quartic coupling λ from the Figs. 3 and 4,
respectively. Hence, in order to describe the running of λ
we need to take into account the matching condition at the
scale μ ¼ MR.
For the reasons mentioned in Sec. III B here we focus on

the simplest missing partner type-I seesaw mechanism
containing a single right-handed neutrino. It provides a
clear picture of the impact of seesaw extensions on the
Higgs vacuum stability in the simplest possible setting.
As we discussed earlier, below the μ ¼ MR scale, the

theory is an effective Standard Model supplemented by
the dimension-five Weinberg operator. However, above the
μ ¼ MR scale the theory is UV-complete, so that all the new
couplings in the model like the neutrino Yukawa coupling
Yν will take part in the system of renormalization group
equations and will affect the running of the Standard Model
couplings, especially that of λ.
As a result, the stability of the electroweak vacuum will

set a potential limit on how large Yν can be. As the new
Yukawa coupling Yν runs only above the threshold scale
MR, this can be technically implemented by replacing
Yν → Yνθðμ −MRÞ in the right hand side of the RGEs of
the full theory, given in Appendix B. Here θðxÞ ¼ 1; x > 0
and θðxÞ ¼ 0; x < 0 are the step functions.
Integrating out the heavy neutrinos also introduces

threshold corrections to the Standard Model Higgs quartic
coupling λ [48] at the scale μ ¼ MR. The tree level Higgs
potential in the Standard Model is given by

FIG. 3. Effect of Weinberg’s effective operator on the Higgs
quartic interaction in the effective theory.

FIG. 4. One-loop correction to the Higgs quartic interaction in
the full seesaw theory.
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VðH†HÞ ¼ −μHH†H þ λðH†HÞ2: ð8Þ

This will get corrections from higher loop diagrams
of Standard Model particles and extra fermion from the
type-I seesaw. The one-loop effective potential V1ðhÞ has
the form

V1ðhÞ ¼ VSM
1 ðhÞ þ Vν

1ðhÞ; ð9Þ

where VSM
1 ðhÞ is the usual one loop Standard Model

potential. The one loop potential from the neutrino sector
is given by [48,49]

Vν
1ðhÞ¼−

1

32π2

�X
i

m4
νi log

m2
νi

μ2
þθðμ−MRÞM4

N log
M2

N

μ2

�
:

ð10Þ

The matching of the complete and effective theory at
threshold requires one to introduce a threshold contribution

below MR, ΔTHV ¼ − 1
32π2

ðM4
N logM2

N
M2

R
Þ, whose expansion

gives the threshold corrections to the μ2 and λ parameters
as ΔTHμ

2 ¼ 1
16π2

jYνj2M2
R, ΔTHλ ¼ − 5

32π2
jYνj4. Hence, we

need to consider this shift in λ at μ ¼ MR when solving the
RGEs as

λðMRÞ → λðMRÞ −
5

32π2
jYνj4: ð11Þ

Having set up our basic scheme, let us start by looking at
the impact of the right-handed neutrinos on the stability of
the Higgs vacuum. As we discussed at length in Sec. II, the
Standard Model RGEs running of the Higgs quartic scalar
coupling λSM are dominated by the top Yukawa, which is
the largest coupling present in the theory. As we saw, in this
case the Standard Model λSM coupling becomes negative
around the scale μ ∼ 1010 GeV. However, within the see-
saw completion, above the scale μ ¼ MR the neutrino
Yukawa couplings Yν of (2) can completely dominate the
RGEs behavior of λ as shown in Figs. 5 and 6. Figures 5
and 6 illustrate the effect of the new neutrino Yukawa
coupling Yν on various other couplings. For illustration we
have taken two representative values of Yukawa couplings
Yν ¼ 0.5 and 1. One sees how the problem of Higgs
vacuum stability becomes more acute in a type-I seesaw
completion of the Standard Model. This was expected,
since the addition of new fermions tends to destabilize the
Higgs vacuum. Notice that, in the regime below the onset of
the seesaw mechanism, μ ≤ MR, the running of the Higgs
quartic coupling λκ nearly coincides with λSM. This follows
due to the negligible effect of the Weinberg operator on the
running of the Higgs quartic coupling. The small negative
shift in the λ running at the scale μ ¼ MR results from the
matching condition, which becomes clearly visible for
larger Yukawa couplings, Yν ∼ 1. Notice that in Figs. 5
and 6 we have chosen a larger seesaw scale, with
correspondingly larger “Dirac” neutrino Yukawa coupling
values, in order to make the running coupling effects visible
in the plots.
ForMN ≤ 1010 GeV, the Yukawa coupling is Yν ≤ 10−3,

hence too small to alter the running of λ significantly. As a

FIG. 5. The continuous (red) curve gives the evolution of the
Higgs quartic self-coupling within the minimal (3,1) Type I
seesaw scheme. The gauge and Yukawa couplings g1, g2, g3, yt,
and Yν are also indicated by the dashed lines. The light neutrino
mass is fixed at mν ¼ 0.1 eV, corresponding to a heavy neutrino
mass MR of 7.5 × 1013 GeV. For comparison we show the
evolution of the Standard Model coupling λSM, seen as the red
dashed line. Finally, λκ denotes the Higgs quartic coupling in the
effective theory including neutrino mass through the Weinberg
operator, while λ is the corresponding quartic in the minimal
missing-partner Type I seesaw theory.

FIG. 6. Same as Fig. 5 but now with Yν ¼ 1 and MR ¼
3 × 1014. In contrast to Fig. 5, λ shows a marked deviation from
λSM as a result of the larger Yukawa value, Yν ¼ 1. As before, λSM
and λκ nearly coincide as the Weinberg operator has negligible
impact on RGEs of the quartic Higgs coupling.
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result, the vacuum instability problem will persist.
However, if regarded as an effective one, the theory remains
mathematically self-consistent. For larger MN, for example
MN close to the unification scale, the type-I seesaw relation
(5) implies that Yν should also be sizeable. Such a large
Yukawa coupling will have a destabilizing effect, worsen-
ing the metastability of the Standard Model vacuum.7 In
fact, now the vacuum can be completely unstable, making
the model inconsistent.
In conclusion, in seesaw scenarios the stability properties

of the electroweak vacuum will at best be those of the
Standard Model Higgs vacuum. In order to enhance Higgs
vacuum stability it is desirable to further extend or embed
the type-I seesaw [50]. A natural way to do this is to assume
spontaneous breaking of lepton number, as we do next.

V. THE MAJORON COMPLETION

We now consider the type-I seesaw extensions of the
Standard Model, in which lepton number is promoted to a
spontaneously broken symmetry within the SUð3Þc ⊗
SUð2ÞL ⊗ Uð1ÞY gauge framework [15,16]. In addition
to the right-handed neutrinos νR we add a complex scalar
singlet σ carrying two units of lepton number. The relevant
Lagrangian is given by

L ¼ −
X
a;i

Yai
ν l̄a

LH̃νRi
−
1

2

X
i;j

Yij
Rσν

c
Ri
νRj

þ H:c: ð12Þ

The resulting neutrino mass matrices in νL and νR basis is
given by

Mν ¼

0
B@

0 YνvHffiffi
2

p

YT
ν vHffiffi
2

p YRvσffiffi
2

p

1
CA: ð13Þ

The effective light neutrino mass obtained by perturbative
diagonalization of the above mass matrix is of the form

mν ≃ YνY−1
R YT

ν
v2Hffiffiffi
2

p
vσ

: ð14Þ

In the presence of the complex scalar singlet σ, the most
general Higgs potential that can drive electroweak and
lepton number symmetry breaking is given by [51]

Vðσ; HÞ ¼ −μ2HH†H − μ2σσ
†σ þ λHðH†HÞ2

þ λσðσ†σÞ2 þ λHσðH†HÞðσ†σÞ: ð15Þ

This potential is bounded from below if λσ , λH and
λHσ þ 2

ffiffiffiffiffiffiffi
λσλ

p
are all positive. In addition to the standard

SUð3Þc ⊗ SUð2ÞL ⊗ Uð1ÞY gauge invariance, in the
unbroken phase, the theory is also invariant under lepton
number. The above potential can develop a minimum for
nonzero vacuum expectation values of both H and σ if λH,
λσ and 4λHλσ − λ2Hσ are all positive. The vevs break both the
electroweak and lepton number symmetries, three of the
degrees of freedom are eaten by the massive Standard
Model gauge bosons, while the imaginary part of the σ
corresponds to the physical majoron J ¼ Imσ. The real
parts of H and σ will mix with each other to give two CP-
even mass eigenstates h1 and h2. The lighter of these is
identified with 125 GeV Higgs boson [1,2].

VI. VACUUM STABILITY IN TYPE-I SEESAW
WITH MAJORON

Here we take again the simplest majoron extension of the
type-I seesawmechanism based on the (3,1) missing partner
scheme considered above.8 We adopt the high-scale seesaw
limit vσ ≫ vH. In this limit, mass of the heavier CP-even
scalar boson and right neutrino are approximately given as
mh2 ≡M ≈

ffiffiffiffiffiffiffiffiffiffiffiffi
2λσvσ

p
and MN ≈ YRffiffi

2
p vσ. The light and heavy

Higgs sectors will be almost decoupled, though we can still
allow appreciable λHσ with very small mixing angle α, see
Appendix A. For simplicity, we consider nearly degenerate
M and MN , such that we have only one threshold scale
μ ¼ MN or M, below which the theory is an effective one.
Above that scale we have the full theory with all the new
couplings running.
When going from energies aboveM to energies belowM

we need to integrate out the massive scalar degree of
freedom at tree level as described in Ref. [53]. This leads to
a tree level threshold effect that arises from the matching
conditions at the energy scale μ ¼ M. We will now briefly
describe this procedure. We can write the scalar potential
for the case of type-I seesaw with majoron extensions as

V0 ¼ λH

�
H†H −

v2H
2

�
2

þ λσ

�
σ†σ −

v2σ
2

�
2

þ λHσ

�
H†H −

v2H
2

��
σ†σ −

v2σ
2

�
: ð16Þ

In our case, vσ ≫ vH, therefore M is much larger than
the Higgs massmh1 . As a result, below the scale μ ¼ M, we
can integrate out the field σ using the following equation of
motion (apart from derivative terms)

7For example, if MN ∼ 1014 GeV (which implies Yν ∼ 1 for
mν ∼ 0.1 eV), the vacuum lifetime is less than the age of the
universe τU, hence Standard Model metastability is worsened by
the effect of this large Yukawa coupling.

8Note that vacuum stability in a seesaw majoron model was
discussed in [52]. However, the majoron in that paper was
completely detached from the neutrino sector, lacking any solid
motivation. Moreover, the low scale choice for vσ was artificial,
requiring tiny Dirac Yukawa couplings. In our opinion, it is best
to present the discussion within a genuine low-scale neutrino
mass generation mechanism, as in Ref. [10].
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2λσ

�
σ†σ −

v2σ
2

�
þ λHσ

�
H†H −

v2H
2

�
¼ 0

σ†σ ¼ v2σ
2
−
λHσ

2λσ

�
H†H −

v2H
2

�
: ð17Þ

In order to obtain the effective potential below the scale
μ ¼ M, we use Eq. (17) in Eq. (16), leading to the effective
Higgs potential expressed as

Veff ¼ λ0H

�
H†H −

v2H
2

�
2

; ð18Þ

where λ0H is identified as

λ0H ≡ λκ ¼ λH −
λ2Hσ

4λσ
: ð19Þ

Notice that, since only the dimension-five Weinberg oper-
ator is running below the scale μ ¼ M, one has that the
running of λ0H is essentially the same as that of λκ in the
effective type-I seesaw. Moreover, at tree-level the numeri-
cal value of λ0HðMZÞ and λSMðMZÞ is the same, since in both
cases one must reproduce the 125 GeV Higgs mass.
Equation (19) suggests that the matching condition at the
scale μ ¼ M induces a shift in the Higgs quartic coupling,

δλ ¼ λ2Hσ
4λσ

. This corresponds to a largerHiggs quartic coupling
above the scaleM and improves the chances of keeping λH
positive all the way.
In Appendix C, we give the two-loop RGEs of the full

theory. Note that below the scale M the RGEs are the ones
with βλHσ

and βλσ removed and λH replaced by λ0H. AboveM

FIG. 7. One-loop correction to the Higgs quartic interaction in
type-I seesaw with majoron.

FIG. 8. Evolution of the scalar quartic couplings λH , λσ , and λHσ in type-I seesaw with majoron. We include in purple dashed color the
Dirac Yukawa coupling Yν, see Eqs. (12) and (15). For comparison with Standard Model we have also shown the RGE for λSM, red
dashed curve. Here λ0H is the effective Higgs quartic coupling below the mass threshold of the heavy particles and is essentially the same
as λκ in the effective type-I seesaw, see Eq. (19). Since, in this regime the RGE of λ0H differs from that of λSM only due to the tiny
contribution of the effective Weinberg operator, λ0H and λSM almost coincide with each other. See text for more detailed discussion of
various key features of the plots.
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one needs to include βλHσ
, βλσ and find λH using the full

RGEs with the boundary condition as in Eq. (19) at μ ¼ M.
As far as the newYukawa couplings are concerned, they can
be obtained by substituting Yν ¼ θðμ −MNÞYν and YR ¼
θðμ −MÞYR on the right side of the RGEs of the full theory.
Figure 7 shows that positive contribution to the RGEs of the
Higgs quartic coupling (left panel) is accompanied by the
destabilizing effect of RH neutrinos through the 1-loop
diagram (right panel).
Our results for the (3,1) type-I seesaw mechanism with

majoron are shown in Fig. 8, where we have taken
M ≈MN ≈ 109 GeV, such that the threshold effects start
contributing positively to λH before the Standard Model
instability scale ΛSM ≈ 1010 GeV. We have taken λσ ¼ 0.1
at the scale M. The renormalization group evolution in
Fig. 8 is shown for four Yukawa coupling values Yν ¼ 0.1,
0.3, 0.4, and 0.5. It shows that, indeed, the stability
properties can substantially improve due to the presence
of the new scalar. In fact, for appreciable Yukawa cou-
plings, one can have positive λH all the way up to Planck
scale. For the Yukawa couplings Yν ¼ 0.1, 0.3, 0.4, and
0.5, the required values of minimum λHσ are 0.08, 0.1, 0.12,
and 0.15, respectively.

VII. COMPARING STANDARD AND MISSING
PARTNER TYPE-I SEESAW

So far we have taken the missing partner seesaw
mechanism based on the (3,1) construction as our bench-
mark. This choice was made for the reasons given at the end
of Sec. III C. Such scheme can be made phenomenologi-
cally viable in the presence of radiative corrections asso-
ciated, for example, to a dark matter completion.9

Here we compare the stability properties of this simplest
benchmark with those of a missing partner seesaw based
on (3,2) construction and with those of the standard (3,3)
type-I seesaw mechanism. For completeness we also
compare with the Standard Model stability results.
As already mentioned, the problem of Higgs vacuum

stability in type-I seesaw extensions only gets worse with
the addition of extra right-handed neutrinos. This fact is
clearly illustrated in Fig. 9, where we compare the
evolution of the Higgs quartic self-coupling λ within the
Standard Model within the (3,n) seesaw completions, with
n ¼ 1, n ¼ 2, and n ¼ 3. Note that, for the general ð3; nÞ
seesaw scheme jYνj2 should be replaced as TrðY†

νYνÞ and
Eq. (11) should be replaced as

λðMRÞ → λðMRÞ −
5n2

32π2
TrðY†

νYνÞ2; ð20Þ

where n is the number of right handed neutrinos.
For simplicity, in Fig. 9, we have fixed the benchmark

value of Yaj
ν ¼ 0.5; a ¼ j ¼ 1, 2, 3 and taken the off-

diagonal terms to be zero for the (3,3) case. Note that such a
choice is unrealistic vis-a-vis neutrino oscillation data.
However, taking the Yukawa texture consistent with
neutrino oscillation data will not change our conclusions.
Therefore, for the sake of simplicity, we have taken this
simple choice.
In contrast, going to the (3,3) majoron type-I seesaw with

three right handed neutrinos, we find that the Higgs vacuum
can be still kept stable up to Planck scale for appreciable
Yukawa couplings. Of course, the presence of additional
fermions means that the maximum values of Yai

ν , for which
Higgs vacuum stability can be achieved up to Planck scale,
is somewhat reduced. In Fig. 10 we compare the Higgs

FIG. 10. Zoomed view of the evolution of the quartic Higgs
self-coupling λ in the Standard Model (red-dashed) and (3,1),
(3,2), and (3,3) majoron seesaw (blue dot-dashed, magenta-
dashed, and green solid, respectively). In the (3,1) case we have
taken Yν ¼ 0.3, while for ð3; n ¼ 2; 3Þ we took Yaj

ν ¼ 0.3; a ¼
j ¼ 1;…; n and Yaj

ν ¼ 0 for a ≠ j.

FIG. 9. Zoomed view of the evolution of the quartic Higgs self-
coupling λ in the Standard Model (red-dashed) and in the (3,1),
(3,2), and (3,3) seesaw extensions (blue dot-dashed, magenta-
dashed, and green solid, respectively). In the (3,1) case we have
taken Yν ¼ 0.5, while for ð3; n ¼ 2; 3Þ we took Yaj

ν ¼ 0.5; a ¼
j ¼ 1;…; n and Yaj

ν ¼ 0 for a ≠ j.

9An explicit scotogenic model of this type has been proposed
in [13].

CONSISTENCY OF THE DYNAMICAL HIGH-SCALE TYPE-I … PHYS. REV. D 101, 115030 (2020)

115030-9



vacuum stability of the (3,3) majoron seesaw case with its
(3,1) analogue as well as with Standard Model.
For Fig. 10 we have taken Yν ¼ 0.3 for the (3,1) case,

while for the (3,3) case we have taken Yai
ν ¼ 0.3;

a ¼ i ¼ 1, 2, 3, with all the off-diagonal entries taken to
zero. The remaining parameters are kept the same as
described previously for the (3,1) majoron seesaw case.
In short, phenomenologically realistic type-I seesaw
majoron models can have a stable vacuum all the way
up to Planck scale.

VIII. SUMMARY AND OUTLOOK

We have examined the consistency of electroweak
symmetry breaking within the context of the simplest
high-scale type-I seesaw mechanism. We have derived
the full two-loop RGEs for the relevant parameters, such
as the quartic Higgs self-coupling λ of the Standard Model
within the schemes of interest. These are compared, for
calibration, with the Standard Model results. The addition
of fermionic fields like “right-handed” neutrinos, has a
destabilizing effect on the Higgs boson vacuum. For the
simplest type-I seesaw with bare mass term for the right-
handed neutrinos, we found that for sizeable Yukawa
couplings the Higgs quartic self-coupling λ becomes
negative much before reaching the seesaw scale. For such
“large” Yukawas the type-I seesaw may be inconsistent
even as an effective theory. We have taken as our simplest
benchmark neutrino model the “incomplete” (3,1) seesaw
scheme with a single right-handed neutrino, as it has the
“best” stability properties within the class of high-scale
type-I seesaw schemes. We compared this case, in which
only one oscillation scale is generated at tree level, with the
“higher” (3,2) type-I seesaw, in which the other mass scale
also arises from the tree level seesaw mechanism. In both
“missing partner” type-I seesaw schemes, (3,1) and (3,2),
the neutrinoless double beta decay prediction given in
Fig. 2 holds. We also studied the stability of the electro-
weak vacuum for the canonical sequential (3,3) type-I
seesaw, in which all three neutrinos get tree-level mass. We
showed how the stability properties improve in the case of
spontaneous lepton number violation due to the presence of
a Nambu-Goldstone boson, the majoron.
To sum up, our results show how, in contrast to the type-I

seesaw with explicit breaking of a lepton number, the
majoron version can have stable electroweak vacuum all the
way up to Planck scale for reasonable Yukawa coupling
choices. Thus, the majoron completion of type-I seesaw
schemes can be considered as fully consistent theories.
Before concluding we should note the cosmological

advantages of the majoron completion. The first is that it
can also provide a dark matter candidate, namely the
majoron [17], providing an alternative to the ΛCDM
paradigm. The majoron is assumed to get mass from
gravitational effects that explicitly violate the global lepton
number [54]. Assuming that its mass lies in the keV range

one can show that it can provide a viable warm dark matter
candidate. It decays to neutrinos, with a tiny strength
proportional to their mass [16]. Hence, it is naturally
long-lived on a cosmological scale, as required, with
lifetime τJ larger than the age of the Universe
t0 ¼ 13.8 Gyr ≃ 4 × 1017 s. Such majoron dark matter
scenario has been shown to be consistent with cosmic
microwave background data for adequate choices of the
relevant parameters [18,20,55], the majoron decay lifetime
constraints ranging from τJ > 50–160 Gyr. Using N-body
simulations one can also show that majoron dark matter
provides a viable alternative to the ΛCDM scenario, with
predictions that can differ substantially on small scales
[21]. Finally we also mention that, in addition to dark
matter, the majoron picture may also provide new insights
to other cosmological challenges of the Standard Model,
such as inflation [56] and leptogenesis [57].
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APPENDIX A: HIGGS SECTOR IN
MAJORON MODEL

The scalar potential for the majoron type-I seesaw is
given by,

V ¼ −μ2HH†H − μ2σσ
†σ þ λHðH†HÞ2 þ λσðσ†σÞ2

þ λHσðH†HÞðσ†σÞ: ðA1Þ

The Standard Model gauge singlet scalar σ carries two units
of lepton number and its vev hσi ¼ vσffiffi

2
p breaks the lepton

number symmetry Uð1ÞL to a Z2 subgroup. After sym-
metry breaking one has, in the unitary gauge

H →
1ffiffiffi
2

p
�

0

vH þ h0

�
; σ →

vσ þ σ0ffiffiffi
2

p : ðA2Þ

The scalars h0 and σ0 will mix with each other, their mass
eigenvalues are given by,

m2
h1

¼ λHv2H þ λσv2σ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλHv2H − λσv2σÞ2 þ ðλHσvHvσÞ2

q
;

ðA3Þ

m2
h2

¼ λHv2H þ λσv2σ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλHv2H − λσv2σÞ2 þ ðλHσvHvσÞ2

q
:

ðA4Þ
The mass eigenstates h1, h2 are related to the fields h0; σ0

by the mixing matrix parameterized by the angle α and
given by
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�
h1
h2

�
¼

�
cos α − sin α

sin α cos α

��
h0

σ0

�
; ðA5Þ

where the mixing angle α is given by,

sin 2α ¼ λHσvHvσffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλHv2H − λσv2σÞ2 þ ðλHσvHvσÞ2

p ;

cos 2α ¼ λHv2H − λσv2σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλHv2H − λσv2σÞ2 þ ðλHσvHvσÞ2

p : ðA6Þ

One can see from (A6) that in the limit vσ ≫ vH the
mixing angle α → 0, irrespective of the value of the quartic
couplings.

APPENDIX B: RGEs: TYPE I SEESAW

We have used the package SARAH [58] to do the RGEs
analysis in our work. The β function of a given parameter
c is given by

dc
dt

≡ βc ¼
1

16π2
βð1Þc þ 1

ð16π2Þ2 β
ð2Þ
c ;

where βð1Þc are the one-loop RGEs corrections and βð2Þc are
the two-loop RGEs corrections.

1. Higgs quartic scalar self coupling

For the most general (3,n) seesaw the one-loop and two-
loop RGEs corrections to the Higgs quartic self-coupling
are given by:

βð1Þλ ¼ þ 27

200
g41 þ

9

20
g21g

2
2 þ

9

8
g42 −

9

5
g21λ − 9g22λþ 24λ2

þ 12λy2t þ 4λTrðYνY
†
νÞ − 6yt4 − 2TrðYνY

†
νYνY

†
νÞ;
ðB1Þ

βð2Þλ ¼ −
3411

2000
g61 −

1677

400
g41g

2
2 −

289

80
g21g

4
2 þ

305

16
g62 þ

1887

200
g41λþ

117

20
g21g

2
2λ −

73

8
g42λþ

108

5
g21λ

2

þ 108g22λ
2 − 312λ3 −

171

100
g41y

2
t þ

63

10
g21g

2
2y

2
t −

9

4
g42y

2
t þ

17

2
g21λy

2
t þ

45

2
g22λy

2
t þ 80g23λy

2
t − 144λ2y2t

−
9

100
g41TrðYνY

†
νÞ − 3

10
g21g

2
2TrðYνY

†
νÞ − 3

4
g42TrðYνY

†
νÞ þ 3

2
g21λTrðYνY

†
νÞ þ 15

2
g22λTrðYνY

†
νÞ − 48λ2TrðYνY

†
νÞ

−
8

5
g21y

4
t − 32g23y

4
t − 3λy4t − λTrðYνY

†
νYνY

†
νÞ þ 30y6t þ 10TrðYνY

†
νYνY

†
νYνY

†
νÞ: ðB2Þ

2. Yukawa Couplings

The one-loop and two-loop RGEs corrections to Yν in the (3,n) seesaw are given by

βð1ÞYν
¼ 3

2
YνY

†
νYν þ Yν

�
3y2t −

9

20
g21 −

9

4
g22 þ TrðYνY

†
νÞ
�
; ðB3Þ

βð2ÞYν
¼ 1

80
ð279g21YνY

†
νYν þ 675g22YνY

†
νYν − 960λYνY

†
νYν þ 120YνY

†
νYνY

†
νYν − 540YνY

†
νYνy2t

− 180YνY
†
νYνTrðYνY

†
νÞ þ 2Yνð21g41 − 54g21g

2
2 − 230g42 þ 240λ2 þ 85g21y

2
t þ 225g22y

2
t

þ 800g23y
2
t þ 15g21TrðYνY

†
νÞ þ 75g22TrðYνY

†
νÞ − 270y4t − 90TrðYνY

†
νYνY

†
νÞÞÞ: ðB4Þ

The RGEs corrections to the top-Yukawa coupling yt are given by

βð1Þyt ¼ 3

2
y3t þ yt

�
3y2t − 8g23 −

17

20
g21 −

9

4
g22 þ TrðYνY

†
νÞ
�
; ðB5Þ

βð2Þyt ¼ þ 1

80
ð120y5t þ y3t ð1280g23 − 180TrðYνY

†
νÞ þ 223g21 − 540y2t þ 675g22 − 960λÞÞ

þ yt

�
1187

600
g41 −

9

20
g21g

2
2 −

23

4
g42 þ

19

15
g21g

2
3 þ 9g22g

2
3 − 108g43 þ 6λ2 þ 17

8
g21y

2
t þ

45

8
g22y

2
t

þ 20g23y
2
t þ

3

8
g21TrðYνY

†
νÞ þ 15

8
g22TrðYνY

†
νÞ − 27

4
y4t −

9

4
TrðYνY

†
νYνY

†
νÞ
�
: ðB6Þ
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APPENDIX C: RGEs: TYPE I SEESAW WITH MAJORON

1. Quartic scalar couplings

The scalar sector of the majoron model is given in Eq. (15). It contains three scalar quartic couplings λH; λHσ; λσ whose
one-loop and two-loop RGEs are given by

βð1ÞλH
¼þ 27

200
g41þ

9

20
g21g

2
2þ

9

8
g42þλ2Hσ −

9

5
g21λH−9g22λHþ24λ2Hþ12λHy2t þ4λHTrðYνY

†
νÞ−6y4t −2TrðYνY

†
νYνY

†
νÞ; ðC1Þ

βð2ÞλH
¼ −

3411

2000
g61 −

1677

400
g41g

2
2 −

289

80
g21g

4
2 þ

305

16
g62 − 4λ3Hσ þ

1887

200
g41λH þ 117

20
g21g

2
2λH −

73

8
g42λH

− 10λ2HσλH þ 108

5
g21λ

2
H þ 108g22λ

2
H − 312λ3H − λ2HσTrðYRY�

RÞ −
171

100
g41y

2
t þ

63

10
g21g

2
2y

2
t

−
9

4
g42y

2
t þ

17

2
g21λHy

2
t þ

45

2
g22λHy

2
t þ 80g23λHy

2
t − 144λ2Hy

2
t −

9

100
g41TrðYνY

†
νÞ − 3

10
g21g

2
2TrðYνY

†
νÞ

−
3

4
g42TrðYνY

†
νÞ þ 3

2
g21λHTrðYνY

†
νÞ þ 15

2
g22λHTrðYνY

†
νÞ − 48λ2HTrðYνY

†
νÞ − 3λHTrðYRY

†
νYνY�

RÞ

−
8

5
g21y

4
t − 32g23y

4
t − 3λHy4t − λHTrðYνY

†
νYνY

†
νÞ þ 2TrðYRY

†
νYνY

†
νYνY�

RÞ þ 2TrðYRY
†
νYνY�

RY
T
νY�

νÞ
þ 30y6t þ 10TrðYνY

†
νYνY

†
νYνY

†
νÞ; ðC2Þ

βð1ÞλHσ
¼ −

9

10
g21λHσ −

9

2
g22λHσ þ 4λ2Hσ þ 8λHσλσ þ 12λHσλH þ λHσTrðYRY�

RÞ þ 2λHσTrðYνY
†
νÞ

þ 6λHσy2t − 4TrðYRY
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†
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4
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†
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2. Yukawa Couplings

The one-loop and two-loop RGEs of the Yukawa couplings Yν, yt and YR are given by

βð1ÞYν
¼ þ 1

2
ð3YνY

†
νYν þ YνY�

RYRÞ þ Yν

�
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