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Abstract We study the scaling of kaon decay amplitudes
with the number of colours, Nc, in a theory with four degen-
erate flavours, N f = 4. In this scenario, two current-current
operators, Q±, mediate �S = 1 transitions, such as the
two isospin amplitudes of non-leptonic kaon decays for
K → (ππ)I=0,2, A0 and A2. In particular, we concentrate
on the simpler K → π amplitudes, A±, mediated by these
two operators. A diagrammatic analysis of the large-Nc scal-
ing of these observables is presented, which demonstrates the
anticorrelation of the leading O(1/Nc) and O(N f /N 2

c ) cor-
rections in both amplitudes. Using our new N f = 4 and pre-
vious quenched data, we confirm this expectation and show
that these corrections are naturally large and may be at the
origin of the �I = 1/2 rule. The evidence for the latter is
indirect, based on the matching of the amplitudes to their
prediction in Chiral Perturbation Theory, from which the LO
low-energy couplings of the chiral weak Hamiltonian, g±,
can be determined. A NLO estimate of the K → (ππ)I=0,2

isospin amplitudes can then be derived, which is in good
agreement with the experimental value.

1 Introduction

Significant progress has been achieved recently in the lat-
tice determination of K → (ππ)I=0,2 amplitudes and the
CP violating observable ε′/ε [1–3]. In particular, a large
enhancement of the I = 0 amplitude over the I = 2 one
has been reported, albeit with too large uncertainty to be
considered a satisfactory first-principles determination of the
�I = 1/2 rule.1

In Ref. [5] an analysis of the different contributions was
made and it was suggested that the main source of the
enhancement lies in a strong cancellation of the isospin-two

1 While this paper was under revision, a significantly improved result
at the physical point was made public [4].

a e-mail: fernando.romero@uv.es (corresponding author)

amplitude, as a result of a negative relative sign between
the colour-connected and colour-disconnected contractions,
with the two contributions adding up in the isospin-zero chan-
nel. In Refs. [6–8] we proposed to study the Nc dependence
of the amplitudes, because the two contributions scale differ-
ently in large Nc and therefore can be rigorously disentangled
in this limit. The enhancement, if explained in this fashion,
seems to require unnaturally large-Nc corrections with the
appropriate sign.

Interestingly, the large-Nc limit of QCD [9,10] has also
inspired several phenomenological determinations of these
and related observables [11–19] (for a recent discussion
see [20–22]). It is well known, however, that the leading-
order large-Nc prediction for the ratio of the amplitudes,
limNc→∞ A0/A2 = √

2, i.e., no �I = 1/2 rule whatsoever.
The subleading Nc corrections should therefore be very large,
which could be consistent with the previous hypothesis, but
casts doubts on the phenomenological approaches that make
use of large-Nc inspired approximations: if we know that
there must be significant large-Nc corrections to explain the
�I = 1/2, why should we trust approximations that neglect
subleading Nc terms?

The Nc dependence can be studied from first-principles
in lattice QCD by simply simulating at different number of
colours [23–27]. In our previous work [6–8] we explored
the related weak amplitudes K → π and K → K̄ in the
quenched approximation, and found no unnaturally large
subleading Nc corrections, although we confirmed the exact
anticorrelation of these corrections in the two isospin chan-
nels. The quenched approximation introduces however an
uncontrollable systematic error, which in practice is often
found to be relatively small in most quantities. Since we are
interested in subleading Nc corrections, quenching effects
are expected to enter at this order of the Nc expansion
and therefore need to be included. The main goal of this
paper is to extend our previous study beyond the quenched
approximation, which will allow us to determine from first-
principles the subleading Nc corrections to the �I = 1/2
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rule, in a simplified setting with four degenerate flavours,
mu = md = ms = mc.

This paper is organized as follows: in Sect. 2 we discuss
our strategy for the lattice study of K → π transitions; in
Sect. 3 we discuss the Nc scaling of the amplitudes; Sect. 4
deals with the necessary results in Chiral Perturbation Theory
to connect to K → ππ ; Sect. 5 describes the setup of our
lattice computations; in Sect. 6 we discuss our physics results;
and we conclude in Sect. 7.

2 Strategy

The Operator Product Expansion allows to represent CP-
conserving �S = 1 transitions by an effective Hamilto-
nian of four-fermion operators. At the electroweak scale,
μ � MW , we can neglect all quark masses, and the weak
Hamiltonian takes the simple form:

H�S=1
w =

∫
d4x

g2
w

4M2
W

V ∗
usVud

∑
σ=±

kσ (μ) Q̄σ (x, μ), (1)

where g2
w = 4

√
2GFM2

W . Only two four-quark operators of
dimension six can appear with the correct symmetry prop-
erties under the flavour symmetry group SU(4)L × SU(4)R,
namely

Q̄±(x, μ) = Z±
Q(μ)

(
J suμ (x)Judμ (x) ± J sdμ (x)Juuμ (x)

− [u ↔ c]), (2)

where Jμ is the left-handed current J i jμ = (ψ̄ iγμP−ψ j ); i, j
are quark flavour indices; P± = 1

2 (1 ± γ5); and parentheses
around quark bilinears indicate that they are traced2 over spin
and colour. Z±

Q(μ) is the renormalization constant of the bare
operator Q±(x) computed in some regularization scheme as,
for example, the lattice. There are other operators that could
mix with those above: however, they vanish in the limit of
equal up and charm masses, that we refer to as the GIM limit
[28]. From the lattice point of view the GIM limit is very
advantageous, not only for the simpler operator mixing, but
also because no closed quark propagator contributes to the
amplitudes. Even though the presence of a heavy charm was
argued long ago to be at the origin of the �I = 1/2 rule
via the mixing with penguin operators [29], the relevance
of penguin contributions has been found to be small in non-
perturbative studies [1,30].3 If we want to test the primary
mechanism of the �I = 1/2 enhancement proposed in [5],
the GIM limit may be good enough.

2 This basis can be related to the more traditional one by means of Fierz
identities.
3 The dominance of current-current operators over penguin contribu-
tions was also pointed out in the Dual QCD approach [11].

The operators Q̄σ (μ) are renormalized at a scale μ in
some renormalization scheme, being their μ dependence
exactly cancelled by that of the Wilson coefficients kσ (μ).
It is also possible to define renormalization group invari-
ant (RGI) operators, which are defined by cancelling their μ

dependence, as derived from the Callan-Symanzik equations,

Q̂σ ≡ ĉσ (μ)Q̄σ (μ), (3)

with

ĉσ (μ) ≡
(
Nc

3

ḡ2(μ)

4π

) γ σ
0

2b0

× exp

{
−

∫ ḡ(μ)

0
dg

[
γ σ (g)

β(g)
− γ σ

0

b0 g

]}
, (4)

where ḡ(μ) is the running coupling and β(g) = −g3 ∑
n bn

g2n , γ σ (g) = −g2 ∑
n γ σ

n g2n are the β-function and the
four-fermion operator anomalous dimension, respectively.
The one- and two-loop coefficients of the β-function, and
the one-loop coefficient of the anomalous dimensions, are
renormalization scheme-independent. Their values for the
theory with N f flavours are [31–36]

b0 = 1

(4π)2

[
11

3
Nc − 2

3
N f

]
, (5)

b1 = 1

(4π)4

[
34

3
N 2
c −

(
13

3
Nc − 1

Nc

)
N f

]
, (6)

and for the operators Q± [37,38]

γ ±
0 = 1

(4π)2

[
±6 − 6

Nc

]
. (7)

The normalization of ĉσ (μ) coincides with the most popular
one for Nc = 3, whilst using the ’t Hooft coupling λ =
Ncḡ2(μ) in the first factor instead of the usual coupling, so
that the large-Nc limit is well-defined.

Defining similarly an RGI Wilson coefficient

k̂σ ≡ kσ (μ)

ĉσ (μ)
, (8)

we can rewrite the Hamiltonian in terms of RGI quantities,
which no longer depend on the scale, so that

k̂σ Q̂σ =
[
kσ (MW )

ĉσ (MW )

] [
ĉσ (μ) Q̄σ (μ)

]

= kσ (MW )Uσ (μ, MW ) Q̄σ (μ),

(9)

where μ is a convenient renormalization scale for the non-
perturbative computation of matrix elements of Q±, which
will be later set to the inverse lattice scale a−1. The fac-
tor Uσ (μ, MW ) = ĉσ (μ)/ĉσ (MW ), therefore, measures the
running of the renormalized operator between the scales μ

and MW . Ideally one would like to evaluate this factor non-
perturbatively, as has been done for Nc = 3 [39,40], but
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such a challenging endeavour is beyond the scope of this
paper. We will instead use the perturbative results at two
loops in the RI scheme [41,42] to evaluate the Wilson coeffi-
cients kσ (MW ), the running factors Uσ (μ, MW ), and ĉ(μ).
This implies relying on perturbation theory at scales above
μ ≥ a−1 ∼ 2.6 GeV. Similarly we will also use lattice per-
turbation theory to estimate the renormalization factors Z±

Q ,

that are known to one loop4 [43,44].
We are interested in considering K → π amplitudes in

the two isospin channels, that we can extract from ratios of
three-point correlators

C±
3 (y, z, x)

≡ 〈Pdu(y)[Osuud(z) ± Osduu(z)]Pus(x)〉, (10)

where

Pi j (x) ≡ ψ̄ i (x)γ5ψ
j (x), Oi jkl ≡ ψ̄ iγμψ j ψ̄kγμψ l , (11)

and the two-point correlators

Ci j2 (y, z) ≡ 〈Pi j (y)A ji
0 (z)〉, (12)

with Ai j
0 (x) ≡ ψ̄ i (x)γ0γ5ψ

j (x).
From these correlators we define the bare lattice ratios:

R± = lim
z0−x0→∞
y0−z0→∞

∑
x,y C±

3 (y, z, x)∑
x,y Cdu2 (y, z)Cus2 (x, z)

, (13)

which are proportional to the K → π matrix elements with
a convenient normalization. The renormalization factors for
these ratios, Z±, are obtained from the ratio of the renormal-
ization factors of the four fermion operators, and the current
normalization factors that appear in the denominator.

From the renormalized ratios

R̄σ = Zσ Rσ , (14)

we can obtain the RGI normalized ratios

R̂σ = ĉ
(
a−1

)
Zσ Rσ , (15)

and the normalized5 K → π amplitudes, written either in
terms of the RGI or the renormalized ratios, as

Aσ = k̂σ R̂σ = kσ (MW )Uσ (a−1, MW )R̄σ . (16)

4 The NLO running of the coupling and four-quark operators have been
performed fully in the N f = 4 theory, using the value of 
MS(N f = 4)

by the ALPHA Collaboration in Ref. [42]. We have checked that the
effect of running from N f = 5 from MW to the b quark mass, and
then with N f = 4 down to the lattice matching scale amounts to few
per mille effects on the running factors. This is completely negligible
within the uncertainty of our final results.
5 Note that our normalization in Eq. (13) cancels two powers of the
decay constant in the physical amplitudes.

Table 1 Perturbative renormalization constants and RG running factors
for the ensembles with N f = 4. Zσ

(
a−1

)
have been computed at

one loop in tadpole-improved perturbation theory using the results in
[43,44], whereas Uσ and kσ are computed using the two-loop MS
coupling. The star labels the simulation points with finer lattice spacing,
a ∼ 0.065 fm. In the evaluation of ĉσ

(
a−1

)
we have used 
MS(N f =

4) = 298 MeV from Ref. [45]

Nc k+(MW ) U+(a−1, MW ) Z+(a−1) ĉ+(a−1)

3 1.041 0.843 0.841 1.456

3∗ 1.041 0.852 0.844 1.471

4 1.032 0.877 0.884 1.367

5 1.026 0.899 0.909 1.302

6 1.022 0.914 0.926 1.255

Nc k−(MW ) U− (
a−1, MW

)
Z−(a−1) ĉ−(a−1)

3 0.918 1.433 1.320 0.488

3∗ 0.918 1.400 1.314 0.476

4 0.947 1.254 1.195 0.602

5 0.961 1.179 1.137 0.679

6 0.970 1.137 1.104 0.731

All the required factors to reconstruct the physical amplitudes
are summarized in Table 1 for N f = 4 (this work), and in
Table 2 for the quenched case [6,7].

3 large-Nc scaling of K → π amplitudes

3.1 Diagrammatic expansion of A±

A simple diagrammatic analysis of the three and two point
correlators of Eqs. (10, 12) shows a clear pattern of the large-
Nc scaling, and demonstrates the expected anticorrelation of
the leading large-Nc corrections of the A± amplitudes.

After integration over fermion fields, the correlators are
obtained from the gauge averages of the colour-disconnected
and colour-connected contractions of Fig. 1, corresponding
to the operator insertion Osuud and Osduu , respectively.

In Figs. 2 and 3 we show the scaling with Nc of the lowest-
order diagrams contributing to these correlators. The leading
Nc dependence of both the renormalized and bare correlators
are therefore of the form:

〈Pi j J ji
μ 〉 = Nc

(
a + b

N f

Nc

)
+ . . . ,

〈PduOsuud Pus〉 = 〈Pdu Judμ 〉〈Psu Jusμ 〉 + c + d
N f

Nc
+ . . . ,

〈PduOsduu Pus〉 = Nc

(
e + f

N f

Nc

)
+ . . . , (17)

where all the coefficients a − f in these expressions (each
of them related to one or more diagrams in Figs. 2 and 3)
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Table 2 Perturbative renormalization constants and RG running factors
for the runs with N f = 0 of Refs. [6,7]. Zσ (a−1) have been computed
at one loop in tadpole-improved perturbation theory using the results
in [43,44], whereas Uσ and kσ are computed using the two-loop MS
coupling. Note that the values of Zσ (a−1) differ from those in Refs.
[6,7], where bare lattice perturbation theory was used. Furthermore,
the values of kσ and Uσ also supersede the ones in Refs. [6,7]. In the
evaluation of ĉσ (a−1) we have used 
MS as described in Ref. [6]

Nc k+(MW ) U+(a−1, MW ) Z+(a−1) ĉ+(a−1)

3 1.029 0.877 0.956 1.412

4 1.025 0.897 0.963 1.340

5 1.021 0.911 0.969 1.285

6 1.018 0.923 0.973 1.243

7 1.016 0.932 0.976 1.212

8 1.014 0.939 0.979 1.187

17 1.007 0.969 0.989 1.091

Nc k−(MW ) U−(a−1, MW ) Z−(a−1) ĉ−(a−1)

3 0.942 1.312 1.087 0.511

4 0.959 1.206 1.061 0.619

5 0.969 1.153 1.047 0.690

6 0.975 1.121 1.038 0.740

7 0.979 1.101 1.032 0.776

8 0.982 1.086 1.027 0.803

17 0.992 1.037 1.012 0.907

∓

Fig. 1 Left diagram: Osuud (x) insertion or colour-disconnected con-
tribution to C±

3 in Eq. (10). Right diagram: Osduu(x) insertion or colour-
connected contribution to C±

3 in Eq. (10)

(a) O(N2
c )

(b) O(NcNf )

(c) O(N0
c )

(d) O
(

Nf

Nc

)

Fig. 2 Nc, N f scaling of various contributions to the colour-
disconnected contraction, corresponding to the Osuud (x) insertion

(e)

O(Nc)

O(Nc)

(f) O (Nf )

Fig. 3 Nc, N f scaling of various contributions to the colour-connected
contraction, corresponding to the Osduu(x) insertion

are independent of Nc and N f . These relations imply that
the leading Nc corrections in the ± correlation functions of
Eq. (10) are of O(N 2

c , N f Nc), but factorizable. On the other
hand, the leading non-factorizable corrections are of O(Nc)

and O(N f ), and cancel in the sum of the ± correlators:

C+
3 + C−

3 = disconnected + O(N 0
c ) + O

(
N f

Nc

)
+ · · · ,

C+
3 − C−

3 = O(Nc) + O(N f ) + · · · (18)

They are therefore fully anticorrelated in the ± correla-
tors. Importantly, the anticorrelated terms include the leading
fermion loop corrections, O(N f ). These relations also imply
the following scaling of the renormalization factors:

Z+
Q + Z−

Q

2
= 1 + O

(
1

N 2
c

)
+ O

(
N f

N 3
c

)
+ · · ·

Z+
Q − Z−

Q

2
= O

(
1

Nc

)
+ O

(
N f

N 2
c

)
+ · · · , (19)

and a similar one for the Wilson coefficients, kσ . This depen-
dence can be explicitly checked in the perturbative coeffi-
cients known up to two loops in the MS scheme [41,42].

These results imply the following scaling of the ampli-
tudes:

A± = 1 ± ã
1

Nc
± b̃

N f

N 2
c

+ c̃
1

N 2
c

+ d̃
N f

N 3
c

+ · · · , (20)

where the coefficients ã − d̃ are combinations of the coeffi-
cients a − f in Eq. (17), and are also independent of Nc and
N f , and a natural expectation is that they are O(1).

Not only the leading corrections N−1
c are, therefore, fully

anticorrelated in the ratios, but also the leading effects of
dynamical quarks, O(N f ). Note that this analysis does not
predict the sign of the different terms, i.e., the sign of the
ã − d̃ coefficients, only the (anti)-correlation between the
two isospin channels. This way, a negative sign of ã and b̃
results into an enhancement of the ratio A−/A+.

123



Eur. Phys. J. C (2020) 80 :638 Page 5 of 12 638

3.2 ’t Hooft vs. Veneziano scaling

As we will see the number of active flavours, N f , plays a rel-
evant role in the 1/Nc expansion of the K → π amplitudes.
The scaling in N f is in fact the difference between the ’t
Hooft and Veneziano limits of QCD. While the former keeps
N f constant when taking Nc → ∞, the latter keeps the ratio
N f /Nc constant. From Eq. (20), it is then clear that ã and b̃
have the same scaling in the Veneziano limit (the same holds
for c̃ and d̃). In our simulations, we will be studying the ’t
Hooft limit, since we keep N f fixed, but the quantity N f /Nc

is large (ranging from 4/3 to 2/3, depending on Nc), so its
contribution may be very significant even for naturally large
ã − d̃ coefficients.

4 �S = 1 amplitudes in Chiral Perturbation Theory

4.1 Chiral Dependence of the K → π amplitudes

The chiral dependence of the ratios in Eq.(13) can be studied
within the framework of Chiral Perturbation Theory (ChPT)
with N f = 4 active flavours. An extensive discussion of this
framework can be found in Refs. [28,46]. Here we just sum-
marize the required formulæ, and refer to those references
for details.

The weak Hamiltonian in Eq. (1) can be translated to an
effective weak Hamiltonian in terms of meson fields pre-
serving the flavour symmetries. Since the operators Q̄+ and
Q̄− transform under representations of SU (4)L of dimen-
sion 84 and 20, their ChPT counterparts must be constructed
accordingly. At leading order, there are only two terms, with
couplings g±, that need to be determined non-perturbatively:

HChPT
W = g+O+ + g−O−, (21)

with

Oσ =
∑
i jkl

cσ
i jkl F

4(U∂μU
†)i j (U∂μU †)kl , (22)

whereU is the chiral meson field, i, j, k, l are flavour indices,
and cσ

i jkl are Clebsch-Gordan coefficients (see Appendix A
in Ref. [28]).

By means of the chiral weak Hamiltonian in Eq. (21) and
the standard NLO ChPT Lagrangian, the chiral predictions
for the normalized amplitudes in Eq. (16) are found to be:

A± = g±
[

1 ∓ 3

(
Mπ

4πFπ

)2 (
log

M2
π

μ2 + Lr±(μ)

)]
, (23)

where Lr± are the NLO counterterms6. The NLO corrections
in Eq. (23) are fully anticorrelated. Extrapolating the ratios in
Eq. (13) to zero pion mass, one can determine the leading low-
energy couplings (LECs) of the chiral weak Hamiltonian:

g± = lim
Mπ→0

A±. (24)

The extracted values of g± can then be used to make pre-
dictions of other observables, such as the K → ππ decay
amplitudes.

We now turn to the analysis of the combined chiral and
Nc dependence. First, we note that Eq. (20) should hold at
any pion mass, and therefore we expect:

g± = 1 ± aχ

1

Nc
± bχ

N f

N 2
c

+ cχ

1

N 2
c

+ dχ

N f

N 3
c

+ · · · (25)

Furthermore, by comparing the chiral dependence in Eq. (23)
with the Nc scaling in Eq. (20) we can see that both Lr+ and
Lr− must be O(N 0

c ), and identical at this order. The next term
in the 1/Nc expansion for Lr± could in principle differ:

Lr± = L(0) + 1

Nc
L(1)

± + · · · . (26)

Hence, the combination of Eq. (23) with Eqs. (25,26) can be
used to do global fits including different meson masses and
values of Nc.

It will be convenient to also study the chiral and Nc depen-
dence of the product of A+A−. The reason is that the leading
chiral and Nc corrections cancel out, which leads to a more
robust chiral extrapolation. The chiral corrections for this
quantity are

A+A− = g+g−
[

1 + 3

(
Mπ

4πFπ

)2

(Lr− − Lr+)

]
, (27)

with

g+g− = 1 + α
1

N 2
c

+ β
1

N 3
c

+ . . . , (28)

Lr− − Lr+ = L(1)
− − L(1)

+
Nc

+ . . . , (29)

where α and β depend on the coefficients aχ − dχ .

4.2 Relation to K → ππ amplitudes

Once the effective couplings g± have been extracted from
the chiral extrapolations of the ratios A±, they can be used
to compute the K → ππ weak decay amplitudes. The two

6 Lr± are a combination of standard QCD NLO LECs with those asso-
ciated to higher order operators in the chiral weak Hamiltonean. See
Refs. [47] and [46] for explicit expressions.
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pions in the final state can be in a state with total isospin
I = 0 or 2:

i AI e
iδI = 〈(ππ)I |HChPT

W |K 0〉, (30)

where δI is the two-pion scattering phase. The ratio of the
two amplitudes can be calculated at leading order in ChPT
using the Hamiltonian in Eq. (21) [28,48]:

A0

A2
= 1

2
√

2

(
1 + 3

g−

g+

)
. (31)

The measured hierarchy of ∼ 22 between A0 and A2 must
then be translated into a large ratio of the couplings g±. Note
that for g+ = g− = 1, the expected large-Nc result is recov-
ered, A0/A2 = √

2. Large 1/Nc corrections in the g−/g+
ratio could therefore be the origin of the �I = 1/2 rule.

We have also derived the ChPT NLO result for the non-
degenerate case in which we send the pion mass to zero,
while keeping the kaon mass at its physical value7. As we
are forced to work in the exact GIM limit, we must also send
the charm quark mass to zero with the up quark mass. The
calculation for ms > mu = md = mc = 0 yields:

Re
A0

A2

∣∣∣
Mπ ,MD→0,Mphys

K

= 1

2
√

2

(
1 + 3

g−

g+

)

+ 17

12
√

2

(
1 + 1

17

g−

g+

)
M2

K

(4πFK )2 log

2

eff

M2
K

,

(32)

where 
eff is an unknown scale that contains information of
the NLO LECs of the effective Chiral Lagrangian and the
effective weak Hamiltonian. We note that the NLO effect
tends to enhance (reduce) the ratio for 
eff > MK (
eff <

MK ).

5 Lattice setup

5.1 Simulation and matching of sea and valence sectors

Our lattice setup is the same as the one presented in Ref. [27],
and we refer to it for details on the simulations and scale
setting. We use ensembles with N f = 4 dynamical fermions
for an SU (Nc)gauge theory, with Nc = 3−6. They have been
generated using the HiRep code [50,51]. We have chosen the
Iwasaki gauge action (following previous experience with
2+1+1 simulations [52]) and clover Wilson fermions for the
sea quarks, with the plaquette-boosted one-loop value of csw.
The simulation parameters are shown in Table 3. We find that
a separation of ≥ 10 units of Montecarlo time produces no
autocorrelation in the ratios. The lattice spacing is found to
be a ∼ 0.075 fm for all values of Nc (see also Ref. [27]). In

7 See Ref. [49] for similar calculation in N f = 3 ChPT.

Table 3 Summary of the simulation parameters of the various ensem-
bles used in this work

Ensemble Nc β csw T × L ams
0 # configs

3A10 3 1.778 1.69 36 × 20 − 0.4040 195

3A11 48 × 24 − 0.4040 81

3A20 48 × 24 − 0.4060 155

3A30 48 × 24 − 0.4070 149

3A40 60 × 32 − 0.4080 94

3B10 3 1.820 1.66 48 × 24 − 0.3915 182

3B20 60 × 32 − 0.3946 164

4A10 4 3.570 1.69 36 × 20 − 0.3725 82

4A30 48 × 24 − 0.3760 153

4A40 60 × 32 − 0.3780 55

5A10 5 5.969 1.69 36 × 20 − 0.3458 52

5A30 48 × 24 − 0.3500 39

5A40 60 × 32 − 0.3530 36

6A10 6 8.974 1.69 36 × 20 − 0.3260 35

6A30 48 × 24 − 0.3311 30

6A40 60 × 32 − 0.3340 40

addition, we have produced two ensembles with a finer lattice
spacing, a ∼ 0.065 fm, to estimate discretization effects.

In order to achieve automatic O(a) improvement8 [55]
and avoid the mixing of different-chirality operators for weak
decays, we employ maximally twisted valence quarks [56],
i.e., the mixed-action setup [57] previously used in Refs.
[53,54]. Working in twisted quark field variables, maximal
twist is ensured by tuning the untwisted bare valence mass
mv to the critical value for which the valence PCAC mass is
zero:

lim
mv→mcr

mv
pcac ≡ lim

mv→mcr

∂0〈Ai j
0 (x)P ji (y)〉

2〈Pi j (x)P ji (y)〉 = 0. (33)

The bare twisted mass parameter μ0 is tuned such that the
pion mass in the sea and valence sectors coincide, Mv

π = Ms
π .

Since twisted mass already provides O(a) improvement,
the clover improvement parameter csw can be chosen to be
an arbitrary value in the valence sector. We choose csw = 0
in the valence sector9 for this work, our main motivation
being that this minimizes the isospin breaking effects coming
from the twisted-mass action. In addition, this will allow
for a partial crosscheck of the systematics due to the use
of perturbative renormalization constants, by comparing the

8 As discussed in [53,54], there are residual O(a) cutoff effects from
virtual sea quarks, which are proportional to ams and carry coefficients
that are O(α2

s ) in perturbation theory. These effects are expected to be
numerically very small and thus irrelevant for the discussion below. It
is also worth stressing that using the one-loop value of csw will also lead
to residual effects of O(a α2

s ).
9 This differs from Ref. [27], where we picked csw = 1.69. This value
matches the one in the sea sector.
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Table 4 Summary of results for our ensembles with Iwasaki gauge
action and O(a)-improved Wilson fermions with csw = 0 in the valence
sector throughout. The value of the lattice spacing is a � 0.075 fm for
the “A” ensembles (see Ref. [27]), whereas it is a � 0.065 fm for “B”
ensembles. We provide the pion mass in the valence sector, aMv

π , and

the PCAC mass, amv
pcac. We also include the results for the ratios in

Eq. (13), and in the last column, the chiral parameter ξ ≡ M2
π/(4πFπ )2.

Moreover, ξL labels ξ corrected by finite-volume effects as explained
in the main text

Ensemble Nc aMs
π amtm

0 aμ0 aMv
π |amv

pcac| R+ R− ξ ξL

3A10 3 0.2204(21) − 0.9353 0.01150 0.2220(19) 0.0004(4) 0.611(17) 1.418(20) 0.1685(56) 0.1626(56)

3A11 0.2147(18) − 0.9353 0.01150 0.2184(13) 0.0004(4) 0.627(16) 1.389(18) 0.1520(35) 0.1504(35)

3A20 0.1845(14) − 0.9324 0.00815 0.1833(12) 0.0002(5) 0.582(29) 1.450(33) 0.1352(39) 0.1311(39)

3A30 0.1613(16) − 0.9311 0.00660 0.1607(15) 0.0002(3) 0.511(44) 1.531(50) 0.1240(35) 0.1165(35)

3A40 0.1429(12) − 0.9285 0.00534 0.1413(12) 0.0002(5) 0.554(33) 1.480(34) 0.1033(19) 0.1013(19)

3B10 3 0.1755(15) − 0.8962 0.00849 0.1761(11) 0.0001(3) 0.589(16) 1.464(19) 0.1564(40) 0.1495(40)

3B20 0.1191(9) − 0.8919 0.00440 0.1206(13) 0.0005(3) 0.489(23) 1.533(24) 0.1017(30) 0.0958(31)

4A10 4 0.2035(14) − 0.9058 0.01055 0.2043(28) 0.0010(7) 0.766(14) 1.262(17) 0.1007(36) 0.0978(36)

4A30 0.1714(8) − 0.9040 0.00797 0.1736(12) 0.0004(3) 0.699(20) 1.358(30) 0.0803(18) 0.0783(18)

4A40 0.1397(8) − 0.9030 0.00551 0.1418(7) 0.0003(2) 0.699(18) 1.379(34) 0.0612(10) 0.0605(10)

5A10 5 0.2128(9) − 0.8783 0.01191 0.2112(12) 0.0005(6) 0.824(8) 1.201(14) 0.0735(20) 0.0720(20)

5A30 0.1712(6) − 0.8768 0.00810 0.1706(10) 0.0001(4) 0.761(17) 1.274(27) 0.0585(11) 0.0573(11)

5A40 0.1331(7) − 0.8753 0.00517 0.1338(10) 0.0001(3) 0.760(22) 1.302(27) 0.0407(10) 0.0403(10)

6A10 6 0.2150(7) − 0.8562 0.01280 0.2136(9) 0.0001(3) 0.842(9) 1.170(9) 0.0611(9) 0.0601(9)

6A30 0.1689(7) − 0.8548 0.00803 0.1669(7) 0.0004(3) 0.821(12) 1.185(18) 0.0455(7) 0.0447(7)

6A40 0.1351(6) − 0.8548 0.00542 0.1352(3) 0.0000(2) 0.805(9) 1.219(8) 0.0328(3) 0.0325(3)

latter to the non-perturbative determination in Ref. [58] for
Nc = 3 (see below). Finally, we also observe that csw = 0
leads to smaller statistical errors.

In Table 4 we present our measurements for the ensembles
used in this work. We have achieved good tuning to maximal
twist, with the PCAC mass being zero within 1 or 2σ . In
addition, the valence and sea pion masses are matched also
within 1 or 2σ . The bare results for the ratios are also pre-
sented in the same table, together with the chiral parameter
ξ = M2

π/(4πFπ )2, that will be used for the chiral extrapo-
lations.

We conclude the discussion of the simulation setup by
mentioning that we will compare the new results with dynam-
ical fermions to the ones in Refs. [6,7]. Those results
used quenched simulations, with plaquette gauge action and
twisted mass fermions. The lattice spacing was a ∼ 0.093 fm
and the the pion mass was fixed at around Mπ = 550 − 590
MeV for Nc = 3 − 8 and 17. In this work, we perform a
reanalysis of these quenched data.

5.2 Comments on systematics

We conclude this section by discussing the systematic errors
that can affect our results.

We start with finite-volume effects. Our ensembles have
Mπ L > 3.8 in all cases so we expect finite-volume effects
to be small, and suppressed as 1/Nc. Still, we find that for

the observable ξ they can be of O(1%) and thus we correct
for them, as explained in Ref. [27], following Refs. [59,60].

Since BK and R̄+ differ by a volume-independent propor-
tionality factor, we can use the results in Ref. [61], where the
finite-volume effects of BK have been calculated. In addi-
tion, it is known that the finite-volume and chiral corrections
of R̄+ and R̄− are fully anticorrelated [46]. Thus, we find:

R̄±(L) = R̄±
[

1 ± 6
√

2πξ
e−Mπ L

(Mπ L)3/2 (Mπ L − 4)

]
. (34)

The correction for these quantities is numerically negligi-
ble for our ensembles. While additional finite-volume effects
could be present (see Ref. [60]) we observe that a factor of
two increase or decrease of these finite-volume corrections
alters our results well within the statistical precision.

Concerning discretization effects, we have included the
results from two ensembles with a finer lattice spacing at
Nc = 3. Assuming O(a) improvement, we expect that the
finer lattice spacing should reduce by ∼ 30% the O(a2) dis-
cretization effects. We observe no significant difference for
these data points in Fig. 6, so we see no sign of sizeable dis-
cretization errors within our statistical uncertainty. We stress
however that a more extensive study is needed for a robust
estimate of the discretization error.

The largest systematic error that we have found is related
to the renormalization constants, which we have estimated
by one-loop perturbation theory. We have first compared the
non-perturbative renormalization constants of Ref. [58] to the
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one-loop perturbation theory results in their setup (they used
csw = 0). The difference is roughly ∼ 5% for Nc = 3. On
the other hand, we have computed the ratios using csw = 1.69
in the valence sector for the 3A10 ensemble. Using the per-
turbative renormalization constants for this new value of csw

we get a result that differs from our csw = 0 result by roughly
20% in the ratio. Since it is unlikely that this effect can be
accounted for by discretization effects, given the tests in a
finer lattice mentioned above, we conclude that there must be
significant non-perturbative effects on renormalization con-
stants for the larger csw (the perturbative one-loop corrections
are also significantly larger for the larger value of csw). This
is a large error, and probably a conservative estimate, but it
is comparable to the statistical error we achieve, as it will be
seen later.

6 Results

6.1 Nc scaling of K → π amplitudes

The physical amplitudes A± can be obtained, as explained in
Eq. (16), from the bare ratios in Table 4, and the renormal-
ization coefficients in Tables 1 and 2. As explained above, a
rigorous way to isolate the (anti-)correlated contributions to
the ratios consists on taking the half-sum and half-difference
of the ratios. By doing so, the two contributions can be fitted
independently since:

A− + A+

2
= 1 + c̃

1

N 2
c

+ d̃
N f

N 3
c

+ . . . ,

A− − A+

2
= −ã

1

Nc
− b̃

N f

N 2
c

+ . . . .

(35)

In the following, we compare the results of the fits to
Eq. (35) in three different scenarios:

1. Quenched results (N f = 0) at a heavy pion mass ∼ 570
MeV.

2. Dynamical results (N f = 4) at a heavy pion mass ∼ 560
MeV (ensembles A10).

3. Dynamical results (N f = 4) at a lighter pion mass ∼ 360
MeV (ensembles A40).

The results for the coefficients ã − d̃ for the three scenarios
are presented in Table 5 and Fig. 4. The coefficients are all
of O(1) and therefore of natural size. Importantly the sign
of the ã and b̃ coefficients is the same and negative. This
implies both terms contribute to reduce the A+ amplitude
and enlarge, in a correlated way, the amplitude A−. The fact
that b̃, d̃ ∼ O(1) implies a very large unquenching effect in
the large-Nc scaling, and the ratio A−/A+, which is however
compatible with the expansion in Eq. (35). Specifically, it is

Table 5 Summary of results for the 1/Nc fits to the half-sum and half-
difference of the amplitudes A±. Errors are only statistical

Case Mπ ã b̃ χ2/d.o.f.

Half-difference

N f = 0 570 MeV − 1.55(2) — 8.8/6

N f = 4 560 MeV − 1.03(13) − 1.44(13) 6.6/2

N f = 4 360 MeV − 1.49(15) −1.32(18) 0.3/2

Half-sum

N f = 0 570 MeV 2.1(1) — 3.5/6

N f = 4 560 MeV 1.2(3) 2.2(3) 1.3/2

N f = 4 360 MeV 2.4(4) 1.6(4) 3.2/2

due to b̃ and d̃ being absent for N f = 0. The other two coef-
ficients, ã and c̃, are comparable in size in the quenched and
dynamical theories. We note however that uncertainties only
include statistical errors, and relative discretization errors and
the systematics of the perturbative renormalization constants
may be significant. Finally, we observe that the mass depen-
dence for the N f = 4 results seems to affect mostly the
coefficient ã, which is consistent with the chiral dependence
in Eq. (23), and goes also in the direction of enhancing the
ratio A−/A+ towards the chiral limit.

6.2 Kaon B-parameter (BK )

The kaon B-parameter, BK , is defined from the matrix ele-
ment of the �S = 2 operator that mediates neutral kaon
oscillations at physical kinematics:

〈K̄ 0|O�S=2(μ)|K 0〉 = 8

3
f 2
K M2

K B̄K (μ). (36)

It is customary to quote the renormalization group indepen-
dent (RGI) version, labelled as B̂K . Its value at the physical
point has been computed accurately in N f = 2, 2 + 1, and
2+1+1 simulations [58,62–66] (see Ref. [67] for a review).

In our setup, B̂K coincides with the renormalized ratio R̄+
up to a normalization. Specifically, we have

B̂K = 3

4
ĉ+(a−1)R̄+ (37)

where ĉ+ can be read off Table 1. There are two essential
differences in our setup: all meson masses are degenerate,
in particular MK = Mπ , and we have an active light charm
quark. Both can significantly affect the value of B̂K .

We show our results in Fig. 5. We observe a very signifi-
cant Nc dependence of B̂K for N f = 4, and a much milder
one for N f = 0. For Nc = 3, the quenched result agrees with
the standard value of B̂K , while the N f = 4 result is about
25% smaller. We have included as bands the Buras-Bardeen-
Gerard (BBG) Dual QCD prediction from Ref. [20], using
inputs on meson masses from our own simulations in both
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Fig. 4 Half-sum and half-difference of the amplitudes A± as a func-
tion of N−1

c for three different cases: (i) quenched results from Ref. [6]
in blue, (ii) new dynamical results at a pion similar to the quenched case

(red), and (iii) dynamical results at a lighter pion mass (orange). The fit
results are shown in Table 5. Error bars include only statistical errors
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Fig. 5 Lattice results for B̂K , defined in Eq. (37), in the case of N f = 0
(see Refs. [6,7]), and N f = 4 (this work). Error bars are only statistical
errors. We also include the predictions from Ref. [20], where the band
indicates the values obtained when varying the involved matching scale
M from 600 to 1000 MeV

cases — quenched and dynamical. We find that our results
are reasonably compatible with the BBG prediction, in par-
ticular regarding the suppression of B̂K in the presence of a
light charm.

To conclude this subsection, we can use the scaling in Nc

to infer a value of B̂K with three active flavours and quasi-
physical kinematics. For this, we use the coefficients ã − d̃
in Table 5 for the case of N f = 4 and Mπ = 560 MeV, and
so predict the value of A+ with Nc = 3 and N f = 3 at the
same value of the pion mass, degenerate with the kaon. We
can the get the RGI value B̂K as in Eq. (37), extracting R̄+
and using the ĉ+(a−1) for three-flavour QCD 10. We find

B̂K
∣∣
MK=Mπ

= 0.67(2)stat(6)Z+(3)fit , (38)

10 The required parameters for Nc = 3, N f = 3 are k+(MW ) = 1.038,
U+(a−1, MW ) = 0.851, and ĉ+(a−1) = 0.841. In the evaluation of
ĉσ (a−1) we have used 
MS = 341 MeV from Ref. [45].

including statistical error, and a ∼ 10% error due to the sys-
tematics of the renormalization constants. We also quote a
“fit” error that we estimate by using the Nc scaling derived
from a direct fit of the half-sum and difference of R̄± instead
of A±.

We have not found results in the literature for the degen-
erate case that we can compare to. On the other hand, ChPT
relates the value of B̂K in the degenerate case, to the quasi-
physical (QP) situation with Mπ = 0 and MK at its physical
value:

B̂QP
K = B̂K

∣∣
MK=Mπ

[
1 + 2

3

(
MK

4πFK

)2

log



BK
eff

MK

]
, (39)

where 

BK
eff labels an unknown scale that parametrizes the

effect of the unknown LECs. For 

BK
eff > MK , B̂QP

K is larger
than B̂K and could be compatible with the existing results
at the physical point from N f = 2 + 1, Nc = 3 simulations
[58,62–66].

6.3 Extraction of the effective couplings g±

The main goal of this work is to compute the ratio g−/g+ by
extrapolating A± to the chiral limit. For the required chiral
extrapolation, we follow the same strategy as in Ref. [48]. We
extract g+ from a chiral fit to A+, and the product g+g− from
that of the product A+A− . The ratio can then be evaluated
as

g−

g+ ≡ (
g−g+) × 1

(g+)2 . (40)

This approach results in a milder chiral extrapolation, that
will hopefully introduce a smaller systematic error.

We have performed two kinds of fits. In Fit 1, we use
all data points with Nc = 3 − 6 in a simultaneous chiral
and Nc fit using Eqs. (23) and (27), incorporating the 1/Nc
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Table 6 Results for Fit 1: the
simultaneous chiral and Nc fits
for A+ and A+A−. Errors are
only statistical

Fit 1 for A+
aχ N f bχ + cχ N f dχ L(0) L(1)

+ χ2/d.o.f.

− 2.2(6) − 3(4) 7(7) 2.4(8) − 11(4) 12.0/11

Fit 1 for A+A−

α β L(1)
− − L(1)

+ χ2/d.o.f.

1.6(4) − 7.2(9) 1.4(4) 26.7/13

Table 7 Results for Fit 2: the chiral fit at Nc = 3 for A+ and A+A−.
Errors are only statistical

Fit 2 for A+
g+ Lr+ χ2/d.o.f.

0.190(27) − 1.1(7) 4.9/5

Fit 2 for A+A−
g+g− Lr− − Lr+ χ2/d.o.f.

0.80(6) 0.8(2) 6.2/5

expansion of the couplings as in Eqs. (25,26,29). In Fit 2, we
fit using only the data with Nc = 3, and extract the effective
couplings for this theory. This way, for Nc = 3 we find:

Fit 1: g+ = 0.187(21), g+g− = 0.91(4),

Fit 2: g+ = 0.190(27), g+g− = 0.80(6).
(41)

The complete results of these fits are shown in Tables 6, and
7, and also in Fig. 6.

From these results, we obtain for the ratio of couplings at
Nc = 3:

g−

g+

∣∣∣∣
fit 1

= 26(6),
g−

g+

∣∣∣∣
fit 2

= 22(5), (42)

where errors are only statistical, but correlations are taken
into account.

6.4 K → ππ amplitudes in ChPT

Using the result for the ratio of couplings in Eq. (42), and the
NLO ChPT prediction in Eq. (32), we can obtain an indirect
result for the ratio of isospin amplitudes in the K → ππ

decay for Nc = 3. In Fig. 7, we show this prediction as a
function of an unknown effective scale 
eff . This prediction,
valid for Mπ = MD = 0 and physical MK , shows small
NLO effects in a wide range of values of the effective scale.

We are now in the position to quote a final result for the
ratio of isospin amplitudes:

Re
A0

A2

∣∣∣∣
N f =4

= 24(5)stat(4)fit(5)Z±(3)NLO, (43)

where the central value comes from the fit 2 result in Eq. (42).
In the previous equation, the various error sources originate
as follows : (i) statistical error, (ii) systematic error from the
difference between fit 1 and 2 in Eq. (42), (iii) a 20% error
from the renormalization constants — see Sect. 5.2 —, and
(iv) a 10% error from the NLO effects — see Fig. 7. Com-
bining all error sources in quadrature results in a ∼ 30%
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Fig. 6 Chiral extrapolation of A+ and the product A+A−. The data
points are also shown in Table 4. Empty squares for Nc = 3 indicate a
finer lattice spacing. Solid lines indicate a simultaneous chiral and Nc

fit as in Eq. (23). Dashed lines represent the chiral extrapolation of the
data points for Nc = 3 following Eqs. (23) and (27). Errors are only
statistical
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Fig. 7 NLO ChPT prediction (in red) for the ratio of K → ππ isospin
amplitudes as a function of the NLO LEC, 
eff . We use the input of
Fit 2 in Eq. (42). This prediction is valid for Mπ = MD = 0, and MK
at its physical value. The shaded area represents the statistical error
associated to the ratio of couplings — see Eq. (42). As a guideline, we
also show the experimental value for the ratio of amplitudes (in blue)

uncertainty on the total result, which is dominated by sys-
tematics. We also stress that this is a result in the theory with
a light charm quark. Interestingly, this indirect computation
yields a value compatible with the experimental result for the
�I = 1/2 enhancement.

7 Conclusions

We have presented the first non-perturbative study of the
scaling of �S = 1 weak amplitudes with the number
of colours, Nc = 3 − 6, in a theory with four degen-
erate light flavours N f = 4. These results have been
obtained from dynamical simulations with clover Wilson
fermions, at a � 0.075 fm and a � 0.065 fm and pion
masses in the range 360 − 570 MeV. We have analysed
the K → π amplitudes A±, mediated by the two current-
current operators Q± of the �S = 1 weak Hamiltonian in
Eq. (1).

The diagrammatic analysis of the large-Nc scaling of these
observables presented in Sect. 3 allows to classify the sub-
leading Nc corrections, and demonstrates the anticorrela-
tion of the leading O(1/Nc) and O(N f /N 2

c ) contributions
in the A± amplitudes. Our numerical results confirm this
expectation and show that these corrections are naturally
large in the Veneziano scaling limit, i.e., the coefficients of
both corrections are O(1). They can nevertheless explain the
large enhancement of the ratio A−/A+ for Nc = 3 with
respect to the Nc → ∞ limit. This involves an unprece-
dentedly large unquenching effect in this ratio, that is nev-
ertheless compatible with natural size O(N f /N 2

c ) correc-
tions.

The amplitudes A± in the chiral limit can be matched to
their ChPT counterparts, which depend on the leading low-

energy couplings, g±, of the chiral effective weak Hamilto-
nian. From a chiral extrapolation of the combinations A+ and
A+A−, we have then extracted the couplings g±, which are
finally used to predict in ChPT the ratio of K → (ππ)I=0,2

amplitudes. In particular, we have obtained an indirect pre-
diction of the ratio of isospin amplitudes, A0/A2, by this
procedure which seems to largely account for the elusive
“�I = 1/2 rule”. Our estimate for this ratio in the theory
with a light charm is

Re
A0

A2

∣∣∣∣
N f =4

= 24(5)stat(7)sys, (44)

which suggests that the enhancement may indeed be largely
dominated by intrinsic QCD effects.
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