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Abstract 
 
Plant vascular development is a complex process culminating in the generation 

of xylem and phloem, the plant transporting conduits. Xylem and phloem arise 

from specialized stem cells collectively termed (pro)cambium. Once developed, 

xylem transports mainly water and mineral nutrients and phloem transports 

photo-assimilates and signaling molecules. In the past few years, major 

advances have been made to characterize the molecular, genetic and 

physiological aspects that govern vascular development. However, less is known 

about how the environment re-shapes the process, which molecular mechanisms 

link environmental inputs with developmental outputs, which gene regulatory 

networks facilitated the genetic adaptation of vascular development to 

environmental niches, or how the first vascular cells appeared as an evolutionary 

innovation. In this review, we (i) summarize the current knowledge of the 

mechanisms involved in vascular development, focusing on the model species 

Arabidopsis thaliana, (ii) describe the anatomical effect of specific environmental 

factors on the process, (iii) speculate about the main entry points through which 

the molecular mechanisms controlling of the process might be altered by specific 

environmental factors, and (iv) discuss future research which could identify the 

genetic factors underlying phenotypic plasticity of vascular development.     

 

 
  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 3 

Introduction  

Land plants can be divided into two main groups: those that possess a vascular 

system (vascular plants) and those that do not (non-vascular plants). This division 

demonstrates that possessing a vascular system is not an absolute requirement 

for plants to survive on land. However, it is a clear advantage. Indeed, in 

evolutionary terms, the appearance of the vascular system was key in the 

massive colonization of land by plants, and represented an enormous impact not 

only on the biological, but also on the ecological and geological history of our 

planet.  

The first land plants appeared 450 million years ago, evolving from an 

ancestral charophycean alga [1]. Two main characteristics of such plants were (i) 

the rudimentary cell-to-cell transporting system that forced them to live, 

exclusively, in moist zones where water was easily accessible, and (ii) their small 

size. As plants in moist habitats increased in population, fierce competition for 

water and light began. Two innovations coincided to influence the success in this 

competition: lignification and the emergence of new interconnected cell types that 

form the vascular tissue [2]. Lignin, a polymer deposited in cell walls, provides 

strong rigidity. Lignified cells can resist high water pressure and mechanical 

stress. As a consequence, the ground was laid to implement efficient long-

distance communication systems, and to support the weight of larger body sizes 

without losing stability. With respect to the vascular system, three main tissues 

are produced in extant plants: the xylem (wood) transporting water and solutes 

from the soil upwards, the phloem (bark) transporting nutrients and signaling 

molecules throughout the plant body in multiple directions, and the (pro)cambium, 

a pool of stem cells programmed to generate xylem and phloem. Xylem and 

phloem are formed by several cell types, each fulfilling specific functions within 

each of the tissues. The spatial organization and relative abundance of xylem, 

phloem and cambium is characteristic of each species and of each organ within 

a given species. The same happens at the tissue-type level: the arrangement and 

relative abundance of the different cell types that compose the xylem or the 

phloem are also characteristic of each species and of each organ within a given 

species [3]. Due to adaptation, ecotypes within a single species usually display 

fine-tuned versions of such characteristics. Furthermore, developmental plasticity 

(the capacity to convert environmental inputs to developmental outputs) also 
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adjusts the vascular developmental program of single individuals to the specific 

environmental conditions encountered during the life cycle [4].  

In this review, we first summarize current knowledge about the genetic and 

molecular mechanisms controlling plant vascular development and phenotypic 

plasticity and then discuss potential environmental regulation of the process. We 

argue that understanding the molecular mechanisms by which the environment 

regulates vascular development may shed light on the adaptive and evolutionary 

history of the plant vascular system. In addition, we suggest that, by discerning 

how the environment regulates the molecular control of plant vascular 

development, we can better understand its plasticity and design biotechnology 

approaches to adapt vasculature-derived biomass production to climate change.  

 

 

Vasculature develops throughout the plant life cycle 

From a developmental point of view, it is convenient to distinguish between 

primary and secondary vascular tissues [5]. The primary vascular tissues, found 

in all vascular plants, are initially specified when the body plan is established –

during embryogenesis–, and maintained through the activity of the apical 

meristems during post-embryonic development [5] (Figure 1). Secondary 

vascular tissues are found in most plant species, although some lineages (i.e, 

monocots) lost the capacity to develop these tissues during evolution [6].  

 

Establishment and development of primary vascular tissues during 

embryogenesis 

The first pro-vascular cells are established during the globular stage of embryo 

development [7] (Figure 2a). After the embryonic regions giving rise to the aerial 

or underground parts of the plant are formed, four inner cells within the lower tier 

of the embryo divide to create a central zone of elongated cells [8]. Eventually, 

these cells acquire provascular identity in a process that involves a local 

accumulation of auxin to induce the expression of a central regulator of vascular 

identity specification: the Auxin Response Factor MONOPTEROS (MP/ARF5) [7-

13] (Figure 2b). The mp mutant is defective in the early divisions of provascular 

cells and in body axis patterning [10], indicating how vascular specification is 

intimately connected to embryo development. Strikingly, MP induces the 
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expression of the polar auxin transporter PIN1 [14], likely resulting in enhanced 

local auxin signaling through a positive feedback loop [13]. The MP inhibitor 

BODENLOS (BDL) limits MP activity [14, 15]. BDL belongs to the Aux/IAA family 

of transcriptional repressors (AUX/IAA12) which, upon auxin accumulation, are 

degraded by the 26-S proteasome [15-17]. Therefore, auxin-induced MP 

activation occurs via BDL degradation, and the phenotype of the bdl gain-of-

function mutant mimics that of mp [15]. Thus, to better understand the 

mechanisms controlling the MP-mediated regulation of vascular specification or 

the root-pole formation (a process also controlled by MP), MP targets (TARGETS 

OF MONOPTEROS, TMOs) were identified [18]. In the study, an elegant 

transcriptomic assay used bdl mutants and an inducible version of bdl [18]. This 

approach identified several direct targets of MONOPTEROS (TMOs) involved 

either in the regulation of root or vascular development. Among them, TMO3 

(previously termed CRF2 [19]), TMO5 and TMO6 were found to be MP-controlled 

regulators of vascular development. TMO5 is considered a crucial regulator in 

the process [18]. Through heterodimerization with the atypical bHLH transcription 

factor LONESOME HIGHWAY (LHW), TMO5 induces LOG3 and LOG4 

expression [20], encoding cytokinin (CK) biosynthesis enzymes [21]. 

Subsequently, CK induces periclinal cell divisions within (pro)cambial cells 

(Figure 2b). TMO6 encodes a DOF transcription factor (DOF5.3) that is 

expressed not only in the provascular embryonic cells [18] but also in the 

protophloem sieve element in the root [22]. Indeed, TMO6 belongs to the early 

phloem markers PHLOEM EARLY DOF (PEAR) family [22]. These PEAR factors 

are of high relevance to prime cambial growth [22]. TMO3 is thought to regulate 

CK signaling in the embryo [7, 18]. However, its specific role during vascular 

development is currently less clear. The involvement of TMO5 and TMO3 in CK 

biosynthesis and signaling, respectively, is not the only proof of direct CK 

involvement in embryo provascular tissue establishment and patterning. Indeed, 

the strong expression of the WOODENLEG (WOL) CK receptor within the 

embryonic provascular cells also supports this [23]. In brief, the first vascular 

initials are specified during the globular stage of embryogenesis in a process that 

involves auxin and CK signaling together with a number of already identified 

genetic regulators (Figure 2b).    
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After specification, the vascular initials proliferate concomitantly with 

embryonic development. In some species, xylem and phloem can be 

anatomically identified rather easily at late embryonic stages, but in many others, 

this is not possible until after germination [5, 8, 11]. In Arabidopsis, embryonic 

cells displaying overlapping expression of TMO5 and LHW are xylem initials [20]. 

Given that TMO6 is a PEAR factor, it might be the case that embryonic cells 

expressing TMO6 are phloem initials, but no experimental data is available in this 

respect. 

  

Postembryonic vascular patterning: roots as model system 

After germination, the primary vasculature that was pre-established during 

embryogenesis starts maturing, and new vascular tissue forms and develops as 

the plant grows. Depending on the species, the primary vasculature can organize 

into different patterns [5]. For simplicity sake, here we will focus on that of the 

model species Arabidopsis thaliana. 

A general trend in all vascular species is that the arrangement of primary 

vasculature differs between the aerial and the underground organs. In 

Arabidopsis, the root primary vasculature is structured following a diarch 

bisymmetric organization [24, 25] in which the xylem axis occupies the center 

(Figures 1c; 3a). A pole of pholem cells (typically composed of 4 cells) is found 

in each extreme of the perpendicular axis to the xylem, and procambial cells are 

located between the phloem poles and the xylem axis. The entire vasculature is 

surrounded by a layer of pericycle cells [26] (Figure 3a). At the seedling stage, 

this organizational pattern expands longitudinally throughout the root and the 

hypocotyl, connecting the shoot apical meristem (SAM) and the root apical 

meristem (RAM).  

As is the case during embryogenesis, the prevailing models propose that 

patterning is initially established by the interplay between high CK and high auxin 

levels, which define distinct domains in the root procambium [27].    

 

Xylem specification  

Metaxylem and protoxylem can be identified by their anatomical position in the 

root, the metaxylem being composed of three central cells and the protoxylem of 

the two cells located at each of the poles of the xylem axis [26]. The two xylematic 
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cell types are established through a complex mechanism involving the 

transcription factors SHORTROOT (SHR) and SCARECROW (SCR) as well as 

the miRNA165/166, which, in turn, targets the HD-ZIP III transcription factors [28] 

(Figure 3b). In this model, SHR is expressed in the procambium and SHR moves 

to the endodermis. Once there, SHR is recruited to the nucleus, where it interacts 

with SCR. Such interaction leads to the biosynthesis of miRNA165/166 [28], 

which also needs basic levels of ABA [29]. The miRNA diffuses to the 

neighbouring cells, creating a miRNA gradient that negatively correlates with HD-

ZIP III transcript accumulation and metaxylem identity acquisition. Movement of 

miRNA165/166 to protoxylem cells causes HD-ZIP III expression to remain low, 

preventing protoxylem cells from differentiating into metaxylem.  

Protoxylem specification is dependent on the expression of the CK signaling 

inhibitor ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 6 (AHP6) 

[23, 30, 31]. AHP6 expression is induced by the LHW-TMO5 heterodimer [32], 

meaning that it is, at least indirectly, auxin inducible (Figure 3b). Remarkably, 

procambial cells adjacent to the xylem facilitate polar auxin transport towards the 

xylem cells by relocating the PIN polar auxin transporters at the plasma 

membrane that faces the xylem in a CK-dependent manner (Figure 3b) [33]. 

Accordingly, in wol mutants the PIN proteins are mislocalized and protoxylem 

development is abnormal in pin1pin3 [34]. CK is also locally synthesized in the 

xylem as a result of TMO5-LHW-dependent induction of LOG3 and LOG4 

expression, but the auxin-induced expression of AHP6 counteracts CK signaling 

[35]. In brief, the mutual negative feedback loop of CK and auxin signaling 

establishes and maintains the bisymmetric patterning of root primary vasculature.  

Although CK signaling is diminished by AHP6 in xylem developing cells, LHW-

TMO5-mediated local CK synthesis is still instrumental to promote the periclinal 

cell divisions that ensure the continuous supply of new xylem developing cells 

during postembryonic growth [21]. However, a safety mechanism prevents 

overproliferation by restricting LHW-TMO5 activity via an incoherent feed-forward 

loop that operates as follows: first, auxin and the HD-ZIP III factor ATHB8 

promote the expression of ACAULIS5 (ACL5, encoding a thermospermine 

synthase) [36-38]; then, the polyamine thermospermine promotes the translation 

of the atypical bHLH factors in the SACL family [21, 39, 40], which compete with 

TMO5 for heterodimerization with LHW, thereby preventing LOG4 induction, 
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reducing CK production, and controlling cellular proliferation. Accordingly, acl5 

mutants – in which the LHW dimerization with TMO5 is greatly enhanced- display 

cellular overproliferation, resulting in aberrant xylem development [41]. This effect 

is suppressed by overexpression of SACL genes or by reduction in LHW activity 

[21]. Ectopic expression of ACL5 in Populus (POPACAULIS5) leads to repression 

of auxin biosynthesis, although the Populus HD-ZIP III PtHB8 induces 

POPACAULIS5 expression, suggesting a negative feedback loop between 

thermospermine biosynthesis and auxin signalling. It is worth mentioning that, 

even though the only thermospermine  function revealed to date is in xylem 

development, ACL5 and thermospermine are also found in all non-vascular 

plants lineages [42]. Thermospermine function in such species remains to be 

elucidated 

 

Phloem specification  

The MYB transcription factor ALTERED PHLOEM DEVELOPMENT (APL) was 

the first phloem developmental regulator to be identified [43]. APL acts dually by 

inducing phloem identity while repressing xylem identity acquirement. 

Consequently, apl mutants feature xylem elements where phloem should be 

present. This leads to extremely reduced transport to the root apical meristem 

and, as a result, a short root phenotype and eventual seedling lethality [43]. 

However, phloem formation is normal in apl embryos [44], indicating that APL 

activity is most likely required for the later stages of phloem differentiation. 

Indeed, the NAC45 and NAC86 transcription factors were shown to act 

downstream from APL and regulate the activity of particular exonucleases 

(termed NAC-DEPENDENT EXONUCLEASES, NENs) which mediate 

enucleation during the last steps of sieve elementformation [45]. Approaches 

through the VISUAL in-vitro system, by which mesophyll cells can artificially 

transdifferentiate into vascular cells (via “intermediate” procambial status), 

indicated that NAC20 act as a negative upstream regulator of APL [46]. Recent 

studies identified the PHLOEM EARLY DOF (PEAR) DOF transcription factors 

as protophloem sieve elements markers [22]. Functional analyses revealed that 

PEAR proteins integrate positional information to prime cambial growth [22].  

BREVISRADIX (BRX) and OCTOPUS (OPS) are two proteins required for 

protophloem specification [47-49]. The ops and brx mutants display the same 
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phenotype, both macroscopically (short root) and microscopically (discontinuities 

within the phloem strand). BRX, which was found through a natural variation 

approach [48], is auxin inducible. Protophloem differentiation depends on auxin 

concentration and, recently, it has been reported that BRX interacts with 

PROTEIN KINASE ASSOCIATED TO BREVISRADIX (PAX) to regulate auxin 

concentration during protophloem differentiation [50]. Both PAX and BRX locate 

at the basal zone of cells, where PIN auxin efflux carriers also locate. PAX 

activates PIN-mediated auxin efflux while BRX dampens it and, at the same time, 

PAX mediates BRX efficient plasma membrane localization, which is also 

negatively regulated by auxin. BRX inactivates PAX through direct interaction 

[50]. High auxin intracellular concentration induces PAX activity, leading to 

enhanced PIN-mediated auxin efflux, which depletes the cell of auxin, permitting 

BRX to associate with the plasma membrane and inactivate PAX, blocking PIN 

activity and, thus, favoring intracellular auxin accumulation [50].  Therefore, BRX 

and PAX are members of a molecular rheostat that modulates auxin flux during 

protophloem differentiation [50]. Protophloem specification is negatively 

regulated by a signaling pathway mediated by the leucine-rich repeat receptor 

like-kinase (LRR-RLK) BARELY ANY MERISTEM 3 (BAM3), whose activity 

depends on the binding to its ligand (the small peptide CLE45) in a dose-

dependent manner [49]. BRX restricts the expression of BAM3 [51] and the 

negative effect of the signaling, activated through CLE45 binding to BAM3, is 

amplified by MEMBRANE-ASSOCIATED KINASE REGULATOR 5 (MAKR5), 

which acts downstream from BAM3 [52]. Recently, it was shown that the positive 

regulation of the protophloem specification mediated by OPS acts as an insulator 

against CLE45 signaling by interfering with its binding to BAM3 [53]. 

A screen for brx suppressors, COTYLEDON VASCULAR-PATTERN 2, 

identified mutants which accumulate abnormal levels of phosphoinositol and 

display discontinuous protophloem cell files in the root [54].  This and subsequent 

research indicate that phosphoinositides levels are important for the 

differentiation of protophloem [55]. Furthermore, the SUPPRESSOR OF MAX2 

1-LIKE 3 (SMXL3), SMXL4 and SMXL5, which were found to be strigolactone 

(SL)- and karrikin-independent, control protophloem specification in a redundant 

manner, since the double (smxl4 smxl5) and, specially, the triple smxl3 smxl4 
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smxl5 mutants, but not the single ones, show discontinuities in the root phloem 

strands and reduced root length [56].  

 

Leaf venation  

From germination until floral transition (when the floral stem is developed), the 

only aerial organs found are cotyledons and leaves. In such flat organs, the 

vasculature is organized in so-called veins, which constitute a continuous, 

connected, reticulated system of vascular bundles. In these bundles the xylem 

usually faces the adaxial (upper) part of the leaf and the phloem, the abaxial 

(lower) part. The pattern formed by the veins is usually called venation and is 

characteristic of lineages and species. For example, monocots usually feature a 

parallel organization of their venation, while dicots often develop a reticulated 

structure [57]. 

A fundamental characteristic of the leaf vascular system is the close spatial 

relationship between the mesophyll (the photosynthetic cells) and the actual 

vascular tissues [5]. Physiologically, this is of great relevance, since 

photosynthesis implies water loss (which needs rapid supply by the xylem) and 

photoassimilates production that must be transported through the phloem.  

In cotyledons and leaves, the vascular tissue starts developing as soon as 

the primordium is established. Preprocambial tissue differentiates from ground 

cells when the leaflet emerges and continues maturing into procambium while 

the leaf expands and matures into a fully-developed organ. In accordance with 

the auxin canalization model summarized by Sachs [58, 59], auxin signaling 

locates in specific ground cells that subsequently give rise to the veins even 

before they are anatomically different to their neighboring cells [60]. Both early 

induction of the auxin response factor MP in these cells [13, 61] and the 

discontinuity of vascular strands in mp mutants [10] suggest an early function of 

MP in leaf vein formation. The auxin efflux carrier PIN1 accumulates in the same 

preprocambial cells in which MP expression is detected, and which, later on, will 

define the vein pattern [13]. Interestingly, in mp mutants, the PIN1-GFP signal is 

greatly reduced and only detected in the cells where MP expression remains, 

implying that the MP-mediated auxin signaling precedes PIN1 accumulation [13].  

In the initial steps of leaf primordia development, MP expression and PIN1 

accumulation are widespread [62]. Gradually, both get confined to narrow regions 
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in a process mediated by the activity of the HD-ZIP III transcription factor ATHB8 

[62]. In brief, the preprocambial cells are determined and become specialized for 

PIN1-mediated auxin transport in a MP- and ATHB8-dependent manner. In turn, 

since MP expression is stimulated by auxin, the PIN1-mediated auxin transport 

leads to enhanced MP and ATHB8 activity in a feedback loop [61, 62].  

 

Vascular bundle formation in stems 

In Arabidopsis, the elongation of the floral stem starts upon the transition to 

the reproductive phase. Primary vasculature in stems develops in the form of 

discrete, not interconnected, vascular bundles that are distributed radially (Figure 

1c). In Arabidopsis, stems typically develop between 5 and 8 vascular bundles in 

which the phloem faces the external part of the stem and the xylem, the internal 

one. Between xylem and phloem, the number of procambium cell layers can vary. 

Procambial cells give rise to extra xylem or phloem depending on the plant´s 

necessities. Furthermore, these cells are key in the initiation of secondary 

vascular tissue growth (see below). To date, little is known about how vascular 

bundles are determined and patterned. While the HD-ZIP III transcription factors 

are key to establish the xylem and phloem polarity [63], the relative position of 

phloem and xylem is controlled, at least partly, by the signaling pathway mediated 

by the LRR-RLK PHLOEM INTERCALLATED WITH XYLEM (PXY)/TDIF 

RECEPTOR (TDR) [64, 65]. The dodeca-CLE peptides TDIF/CLE41/42/44 are 

synthesized in the phloem and then move to the procambium, where they meet 

their receptor, PXY, activating a signaling cascade that controls the 

xylem/phloem relative position [64-68] (see below). It is thought that such control 

on patterning might occur through an interaction with ERECTA [66, 67]. 

The stem vascular bundles function is double: they provide an apical/basal 

axis to transport water, solutes, nutrients and signaling molecules,  and they 

serve to connect the stem with the veins of the lateral organs [69].  

 

Vascular cell differentiation 

Xylem is mainly formed by conductive cells known as “tracheary elements” 

(TEs). In gymnosperms, the TEs are called tracheids. Such tracheids fulfill two 

roles: support and transport. In eudicots, two TEs cell types can be found, each 

with specialized functions and anatomy: the vessels, specialized in water and 
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solutes transport, and the fibers, specialized in providing mechanical support and 

stability [5]. Vessels and fibers undergo secondary cell wall formation, lignification 

and programmed cell death (PCD) during their maturation [70].  

Vessels start forming at very early stages of xylem development (Figure 4). 

The NAC transcription factors VND6 and VND7 are fundamental for the formation 

of this cell type [71] (Figure 5). The timing for fiber initiation is controlled by 

ERECTA  (ER) and ERECTA-LIKE1 (ERL1) in a GA-dependent manner [72]. In 

order for the cambium and developing xylem cells to become sensitive to GA and, 

therefore, differentiate fibers instead of parenchyma, the activity of the class I 

KNOX transcription factor KNAT1/BREVIPEDICELLUS (KNAT1/BP) is needed 

[72, 73]. Indeed, KNAT1/BP activity has been shown to be negatively regulated 

by DELLA through physical interaction [74], and bp mutants do not display fiber 

formation [75]. Such a defect cannot be rescued by GA application [74]. Recently, 

research has shown that the leucine-rich repeat receptor like-kinase 

SUPRESSOR OF BIR 1/EVERSHED (SOBIR1/EVR) prevents the precocious 

initiation of xylem fiber differentiation by a mechanism that involves BP and 

ERECTA [76]. BP binds the promoter of SOBIR1/EVR, and SOBIR1/EVR 

expression is diminished in bp mutants, indicating a negative effect of BP on the 

expression of SOBIR1/EVR [76]. Furthermore, SOBIR1/EVR physically interacts 

with ERECTA and the effect of sobir1/evr mutation on the initiation of fiber 

differentiation is enhanced in erecta mutant backgrounds [76]. BP activity in fiber 

development occurs by activating the expression of NST1 and NST3/SND1, two 

master regulators of fiber formation [75]. NST1 and NST3 are found upstream 

from BLADE ON PETIOLE 1 (BOP1) and/or BOP2, with which KNAT1/BP 

genetically interacts [75], implying that BOP1 and BOP2 might be highly relevant 

for fiber differentiation. Although the nst1, nst3 and even nst1 nst3  double 

mutants do not show any obvious defective phenotype, NSTs are expressed in 

xylem cells undergoing secondary cell wall biosynthesis, and the overexpression 

of any of the NSTs leads to ectopic xylem formation [77, 78]. While BP controls 

the expression of SOBIR1/EVR, the interaction between SOBIR1/EVR and 

ERECTA controls KNAT1/BP levels by reducing GA signaling [76]. Presumably, 

this occurs by enhancing the levels of DELLA, which would limit KNAT1/BP 

activity through direct interaction. Thus, SOBIR1/EVR transcription would also be 
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limited, and a feedback loop that would maintain KNAT1/BP abundancy and, as 

a result, NST activity in check would be generated [76].    

The function of VND6, VND7, NST1 and NST3/SND1 is conserved across 

angiosperms [79]. Large scale yeast-one hybrid analyses identified numerous 

targets of such transcription factors [80]. Indeed, the authors used these results 

to construct a network regulating secondary cell wall formation during 

xylogenesis [80].  

In addition to TEs, many species develop xylem parenchyma: a cell type that 

remains alive, stores reserves in the form of starch and provides physiological 

support to TEs during and after their maturation. To date very our knowledge 

about the mechanisms by which such xylem parenchyma cells develop is scarce.  

 

Regulation of cambial activity and secondary growth 

Secondary vascular tissues develop radially in stems, roots and hypocotyls in a 

process known as secondary growth which results in thickening. Secondary 

growth provides enhanced transport capacity as well as mechanical support and 

stability. In Arabidopsis hypocotyls, secondary xylem development resembles 

that of trees and, therefore, this organ has become a reference for research in 

secondary growth development in general and secondary xylem development in 

particular [81]. Secondary xylem occurs in two phases in Arabidopsis hypocotyls: 

phase I in which vessels and parenchyma (but not fibers) are formed and phase 

II, in which no parenchyma is formed, but vessels and, especially, fibers 

differentiate massively [81]. The transition from phase I to phase II is coordinated 

with flowering and is mediated by the activity of gibberellic acid, which is precisely 

synthesized during flowering  [82].  

Secondary growth occurs through the activity of the vascular cambium, a 

meristem that is found in a ring-like domain, internally to stems, roots and 

hypocotyls [83]. In Arabidopsis, the vascular cambium forms differently in the 

stem, the hypocotyls and the root. In the stem, the vascular cambium develops 

through two complementary processes: the lateral expansion of the procambial 

cells located between xylem and phloem in the vascular bundles and the 

formation of new cambial cells through proliferation and transdifferentiation of the 

interfascicular regions of the starch sheath, the innermost cortical cell layer in 

stems [4, 83] (Figures 1c; 6a). However, in the hypocotyl and the root, there is no 
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transdifferentiation and, indeed, the vascular cambium arises from massive 

cellular proliferation of the procambial and a few pericycle cells [26, 84]. Soon 

after the onset of this proliferation, cells in contact with the primary xylem start 

differentiating into secondary xylem [84]. Subsequently, more cambial cells in 

contact with the new xylem cells also start differentiating into secondary xylem. 

The process goes on to result in an accumulation of secondary xylem in the 

central part of the root and the hypocotyl. This new xylem forces the cambium 

towards the external part in a radial manner, leading to the formation of the 

classical cambial ring. In later stages, the cambium develops secondary phloem, 

which also organizes as a ring [24] (Figure 1d).  

Similar to that described above for the vascular bundle development, PXY 

also controls both the relative disposition of the xylem and phloem during 

secondary growth [64]. In addition, PXY controls the proliferation of cambial cells 

as well [64, 66] (Figure 6b). The PXY-mediated control of cellular proliferation 

occurs by activating the WUSCHEL RELATED HOMEOBOX 4 (WOX4) and 

WOX14 proteins [64, 66].  The pathway is conserved between Arabidopsis and 

Populus [85]. Independently of PXY, two more receptor-like kinases (RUL1 and 

MOL1) play opposing roles to regulate cambial cell proliferation; RUL1 being a 

positive and MOL1 a negative regulator in the process [83] (Figure 6b). Recently, 

it was shown that the glycogen synthase kinase 3 BIN2-LIKE1 (BIL1) 

phosphorylates MP, which acts as a negative regulator during secondary growth 

by upregulating CK signaling repressors [86]. The phosporylated MP enhances 

its negative activity [87]. However, PXY inhibits BIL1, maintaining secondary 

growth in homeostasis [87]. In brief, these results demonstrate that BIL1 connects 

peptide signaling with auxin/citokinin signaling [87] (Figure 6b).  

Which molecular mechanisms lead cambial cells to enter the phloem or 

xylem developmental programs is still an open question.  Strikingly, a recent and 

elegant report based on linage-tracing and molecular genetics discovered a role 

for cells with newly acquired xylem identity within the cambial zone as 

organizer/quiescent center for the cambium directing adjacent cambial cells to 

divide [88]. This is dependent on auxin concentration and expression of HD-ZIP 

III factors, and the quiescent center also maintains phloem identity in a non-cell 

autonomous manner [88]. Remarkably, it is within the early protophloem-sieve-

element cell files of the procambial tissue where radial growth begins [22]. In such 
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cellular domain, CK induces the expression of the above mentioned PEAR1 and 

PEAR2, and their four homologues DOF6, TMO6, OBP2 and HCA2. Short-range 

movement of the PEAR proteins establishes a concentration gradient that is key 

for the initiation of radial growth [22]. Interestingly, the PEAR proteins promote 

the transcription of the HD-ZIP III factors, which antagonize the activity of the 

PEAR proteins, establishing a negative-feedback loop [22]. Thus, the module 

created by the CK-induced PEAR and auxin-induced HD-ZIP III transcription 

factors integrates the spatial information and hormonal signaling in the definition 

of the quiescent center and cells that are actively dividing, which is fundamental 

for radial growth [22, 88]. Apart from auxin and CK, other hormones such as 

ethylene, gibberellic acid, jasmonic acid, abscisic acid and strigolactone are 

known to play a role in secondary growth. Auxin action on cambial activity is well 

established [89]. Indeed, auxin peaks were found in cambium in Populus and 

Arabidoipsis, and auxin signaling is enhanced in parenchymatic tissues 

transforming into interfascicular cambium [90-95]. Accordingly, in-vitro auxin 

treatment on isolated immature Arabidopsis stems lead to interfascicular 

cambium formation [83] and both Populus and Arabidopsis undergo reduced 

secondary growth when auxin signaling is reduced, as is the case in mutants 

such as axr1 [90-95]. However, the regulation seems to be more complicated, 

since different AUXIN RESPONSE FACTORS (ARFs) seem to play different 

roles and, while ARF3 and ARF4 stimulate cambium activity, ARF5 (MP) 

counteracts such induction, suggesting an auxin-controlled, ARFs-mediated 

homeostasis of cambial activity [86].  

Auxin signaling also results in the induction of WOX4 activity independently 

of PXY -although PXY is required to keep the induction stable over time, as 

deduced from unstable auxin-induced WOX4 expression in pxy mutants-, 

indicating that auxin-induced cambial activity does not require PXY signaling [96]. 

Auxin transport plays a central role in cambium activity [97, 98] and, indeed, at 

least pin1 and pin3 mutants undergo reduced cambium activity, reflected in 

decreased secondary growth in Arabidopsis [99]. As in the case of other 

developmental processes, auxin interacts with strigolactones (SLs) to regulate 

secondary growth; moreover, genetic, molecular and physiological analyses 

proved that SLs act downstream from auxin to control the process, adding a new 

step in the hormonal regulation of secondary growth initiation [99].  
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CKs are known to stimulate cellular proliferation in meristems [7]. In 

cambium, several reports indicate a clear correlation between CK signaling and 

cambial cell proliferation both in Arabidopsis and Populus [100]. The above 

mentioned heterodimerization of LHW with TMO5, leading to CK biosynthesis via 

LOG3 and LOG4 expression [21], is also crucial to stimulate cellular proliferation 

during radial growth. Recently, DOF2.1 was found to control such cellular 

proliferation downstream from the LHW-TMO5 heterodimer [101]. 

As explained above, gibberelins are essential for the formation of xylem 

fibers, which are associated to the expansion phase of secondary growth [81]. 

Thus, they play a positive role in wood accumulation, thereby positively regulating 

secondary growth [102]. Jasmonic acid [103], ethylene [103, 104] and ABA [105] 

have also been shown to play a positive role in secondary growth. 

Little is known about the regulation of secondary phloem formation (Figure 

4). However, it is known that most of it is parenchyma and that a few sieve 

elements and companion cells arise randomly through it.  

 

Environmental regulation of vascular differentiation 

Vascular development is modulated by an array of environmental factors, ranging 

from temperature and light regimes to water availability, mechanical stress, or 

salt concentration in the soil. While light and temperature signals are interpreted 

mostly as seasonal cues by plants, other factors may represent transient, 

adverse situations that challenge the plant’s ability to acclimate. In those cases, 

plasticity in vasculature development is part of an integral plan to optimize the 

use of resources. As described below, acclimation strategies include the 

alteration of cambial cell proliferation rates, xylem to phloem proportion, relative 

abundance of specific cell types within xylem or phloem, and the patterns and/or 

properties of such cell types, including cell wall thickness, cell length, cell 

diameter, cell wall pitting or cell wall reticulation. It must be noted that, in the case 

of xylem, fully differentiated cells are dead, preventing any post-developmental 

plasticity [106]. Therefore, xylogenesis plasticity must occur entirely during xylem 

specification and differentiation, and cell properties of fully-developed xylem cells 

are not reversible. Consequently, the environmental conditions during 

xylogenesis are critical for the general performance of plants. 
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Drought   

Water is absorbed by roots and transported acropetally through the plant by the 

xylem water conduits: vessels in angiosperms and tracheids in gymnosperms 

[107]. Thus, water availability constitutes an essential environmental input for 

xylogenesis plasticity, the result of which is crucial for plant acclimation to 

drought. Mechanisms underlying such xylogenesis plasticity for acclimation to 

water availability require hormone activity (Figure 7). In this regard, the role of 

ABA is the most frequently studied one, although CK and JA have been shown 

to play important roles as well.   

Drought is known to enhance the biosynthesis and accumulation of  ABA 

[108]. Among other actions, ABA regulates various aspects of the differentiation 

and patterning of primary and secondary xylem [29, 105]. ABA treatments in 

Arabidopsis roots induced extra meta and protoxylem cells, the latter with 

reticulated, rather than pitted, secondary cell walls [29]. By contrast, abi2-1 and 

abi3-1 mutants, impaired in the last steps of ABA biosynthesis, displayed 

discontinuous or absent xylem strands [29]. An effect very similar to the abi2-1 

and abi3-1 mutations was observed when WT was treated with the ABA 

biosynthesis inhibitor fluridone [29]. Further, provascular and endodermis cellular 

differentiation was accelerated in ABA-treated roots in both Arabidopsis and 

Tomato [109]. The mechanism by which ABA regulates the determination of the 

xylem cell-types is non-cell-autonomous [29]. Indeed, it occurs in the endodermis, 

where ABA induces miRNA165/166 biosynthesis while reducing the expression 

level of the miRNA165/166 repressor ZWILLE/ARGONAUTE 10 (ZLL/AGO10) 

[29, 109]. The miRNA165/166, as mentioned above, moves to the developing 

xylem cells, and its levels determine the proto- or metaxylem identity by 

controlling the mRNA accumulation of certain HD-ZIP III factors [28]. Accordingly, 

ABA treatments failed to induce extra xylem strands in miRNA165/166 resistant 

lines such as phb1-d or in mutants with considerably reduced miRNA165/166 

accumulation such as scr or shr  [109]. Drought treatments –shown to induce 

ABA in roots [110, 111]- affected miRNA165/166 levels and led to the same 

phenotypic effects induced by ABA, linking drought with the ABA-mediated 

mechanism of regulation in miRNA165/166 levels to control xylem cell-type 

specification [29].  
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In trees, long-term drought reduces secondary growth and modifies the 

pattern of vessel formation [112, 113].  Despite reducing general levels of 

secondary growth, drought induces the formation of extra vessel cells with 

reduced cellular diameter [112, 113]. Thus, this response represents an 

acclimation mechanism to drought that diminishes cavitation without losing 

vessel transport capacity [112, 113]. This alteration seems to be maintained, at 

least partially, across seed plants, since tracheid diameter in the gymnosperm 

Picea abies was also smaller in individuals subjected to severe drought [114]. 

Further observations also indicated drought-induced increases in vessel cell wall 

thickness, at the expense of the vessel lumen [115], which results in reduced 

conducting surface. The precise mechanism that regulates cell wall deposition in 

response to stress is not understood, but experiments with Arabidopsis in which 

osmotic stress was stimulated by high mannitol content in the growth medium 

[116] revealed a substantial decrease in mcroRNA857 abundance. Given that 

miR857 is a postranscriptional inhibitor of LAC7, which encodes a laccase 

involved in lignin deposition in the secondary xylem [117], the drought-mediated 

regulation of the machinery controlling cell wall properties is likely to be a 

widespread mechanism to modulate xylem conduits properties under drought. 

This view is also supported by work with P. trichocarpa, in which drought 

differentially affected the expression of a large number of genes involved in cell 

wall remodeling, including four master switch regulators orthologous to the 

Arabidopsis NST1 transcription factor, and 29 laccase-encoding genes [118]. 

Drought has also been shown to reduce secondary growth by hampering 

the accumulation of CK and its root-to-shoot transport [119-121]. Decreased 

levels of CK in well-watered plants increased ABA sensitivity [121], suggesting a 

cross-talk between the two hormones. Moreover, jasmonic acid (JA) is thought to 

induce xylem differentiation in Arabidopsis roots from meristematic procambial 

cells by counteracting the CK-dependent promotion of cell division [122]. Given 

that JA signaling is necessary for consistent ABA accumulation in roots in 

response to water limitation [123], current knowledge indicates that the interplay 

between ABA, JA and CKs modulates xylem differentiation as part of the 

acclimation strategy to varying water levels. 

 

Salt stress 
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Although the effects of high salinity on vascular development are similar to those 

caused by drought, there are indeed differences in the responses of plants to 

each type of stress. For example, while drought induced extra protoxylem 

differentiation [29], this effect was not observed in roots grown under high salinity, 

even when incubating plants in increasing NaCl concentrations [109]. This 

observation constitutes a clear difference between the responses of plants to 

drought or salt stress in terms of vascular development. Therefore, it is plausible 

that salt stress, while inducing ABA biosynthesis, might trigger some signaling 

pathway preventing extra protoxylem differentiation. On the other hand, like 

drought, salt stress has been shown to reduce lumen in xylem vessels in 

Arabidopsis, tomato and Populus [124]. This reduction in overall xylem lumen 

development seems to be necessary to enhance salt tolerance, since the acl5 

Arabidopsis mutants, with excessive, premature, xylem development, display salt 

hypersensitivity [125].  Several possible mechanisms may be responsible for this 

effect. For instance, the reduction in xylem vessel volumes in poplar trees 

subjected to 2-week salt treatments was associated to an increase in ABA levels 

in leaves, which caused stomata closure and subsequent diminished nutrient 

uptake by the cambium, causing indirectly the decrease in vessel lumina [126]. 

Alternatively, enhanced lignin deposition has been observed in developing xylem 

vessels of plants growing under high salinity in Aeluropus littoralis, as well as in 

tomato roots [127, 128]. To support this hypothesis, studies have focused on two 

transcription factors whose expression is induced by salt, and whose 

overexpression promotes secondary cell wall deposition during xylem 

differentiation: ERF139 in Arabidopsis [129] and BplMYB46 in birch [130].  

 

Temperature 

The most widely studied effects of temperature on vascular development are 

those associated to the alteration of cambial cell proliferation and secondary cell 

wall deposition in xylem cells. In seasonal climates, the main environmental factor 

affecting cambial activity is temperature. This is reflected by the correlation 

between the timing of cambial reactivation after dormancy and the early onset of 

the growth season [131]. Studies in Populus, revealed extensive transcriptomic 

and proteomic changes in the cambium during the activity-dormancy cycle [132]. 

More importantly, these changes included the activation of cell cycle genes 
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during cambium activity and their repression during dormancy. These changes 

are primarily temperature-dependent, according to water culture experiments, 

which show that PtoCDKB and PtoCYCB transcripts are clearly expressed in 

cambium at warm temperatures but undetectable at low ones [133]. 

Given that cold induces MT de-polymerization in plant cells [134], it was 

thought that temperature-mediated cambial activity regulation might depend on 

the MT polymerization state [131]. However, it is not clear whether changes in 

MT polymerization are the cause or a readout of cambial activity state. Indeed, 

MT de-polymerization has been observed in the cambium when temperatures 

transiently descended during the warm growth period [131], but transient warm 

temperatures during the winter dormancy period did not re-polymerize MT [131]. 

By contrast, the detection of enhanced accumulation of transcripts encoding MT-

associated proteins (i.e: MAP20) in Poplar during the formation of secondary cell 

walls suggests the involvement of MT in vascular development [135]. 

Arabidopsis leaves have been shown to acclimate to high temperatures by 

increasing vein density [136]. This response might be related to a general shift 

from sugar transport at cool temperatures to water transport through tracheary 

elements at warmer temperatures, perhaps due to enhanced transpiration. 

Intriguingly, the expression of the PXY paralog encoded by AtPXL1 is patently 

induced both by cold and heat stress, and the atpxl1 mutant line showed a 

temperature hypersensitive phenotype [137]. These results suggest that PXY 

activity at the cambium might be important for acclimation when temperatures 

fluctuate. It remains to be seen whether temperature can control PXY expression 

or PXY activity, or whether there is a yet-to-be discovered PXY upstream 

regulator whose activity is temperature dependent.  

As mentioned above, temperature is also a major modulator in the 

composition of xylem secondary cell walls, as shown by work with ESKIMO1, a 

gene encoding a 2-O- and 3-O-acetyl transferase that targets xylosyl residues in 

xylan [138]. ESK1 expression is regulated by the secondary cell-wall regulator 

SND1/NST3 and, accordingly, its expression is stronger in vascular tissues than 

in other tissues, especially in cells undergoing xylem differentiation [139]. Vessels 

collapse in the loss of function esk1 mutants. However, the mutation allows 

resistance to freezing and cold temperatures in general, as well as to salt stress 

[140]. The defects in esk1 xylem vessels appear to be linked to a reduction in 
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esterified pectins, which is in agreement with the observed downregulation of a 

gene encoding a Pectin Methyl Esterase Inhibitor in the esk1 mutant [139]. 

 

Mechanical stress 

The proliferation of cambial cells and the differentiation of the cell types that form 

the xylem and the phloem occur in the context of intense mechanical forces [103]. 

On the one hand, tensions originate from endogenous processes, such as the 

increasing weight of the plant from growth, the pressure caused by the 

proliferation and accumulation of new cells or the changes in turgor caused by 

cell differentiation or water conductance through tracheids or vessels. On the 

other hand, external environmental conditions, including wind or the presence of 

obstacles in the growth axis, also generate mechanical forces. Due to 

lignification, the vascular cells can counteract such mechanical stress. Therefore, 

a common response of plants to mechanical forces is the generation of new 

vascular cells. In other words: mechanical stress induces vascular development. 

A clear example of this is the stimulation of secondary growth as a response to 

increased plant weight [97]. Such response has been shown to be accompanied 

by the enhanced expression of secondary cell wall regulatory genes [141], 

changes in the expression of auxin signaling elements and stimulation of polar 

auxin transport [97]. However, despite the dominant role of auxin in weight-

induced secondary growth, other factors (perhaps some of them auxin-

independent) also contribute to controlling the mechanical stimulation of 

secondary growth. For example, ABA, ethylene and JA signaling are induced 

during secondary growth in Arabidopsis and control several aspects of the 

process, most likely in an auxin-independent manner [103-105]. Additionally, 

ethylene was found to control cambial cellular proliferation both in normal 

conditions and during tension wood development in Populus [142]. During the 

process, no change in auxin levels was found in tension wood forming tissues 

[143], although the establishment of an auxin gradient –most likely led by auxin 

redistribution- seems to be necessary [144]. Furthermore, GA was shown to 

control all major aspects of tension wood formation when applied to Populus 

stems [145], and a role for it during the process cannot be excluded. As previously 

discussed, KNAT1/BP regulates xylem fiber production [75]. SHOOT 

MERISTEMLESS (STM), another class I KNOX transcription factor, was found to 
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act redundantly with BP in this  process [75] and its expression is induced when 

there is mechanical stress in the shoot apical meristem [146]. The expression of 

SOBIR1/EVR, which, as described above, participates in the BP-mediated 

mechanism regulating fiber formation, was enhanced in the cambium upon 

mechanical stress induction [97]. All in all, current knowledge suggests a potential 

scenario in which the mechanical stimulation of secondary growth may act 

through auxin-dependent pathways regulating cambial cell proliferation and 

parallel auxin-independent pathways to control specific aspects in the 

differentiation of the vascular cell types.   

 

Conclusions and future prospects 

In recent decades, our understanding of the genetic and molecular control of 

vascular development has increased considerably. In parallel, work with both 

herbaceous and woody species has revealed the effect that environmental 

factors have, anatomically, on the vascular tissues. Therefore, studies should 

now focus on identifying the molecular mechanisms underlying the environmental 

modulation of vascular development. Previous attempts to connect vascular 

development with environmental factors have been based mostly on field studies 

with woody plants, often comparing species. Given the relatively high level of 

understanding of the molecular mechanisms involved in vascular development in 

model plants, like Arabidopsis and Populus, it seems necessary to approach the 

study of all aspects of vascular development under the controlled combined 

action of different environmental signals. Such an approach is likely to identify 

“entry points” through which each environmental factor alters the molecular 

control of vascular development.  

Classical forward genetic screens are extremely tedious when performed for 

vascular development because they usually entail microtom-based sectioning. 

This is of especial relevance when performing screens aimed identifing new 

genes involved in adjusting the process to specific environmental factors. 

However, reverse genetic approaches may be useful and, by including 

experimental approaches based on natural variation and Genome-Wide 

Association Studies (GWAS), it might be possible to identify not only new 

regulators but also natural alleles for already known vascular developmental 

regulators key for adapting vascular development to specific habitats. In this 
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respect, recent works that used GWAS-guided reverse genetics approaches 

have identified XYLEM NAC-DOMAIN1 (XND1) as a negative regulator of 

hydraulic conductivity that also affects vascular anatomical variation [147] and, 

as mentioned above, SOBIR1/EVR as a new regulator of the timing for fiber 

differentiation [97]. These are two clear examples of how natural variation-

mediated identification of either new genes or allele variants for previously known 

genes may provide new tools for biotechnological approaches as well as insights 

into our understanding about the adaptation mechanisms in the process. At a 

higher order scale, experimenting with key species in the evolutionary clades of 

vascular plants may reveal which environmental factors have led to specific 

evolutionary aspects of the vascular development process and what genes have 

been relevant for such evolution. All this information, especially when validated 

in real natural conditions, might provide new, essential knowledge that can be 

used to artificially adapt our forest trees and crops to future environmental 

conditions or even to expand their geographical crop domain. 

In brief, we propose that understanding how plants adjust their vascular 

developmental program to environmental changes will enhance our 

understanding about the plasticity, adaptability and evolutionary history of the 

process. This knowledge may be a starting point for biotechnology applications 

aimed at ensuring biomass formation in a climate change context. 
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Figure legends 

 

Fig. 1. Organization of plant vascular tissues. a Appearance of the provascular 

tissue at the end of embryo development. b Localization of the procambial, 

phloem and xylem tissues within primary vasculature in veins and in the root of 

young seedlings. c Secondary growth in stems. In Arabidopsis (and other 

dicotiledoneous plants), primary vasculature appears in bundles with the phloem 

facing outwards and the xylem inwards, separated by a layer of procambial cells. 

Secondary growth requires the sequential formation of a cambial ring between 

bundles and the stimulation of periclinal cell divisions. d Secondary growth in 

roots also involves expansion of xylem at the expense of the cambium. 

 

Fig. 2. Mechanism for provascular specification during embryo development. a 

Illustration of the localization of (i) the initial cells in the globular-stage embryo 

from which all vascular tissues originate and (ii) the periclinal divisions that give 

rise to additional vascular cells in a heart-stage embryo. b Gene regulatory 

network that determines vascular cell identity and cell divisions during embryo 

development. In response to local accumulation of auxin, the MP auxin-

dependent transcription factor enhances auxin accumulation through the 

upregulation of the PIN1 auxin transporter, establishes vascular identity by 

inducing the ATHB8 HD-ZIP III transcription factor and promotes periclinal cell 

divisions via TMO5-LHW-mediated increase in CK synthesis. 

 

Fig. 3. Mechanism for xylem specification and maintenance in the primary root. a 

Tissue layer organization surrounding the vascular cylinder of the primary root. 

The xylem axis in the center is surrounded by vascular-competent stem cells 

(procambium), and with two phloem poles on opposite ends. b Gene regulatory 

network that coordinates CK-dependent cell proliferation in the procambium, with 

auxin-mediated xylem cell-type specification. Xylem specification depends on 

high local auxin signaling via MP, and is also achieved by high HD-ZIP III 

localization in the xylem precursor cells. MP activity is not only responsible for 

the attenuation of CK signaling in xylem precursor cells, but also for triggering the 

ACL5-dependent inhibitory loop that maintains appropriate levels of the LHW-

TMO5 complex. 
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Fig. 4. Cell differentiation pathways which produce the diverse phloem and xylem 

cell types. Illustration of the formation of different phloem and xylem cell types 

from unique vascular stem cells. Xylem cells include the dead vessels (tracheary 

elements) and fiber cells with extensive secondary cell wall deposition, along with 

live xylem parenchyma cells. Phloem is composed of the sieve elements and the 

phloem companion cells. Pink circles depict cell nuclei, and white ellipses are 

vacuoles. 

 

Fig. 5. Gene regulatory network for the differentiation of xylem fibers and the two 

types of vessels. The different cell identities are established by specific 

expression of VND6 (metaxylem, MX), VND7 (protoxylem, PX), and SND1/NST3 

(fibers) transcription factors. SCW synthesis is regulated by the second tier of 

MYB transcription factors, while programmed cell death is regulated by the ACL5 

thermospermine synthase. Additionally, fiber formation is absolutely dependent 

on STM and KNAT1 activity, and this is stimulated by low DELLA levels achieved 

by high GA production; which is thought to be regulated by Receptor-Like 

Kinases such as ER and ERL1.  

 

Fig. 6. Regulatory mechanism of cambial activity and secondary growth. a 

Scheme of stem vascular bundles showing the bifacial cambium. b Gene 

regulatory network coordinates cambial cell proliferation and the production of 

phloem and xylem on opposite sides of the cambium. This organization is the 

result of several regulatory interactions: (i) the PXY receptor-like kinase is 

activated by the phloem-generated TDIF signal (CLE41, 42, 44 peptides) and 

induces the WOX transcription factors which, in turn, promote cell proliferation in 

the cambium; (ii) auxin modulates cell proliferation with opposing effects that 

involve the attenuation of CK signaling and the upregulation of WOX genes; (iii) 

xylem specification is promoted by the PXY-dependent repression of 

brassinosteroid signaling and by the positive effect of auxin on HD-ZIP III 

expression in xylem precursor cells; (iv) phloem is regulated by the mobile PEAR 

transcription factors that are upregulated by CK in the cambium. 
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Fig. 7. Possible mechanisms for environmental regulation of vascular 

development. Three processes have been reported to be under environmental 

control: (i) cell proliferation in the cambium, which is inhibited by drought via the 

reduction in root-to-shoot CK transport, and stimulated by mechanical stress via 

auxin upregulation; (ii) proliferation of xylem cells to increase water transport 

potential or counteract possible consequences of vessel cavitation; this is 

activated by drought through the ABA-dependent upregulation of miR165 

(allowing for the reduction in HD-ZIP III activity), and also by mechanical stress 

in an auxin-dependent manner and (iii) the production of secondary cell wall 

components, which is increased by drought and salt through the upregulation of 

specific cell-wall enzymes; moreover, the relative composition of SCW material 

is also modulated by mechanical stress (with an increase in fiber cell production) 

and by temperature (which affects the activity of ESK, an enzyme that modifies 

xylan). 
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