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Highlights: 

 Bacterial cellulose/graphene oxide (BC/GO) aerogels were prepared by solvent mixing 

 A small amount of DMSO addition during hydrogel formation allow pores orientation 

 BC/GO reduced with NH3 (gas-phase) show enhanced mechanical and thermal 

performance 

 The reduced BC/GO aerogels present notable values of electric conductivity 

 

 

 

 

Abstract 

We present a novel method for processing bacterial cellulose/graphene oxide (BC/GO) 

aerogels with multifunctional properties. The addition of a small amount of dimethyl sulfoxide 

(DMSO) to the aqueous dispersion of the nanomaterials during the gelification process 

affected the water freezing temperature of the system and thereby affecting the porous 

structure of the aerogel obtained after liophilization. The possibility to obtain small and 

elongated pore with axial orientation allowed a significant improvement of the structural 

stability of the aerogels. Moreover, the aerogels reduction by thermal treatment with 

ammonia gas induced crosslinking between the different nanophases, thus given an 

incremental factor for the mechanical performance of the aerogels under harsh conditions. 

The resulting aerogels also showed significant improvements in terms of thermal stability and 

electrical conductivity. These multifunctional BC/GO aerogels present high potential as 
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sustainable and ecological alternative materials for lightweight packaging, filters for 

atmosphere and water treatment, or energy applications. 

 

Keywords: bacterial cellulose; graphene oxide; reduction treatments; dimensional stability; 

thermal stability  

 

1. Introduction 

Cellulose is the most abundant biopolymer in earth, with an annual production of about 1.5 

trillion tons, mostly for paper and textile industries (Du, Zhang, Liu, & Deng, 2017). Indeed, 

humans have been exploring cellulose since ancient times due to its high availability (e.g. 

cotton, wood, hemp) and easy processability for daily routine materials (Klemm, Heublein, 

Fink, & Bohn, 2005). Recently, nanotechnology is having a major impact on the development 

of several new approaches for processing cellulose (bacterial or vegetal). Nanocellulose arises 

as one of the most sustainable nanomaterial due to its high availability, biodegradability and 

biocompatibility, with promising applications in areas of environmental remediation, medical 

care, cosmetics and beyond (Wang, Urbas, & Li, 2018). This nanomaterial has been intensely 

explored for the development of multifunctional bio-based nanomaterials with several 

different architectures, including highly porous aerogels and mechanically strong paper or 

films (Laromaine et al., 2018) (Lavoine & Bergstrom, 2017).  

Beside the potential applications of nanocellulose by itself, the incorporation of an additional 

nanophase can provide the appearance/improvement of outstanding properties due to the 

establishment of synergistic effects (Lavoine & Bergstrom, 2017)(Vilela et al., 2018). The 

application range of nanocellulose-based nanocomposites has thus been extended to the fields 

of antibacterial materials, sensors, catalysis and energy (Alonso-Díaz et al., 2019) (H. Wei, 

Rodriguez, Renneckar, & Vikesland, 2014).  

Recently, graphene oxide (GO) outstands as one of the most appealing nanomaterial for 

applications in environmental science, energy storage, and medical science (Z. Li, Wang, Li, 

Feng, & Feng, 2019). Moreover, it has been widely explored as a reinforcing agent for cellulose 

macrostructures for the development of multifunctional materials (Zhou et al., 2019). GO 

nanosheets are graphene derivatives decorated with several oxygenated functional groups 

(carboxylic, hydroxyl and epoxy) on their basal planes and edges, resulting in a hybrid carbon 

nanostructure comprising a mixture of sp2 and sp3 domains (Bianco et al., 2013) (Dreyer, Park, 

Bielawski, & Ruoff, 2010). Concerning the compatibility between cellulose and GO, it is 

reported that the highly oxygenated GO interacts with cellulose hydroxyl groups by the 

establishment of hydrogen bonds (Song et al., 2016) (Song et al., 2017) resulting in the 

formation of mechanical stable nanocomposites (X. Wei et al., 2019) with an effective 3D 

interconnected network (Jiang, Cui, Song, Shi, & Ding, 2018). Many studies give insights about 

the fabrication of cellulose/GO nanocomposite structures for several applications, e.g., to 

remove heavy metals, organic dyes, oils or pesticide residues from fluids and for adsorption of 

air pollutants (X. Wei et al., 2017) (Mi et al., 2018), (Yao et al., 2017a), (Xiong Chen, Zhou, 

Zhang, You, & Xu, 2016), (Yakout, El-Sokkary, Shreadah, & Abdel Hamid, 2017) (H. Luo et al., 

2018); in energy devices, such as supercapacitors (Wan, Jiao, & Li, 2017) (Zheng, Cai, Ma, & 

Gong, 2015), (Y. Zhang et al., 2017), in electro-magnetic interference shielding field (Wan & Li, 

2016), and for biomedical applications with particular relevance in the field of tissue 
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engineering (Ramani & Sastry, 2014) (Ege, Kamali, & Boccaccini, 2017) (Shao, Liu, Liu, Wang, & 

Zhang, 2015).  

The inherent interfacial compatibility of polar nanocellulose with GO provides a stimulating 

starting point to explore solution-based methodologies for the preparation of homogenous 

dispersions, in which the structural integrity of the biopolymer matrix is improved. Innovative 

ways should be developed to maximize the interactions between the matrix and filler, since 

this is the dominant and key factor in the enhancement of the specific surface area and 

mechanical performance. For example, the abundant oxygen containing groups in GO likely 

interact with the hydroxyl groups in cellulose through hydrogen bonds. This has been proven 

by Yao et al. (2017) by using ultrasonic treatment for composites preparation, in which the 

high energy supply of ultrasounds induced fast formation of hydrogen bonds. However, the 

ultrasound method is not the most adequate to prepare three-dimensional structures, since 

cavitation can easily break the delicate gel framework. The most popular fabrication methods 

of cellulose/GO in the form of aerogels/foams include freeze-casting, supercritical fluids 

(ethanol or carbon dioxide) and Pickering (Lavoine & Bergstrom, 2017), (Martoïa, Cochereau, 

Dumont, Orgéas, & Terrien, n.d.), (Borrás et al., 2018). Particularly, the directional freeze-

casting method could create hierarchical materials with aligned porous structures and high 

mechanical robustness (Mi et al., 2018) (Wicklein et al., 2014). Importantly, this synthetic 

methodology offers a high control over the pore size and density of nanocellulose-based 

nanocomposites. 

The establishment of chemical crosslinking between nanocellulose and GO is another 

important strategy explored for the improvement of the dimensional stability of 

nanocomposite foams. Wicklein et al. (Wicklein et al., 2014) developed ultralight and 

anisotropic porous foams of cellulose nanofibers with GO by studying the combination of a 

crosslinking agent (boric acid) addition and directional freeze-casting. The foams revealed 

excellent combustion resistance, thermal conductivity and high radial mechanical resistance 

(even after exposure to 85 % rh). Recently, Ge et al. (Ge et al., 2018) reported the 

development of an ultra-strong aerogel, based on carboxymethyl cellulose and GO crosslinked 

also resourcing/using boric acid. This composite material produced attained fairly good 

compressive strength and Young modulus of 349 and 1029 kPa, respectively compatible with 

different applications. Other examples reporting the covalent linkage between nanocellulose 

and GO for the formation of macrostructures with improved properties can be easily found in 

the literature (Y. Liu, Zhou, Zhu, et al., 2015). However, this strategy has some clear limitations, 

including restrained stability, complex surface chemistry, restrictions for geometrical 

confinement, the use of organic solvents and the need of purification of the final materials.  

A simple way to improve the dimensional and mechanical stability of lightweight and 

hydrophilic GO based materials, especially in wet environments, consists on GO reduction, 

thus removing oxygen containing functional groups and, consequently, decreasing its original 

hydrophilicity (Wen, Wu, Zhang, Li, & Shi, 2017)(Xiong et al., 2018). Besides, the tailoring of GO 

surface chemistry by reduction could help to increase its reactivity for amphiphilicity-driven 

assembly strategy. Recently, Xiong et al. (Xiong et al., 2018) reported an efficient approach for 

constructing hybrid materials based on a net of 1D cellulose nanofibers wrapped in GO 

nanosheets. Their findings showed that the interface-driven assembly between the two 

components is mainly governed by the level of reduction of GO nanosheets, where highly 

reduced GO are tightly surrounded by a dense conformal nanocellulose network (Xiong et al., 

2018). Therefore, the morphology and dimensional stability of 3D bacterial cellulose/ graphene 
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oxide (BC/GO) aerogels can be tailor-made by exploring different reduction strategies for 

improved interfacial hydrophobic-hydrophilic interactions between the individual 

nanoelements.  

This work can represent an important step forward to the development of novel 

multifunctional BC-based aerogels reinforced with GO for improved performance in different 

environments, envisaging lightweight structures for packaging, filters for atmosphere and 

water treatment, or energy applications. Taking these considerations into account, in this 

study, it is presented a simple, fast, and environmentally friendly preparation method of 

BC/GO aerogels with different ratios, e.g., 90/10, 75/25 and 50/50. Herein, special focus was 

directed towards the effect of the addition of a residual amount of dimethyl sulfoxide (DMSO) 

to the BC/GO aqueous suspension on the structure of the resulting aerogels. Moreover, the 

impact of two different types of reduction treatments applied to the aerogels, either with an 

aqueous solution of hydrazine (N2H4) or with ammonia (NH3) gas, in their chemical and 

structural features was studied.  

2. Experimental 

2.1. Synthesis of BC/GO aerogels 

Bacterial cellulose (BC) aqueous suspension nano-fibrils with 1 % of solids was used as the 

cellulose source in this work (kindly supplied by BCTECHNOLOGIES, Lda.). BC and GO 

(Graphenea® in aqueous suspension of 4 mg/mL) were thoroughly mixed for 1 h at room 

temperature (RT). Four BC/GO sample compositions were prepared (100, 90, 75 and 50 wt. % 

of BC with respect to the GO dry mass), which are designated hereafter by BC, BC/GO10, 

BC/GO25 and BC/GO50, respectively. The composites were prepared by directly mixing both 

suspensions under vigorous stirring with and without the addition of DMSO (1.0 µL and 2.5 µL 

DMSO:100 µL of aqueous suspension) during the mixture. The final blends were placed in a 

cylindrical mould, frozen at -20 ºC and freeze-dried in a LyoQuest-Telstar freeze dryer. The 

samples prepared with 1.0 µL of DMSO were reduced using two different approaches, which 

involve liquid and gas phase reduction of the material in presence of (N2H4) (Girão et al., 

2016) or NH3 (Sandoval et al., 2016). In the first case, the aerogels were immersed into a 

(N2H4) solution (1µL/mL) at RT for 24h. Then, the aerogels were thoroughly washed with 

distilled water and dried again by lyophilisation. The second approach consisted in annealing 

the sample at 220 ºC under a continuous flow of NH3 gas. The samples processed with NH3 

were then purified by vacuum treatment to remove the residual NH3 adsorbed on the aerogel. 

In both cases, treatments might lead to the N-functionalization/doping of the graphene 

derivative (Sandoval et al., 2016). A scheme of the employed methodology is shown in Figure 

1. 

2.2. Characterization 

The morphology of the samples was characterized using an ultra-high-resolution analytical 

scanning electron microscope HR-FESEM Hitachi SU-70 operating at an accelerating voltage of 

15 kV. The samples (cylinders of 12 mm in diameter and 10 mm in height) and densities (23 

kg/m3) were analysed in a micro-computed tomography (µCT) equipment from SkyScan 1275 

(Bruker µCT, Belgium) with penetrative X-rays of 20 kV and 175 µA, in a high resolution mode 

with a pixel size of 10 µm and 450 ms of exposure time. NRecon and CTVox softwares were 

used for 3D-reconstruction and CTan software was used in morphometric analysis. A 

representative reduced volume of interest (VOI) was defined in both samples with a volume of 

500 mm3 in 3D reconstruction and morphometric analysis (pore size distribution). The 
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chemical composition of the foams was analysed by Fourier Transform Infrared Spectroscopy - 

Attenuated Total Reflectance (FT-IR-ATR) (Bruker Tensor 27) spectrophotometer between 

4000 and 400 cm-1, with a resolution of 4 cm-1 and 64 scans. XPS spectra were acquired in an 

Ultra High Vacuum (UHV) system equipped with a hemispherical electron energy analyser 

(SPECS Phoibos 150), a delay-line detector and a monochromatic AlKα (1486.74 eV) X-ray 

source. High resolution spectra were recorded at normal emission take-off angle and with a 

pass-energy of 20 eV. The thermal stability of the composites aerogels was assessed by a 

thermogravimetric analyser (Netsch, Jupiter STA 449 F3) at a scanning rate of 10 ºC/min, in the 

temperature range of 30–800 ºC, under an oxidative atmosphere (synthetic air). For the 

swelling tests, the dry specimens were allowed to hydrate in excess distilled water at RT. The 

weights of the hydrated samples were measured at timed intervals, following removal of 

excess water by gentle blotting. The swelling ratio (Q) was determined using Equation 1, where 

Wi is the weight of the swollen material at time i and W0 is the weight of the dried foam. 

Q =
(Wi−W0)

W0
                          (Eq. 1) 

Contact angle measurements were carried out with OCA 20 from Dataphysics. The 

measurements were performed at RT using the sessile drop method and the Laplace-Young 

fitting. Uniaxial compression tests and dynamic cyclic compression tests were performed using 

Microservo Magnetic Tester equipment (MMT-101N; manufactured by Shimadzu Corporation, 

Japan) equipped with a 100 N load cell. The tests were carried out for 5 % deformation, at a 

frequency of 0.3 Hz for 1,000 cycles and quasi-static compression at a cross-head speed of 1.0 

mm/min. 

3. Results and discussion 

3.1. Effect of solvent composition on BC/GO aerogels 

The BC/GO aerogels were prepared by vigorous stirring of mixtures of the aqueous 

suspensions of both individual components. In this process, BC nanofibers were dispersed and 

self-assembled on the surface of GO (Y. Liu, Zhou, Tang, & Tang, 2015). The synthesis of a 

BC/GO aerogel is schematically illustrated in Figure 1. The SEM observation of the as-prepared 

BC/GO aerogels without DMSO addition confirms the porous structure and the homogenous 

mixture between the cellulose fibrils and the GO sheets, being difficult to distinguish both 

components (Figure 1). The chemical composition of both phases allows for the establishment 

of strong hydrophilic interactions (Yang et al., 2017) and hydrogen bonds (Fang, Zhou, Deng, 

Zheng, & Liu, 2016), thus endorsing strong entanglement that leads to the formation of 3D 

networks. Independently of the BC/GO ratio used, the aerogels exhibited an interconnected 

porous structure, with distribution of pore size width in the range from a few microns to 

hundreds of micrometers. 

As mentioned, this work first explores the possibility to induce structural features of BC/GO 

aerogels by the DMSO addition to aqueous BC/GO suspensions during the processing of the 

samples. Hence, the effect of adding a small amount of DMSO to the BC/GO aqueous mixture 

(1.0 and 2.5 µL DMSO / 100 µL aqueous mixture) was studied. Despite the very low volumetric 

fraction of DMSO added, the structural changes observed on the BC/GO aerogels were 

remarkably (Figure S1, SI). We observed that with DMSO concentration increase (0, 1.0 and 2.5 

µL), more compact structures were formed. Indeed, the samples prepared with 2.5 µL 

presented a collapsed porous structure closer to a film-like structure. Therefore, after these 

results our studies were focused with samples obtained without and with 1.0 µL of DMSO.  
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SEM micrographs of the BC/GO aerogels with 1.0 µL of DMSO showed that the final pore size 

and morphology of the later was significantly changed. In fact, in the absence of DMSO, the 

aerogel presents a more homogeneous porosity with round shaped pores (Figure 1). While, in 

the presence of DMSO, a preferential formation of small and elongated pores, with axial 

orientation was observed. Recently, the design of artificial interfaces has been reported by 

exploring the limits of GO gelation by microphase separation in water-miscible isopropanol. 

The low intercalation energy of water promotes the formation of an artificial liquid interface 

with high local concentration of GO, which after solvothermal treatment can be assembled 

into interconnected frameworks (C. Luo et al., 2019). DMSO is a polar solvent with a freezing 

point of 18 °C, (Ozmen, Dinu, & Okay, 2008) (Wong et al., 2012) having capacity to accept 

hydrogen bonds. DMSO/water mixtures exhibit a marked freezing point depression due to the 

formation of stable DMSO/water complexes. For instance, it has been reported that by adding 

DMSO to water at a volume ratio of 1:1, the freezing point of the resulting mixture is lowered 

to - 52 °C (Ozmen et al., 2008) (Mattiasson, Kumar, & Galeaev, 2009). 

To further investigate the different structural features of the BC/GO aerogels produced in the 

presence of DMSO, µCT measurements were conducted. The 3D reconstruction provides 

information related with the pore structure and interconnectivity as well as pore wall 

thickness. 3D reconstructions from µCT for BC/GO aerogels with DMSO are shown in Figure 2. 

The images suggest interconnected porous structures composed mostly by open-cell pores 

(highly open porosity with values above 90 %). The µCT reveals that the increase of the GO 

concentration in the aerogels promotes thicker pore walls formation, specially from 10 to 25 % 

of GO. Additionally, BC/GO50 showed lower pore size distribution. From Ctan software, the 

pore volume distribution was determined (Figure S2, SI). The µCT results are in accordance 

with SEM analysis, showing that the BC/GO50 has a narrower pore size distribution, with 75 % 

of the pore size below 200 µm, than BC/GO25 and BC/GO10, with around 60 %.  

When the suspension of BC/GO is frozen, the growth of ice crystals tends to accumulate the 

nanomaterials between their boundaries (Yao et al., 2017a). The increase of GO with respect 

to BC fibrils appears to allow its self-assembly on the ice crystal borders endorsing thicker pore 

walls resulting in the establishment of stable aerogel structure. This justifies the fragile nature 

of the BC/GO aerogel, which has been abandoned for further studies. 

3.2. Effect of reduction treatment on BC/GO aerogels 

In the previous section, it was reported the structural anisotropy of the BC/GO foams induced 

by simple solvent mixing during the processing of the samples. The visual inspection of the 

BC/GO aerogels clearly evidenced the effectiveness of the GO reduction process in both cases 

by presenting its characteristic final black colour (Figure 1). It is important to notice that the 

reduction treatments applied to the aerogels do not appear to significantly affect the porous 

structure. Although the treatment with NH3 gas seems to be more conservative than the 

solution treatment with N2H4, the collapse of the structure in the latter was not observed 

(Figure S3, SI).  

XPS analysis was conducted in order to assess the surface composition of the different 

aerogels. Table 1 gathers the elemental composition of each aerogel as well as the O/C and 

N/C ratios.  

Analysis of the non-reduced specimens shows a high at. % for the carbon (C1s) and oxygen 

(O1s), which corresponds to the main elements on the starting nanomaterials. After reduction 

via N2H4 solution or thermal treatment with NH3 gas, the at. % of the O1s was significantly 
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reduced. The calculation of the O/C ratio provides an indirect estimation of the extent of 

reduction. It was observed that the treatment with NH3 (O/C ~ 0.20) is much more effective on 

the reduction process of GO than processing with N2H4 (O/C ~ 0.32), having into consideration 

the reference value of non-treated samples (O/C ~ 0.42 – 0.50). It is important to mention that 

the reduction efficiency of the aerogels is mainly governed by the effect of the treatment(s) on 

GO nanophase. XPS studies performed with reduced BC aerogels with NH3 revealed a similar 

oxygen contents to that non-treated BC aerogels (37 at. %, Figure S4, SI). 

A significant N-loading of the BC/rGO25 aerogels occurred when the reduction process via NH3 

treatment was employed, with ca. 8.3 at. % of N. However, it was observed that the at. % of N 

determined in the BC/GO50 aerogels was only of 1.1 at. % of N. The higher N content in the 

aerogels with less GO percentage suggests that the N-loading occurred preferably in the 

cellulose backbone by the formation of amine, amide, imide and lactam groups (Cagniant et 

al., 2002; W. Luo et al., 2014; Pertile, Andrade, Alves, & Gama, 2010). Yet, control experiment 

of reductive thermal treatment of pristine BC foams, under the same experimental conditions, 

revealed a total concentration of N lower than 1 at. %. Hence, N must be introduced in the 

BC/GO aerogel mainly cross-linked at the interface of GO and BC nanostructures (as verified by 

XPS and FTIR), instead of modifying the GO graphitic structure or BC backbone separately 

(Figure 3). Importantly, the results revealed that the crosslinking process is much more 

efficient for the sample BC/rGO25NH3 due to a high intensity of the signal N1s at 400 eV, 

which corresponds to binding energies of N moieties (Figure 3 (a)). These results can be 

attributed to the high miscibility of the nanophases at the ratio 75/25, which facilitates 

gelification under equilibrium. The saturation with the nanophases is observed at the ratio 

50/50 with the appearance of small aggregates verified during gel formation. 

The XPS spectrum of N1s with peak fitting for BC/rGO25NH3 sample is shown in Figure S5, SI. 

The N1s peak can be deconvoluted into three main components, which are usually assigned to 

graphitic N (quaternary species, N+ 401.5 eV), pyrrolic N (400.03 eV) and pyridinic N (398.64 

eV) groups (Ma et al., 2016). However, both pyrrolic N and pyridinic N signals overlap with the 

binding energies corresponding to aliphatic moieties, namely amine and amide groups 

respectively (Sandoval et al., 2016). The presence of amide groups clearly indicates the 

possible establishment of chemical crosslinking between the nanophases of the aerogel 

materials. However, the formation of structural moieties due to the substitution of C atoms 

from the skeleton of both BC and GO cannot be discarded. The mechanism for the 

establishment of covalent bonds is not clear; however, it is anticipated here, that in case of 

amide groups, it can preferentially occur between the free carboxylic groups on GO, and free 

amine groups on BC generated during the thermal reduction (Figure S5, SI). 

FT-IR spectra analysis of BC/GO25 (Figure 3 (d)) reveal the presence of abundant hydrophilic 

oxygen containing groups, including C=O (1732 cm−1), C-O (1160 cm−1, 1110 cm−1, and 1060 

cm−1), and O-H (1625 cm−1 bending and 3350 cm−1 stretching). The peaks around 2850-2950 

cm−1 and 1310-1370 cm−1 are attributed to C–H vibrations (Shao et al., 2015) (C. Li, Wu, 

Liang, Chen, & Yu, 2017). After reduction with NH3 or N2H4, the peaks ascribed to the oxygen 

functionalities suffer a significant decrease of intensity (Tao et al., 2017) (Bang et al., 2018). 

Moreover, the reduction process also promotes the appearance of new bands originated by 

the incorporation of N-based functionalities into the aerogels. For instance, the peaks located 

at 1230 cm-1, 1558 cm-1 and 1655 cm-1 can be ascribed to C-N and C=C and C=N, respectively. 

The band corresponding to N–H vibrations around 3200 cm−1 is probably overlapped with the 

O–H bond vibrations. Importantly, it was observed the appearance of the new band at 1430 
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cm-1 for the sample thermally treated with NH3 (Saska et al., 2012), which can be assigned to 

the formation of amide groups resultant from the crosslinking between BC and GO which is in 

accordance with XPS analysis.  

3.3. Dimensional stability of the BC/GO foams 

Uniaxial compression tests were performed up to 80 % of deformation and stress–strain 

curves are shown in Figure 4 (a). For BC/GO25 and BC/rGO25NH3 a typical cellular behaviour 

under compression loading (Duarte, Vesenjak, Krstulović-Opara, & Ren, 2018) were obtained 

(as represented in Figure S6, SI). First, an initial well-defined elastic stage was observed (up to 

12 %), where stress changes linearly with strain, followed by plastic region in which, the 

materials undergo irreversible deformation (10-55 %). This region is designated by the Stress 

Plateau and is characterized by low stress variation with continuous deformation due to the 

skeleton structure collapse. Then, when the cell walls come in contact with each other, 

densification occurs (the stress increases abruptly). Through the compression, no cracks were 

observed, and the aerogels became dense and tough, with small or negligible lateral 

expansion. For BC/GO25 without DMSO specimen, the transition from linear to non-linear 

stress–strain behaviour is not clear, the initial region of linear elasticity merges itself with the 

long collapse zone described as the Plateau step, in which the variation of the stress is low. 

Some important parameters were determined from stress/strain curves, compressive strength 

(CS) at 40 % of deformation and Young’s modulus. The CS (at 40 % of strain) and YM 

(determined by the slope in the linear region) of BC/GO25 without DMSO, BC/GO25, 

BC/rGO25NH3 and BC/rGO25N2H4 are shown in Figure 4 (b). 

With the addition of DMSO, there is alignment in the axial porosity and therefore high YM and 

CS at 40 % of deformation were observed. The CS and YM of the BC/GO25 aerogel at 40 % 

strain of were 20 kPa and 80 kPa respectively, which were 120 and 200 % higher than that of 

the BC/GO25 aerogel without DMSO. The BC/rGO25NH3 specimen presents high stress values 

in the Plateau region (high load bearing capacity) and also high YM (300 % and 35 % higher 

than BC/GO25 without DMSO and BC/GO25, respectively). This improved performance is 

attributed to the crosslinking promoted by the reduction with NH3 gas, thereby enhancing the 

skeleton structure of aerogel. These results are in agreement with those obtained for cyclic 

tests (Figure 4 (c), with the BC/rGO25NH3 having the best mechanical performance at low 

deformations. The YM values obtained are quite lower to those obtained by Ge et al. for ultra-

strong aerogel based on carboxymethyl cellulose and GO crosslinking mediated by boric acid 

(YM values ranging from 228 KPa to 1 MPa for aerogels with 25 kg/m3 of density) (Ge et al., 

2018), although higher to those obtained by Zhang et al (X. Zhang, Liu, Duan, Jiang, & Zhang, 

2017) that prepared ultralight graphene/cellulose nanocrystal (CNC) hybrid aerogels and with 

values of YM (20-60 kPa).  

The mechanical integrity of BC/GO foams under harsh conditions is a crucial factor to explore 

their potential applications. For this reason, the mechanical behaviour under dynamic cyclic 

compression was studied in different environments (dry and wet conditions). A strain 

amplitude of 5 % was selected, which was verified to be in the linear regime. After the dry 

dynamic cyclic compression tests, the specimens did not present significant structural changes 

as they recover its original shape with no mechanical failure. Besides, after a first period of 

accommodation, the materials present a quasi-constant value of stress amplitude. Figure 4 (c) 

illustrates the stress amplitude for 1,000 cycles. In a dry environment, the stress amplitude of 

the aerogels increases on the following order: starting with the lower value for the aerogel 

resultant from the simple mixture BC/GO (2.6 kPa) to the aerogel formed with addition of 
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DMSO (3.8 kPa) and to the aerogel resultant from the thermal reduction with NH3 (5.4 kPa). It 

is important to notice the impressive improvement of stress amplitude of 110 % for aerogel 

BC/rGO25NH3. This value results from the structural synergistic effects from the synthetic 

process, in which the addition of DMSO to the gel mixture control the formation of axial 

porosity and extend crosslinking in the aerogel thermally treated with NH3. Besides, it is 

important to notice that for aerogels BC/rGO50NH3 a lower value of stress amplitude of 4.5 

kPa was observed, which can be explained by the lower extent of crosslinking (XPS), the 

presence of structural defects through the formation of agglomerates of the individual 

components, and the non-homogeneous mixture of the nanophases of the aerogel. Contrarily, 

in a wet environment, the non-reduced foams easy lose their shape during the compression 

tests, while the reduced forms undergo the loading/unloading process without significant 

dimensional changes. Overall, the mechanical response in dry conditions is superior to wet 

conditions due to the phenomena of diffusion, and structure collapse promoted by water 

swelling. Despite the adverse conditions, the aerogels BC/rGO25NH3 reveal a highest 

resilience by presenting a stress amplitude of 3.5 kPa, that correspond to an increase of 1300 

% compared to the BC/GO25 aerogel (Figure 4 (c) and Figure 4 (d). 

 

The dimensional water stability of the produced aerogels was further studied by assessing the 

hydrophobic/hydrophilic nature of the aerogels, swelling (Figure 5 (a)) and water contact angle 

determination (Figure 5 (b) and Figure 5 (c)). Figure 5 (a) shows the swelling kinetics of the 

foams under study, which clearly indicates a distinct behaviour between the as-prepared 

foams and the foams subjected to a reduction process. The non-reduced composites present 

an initially high swelling ratio (Q), followed by a gradual decrease in absorption with time 

indicating water loss, reaching the equilibrium stage after approximately 3 h. For the reduced 

composites, the opposite profile was observed, i.e., the swelling gradually increases until the 

equilibrium after 4 h, reaching lower Q values than the previous series. The same tendency 

was verified by Girão et al. (Girão et al., 2016) for collagen/graphene oxide scaffolds. For the 

non-reduced foams, the swelling behaviour is higher for the BC/GO50 than for the BC/GO25 

series, most probably due to a structure collapse that closes the pores. After reduction, the 

dimensional stability of the aerogels improves significantly. However, the reduction of the 

aerogels with NH3 at 220 ºC seems to be more effective comparatively to N2H4 reduction (as 

observed by XPS), due to the smaller swelling values. These results suggest that the thermal 

reduction with NH3 increases the density of hydrophobic domains at the interface of the 

aerogel that limits the water flow into the pores.  

The highly porous and hydrophilic surface of the BC/GO materials was revealed by water 

contact angle (WCA) measurements, where the water droplet was quickly absorbed on their 

surface, making not possible the measurement of associated WCA. This result is in agreement 

with the swelling tests where the BC/GO aerogels collapse fast when exposed to water 

solutions. Also, an immediate spread of the water droplet was observed after water drop 

contact with the sample reduced with N2H4 (Figure 5 (b)). These results can be understood by 

the contribution of two main factors: the oxygen-based functional groups still present at the 

surface of rGO, and the partial collapse of the interfacial porosity of the BC/GO aerogels during 

the N2H4 treatment in aqueous solution. The N2H4 reduction approach can be considered less 

effective to the aerogel, since the water flow partially degrades the structural porosity at the 

interface. Only the specimens reduced with NH3 present high hydrophobic character with 

WCA values that reach ca. 120 degrees (Figure 5 (c)). These results indicate a higher 
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effectiveness of the reduction treatment with NH3 vs. N2H4 for the final dimensional water 

stability of the BC/GO aerogels, by promoting an extended reduction of GO on the aerogel and 

simultaneously preserving the structural porosity. 

 

3.4. Thermal stability 

TGA measurements were carried out to investigate the thermal stability of the several BC/GO 

specimens prepared in this study. The TG curves in oxidative atmosphere of individual 

components (BC and GO) and BC/GO25 aerogel series are shown in Figure 6 (a). 

Thermogravimetric curves indicate that at ca. 400 ºC, the BC/GO25 had a weight loss of 50 wt. 

% while BC lost up to 90 % of its initial weight. The enhanced thermal stability of the BC/GO25 

aerogel comparatively to pure BC may be attributed to the interaction between BC and GO, 

forming an aerogel network cross-linked and restricting the movement of the polymer chains 

at the interface of the BC and GO, and also to the formation of a char layer that creates an 

indirect pathway for volatiles. The weight loss observed up to ca. 120 ºC corresponds to the 

evaporation of absorbed water. BC, GO and BC/GO25 nanocomposites present two weight loss 

stages. GO has two severe weightlessness stages: the weight loss, between 150-200 °C, mainly 

assigned to the loss of oxygen functional groups of GO and between 450 ºC and 520 ºC 

attributed to the reaction of the more stable carbonaceous residue in presence of the oxidizing 

atmosphere (calcination of the conjugated carbon skeleton of GO). In the case of BC, the first 

stage located between 260 ºC and 310 ºC is assigned to the depolymerisation of BC, while the 

subsequent second stage situated between 310 ºC and 435 ºC for BC/GO25 corresponds to the 

generation of CO, CO2 and H2O (Ren et al., 2018) (Gan, Zakaria, Chia, & Kaco, 2018) (Yao et al., 

2017b) (Xiaofang Chen et al., 2019). The reduced forms of BC/GO aerogels present a later 

degradation. The main decomposition onset is slightly shifted to higher temperatures 

compared to the non-reduced forms, suggesting the positive effect of the reduction process on 

the thermal stability. It is believed that this improvement is due to the decrease in the amount 

of oxygenated functional groups, which improved the ability of aerogels to tolerate high 

temperatures in the oxidative atmosphere (Cheng et al., 2017). The temperature of 

combustion can be also correlated to the presence of N-containing fractions within the aerogel 

network that, as previously reported, confer enhanced thermal stability against oxidation 

when these species are introduced within a graphitic network (Sandoval et al., 2014). The TGA 

results showed that the reduction of aerogels with N2H4 and NH3 was not fully completed, 

because there is a slight weight loss that occurred over the temperature range of 160−260 °C. 

This thermal event can be ascribed, not only to the loss of the remaining oxygen functional 

groups, but also to the elimination of N-containing aliphatic moieties, which presence has been 

confirmed by XPS and that occurs simultaneously during the reduction step. 

All the specimens were tested to evaluate the burning behaviour when a flame of an ethanol 

lamp is applied to the samples for three seconds. For BC/GO25 aerogels, as well as their 

reduced forms, the flame extinguished instantaneously, and the specimens maintained their 

shape during burning without dripping or smoke release (Figure 6 (b)). These results suggest 

that these porous materials have flame-retardant properties. A control test was performed to 

a BC aerogel and, in this case, the specimen burned completely (Figure 6 (c)). One possible 

reason for the enhanced thermal stability of BC could be the layered structure of the GO, 

which tends to form a char layer at the surface, which avoids or makes difficult the release of 

the volatile degradation products, delaying the degradation of the whole aerogel by offering 
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indirect pathways for the volatiles release. Also, the flame temperature of an alcohol burner 

was lower than the combustion temperature of aerogels constituents (Cheng et al., 2017).  

 

3.5. Electrical properties  

The electric conductivity was determined from measuring the resistance at different 

frequencies (Table 2). A little compression was made to ensure good contact between the rGO 

layers and thus a densely network with good electron transportation was obtained. The BC/GO 

composites have electrical insulation abilities, 5.9 × 10-07 and 1.8 × 10-06 S/m for BC/GO25 

and BC/GO50, respectively, due to the presence of a large number of oxygen-containing 

functional groups on the surface of GO, and also in BC, which delays the electrons transport. 

The reduction with NH3 at 220 ºC is more favourable to produce high BC/rGO conductors 

when compared to the ones reduced with N2H4 (Table 2). After the reduction treatments, a 

large fraction of the oxygen-containing groups were removed and π- π bonds were restored on 

the surface of rGO, which facilitates the electrons transportation (Beeran P. T. et al., 2016; F. 

Liu, Wang, & Tang, 2018; Pottathara et al., 2019; Zhan, Xiong, Yang, Shi, & Yang, 2019). As 

already mentioned, the increase of the electric conductivity for the specimens reduced with 

NH3 is substantially higher, with increments of 12×106 for BC/rGO25NH3 against materials 

undergoing reduction in presence of N2H4 (Table 2). Importantly, it was observed that the 

significant increase of GO concentration into the BC/GO aerogel composition from 25 % to 50 

% does not correspond to a significant improvement of the values of conductivity, after the 

NH3 treatment, being these of 7.2x10-1 S m-1 and 8.7x10-1 S m-1, respectively. We can thus 

infer that there must be a GO concentration threshold that limits the increase of the 

conductivity of BC/GO aerogels.  

From the literature, this is one of the highest values of conductivity ever reported for aerogel 

architectures composed by a mixture of BC/GO. For example, cellulose nanofibrills films with 3 

wt. % UV-reduced GO showed a substantially lower electric conductivity of 6.7 × 10−4 S m−1 

(Pottathara et al., 2019). Higher values of electric conductivity for similar 3D materials were 

reported in the literature just in the cases that these were subjected to high temperature 

treatments (above 500 ºC) and then compressed (Perez-Madrigal, Edo, & Aleman, 2016). 

These severe treatment conditions promote the thermal decomposition of the 

nanocomponents promoting graphitization, thus compromising their mechanical integrity.  

 

 

4. Conclusions 

In summary, this work reports a new methodology for the development of multifunctional 

BC/GO aerogel materials with improved properties. The internal structural morphology of 

BC/GO aerogels can be easily tuned by the addition of DMSO to aqueous suspensions during 

the gelification process. The addition of DMSO promotes the formation of small and elongated 

pores with axial arrangement. Thermal treatment of BC/GO samples with NH3 revealed to be a 

less invasive and more efficient treatment for reduction than the use of conventional N2H4. 

Besides, NH3 thermal treatment promoted the establishment of crosslinking between both 

nanophases, which enhanced the structural stability. The obtained aerogels showed improved 
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dimensional stability under dry and wet environments, upgraded thermal resistance to 

oxidation and high electric conductivity (7.2 ×10-1 (S m-1)). 
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Figure 1. Schematic diagram of aerogels preparation and optical appearance. Comparison of 

the SEM images obtained at the cross-section of the different BC/GO aerogels, prepared with 

and without DMSO. 
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Figure 2. X-ray µtomography images of the BC/GO aerogels: 3D renderings of µCT images 

(BC/GO10 (a), BC/GO25 (c) and BC/GO50 (e) and segmented 2D slices (BC/GO10 (b), BC/GO25 

(d) and BC/GO50 (f)). 
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Figure 3. XPS spectra BC/GO25 and its reduced forms, XPS general survey scan (a) and high 

resolution C1s and N1s XPS spectra (b, c). FT-IR spectra (d). 
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Figure 4. a) Stress-Strain curves for 40 % of strain, b) Young Modulus and compressive strength 

(CS) at 40 % of strain, c) Stress amplitude after 1,000 cycles of compression and d) Real image 

of the scaffolds under dynamic compression test in wet environment.  
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Figure 5. (a) Swelling ratio of the aerogels immersed in water as a function of time and water 

contact angles for aerogels reduced with (b) N2H4 and (c) NH3.  

 

 

 

 

 

 

 

 

 

Figure 6. (a) Thermogravimetric analysis of BC, GO and BC/GO25 aerogels. Flame behaviour of 

(b) BC/rGO25NH3 and (c) BC specimens. Figure (b) the frames captured at t0 and t3s show the 

dimensional stability of the aerogel after flame exposure and frame t6s exhibit the ability to be 

handled without suffer collapse. Figure (c) the frame sequence (t0s, t3s and t6s) showed the 

continuous annealing degradation of the sample.  
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Table 1. C, O and N content of BC and BC/GO aerogels determined by XPS. 

Sample C (at. %) O (at. %) N (at. %) Ratio O/C Ratio N/C 

BC/GO25 70.5 29.5 - 0.42 - 

BC/rGO25N2H4 
 

74.9 24.2 0.9 0.32 0.01 

BC/rGO25NH3 77.8 13.9 8.3 0.18 0.11 

BC/GO50 66.7 33.1 - 0.50 - 

BC/rGO50N2H4 74.8 23.9 1.3 0,32 0.02 

BC/rGO50NH3 81.7 17.2 1.1 0.21 0.01 

 

 

 

 

 

 

 

Table 2. Electric conductivities for the different BC/GO aerogels. 

 
Sample 

Electric Conductivity (S/m) 

BC/GO25 5.9 × 10-7 

BC/rGO25N2H4 1.7 × 10-3 

BC/rGO25NH3 7.2 × 10-1 

BC/rGO50NH3 8.7 × 10-1 
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