MOLECULAR ECOLOGY

Genomic footprints of an old affair: SNP data reveal historical hybridization and the subsequent evolution of reproductive barriers in two recently diverged grasshoppers with partly overlapping distributions

Journal:	Molecular Ecology
Manuscript ID	MEC-19-1360.R1
Manuscript Type:	Original Article
Date Submitted by the Author:	10-May-2020
Complete List of Authors:	Tonzo, Vanina; Estacion Biologica de Donana CSIC, Integrative Ecology Papadopoulou, Anna; University of Cyprus, Department of Biological Sciences Ortego, Joaquin; Estacion Biologica de Donana CSIC, Integrative Ecology
Keywords:	coalescent-based simulations, ddRAD-seq, introgression, reproductive isolation, Hybridization
	ואסומנוסוו, האסרומוצמנוסוו

- 1 Genomic footprints of an old affair: SNP data reveal historical hybridization and
- 2 the subsequent evolution of reproductive barriers in two recently diverged
- 3 grasshoppers with partly overlapping distributions
- 4
- 5 Vanina Tonzo¹, Anna Papadopoulou², Joaquín Ortego¹
- 6
- 7 ¹Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC); Avda.
- 8 Américo Vespucio 26 41092; Seville, Spain
- 9 ²Department of Biological Sciences, University of Cyprus; 1 Panepistimiou Av. 2109;
- 10 Nicosia, Cyprus
- 11
- 12 Author for correspondence:
- 13 Vanina Tonzo
- 14 Estación Biológica de Doñana, EBD-CSIC,
- 15 Avda. Américo Vespucio 26, E-41092 Seville, Spain
- 16 E-mail: vaninatonzo@gmail.com
- 17 Phone: +34 954 232 340

18

19

Page 2 of 105

20 Abstract

21 Secondary contact in close relatives can result in hybridization and the admixture of 22 previously isolated gene pools. However, after an initial period of hybridization, 23 reproductive isolation can evolve through different processes and lead to the 24 interruption of gene flow and the completion of the speciation process. *Omocestus* 25 minutissimus and O. uhagonii are two closely related grasshoppers with partially 26 overlapping distributions in the Central System mountains of the Iberian Peninsula. To 27 analyse spatial patterns of historical and/or contemporary hybridization between these 28 two taxa and understand how species boundaries are maintained in the region of 29 secondary contact, we sampled sympatric and allopatric populations of the two species 30 and obtained genome-wide SNP data using a restriction site-associated DNA 31 sequencing approach. We used Bayesian clustering analyses to test the hypothesis of 32 contemporary hybridization in sympatric populations and employed a suite of 33 phylogenomic approaches and a coalescent-based simulation framework to evaluate 34 alternative hypothetical scenarios of interspecific gene flow. Our analyses rejected the 35 hypothesis of contemporary hybridization but revealed past introgression in the area 36 where the distributions of the two species overlap. Overall, these results point to a 37 scenario of historical gene flow after secondary contact followed by the evolution of 38 reproductive isolation that currently prevents hybridization among sympatric 39 populations. 40

41 KEYWORDS: coalescent-based simulations, ddRAD-seq, hybridization, introgression,
42 reproductive isolation

44 1. INTRODUCTION

45

46 Elucidating the processes that generate and maintain species diversity is a main 47 ambition of evolutionary research (Graham, Ron, Santos, Schneider, & Moritz, 2004; 48 Grant, Grant, Markert, Keller, & Petren, 2004; Fitzpatrick, Fordyce, & Gavrilets, 2009). The formation and persistence of species often depends on the evolution of reproductive 49 50 isolation mechanisms that prevent interbreeding with other recently diverged taxa or 51 closely related lineages (Marques, Draper, Riofrio, & Naranjo, 2014; Soltis & Soltis, 52 2009). In the context of allopatric populations, long-term geographic isolation can 53 facilitate the development of reproductive barriers through genetic drift or divergent 54 selection pressures, which can ultimately lead to population divergence and speciation 55 (Hoskin, Higgie, McDonald, & Moritz, 2005; Maguilla, Escudero, Hipp, & Luceno, 56 2017; Schenk, Kontur, Wilson, Noble, & Derryberry, 2018). However, lineages or 57 species often come into secondary contact and, if barriers to gene flow are lacking or 58 incomplete, hybridization will take place. This phenomenon can have different 59 outcomes with important evolutionary consequences (Abbott et al., 2013; Mallet, 2005; 60 Mayr, 1963). At one extreme, barriers to gene exchange may break down upon secondary contact and lead to the collapse of formerly distinct species in a hybrid 61 62 swarm characterized by extensive admixture of parental genotypes (i.e., speciation 63 reversal or lineage fusion; Kearns et al., 2018; Taylor et al., 2006). At the opposite 64 extreme, reduced fitness of hybrids and strong selection against them will favour the 65 rapid evolution of barriers to gene flow (i.e., prezygotic isolation), which can ultimately 66 lead to total reproductive isolation and culminate in the completion of the speciation process (i.e., reinforcement of isolation; Butlin, 1995; Dobzhansky, 1937; Lemmon & 67 68 Juenger, 2017; Servedio & Kirkpatrick, 1997). An intermediate scenario is the

formation of tension zones with a variable geographical width determined by the
equilibrium between dispersal and selection against hybrids (Barton & Hewitt, 1985;
Key, 1968).

Hybrid zones have been defined as "windows on the evolutionary processes" 72 73 (Harrison, 1990; Hewitt, 1988) and their study through space (Barton & Hewitt, 1989; 74 Howard, Waring, Tibbets, & Gregory, 1993) and time (Britch, Cain, & Howard, 2001; 75 Buggs, 2007) have provided important insights into the evolution of reproductive 76 isolation and the formation of new species. Past climate changes, such as Pleistocene 77 glacial cycles, have resulted in recurrent range expansions and contractions in many 78 organisms, often putting into geographic contact closely related species and linages that 79 had remained geographically isolated for large periods of time. Alpine and montane species represent a paradigmatic example of species experiencing dramatic 80 81 distributional shifts in response to Pleistocene glacial cycles, descending to lower 82 altitudes and expanding their distributions in cold periods and shrinking their ranges to 83 high elevation areas during interglacials (Schmitt, 2009; Seddon, Santucci, Reeve, & Hewitt, 2001; Tzedakis, Emerson, & Hewitt, 2013). Under these conditions, closely 84 85 related species that evolved in isolation during interglacial periods can recurrently come 86 into secondary contact and hybridize. In other cases, interbreeding species share a large 87 portion of their respective ranges but only hybridize in certain areas with specific 88 environmental conditions or scattered patches where they meet, forming a mosaic 89 hybrid structure rather than a well-defined cline limited to narrow contact zones (Barton 90 & Hewitt, 1985). Independently of their nature and origin, contact zones offer the 91 opportunity to study in real time the process of reproductive isolation or, if completed, 92 to obtain indirect evidence about when (tempo) and how (modes) it might have evolved. 93 However, testing alternative hypotheses about the evolution of reproductive isolation

94	can be extremely challenging, making necessary the integration of multiple sources of
95	analytical evidence (e.g., phylogenetics and population genetics) and the development
96	of model-based approaches considering the biogeographical context of gene flow
97	(Payseur & Rieseberg, 2016). The high power of genomic data to resolve historical
98	events of hybridization and test complex scenarios of gene flow in virtually any
99	organismal model and biogeographical setting has exponentially increased our capacity
100	to quantify the magnitude and timing of interspecific gene flow and distinguish among
101	alternative demographic scenarios (e.g., de Manuel et al., 2016; Lohse, Clarke, Ritchie,
102	& Etges, 2015; Ortego, Gugger, & Sork, 2018).
103	Here, we use as a study system two recently diverged grasshopper species with
104	partly overlapping distributions to illustrate the potential of integrating different
105	analytical approaches for inferring the tempo and mode of evolution of reproductive
106	isolation (or its lack thereof) and gain insights into the speciation process. Grasshoppers
107	(Orthoptera: Caelifera) are an interesting system to study hybridization and its
108	evolutionary consequences, as many species have very recently evolved in allopatry
109	(Mayer, Berger, Gottsberger, & Schulze, 2010; Ragge & Reynolds, 1998) and present
110	incomplete barriers to gene flow (e.g., Saldamando, Tatsuta, & Butlin, 2005). In turn,
111	their distributions often overlap across large geographical areas (Hill, 2015), show a
112	mosaic distribution (Rohde et al., 2017) or have recurrently come into secondary contact
113	as a consequence of range shifts driven by past climate changes (Bridle, Baird, &
114	Butlin, 2001), providing ideal biogeographic scenarios for the study of hybridization
115	and the evolution of reproductive isolation (Butlin, Ritchie, & Hewitt, 1991; Virdee &
116	Hewitt, 1994). In this study we focus on two grasshopper species of the subgenus
117	Dreuxius (genus Omocestus), a species complex comprised of nine taxa distributed in
118	the Iberian Peninsula and Northwestern Africa (Cigliano, Braun, Eades, & Otte, 2019;

119	García-Navas, Noguerales, Cordero, & Ortego, 2017). Most species of this complex are
120	distributed in allopatry, isolated at high elevation in different mountain ranges. One
121	exception are the taxa Omocestus minutissimus (Brullé 1832) and O. uhagonii (Bolivar
122	1876), which show partially overlapping distributions in the Central System Mountains
123	from the Iberian Peninsula. As the rest of species of the subgenus, both taxa are
124	brachypterous, present a low dispersal capacity, and have a similar annual life cycle,
125	with an adult breeding phase from the end of July to the beginning of October
126	(Clemente, Garcia, & Presa, 1991). The two species are predominantly graminivorous
127	and occupy open habitats tightly linked to cushion and thorny shrub formations that
128	they use as refuge (Clemente et al., 1991). However, both species differ on the extent of
129	their distributions and elevational ranges. While O. minutissimus presents a wider
130	distribution, with patchy populations distributed in eastern and central Iberia from sea
131	level to 2,500 m of elevation, O. uhagonii is restricted to the Central System and
132	altitudes over 1,600-1,800 m (Figure 1). The two taxa partially co-occur across the
133	distribution range of O. uhagonii, with several sympatric populations at high elevations
134	in which adult individuals of the two species co-exist at high numbers in the same
135	microhabitats (J. Ortego, personal observation). Therefore, this system provides an
136	interesting case study to analyse the presence of contemporary and past hybridization
137	and understand the maintenance of species boundaries in two closely related taxa that
138	might have weak or recently evolved reproductive isolation mechanisms.
139	We extensively sampled sympatric and allopatric populations of O. minutissimus
140	and O. uhagonii across their respective distribution ranges and genotyped them via
141	restriction-site-associated DNA sequencing (ddRAD-seq; (Peterson, Weber, Kay,
142	Fisher, & Hoekstra, 2012) to infer historical and contemporary interspecific gene flow
143	and elucidate the evolutionary outcomes of such processes. Specifically, we first used

144	Bayesian clustering analyses to determine the genetic ancestry of individuals and test
145	the hypothesis of contemporary hybridization in sympatric populations of the two taxa.
146	Second, we employed a suite of phylogenomic approaches and a coalescent-based
147	simulation framework to evaluate alternative scenarios of historical hybridization and
148	estimate the timing, magnitude and directionality of interspecific gene flow. Our
149	genomic data rejected the hypothesis of contemporary hybridization but revealed the
150	presence of past genetic introgression, pointing to a scenario of historical hybridization
151	after secondary contact followed by the evolution of reproductive barriers that
152	nowadays prevent gene flow among sympatric populations of the two species.
153	
154	2 MATERIALS AND METHODS
155	2.1. Population sampling
156	Between 2011 and 2015, we sampled Omocestus minutissimus (88 individuals, 15
157	populations) and O. uhagonii (64 individuals, 10 populations) from a total of 25
158	populations that cover the entire distribution range of the two taxa (Table S1; Figure 1).
159	Eleven sampling populations of O. minutissimus are located in central Iberia and partly
160	overlap with the distribution range of O. uhagonii (hereafter referred as sympatric
161	populations). Among these populations of O. minutissimus, five were strictly sympatric
162	with O. uhagonii and the two species were collected from the same localities (Table S1;
163	Figure 1). The rest of the sampled populations of O. minutissimus are located in eastern
164	Iberia and separated >300 km from the nearest population of O. uhagonii (hereafter
165	referred as allopatric populations). We stored specimens in 2 ml vials with 96% ethanol
166	and preserved them at -20° C until needed for DNA extraction. Detailed information on
167	sampling populations is presented in Table S1.
168	

169 2.2. Genomic library preparation and data processing

170	We used NucleoSpin Tissue kits (Macherey-Nagel, Düren, Germany) to extract and
171	purify total genomic DNA from a hind leg of each individual. We processed genomic
172	DNA in house following the double-digest restriction-site associated DNA procedure
173	(ddRADseq) described in Peterson et al. (2012), with some minor modifications
174	detailed in Lanier, Massatti, He, Olson, & Knowles (2015). Briefly, we digested DNA
175	with the restriction enzymes EcoRI and MseI (New England Biolabs, Ipswich, MA,
176	USA) and ligated Illumina adaptors including unique 7-base-pair barcodes to the
177	digested fragments of each individual. We pooled ligation products into four different
178	libraries, size selected for fragments between 475 and 580 bp using a Pippin Prep
179	machine (Sage Science, Beverly, MA, USA), and amplified them by PCR with 10-12
180	cycles using the iProof TM High-Fidelity DNA Polymerase (BIO-RAD, Veenendaal, The
181	Netherlands). We sequenced the libraries in single-read 151-bp lanes on an Illumina
182	HiSeq2500 platform at The Centre for Applied Genomics (Hospital for Sick Children,
182 183	HiSeq2500 platform at The Centre for Applied Genomics (Hospital for Sick Children, Toronto, ON, Canada).
183	Toronto, ON, Canada).
183 184	Toronto, ON, Canada). We demultiplexed raw sequences using <i>process_radtags</i> , a program distributed
183 184 185	Toronto, ON, Canada). We demultiplexed raw sequences using <i>process_radtags</i> , a program distributed as part of the STACKS pipeline (Catchen, Hohenlohe, Bassham, Amores, & Cresko,
183 184 185 186	 Toronto, ON, Canada). We demultiplexed raw sequences using <i>process_radtags</i>, a program distributed as part of the STACKS pipeline (Catchen, Hohenlohe, Bassham, Amores, & Cresko, 2013). We only retained reads with Phred scores ≥ 10 (using a sliding window of 15%),
183 184 185 186 187	 Toronto, ON, Canada). We demultiplexed raw sequences using <i>process_radtags</i>, a program distributed as part of the STACKS pipeline (Catchen, Hohenlohe, Bassham, Amores, & Cresko, 2013). We only retained reads with Phred scores ≥ 10 (using a sliding window of 15%), no adaptor contamination, and unambiguous barcode and restriction cut sites. We
183 184 185 186 187 188	 Toronto, ON, Canada). We demultiplexed raw sequences using <i>process_radtags</i>, a program distributed as part of the STACKS pipeline (Catchen, Hohenlohe, Bassham, Amores, & Cresko, 2013). We only retained reads with Phred scores ≥ 10 (using a sliding window of 15%), no adaptor contamination, and unambiguous barcode and restriction cut sites. We checked read quality in FASTQC v.0.11.5
183 184 185 186 187 188 189	Toronto, ON, Canada). We demultiplexed raw sequences using <i>process_radtags</i> , a program distributed as part of the STACKS pipeline (Catchen, Hohenlohe, Bassham, Amores, & Cresko, 2013). We only retained reads with Phred scores ≥ 10 (using a sliding window of 15%), no adaptor contamination, and unambiguous barcode and restriction cut sites. We checked read quality in FASTQC v.0.11.5 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and trimmed sequences to
183 184 185 186 187 188 189 190	Toronto, ON, Canada). We demultiplexed raw sequences using <i>process_radtags</i> , a program distributed as part of the STACKS pipeline (Catchen, Hohenlohe, Bassham, Amores, & Cresko, 2013). We only retained reads with Phred scores ≥ 10 (using a sliding window of 15%), no adaptor contamination, and unambiguous barcode and restriction cut sites. We checked read quality in FASTQC v.0.11.5 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and trimmed sequences to 130 bp using SEQTK script (Heng Li, https://github.com/lh3/seqtk) in order to remove
183 184 185 186 187 188 189 190 191	Toronto, ON, Canada). We demultiplexed raw sequences using <i>process_radtags</i> , a program distributed as part of the STACKS pipeline (Catchen, Hohenlohe, Bassham, Amores, & Cresko, 2013). We only retained reads with Phred scores ≥ 10 (using a sliding window of 15%), no adaptor contamination, and unambiguous barcode and restriction cut sites. We checked read quality in FASTQC v.0.11.5 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and trimmed sequences to 130 bp using SEQTK script (Heng Li, https://github.com/lh3/seqtk) in order to remove low-quality reads near the 3' ends. As an additional quality-filtering step, we used

194	considering parameter values for clustering threshold of sequence similarity (W_{CLUST} =
195	0.85), minimum coverage depth ($d = 5$), maximum number of individuals with shared
196	heterozygous sites ($maxSH = p.10$), and maximum number of polymorphic sites in a
197	final locus ($maxSNPs = 20$) based on suggestions from the literature (Eaton, 2014;
198	Eaton & Ree, 2013; Takahashi, Nagata, & Sota, 2014). Finally, we generated final
199	datasets for subsequent analyses discarding loci that were not present in at least ~ 25 %
200	of the samples ($minCov = \sim 25$ %).
201	
202	2.3. Genetic structure and hybrid identification
203	We identified hybrids and introgressed individuals between O. minutissimus and O.
204	uhagonii using the Bayesian clustering methods implemented in the programs
205	FASTSTRUCTURE v.1.0 (Raj, Stephens, & Pritchard, 2014) and STRUCTURE v.2.3.4
206	(Pritchard, Stephens, & Donnelly, 2000). First, we used the highly efficient algorithm
207	implemented in FASTSTRUCTURE to analyse the entire dataset including all populations.
208	Second, we used both FASTSTRUCTURE and classic STRUCTURE to perform more detailed
209	analyses focused on the Central System, the region where the ranges of the two taxa
210	partly overlap, with some populations living in sympatry and, thus, the two species
211	currently have the opportunity to hybridize. We ran FASTSTRUCTURE analyses using a
212	simple prior, considering a convergence criterion of 1×10^{-7} and conducting 25
213	independent runs for each value of K (from $K = 1$ to $K = 10$). Following Raj et al.
214	(2014), we used the <i>chooseK.py</i> script to assess model complexity by estimating the
215	metrics K^*_{o} , the value of K that maximizes log-marginal likelihood lower bound
216	(LLBO) of the data, and K^*_{ε} , the smallest number of model components explaining at
217	least 99% of cumulative ancestry contribution. We plotted individual co-ancestry
218	coefficients for the most likely K value using DISTRUCT v.1.1 (Rosenberg, 2004). We

219	ran STRUCTURE assuming correlated allele frequencies and admixture, and without using
220	prior population information (Hubisz, Falush, Stephens, & Pritchard, 2009; Pritchard et
221	al., 2000). We conducted 15 independent runs for each value of K (from $K = 1$ to $K =$
222	10) to estimate the optimal number of genetic clusters with 200,000 MCMC cycles,
223	following a burn-in step of 100,000 iterations. We used STRUCTURE HARVESTER (Earl &
224	vonHoldt, 2012) to assess the number of genetic clusters that best describes our data
225	according to log probabilities of the data $(LnPr(X K)$ for each value of K (Pritchard et
226	al., 2000) and the ΔK method (Evanno, Regnaut, & Goudet, 2005). We used CLUMPP
227	v.1.1.2 and the Greedy algorithm to align multiple runs of STRUCTURE for the same K
228	value (Jakobsson & Rosenberg, 2007) and DISTRUCT to visualize as bar plots the
229	individual's probabilities of population membership.
230	
231	2.4. Phylogenomic analyses and inference of historical hybridization
	2.4. Phylogenomic analyses and inference of historical hybridization To determine the presence of historical hybridization (i.e., introgression), we employed
231	
231 232	To determine the presence of historical hybridization (i.e., introgression), we employed
231 232 233	To determine the presence of historical hybridization (i.e., introgression), we employed four-taxon ABBA/BABA tests based on the <i>D</i> -statistic (Durand, Patterson, Reich, &
231 232 233 234	To determine the presence of historical hybridization (i.e., introgression), we employed four-taxon ABBA/BABA tests based on the <i>D</i> -statistic (Durand, Patterson, Reich, & Slatkin, 2011) and TREEMIX analyses (Pickrell & Pritchard, 2012). Assuming that the
231 232 233 234 235	To determine the presence of historical hybridization (i.e., introgression), we employed four-taxon ABBA/BABA tests based on the <i>D</i> -statistic (Durand, Patterson, Reich, & Slatkin, 2011) and TREEMIX analyses (Pickrell & Pritchard, 2012). Assuming that the sister taxa P1 and P2 diverged from P3 and an outgroup species O, the <i>D</i> -statistic is

239 P1 (64 individuals, from localities COVA, PESQ, NEGR, AVIL, PARA, GRED, PICO,

- 240 SERR, MIJA, CASI, and MALA; hereafter, MS), allopatric populations of *O*.
- 241 *minutissimus* to P2 (24 individuals, from localities MONT, PORT, ESPU, and TEJE;
- hereafter, MA), and populations of O. uhagonii to P3 (64 individuals from all sampling
- 243 localities for this taxon; hereafter, US). Note that the sympatric and allopatric

244	populations of O. minutissimus are located in the central and west portions of the
245	species distribution range, respectively, and correspond to the two well-defined genetic
246	clusters identified by Bayesian clustering analyses for this taxon (see Results section
247	and Figure 1). We used as the outgroup (O) the taxon O. antigai (Bolívar, 1897), a
248	species also belonging to the subgenus Dreuxius (Cigliano et al., 2019; García-Navas et
249	al., 2017). Specifically, we used sequences from 94 individuals of this species available
250	at NCBI Sequence Read Archive (SRA) under BioProject PRJNA543714 (Tonzo,
251	Papadopoulou, & Ortego, 2019). We performed ABBA/BABA tests in PYRAD and used
252	1,000 bootstrap replicates to obtain the standard deviation of the D-statistic (Eaton &
253	Ree, 2013; e.g., Huang, 2016).
254	We also analysed the potential presence of introgression and determined the
255	direction of gene flow with TREEMIX v.1.12 (Pickrell & Pritchard, 2012). We used
256	TREEMIX to construct a tree-based model of population genetic relationships and infer
257	events of genetic admixture using SNP frequency data. TREEMIX fits a population graph
258	(i.e., a phylogenetic tree that incorporates admixture) on the basis of allele frequencies
259	and a Gaussian approximation to genetic drift, allowing patterns of splits and mixtures
260	in multiple populations to be inferred. To perform TREEMIX analyses, we pooled
261	populations into the same three groups used to run ABBA/BABA tests. In a first step,
262	we estimated a maximum-likelihood tree rooted with O. antigai. Then, we tested the
263	existence of a range of migration events ($m = 0$ to 5, with three replicated runs each)
264	and calculated the proportion of the variance in population covariances explained by the
265	population graph with different numbers of admixture events to determine the model
266	best fitting the data (e.g., Gompert et al., 2014). We assumed the independence of all
267	SNPs and used a window size of one SNP ($k = 1$; e.g., Vera, Díez-del-Molino, &
268	García-Marín, 2016).

269

270 **2.5.** Testing alternative models of gene flow

271	As TREEMIX only models migration as discrete events and does not consider continuous
272	gene flow (Pickrell & Pritchard, 2012) we applied the coalescent-based modelling
273	approach implemented in FASTSIMCOAL2 (Excoffier, Dupanloup, Huerta-Sanchez,
274	Sousa, & Foll, 2013) to statistically test the relative fit of more complex historical
275	demographic models to our genomic data. We used FASTSIMCOAL2 and the site
276	frequency spectrum (SFS) (Excoffier et al., 2013) to test seven alternative models of
277	gene flow (Figure 2). These models considered the same three population groups used
278	in ABBA/BABA tests and TREEMIX analyses. All scenarios considered an early split
279	between the two species followed by the divergence between sympatric (MS) and
280	allopatric (MA) populations of O. minutissimus. The tested scenarios considered (i) total
281	absence of post-divergence gene flow (Model 0, not shown in Figure 2); (ii) gene flow
282	only between the two population groups of O. minutissimus (i.e., absence of
283	interspecific gene flow) (Models 1-2); (iii) historical gene flow between sympatric
284	populations of O. uhagonii and O. minutissimus (i.e., interspecific gene flow) but
285	absence of post-divergence gene flow between the two population groups of O.
286	minutissimus (Models 3-4); (iv) gene flow between the two population groups of O.
287	minutissimus and historical gene flow between sympatric populations of O. uhagonii
288	and O. minutissimus (Models 5-6) (Figure 2). These scenarios were tested considering
289	both symmetric (Models 1, 3 and 5) and asymmetric (Models 2, 4 and 6) gene flow
290	(Figure 2). It must be noted that detailed Bayesian clustering analyses performed across
291	multiple populations of the two taxa in the region where their distribution ranges

293	section) and, for this reason, we did not consider models incorporating contemporary
294	interspecific gene flow.
295	We calculated a folded joint SFS considering a single SNP per locus to avoid the
296	effects of linkage disequilibrium. Because we did not include invariable sites in the
297	SFS, we fixed the effective population size for one population group (US) to enable the
298	estimation of other parameters in FASTSIMCOAL2 (e.g., Lanier et al., 2015;
299	Papadopoulou & Knowles, 2015). The effective population size (N_e) fixed in the models
300	was calculated from the level of nucleotide diversity (π) and estimates of mutation rate
301	per site per generation (μ), according to the equation $N_e = \pi/4\mu$ (Lynch & Conery,
302	2003). Nucleotide diversity for US ($\pi = 0.005$) was estimated from polymorphic and
303	non-polymorphic loci using DNASP v.6.11.01 (Librado & Rozas, 2009) and the .allele
304	file generated by PYRAD. We considered the average mutation rate per site per
305	generation of 2.80×10^{-9} estimated for <i>Drosophila melanogaster</i> (Keightley, Ness,
306	Halligan, & Haddrill, 2014). To remove all missing data for the calculation of the joint
307	SFS and minimize errors with allele frequency estimates, each population group was
308	down sampled to 25% of individuals (32, 12 and 32 genes for MS, MA and US,
309	respectively) using a custom Python script written by Isaac Overcast and available at
310	GitHub (https://github.com/isaacovercast/easySFS). The final SFS contained 2,071
311	variable SNPs. Each of the seven models was run 100 replicated times using the
312	computing resources provided by CESGA (Galician Supercomputer Center, Spain)
313	considering 100,000–250,000 simulations for the calculation of the composite
314	likelihood, 10-40 expectation-conditional maximization (ECM) cycles, and a stopping
315	criterion of 0.001 (Papadopoulou & Knowles, 2015). We used an information-theoretic
316	model selection approach based on the Akaike's information criterion (AIC) to
317	determine the probability of each model given the observed data (Burnham &

318	Anderson, 2002; e.g., Abascal et al., 2016; Thome & Carstens, 2016). After the
319	maximum likelihood was estimated for each model in every replicate, we calculated the
320	AIC scores as detailed in Thome & Carstens (2016). AIC values for each model were
321	rescaled (ΔAIC) calculating the difference between the AIC value of each model and
322	the minimum AIC obtained among all competing models (i.e., the best model has ΔAIC
323	= 0). Point estimates of the different demographic parameters for the best-supported
324	model were selected from the run with the highest maximum composite likelihood.
325	Finally, we calculated confidence intervals of parameter estimates from 100 parametric
326	bootstrap replicates by simulating SFS from the maximum composite likelihood
327	estimates and re-estimating parameters each time (Excoffier et al., 2013; e.g.,
328	Papadopoulou & Knowles, 2015).
329	
330	3. RESULTS
331	3.1. Genomic data
332	3.1. Genomic data
333	Illumina sequencing returned an average of 2.74×10^6 reads per sample. After quality
334	control, an average of 2.33×10^6 reads per sample was retained (Figure S1). The data
335	sets obtained with PYRAD for all populations and only those from the Central System
336	retained 15,219 and 20,350 unlinked SNPs, respectively.
337	
338	3.2. Genetic structure and hybrid identification

The model complexity value that maximized the marginal likelihood in FASTSTRUCTURE

analyses for the dataset including all populations was K = 3 across all replicates and the

number of model components used to explain structure in the data was K = 3 in 15

replicates and K = 4 in 10 replicates. FASTSTRUCTURE analyses for K = 3 split

339

340

341

342

343	populations of O. uhagonii and sympatric and allopatric populations of O. minutissimus
344	in different genetic clusters in which all individuals showed high probabilities of
345	population membership ($q > 0.99$; Figure 1C). Assignment values to additional genetic
346	clusters in FASTSTRUCTURE for analyses with $K > 4$ were extremely low in all cases ($q < $
347	0.001) and, thus, their respective bar plots were virtually identical to those obtained for
348	K = 3 (for a similar result, see Baiz, Tucker, & Cortes-Ortiz, 2019; Tonzo et al., 2019).
349	The model complexity value that maximized the marginal likelihood in
350	FASTSTRUCTURE analyses of the Central System populations was equal to $K = 2$ in all
351	replicates and the number of model components used to explain structure in the data
352	was $K = 2$ in 16 replicates and $K = 3$ in nine replicates. FASTSTRUCTURE analyses for $K =$
353	2 split populations of the two species in different genetic clusters and all individuals
354	showed high probabilities of population membership ($q > 0.99$; Figure 3A). Again,
355	assignment values to additional genetic clusters in FASTSTRUCTURE for analyses with K
356	> 2 were extremely low in all cases ($q < 0.001$) and, thus, their respective bar plots were
357	virtually identical to those obtained for $K = 2$. Classic STRUCTURE analyses also yielded
358	an 'optimal' clustering value for $K = 2$ according to the ΔK criterion (Figure S2). The
359	two inferred genetic groups supported a clear separation of the two species (Figure 3B).
360	STRUCTURE analyses showed that populations of O. uhagonii from the eastern Central
361	System present no signal of introgression from O. minutissimus. However, several
362	populations of O. minutissimus and O. uhagonii from the western Central System,
363	where the distribution of the two taxa overlap and five sampling localities present
364	sympatric populations, showed signals of reciprocal genetic introgression (Figure 3B).
365	These results suggest that FASTSTRUCTURE is less likely to reveal small proportions of
366	admixed ancestry in comparison with STRUCTURE, which has been also suggested in
367	previous studies (Stift, Kolar, & Meirmans, 2019; Tonzo et al., 2019).

368	STRUCTURE analyses indicate that populations of O. uhagonii and O.
369	minutissimus present significant differences in the degree of introgression from the
370	other species (one-way ANOVAs, introgression of O. minutissimus into O. uhagonii:
371	$F_{9,54} = 48.86, P < 0.001$; introgression of <i>O. uhagonii</i> into <i>O. minutissimus</i> : $F_{10,53} =$
372	96.68, $P < 0.001$; Figure 3B). Although visually imperceptible in the FASTSTRUCTURE
373	bar plot (Figure 3A), probabilities of population membership inferred by this software
374	also revealed that populations of both O. uhagonii and O. minutissimus present
375	significant differences in the degree of introgression from the other species (one-way
376	ANOVAs, introgression of <i>O. minutissimus</i> into <i>O. uhagonii</i> : $F_{9,54} = 14.01$, $P < 0.001$;
377	introgression of <i>O. uhagonii</i> into <i>O. minutissimus</i> : $F_{10, 53} = 3.19$, $P = 0.003$; Figure 3A).
378	The degree of introgression from O. minutissimus into O. uhagonii estimated by either
379	FASTSTRUCTURE or STRUCTURE significantly decreased with longitude (FASTSTRUCTURE:
380	$F_{1,8} = 6.99, P = 0.030$; STRUCTURE: $F_{1,8} = 16.22, P = 0.004$; see maps in Figure 3), but
381	did not significantly differ between currently sympatric and allopatric populations
382	(FASTSTRUCTURE: $F_{1,8} = 0.06$, $P = 0.81$; STRUCTURE: $F_{1,8} = 1.64$, $P = 0.236$). In contrast,
383	the degree of introgression from O. uhagonii into O. minutissimus estimated by either
384	FASTSTRUCTURE or STRUCTURE did not significantly decrease with longitude
385	(FASTSTRUCTURE: $F_{1,9} = 1.12$, $P = 0.317$; STRUCTURE: $F_{1,9} = 0.41$, $P = 0.538$) or differ
386	between currently sympatric and allopatric populations (FASTSTRUCTURE: $F_{1,9} = 0.39$, P
387	= 0.550; STRUCTURE: $F_{1,9}$ = 0.03, P = 0.863). For illustrative purposes, we displayed on
388	a map the probabilities of assignment of the populations of O. uhagonii to the genetic
389	cluster of O. minutissimus (i.e., the degree of introgression from O. minutissimus into O.
390	uhagonii) by conducting a spatial interpolation using the Inverse Distance Weight
391	(IDW) function available in ARCGIS v.10.5 (ESRI, Redlands, CA, USA) (Figure 3).
392	

393	3.3. Phylogenomic analyses and inference of historical hybridization
394	The test of introgression based on the D-statistic supported post-divergence gene flow
395	between sympatric populations of <i>O. minutissimus</i> and <i>O. uhagonii</i> (BABA = 220.59;
396	ABBA = 162.38; <i>D</i> -statistic = -0.152; Z = 3.39; <i>P</i> < 0.001). Accordingly, TREEMIX
397	analyses supported a single migration event (Figure S3) corresponding to admixture
398	between sympatric populations of O. minutissimus and O. uhagonii (Figure 4).
399	
400	3.4. Testing alternative models of gene flow
401	FASTSIMCOAL2 analyses showed that the most supported model (Model 5; $\Delta AIC = 0$;
402	Table 1) was the one considering symmetric interspecific gene flow between sympatric
403	populations of O. uhagonii and O. minutissimus during a given period of time (T _{ADM1}
404	and T_{ADM2}) and symmetric gene flow between sympatric (central) and allopatric
405	(eastern) populations of O. minutissimus. Remarkably, models only considering
406	interspecific gene-flow during a given period of time tended to be slightly more
407	supported ($\Delta AIC > 0.6$) than models only considering intraspecific gene flow between
408	sympatric and allopatric populations of O. minutissimus (Table 1). Point estimates of
409	demographic parameters under the best fitting model are presented in Table 2.
410	Considering that the studied taxa are univoltine (i.e., 1-year generation time),
411	FASTSIMCOAL2 analyses inferred that the separation of the two species (T_{DIV2}) and the
412	split of eastern and central populations of O. minutissimus (T _{DIV1}) took place during the
413	Early Pleistocene (Calabrian age) (Table 2). Gene flow between sympatric populations
414	of O. minutissimus and O. uhagonii was estimated to happen during a period of time
415	expanding ~15 ka in the Late Pleistocene (Tarantian age) (Table 2). Note, however, that
416	although confidence intervals around point estimates of most parameters were
417	reasonably tight, there was considerable uncertainty around estimates for the two-time

418 parameters delimiting the period of interspecific gene flow (i.e., T_{ADM1} and T_{ADM2};

419 Table 2). Finally, migration rates between sympatric populations of *O. uhagonii* and *O.*

420 *minutissimus* (m_2) did not significantly differ from those estimated between sympatric

421 (western) and allopatric (eastern) populations of O. minutissimus (m_1) (i.e., 95% CIs of

422 m_1 and m_2 overlapped; Table 2). This indicates that historical interspecific gene flow

423 was of the same order of magnitude as intraspecific gene flow between the two

424 allopatric genetic clusters of *O. minutissimus*.

425

426 4. DISCUSSION

427

428 Hybridization is a phenomenon that has been extensively documented in contact zones 429 where the distributions of closely related species with weak reproductive barriers meet 430 (e.g., Folk, Soltis, Soltis, & Guralnick, 2018; Gugger & Cavender-Bares, 2013; Nadeau et al., 2013; Ortego, Gugger, Riordan, & Sork, 2014). Inferring events of past 431 432 interspecific gene flow has important implications to understand the evolutionary 433 history of organisms (e.g., humans; Prüfer et al., 2014; Wall et al., 2013), yet, detecting 434 the footprints of such processes is challenging (Payseur & Rieseberg, 2016; e.g., Eaton, Hipp, González-Rodríguez, & Cavender-Bares, 2015; Ortego et al., 2018). Here, by 435 436 combining a suite of phylogenomic and population genetic tools and extensive 437 population sampling across the entire distribution of our two focal species, including currently sympatric and allopatric populations, we found no evidence for contemporary 438 439 hybridization. However, we did detect signals of past introgression in the geographical 440 region where the distribution range of the two taxa currently overlap. 441

442 4.1. Absence of contemporary interspecific gene flow

443

444	Bayesian clustering analyses showed a clear genotypic differentiation of the two species
445	and further revealed the presence of two well-defined genetic clusters within O.
446	minutissimus, corresponding with the populations of this taxon located in eastern
447	(allopatric) and central (sympatric) Iberia (Figure 1). Detailed analyses across 21
448	populations from central Iberia where the distribution of the two species partially
449	overlap and, thus, they currently have the opportunity to hybridize, showed no evidence
450	of ongoing interspecific gene flow (i.e., F1 or first generation backcrosses). However,
451	these analyses also revealed footprints of reciprocal introgression in the westernmost
452	portion of the Central System, the area where the two species present overlapping
453	distributions and some populations even co-occur. Although the degree of introgression
454	did not statistically differ between currently sympatric and allopatric populations of the
455	two species in the Central System, it was not spatially homogeneous. On the one hand,
456	the proportion of genetic introgression significantly differed across populations of the
457	two species. On the other hand, the degree of introgression from O. minutissimus into
458	O. uhagonii increased westwards and the populations from the easternmost portion of
459	the distribution range of this species, where O. minutissimus is not currently present,
460	showed negligible signals of past hybridization (Figure 3). These results indicate spatial
461	heterogeneity in the levels of introgression, suggesting that the magnitude and/or timing
462	of historical hybridization differed among populations of the two species in the Central
463	System (e.g., de Manuel et al., 2016; Ortego et al., 2018; Wall et al., 2013). The degree
464	of introgression was consistently small in all populations of both species (STRUCTURE:
465	<9 %; FASTRUCTURE: <0.02 %) and similar across individuals within populations. Thus,
466	although our sample sizes are modest (128 individuals) and we cannot categorically
467	discard that the two species sporadically hybridize, the observed patterns of
468	introgression indicate that contemporary populations are at genotypic equilibrium (i.e.,

469	backgrounds of introgression are similar across all individuals within a given
470	population) and suggest that hypothetical contemporary hybridization, if it even
471	happens, is unlikely to have transcended F1 hybrids at least in the last generations. This
472	end is also supported by the fact that the five populations where the two species
473	currently co-occur do not show higher levels of introgression than nearby allopatric
474	populations, which points to the fact that the observed patterns of genetic introgression
475	reflect historical rather than contemporary interspecific gene flow.
476	
477	4.2. Inferring historical hybridization
478	
479	Both the phylogenomic analyses in TREEMIX and the D-statistic test yielded results
480	compatible with those inferred by Bayesian clustering analyses and supported the

481 hypothesis of historical hybridization between *O. uhagonii* and geographically

482 overlapping populations of *O. minutissimus*. TREEMIX identifies gene flow in the context

483 of competing hypotheses, taking into account the full sampled phylogeny when

484 inferring admixture and introgression events (Pickrell & Pritchard, 2012). Even when

485 we allowed several admixture edges for the two species, TREEMIX only inferred one

486 event of introgression involving the sympatric populations of the two species. In

487 agreement with the TREEMIX results, the *D*-statistic analysis detected the same pattern of

488 interspecific gene flow. Bringing the TREEMIX and the *D*-statistic results together

489 support a scenario of historical hybridization and enhance the interpretation of the low

490 levels of genetic introgression revealed by clustering analyses in currently coexisting

491 populations.

492 Coalescent-based analyses in FASTSIMCOAL2, which provides detailed estimation493 of demographic parameters, further supported a scenario of past interspecific gene flow

494	over a strictly bifurcating evolutionary history. Specifically, the most supported model
495	was the one considering interspecific gene flow between sympatric populations of O.
496	uhagonii and O. minutissimus during a given period of time and gene flow between
497	sympatric (central) and allopatric (eastern) populations of O. minutissimus. The
498	preferred model traced back the divergence of O. uhagonii and O. minutissimus to the
499	Late Pleistocene (~1.4 Ma) and this event was followed shortly after by the split of
500	eastern and central lineages of O. minutissimus (~1.2 Ma). These divergence times
501	agree with the Pleistocene diversification observed across most clades within the highly
502	speciose acridid subfamily Gomphocerinae (Song at al., 2015). Additionally, the split
503	time estimates are congruent with the crown age (< 3 Ma) inferred for the recent
504	radiation of the subgenus Dreixius based on mitochondrial DNA (García-Navas et al.,
505	2017). The results of coalescent analyses also indicate that gene flow between O.
506	uhagonii and O. minutissimus in the area of geographical overlap happened during a
507	limited amount of time (~15,000 years) around the last glacial maximum (14-29 ka).
508	During this period the two species engaged in gene flow at the same rate as the one
509	estimated between the two lineages of O. minutissimus, indicating that interspecific
510	gene flow, albeit low, was comparatively remarkable. The estimated timing of
511	interspecific gene flow is compatible with the likely expansion of O. uhagonii to lower
512	elevations during glacial periods. The shift to lower elevations might have put this
513	species into extensive geographic contact with the more ubiquitous O. minutissimus,
514	which presents many populations in foothills and valley bottoms where O. uhagonii is
515	not present nowadays. It must be noted, however, that confidence intervals around point
516	estimates for the time of interspecific gene flow are ample (Table 2), particularly for the
517	onset of this period (T_{ADM2}), and thus these results must be interpreted with extreme
518	caution. Uncertainty in these estimates could in part be driven by heterogeneity in the

- timing and extent of hybridization among the different populations in the sympatric
- 520 area, as suggested by the significant differences in the signal of genetic introgression
- 521 observed among populations (see previous section).
- 522
- 523 4.4. Inferred evolutionary scenario
- 524

525 Our genomic analyses point to a scenario in which *O. uhagonii* and ancestral

526 populations of *O. minutissimus* likely diverged in allopatry followed by the split of *O*.

527 *minutissimus* into two lineages, one of which came into secondary contact and

528 hybridized with O. uhagonii during a limited period of time (Figure 5). Despite the fact

529 that nowadays the two species have ample opportunity to hybridize (i.e., a large

530 proportion their respective ranges currently overlap and several populations even co-

occur in the Central System), our analyses did not find any evidence of contemporary

532 hybridization, which suggests that reproductive isolation likely evolved after secondary

533 contact and historical gene flow (Figure 5). Speciation of Gomphocerinae and other

grasshoppers has been generally linked to allopatric divergence (Mayer et al. 2010), a

535 process that in the specific case of montane/alpine species of Pleistocene origin was

probably caused by the extensive fragmentation of ancestral populations driven by

537 Quaternary climatic oscillations (e.g., Huang, Hill, Ortego, & Knowles, 2020; Knowles,

538 2000; Scattolini, Confalonieri, Lira-Noriega, Pietrokovsky, & Cigliano, 2018). Different

539 lines of evidence also point to allopatric divergence as the most plausible mode of

540 speciation for *O. uhagonii* and *O. minutissimus*. First, the allopatric lineage of *O*.

541 *minutissimus* from eastern Iberia present a much larger distribution (Figure 1) and

significantly higher levels of genomic diversity (one-way ANOVA: $F_{1,13} = 12.05$, P =

543 0.004; Table S1) and effective population sizes (non-overlapping 95% CIs for $N_{\rm e}$

568

Molecular Ecology

544	estimates in FASTSIMCOAL2 analyses; Table 2) than the sympatric lineage of O.
545	minutissimus from the Central System. This supports that O. minutissimus most likely
546	originated in eastern Iberia and subsequently colonized the Central System, where it
547	came into secondary contact with O. uhagonii. Second, the ecological niches of O.
548	minutissimus and O. uhagonii are very similar and the two species present
549	graminivorous feeding habits and same microhabitat preferences (Clemente et al., 1991;
550	J. Ortego, personal observation). This points to considerable niche conservatism, typical
551	of allopatric speciation, and rejects sympatric speciation via disruptive ecological
552	selection (e.g., Grace, Wisely, Brown, Dowell, & Joern, 2010). Finally, our analyses
553	showed no evidence of gene flow between O. uhagonii and ancestral populations of O.
554	minutissimus (Figure 4), indicating that the two species likely evolved in allopatry and
555	only exchanged gene flow after secondary contact in the region where their distribution
556	ranges overlap (see also Sankararaman et al., 2014; Sankararaman, Patterson, Li, Paabo,
557	& Reich, 2012).

The footprints of historical introgression among currently sympatric populations 558 559 of O. uhagonii and O. minutissimus and the lack of evidence for contemporary gene 560 flow lead us to hypothesize an evolutionary scenario in which reproductive isolation 561 evolved after historical hybridization in the area where the distribution ranges of the two 562 taxa currently overlap. The observed differences in the levels of introgression among 563 sympatric populations suggest that barriers to gene flow might have evolved multiple 564 times or, alternatively, could reflect heterogeneity in the proportion of the genome of 565 the other species retained after the interruption of interspecific gene flow due to differences among the studied populations in their demographic histories (e.g., 566 567 bottlenecks; Amorim et al., 2017; Lawson, Van Dorp, & Falush, 2018; Quilodran,

Nussberger, Montoya-Burgos, & Currat, 2019) or spatial variation in the strength of

569	hypothetical purifying selection acting against introgressed alleles (Juric, Aeschbacher,
570	& Coop, 2016; Petr, Paabo, Kelso, & Vernot, 2019). Alternative processes might have
571	led to the evolution of reproductive isolation after secondary contact and hybridization.
572	It has been frequently documented that interspecific gene flow can increase phenotypic
573	and genomic divergence via the evolution of reproductive isolation and character
574	displacement (Garner, Goulet, Farnitano, Molina-Henao, & Hopkins, 2018; Hopkins,
575	Levin, & Rausher, 2012; Pfennig & Pfennig, 2009). One of the many potential costs of
576	hybridization are the ecological and genetic dysfunctions of hybrid offspring, which can
577	reduce their fitness and drive to reinforcement (Ortiz-Barrientos, Counterman, & Noor,
578	2004). In the reinforcement process, enhanced prezygotic isolation is favoured in
579	sympatry in response to postzygotic isolation due to a strong selection against hybrids
580	(Butlin, 1995; Coyne & Orr, 2004; Servedio & Noor, 2003). Selection for prezygotic
581	isolation leads, in turn, to more divergent phenotypes and reproductive behaviours
582	between species in sympatry than in allopatry (Moran, Zhou, Catchen, & Fuller, 2018).
583	Thus, one possibility is that secondary contact and hybridization promoted the evolution
584	of reproductive isolation via reinforcement, probably after an initial balance between
585	dispersal and selection against hybrids in historical tension zones during which the two
586	species experienced genetic exchange and introgression (Barton & Hewitt, 1985). An
587	alternative explanation is that reproductive isolation evolved in geographical isolation as
588	a consequence of genetic drift or as a fortuitous by-product of divergent selection on
589	other traits (Coyne & Orr, 1989; Fitzpatrick, 2002; Sasa, Chippindale, & Johnson,
590	1998). The mosaic distribution of the two species in the Central System, with the
591	presence of several sympatric populations but also large areas where the two species do
592	not occur (e.g., eastern Central System and foothills; Figure 1), might have also

593	provided ample	opportunity	for the	evolution	of repro	oductive	isolation	in	geographi	cally

- separated populations (Fitzpatrick, 2002).
- 595

596 4.5. Conclusions and future directions

597

598	The results of this study add to the growing body of evidence supporting that speciation-
599	with-gene-flow is more prevalent in nature than formerly acknowledged (Nosil, 2008;
600	Pinho & Hey, 2010; Roux et al., 2016). Our study system is very well-suited to study
601	the proximate mechanisms (e.g., reinforcement vs. genetic drift) that might have led to
602	the evolution of reproductive isolation. Future research should focus on analysing
603	mating preferences, phenotypic differentiation and reproductive character displacement
604	(song, courtship behaviour, genitalic structures, etc.) between currently sympatric and
605	allopatric populations of the two species (e.g., Butlin et al., 1991; Hollander, Smadja,
606	Butlin, & Reid, 2013), determining mating success and the viability of offspring
607	through experimental hybridization attempts in the laboratory (e.g., Coyne & Orr, 1989;
608	Hoskin et al., 2005; Saldamando et al., 2005) and, applying whole genome or
609	transcriptome sequencing data to detect potential genomic signatures of reinforcement
610	and/or identify loci that might be involved in reproductive isolation (Garner et al., 2018;
611	Hopkins et al., 2012; Roda, Mendes, Hahn, & Hopkins, 2017).
612	
613	ACKNOWLEDGEMENTS

614

615 We are grateful to Amparo Hidalgo-Galiana for her valuable help during laboratory

- 616 work and the grasshopper illustration. We also would like to thank to Víctor
- 617 Noguerales, Conchi Cáliz, and Pedro J. Cordero for their help during field and

- 618 laboratory work, Sergio Pereira (The Centre for Applied Genomics) for Illumina
- sequencing, and two anonymous referees for constructive comments on an earlier
- 620 version of this article. Logistical support was provided by Laboratorio de Ecología
- 621 Molecular (LEM-EBD) and Laboratorio de Sistemas de Información Geográfica y
- 622 Teledetección (LAST–EBD) from Estación Biológica de Doñana. We also thank to
- 623 Centro de Supercomputación de Galicia (CESGA) and Doñana's Singular
- 624 Scientific-Technical Infrastructure (ICTS-RBD) for access to computer resources. This
- study was funded by the Spanish Ministry of Economy and Competitiveness and the
- European Regional Development Fund (ERDF) (CGL2014-54671-P and CGL2017-
- 627 83433-P). VT was supported by an FPI predoctoral fellowship (BES-2015-73159) from
- 628 Ministerio de Economía y Competitividad. During this work, AP and JO were
- supported by a Severo Ochoa (SEV-2012-0262) and a Ramón y Cajal (RYC-2013-
- 630 12501) research fellowship, respectively.
- 631

632 AUTHOR CONTRIBUTIONS

633 V.T., A.P., and J.O. conceived and designed the study and analyses. J.O. collected the

samples. V.T. performed the laboratory work and analysed the data guided by J.O. V.T.

635 wrote the manuscript with help of J.O., and inputs from A.P.

636

637 DATA AVAILABILITY STATEMENT

- Raw Illumina reads have been deposited at the NCBI Sequence Read Archive (SRA)
- 639 under BioProject PRJNA543714. Input files for all analyses are available for download
- on Figshare (https://doi.org/10.6084/m9.figshare.12251600).
- 641
- 642 ORCID

- 644 Anna Papadopoulou https://orcid.org/0000-0002-4656-4894
- 645 Joaquín Ortego https://orcid.org/0000-0003-2709-429X

646

647 **REFERENCES**

- 648
- 649 Abascal, F., Corvelo, A., Cruz, F., Villanueva-Canas, J. L., Vlasova, A., Marcet-
- Houben, M., . . . Godoy, J. A. (2016). Extreme genomic erosion after recurrent
- 651 demographic bottlenecks in the highly endangered Iberian lynx. *Genome*

652 *Biology*, *17*, 251. doi:10.1186/s13059-016-1090-1

- Abbott, R., Albach, D., Ansell, S., Arntzen, J. W., Baird, S. J. E., Bierne, N., ... Zinner,
- D. (2013). Hybridization and speciation. *Journal of Evolutionary Biology*, 26(2),
- 655 229-246. doi:10.1111/j.1420-9101.2012.02599.x
- Amorim, C. E. G., Hofer, T., Ray, N., Foll, M., Ruiz-Linares, A., & Excoffier, L.
- (2017). Long-distance dispersal suppresses introgression of local alleles during
 range expansions. *Heredity*, *118*(2), 135-142. doi:10.1038/hdy.2016.68
- 659 Baiz, M. D., Tucker, P. K., & Cortes-Ortiz, L. (2019). Multiple forms of selection shape
- 660 reproductive isolation in a primate hybrid zone. *Molecular Ecology*, 28(5),
- 661 1056-1069. doi:10.1111/mec.14966
- Barton, N. H., & Hewitt, G. M. (1985). Analysis of hybrid zones. Annual Review of
- *Ecology and Systematics, 16*, 113-148. doi:10.1146/annurev.ecolsys.16.1.113
- Barton, N. H., & Hewitt, G. M. (1989). Adaptation, speciation and hybrid zones.
- 665 *Nature, 341*(6242), 497-503. doi:10.1038/341497a0

- 666 Bridle, J. R., Baird, S. J. E., & Butlin, R. K. (2001). Spatial structure and habitat
- 667 variation in a grasshopper hybrid zone. *Evolution*, *55*(9), 1832-1843.
- 668 doi:10.1554/0014-3820(2001)055[1832:ssahvi]2.0.co;2
- 669 Britch, S. C., Cain, M. L., & Howard, D. J. (2001). Spatio-temporal dynamics of the
- 670 *Allonemobius fasciatus-A. socius* mosaic hybrid zone: a 14-year perspective.
- 671 *Molecular Ecology*, *10*(3), 627-638. doi:10.1046/j.1365-294x.2001.01215.x
- Buggs, R. J. A. (2007). Empirical study of hybrid zone movement. *Heredity*, 99(3), 301-
- 673 312. doi:10.1038/sj.hdy.6800997
- Burnham, K. P., & Anderson, D. R. (2002). Model Selection and Multimodel Inference:
- 675 A Practical Information-Theoretic Approach. New York, USA: Springer.
- 676 Butlin, R. K. (1995). Reinforcement An idea evolving. Trends in Ecology &
- 677 *Evolution, 10*(11), 432-434. doi:10.1016/s0169-5347(00)89173-9
- 678 Butlin, R. K., Ritchie, M. G., & Hewitt, G. M. (1991). Comparisons among
- 679 morphological characters and between localities in the *Chorthippus parallelus*
- 680 hybrid zone (Orthoptera, Acrididae). *Philosophical Transactions of the Royal*
- 681 Society of London Series B-Biological Sciences, 334(1271), 297-308.
- 682 doi:10.1098/rstb.1991.0119
- 683 Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A., & Cresko, W. A. (2013).
- 684 STACKS: an analysis tool set for population genomics. *Molecular Ecology*,
- 685 22(11), 3124-3140. doi:10.1111/mec.12354
- 686 Cigliano, M. M., Braun, H., Eades, D. C., & Otte, D. (2019). Orthoptera Species File.
- 687 Version 5.0/5.0. Retrieved from <u>http://orthoptera.speciesfile.org/</u>
- 688 Clemente, M. E., Garcia, M. D., & Presa, J. J. (1991). Los Gomphocerinae de la
- 689 península Iberica: 2. *Omocestus* Bolivar, 1878. (Insecta, Orthoptera, Caelifera).
- 690 *Graellsia*, *46*, 191-246.

691	Coyne, J. A.	& Orr, H. A.	(1989). Patterns of	speciation in Dros	sophila. Evolution,
-----	--------------	--------------	---------------------	--------------------	---------------------

- 692 *43*(2), 362-381. doi:10.2307/2409213
- 693 Coyne, J. A., & Orr, H. A. (2004). *Speciation*. Sunderland, MA: Sinauer Association.
- de Manuel, M., Kuhlwilm, M., Frandsen, P., Sousa, V. C., Desai, T., Prado-Martinez, J.,
- 695 ... Marques-Bonet, T. (2016). Chimpanzee genomic diversity reveals ancient
 696 admixture with bonobos. *Science*, *354*(6311), 477-481.
- 697 doi:10.1126/science.aag2602
- 698 Dobzhansky, T. (1937). Genetic nature of species differences. American Naturalist, 71,
- 699 404-420. doi:10.1086/280726
- 700 Durand, E. Y., Patterson, N., Reich, D., & Slatkin, M. (2011). Testing for ancient
- admixture between closely related populations. *Molecular Biology and*
- 702 *Evolution, 28*(8), 2239-2252. doi:10.1093/molbev/msr048
- 703 Earl, D. A., & vonHoldt, B. M. (2012). STRUCTURE HARVESTER: a website and program
- for visualizing STRUCTURE output and implementing the Evanno method.
- 705 *Conservation Genetics Resources, 4*(2), 359-361. doi:10.1007/s12686-011-
- 706 9548-7
- Eaton, D. A. R. (2014). PYRAD: assembly of *de novo* RADseq loci for phylogenetic
- 708 analyses. *Bioinformatics*, *30*(13), 1844-1849. doi:10.1093/bioinformatics/btu121
- Eaton, D. A. R., Hipp, A. L., González-Rodríguez, A., & Cavender-Bares, J. (2015).
- 710 Historical introgression among the American live oaks and the comparative
- nature of tests for introgression. *Evolution*, 69(10), 2587-2601.
- 712 doi:10.1111/evo.12758
- Eaton, D. A. R., & Ree, R. H. (2013). Inferring phylogeny and introgression using
- 714 RADseq data: An example from flowering plants (*Pedicularis*: *Orobanchaceae*).
- 715 *Systematic Biology*, *62*(5), 689-706. doi:10.1093/sysbio/syt032

716	Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of
717	individuals using the software STRUCTURE: a simulation study. Molecular

- 718 *Ecology*, 14(8), 2611-2620. doi:10.1111/j.1365-294X.2005.02553.x
- Excoffier, L., Dupanloup, I., Huerta-Sanchez, E., Sousa, V. C., & Foll, M. (2013). 719
- 720 Robust demographic inference from genomic and SNP data. PLoS Genetics,
- 9(10), e1003905. doi:10.1371/journal.pgen.1003905 721

- Fitzpatrick, B. M. (2002). Molecular correlates of reproductive isolation. Evolution, 722
- 723 56(1), 191-198. doi:10.1111/j.0014-3820.2002.tb00860.x
- 724 Fitzpatrick, B. M., Fordyce, J. A., & Gavrilets, S. (2009). Pattern, process and
- 725 geographic modes of speciation. Journal of Evolutionary Biology, 22(11), 2342-
- 726 2347. doi:10.1111/j.1420-9101.2009.01833.x
- Folk, R. A., Soltis, P. S., Soltis, D. E., & Guralnick, R. (2018). New prospects in the 727
- detection and comparative analysis of hybridization in the tree of life. American 728

Journal of Botany, 105(3), 364-375. doi:10.1002/ajb2.1018 729

- García-Navas, V., Noguerales, V., Cordero, P. J., & Ortego, J. (2017). Ecological 730
- 731 drivers of body size evolution and sexual size dimorphism in short-horned
- 732 grasshoppers (Orthoptera: Acrididae). Journal of Evolutionary Biology, 30(8),
- 1592-1608. doi:10.1111/jeb.13131 733
- Garner, A. G., Goulet, B. E., Farnitano, M. C., Molina-Henao, Y. F., & Hopkins, R. 734
- 735 (2018). Genomic signatures of reinforcement. Genes, 9(4), 191.
- 736 doi:10.3390/genes9040191
- 737 Gompert, Z., Lucas, L. K., Buerkle, C. A., Forister, M. L., Fordyce, J. A., & Nice, C. C.
- 738 (2014). Admixture and the organization of genetic diversity in a butterfly species
- complex revealed through common and rare genetic variants. Molecular 739
- Ecology, 23(18), 4555-4573. doi:10.1111/mec.12811 740

741	Grace, T., Wisely, S. M., Brown, S. J., Dowell, F. E., & Joern, A. (2010). Divergent
742	host plant adaptation drives the evolution of sexual isolation in the grasshopper
743	Hesperotettix viridis (Orthoptera: Acrididae) in the absence of reinforcement.
744	Biological Journal of the Linnean Society, 100(4), 866-878.
745	Graham, C. H., Ron, S. R., Santos, J. C., Schneider, C. J., & Moritz, C. (2004).
746	Integrating phylogenetics and environmental niche models to explore speciation
747	mechanisms in dendrobatid frogs. Evolution, 58(8), 1781-1793. doi:10.1554/03-
748	274
749	Grant, P. R., Grant, B. R., Markert, J. A., Keller, L. F., & Petren, K. (2004). Convergent
750	evolution of Darwin's finches caused by introgressive hybridization and
751	selection. Evolution, 58(7), 1588-1599.
752	Gugger, P. F., & Cavender-Bares, J. (2013). Molecular and morphological support for a
753	Florida origin of the Cuban oak. Journal of Biogeography, 40(4), 632-645.
754	doi:10.1111/j.1365-2699.2011.02610.x
755	Harrison, R. G. (1990). Hybrid zones: windows on evolutionary process. Oxford
756	Surveys of Evolutionary Biology, 7, 69-128.
757	Hewitt, G. M. (1988). Hybrid zones - Natural laboratories for evolutionary studies.
758	Trends in Ecology & Evolution, 3(7), 158-167. doi:10.1016/0169-
759	5347(88)90033-x
760	Hill, J. G. (2015). Revision and biogeography of the Melanoplus scudderi species group
761	(Orthoptera: Acrididae: Melanoplinae) with a description of 21 new species and
762	establishment of the Carnegiei and Davisi species groups. Transactions of the
763	American Entomological Society, 141(2), 252-350. doi:10.3157/061.141.0201

764	Hollander, J., Smadja, C. M., Butlin, R. K., & Reid, D. G. (2013). Genital divergence in
765	sympatric sister snails. Journal of Evolutionary Biology, 26(1), 210-215.
766	doi:10.1111/jeb.12029
767	Hopkins, R., Levin, D. A., & Rausher, M. D. (2012). Molecular signatures of selection
768	on reproductive character displacement of flower color in Phlox drummondii.
769	Evolution, 66(2), 469-485. doi:10.1111/j.1558-5646.2011.01452.x
770	Hoskin, C. J., Higgie, M., McDonald, K. R., & Moritz, C. (2005). Reinforcement drives
771	rapid allopatric speciation. Nature, 437(7063), 1353-1356.
772	doi:10.1038/nature04004
773	Howard, D. J., Waring, G. L., Tibbets, C. A., & Gregory, P. G. (1993). Survival of
774	hybrids in a mosaic hybrid zone. Evolution, 47(3), 789-800.
775	doi:10.2307/2410184
776	Huang, J. P. (2016). Parapatric genetic introgression and phenotypic assimilation:
777	testing conditions for introgression between Hercules beetles (Dynastes,
778	Dynastinae). Molecular Ecology, 25(21), 5513-5526. doi:10.1111/mec.13849
779	Huang, J. P., Hill, J. G., Ortego, J., & Knowles, L. L. (2020) Paraphyletic species no
780	more - genomic data resolve a Pleistocene radiation and validate morphological
781	species of the Melanoplus scudderi complex (Insecta: Orthoptera). Systematic
782	Entomology, in press. doi:10.1111/syen.12415
783	Hubisz, M. J., Falush, D., Stephens, M., & Pritchard, J. K. (2009). Inferring weak
784	population structure with the assistance of sample group information. Molecular

- 785 *Ecology Resources, 9*(5), 1322-1332. doi:10.1111/j.1755-0998.2009.02591.x
- 786 Jakobsson, M., & Rosenberg, N. A. (2007). CLUMPP: a cluster matching and
- 787 permutation program for dealing with label switching and multimodality in

788	analysis of population structure. <i>Bioinformatics</i> , 23(14), 1801-1806.
789	doi:10.1093/bioinformatics/btm233
790	Juric, I., Aeschbacher, S., & Coop, G. (2016). The strength of selection against
791	Neanderthal introgression. PLoS Genetics, 12(11), e1006340.
792	doi:10.1371/journal.pgen.1006340
793	Kearns, A. M., Restani, M., Szabo, I., Schroder-Nielsen, A., Kim, J. A., Richardson, H.
794	M., Omland, K. E. (2018). Genomic evidence of speciation reversal in
795	ravens. Nature Communications, 9, 906. doi:10.1038/s41467-018-03294-w
796	Keightley, P. D., Ness, R. W., Halligan, D. L., & Haddrill, P. R. (2014). Estimation of
797	the spontaneous mutation rate per nucleotide site in a Drosophila melanogaster
798	full-sib family. Genetics, 196(1), 313-320. doi:10.1534/genetics.113.158758
799	Key, K. H. L. (1968). Concept of stasipatric speciation. Systematic Zoology, 17(1), 14-
800	22. doi:10.2307/2412391
801	Knowles, L. L. (2000). Tests of Pleistocene speciation in montane grasshoppers (genus
802	Melanoplus) from the sky islands of western North America. Evolution, 54(4),
803	1337-1348.
804	Lanier, H. C., Massatti, R., He, Q., Olson, L. E., & Knowles, L. L. (2015). Colonization
805	from divergent ancestors: glaciation signatures on contemporary patterns of
806	genomic variation in collared pikas (Ochotona collaris). Molecular Ecology,
807	24(14), 3688-3705. doi:10.1111/mec.13270
808	Lawson, D. J., Van Dorp, L., & Falush, D. (2018). A tutorial on how not to over-
809	interpret STRUCTURE and ADMIXTURE bar plots. Nature Communications, 9,
810	3258. doi:10.1038/s41467-018-05257-7

- 811 Lemmon, E. M., & Juenger, T. E. (2017). Geographic variation in hybridization across a
- 812 reinforcement contact zone of chorus frogs (*Pseudacris*). Ecology and
- Evolution, 7(22), 9485-9502. doi:10.1002/ece3.3443
- Librado, P., & Rozas, J. (2009). DNASP v5: a software for comprehensive analysis of
- 815 DNA polymorphism data. *Bioinformatics*, 25(11), 1451-1452.
- doi:10.1093/bioinformatics/btp187
- 817 Lohse, K., Clarke, M., Ritchie, M. G., & Etges, W. J. (2015). Genome-wide tests for
- 818 introgression between cactophilic *Drosophila* implicate a role of inversions
- 819 during speciation. *Evolution*, 69(5), 1178-1190. doi:10.1111/evo.12650
- 820 Lynch, M., & Conery, J. S. (2003). The origins of genome complexity. Science,

821 *302*(5649), 1401-1404. doi:10.1126/science.1089370

- Maguilla, E., Escudero, M., Hipp, A. L., & Luceno, M. (2017). Allopatric speciation
- despite historical gene flow: Divergence and hybridization in *Carex furva* and *C*.
- 824 *lucennoiberica* (Cyperaceae) inferred from plastid and nuclear RAD-seq data.

825 *Molecular Ecology, 26*(20), 5646-5662. doi:10.1111/mec.14253

- 826 Mallet, J. (2005). Hybridization as an invasion of the genorne. *Trends in Ecology* &
- *Evolution*, 20(5), 229-237.
- 828 Marques, I., Draper, D., Riofrio, L., & Naranjo, C. (2014). Multiple hybridization
- events, polyploidy and low postmating isolation entangle the evolution of
- 830 neotropical species of *Epidendrum* (Orchidaceae). *BMC Evolutionary Biology*,
- 831 *14*, 20. doi:10.1186/1471-2148-14-20
- 832 Mayer, F., Berger, D., Gottsberger, B., & Schulze, W. (2010). Non-ecological radiations
- 833 in acoustically communicating grasshoppers? In M. Glaubrecht (Ed.), *Evolution*
- *in Action* (pp. 451-464). Berlin, Germany: Springer-Verlag.

835	Mayr, E. (1963). Animal Species and Evolution. Cambridge, USA: Harvard University
836	Press.
837	Moran, R. L., Zhou, M. C., Catchen, J. M., & Fuller, R. C. (2018). Hybridization and
838	postzygotic isolation promote reinforcement of male mating preferences in a
839	diverse group of fishes with traditional sex roles. Ecology and Evolution, 8(18),
840	9282-9294. doi:10.1002/ece3.4434
841	Nadeau, N. J., Martin, S. H., Kozak, K. M., Salazar, C., Dasmahapatra, K. K., Davey, J.
842	W., Jiggins, C. D. (2013). Genome-wide patterns of divergence and gene
843	flow across a butterfly radiation. Molecular Ecology, 22(3), 814-826.
844	doi:10.1111/j.1365-294X.2012.05730.x
845	Nosil, P. (2008). Speciation with gene flow could be common. Molecular Ecology,
846	17(9), 2103-2106. doi:10.1111/j.1365-294X.2008.03715.x
847	Ortego, J., Gugger, P. F., Riordan, E. C., & Sork, V. L. (2014). Influence of climatic
848	niche suitability and geographical overlap on hybridization patterns among
849	southern Californian oaks. Journal of Biogeography, 41(10), 1895-1908.
850	doi:10.1111/jbi.12334
851	Ortego, J., Gugger, P. F., & Sork, V. L. (2018). Genomic data reveal cryptic lineage
852	diversification and introgression in Californian golden cup oaks (section
853	Protobalanus). New Phytologist, 218(2), 804-818. doi:10.1111/nph.14951
854	Ortiz-Barrientos, D., Counterman, B. A., & Noor, M. A. F. (2004). The genetics of
855	speciation by reinforcement. PLoS Biology, 2(12), 2256-2263.
856	doi:10.1371/journal.pbio.0020416
857	Papadopoulou, A., & Knowles, L. L. (2015). Genomic tests of the species-pump
858	hypothesis: Recent island connectivity cycles drive population divergence but

859	not speciation in Caribbean crickets across the Virgin Islands. Evolution, 69(6),
860	1501-1517. doi:10.1111/evo.12667
861	Payseur, B. A., & Rieseberg, L. H. (2016). A genomic perspective on hybridization and
862	speciation. Molecular Ecology, 25(11), 2337-2360. doi:10.1111/mec.13557
863	Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S., & Hoekstra, H. E. (2012).
864	Double digest RADseq: An inexpensive method for de novo SNP discovery and
865	genotyping in model and non-model species. PLoS One, 7(5), e37135.
866	doi:10.1371/journal.pone.0037135
867	Petr, M., Paabo, S., Kelso, J., & Vernot, B. (2019). Limits of long-term selection against
868	Neandertal introgression. Proceedings of the National Academy of Sciences of
869	the United States of America, 116(5), 1639-1644. doi:10.1073/pnas.1814338116
870	Pfennig, K. S., & Pfennig, D. W. (2009). Character displacement: Ecological and
871	reproductive responses to a common evolutionary problem. Quarterly Review of
872	<i>Biology</i> , 84(3), 253-276. doi:10.1086/605079
873	Pickrell, J. K., & Pritchard, J. K. (2012). Inference of population splits and mixtures
874	from genome-wide allele frequency data. PLoS Genetics, 8(11), e1002967.
875	doi:10.1371/journal.pgen.1002967
876	Pinho, C., & Hey, J. (2010). Divergence with gene flow: Models and data. Annual
877	Review of Ecology, Evolution, and Systematics, 41, 215-230.
878	Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure
879	using multilocus genotype data. Genetics, 155(2), 945-959.
880	Prüfer, K., Racimo, F., Patterson, N., Jay, F., Sankararaman, S., Sawyer, S., Paabo,
881	S. (2014). The complete genome sequence of a Neanderthal from the Altai
882	Mountains. Nature, 505(7481), 43-49. doi:10.1038/nature12886

- 883 Quilodran, C. S., Nussberger, B., Montoya-Burgos, J. I., & Currat, M. (2019).
- 884 Hybridization and introgression during density-dependent range expansion:
- European wildcats as a case study. *Evolution*, 73(4), 750-761.
- 886 doi:10.1111/evo.13704
- Ragge, D. R., & Reynolds, W. J. (1998). *The Songs of the Grasshoppers and Crickets of Western Europe*. Essex, UK: Harley Books.
- 889 Raj, A., Stephens, M., & Pritchard, J. K. (2014). FASTSTRUCTURE: Variational inference

of population structure in large SNP data sets. *Genetics*, 197(2), 573-589.

- doi:10.1534/genetics.114.164350
- 892 Roda, F., Mendes, F. K., Hahn, M. W., & Hopkins, R. (2017). Genomic evidence of
- gene flow during reinforcement in Texas Phlox. *Molecular Ecology*, 26(8),
- 894 2317-2330. doi:10.1111/mec.14041
- 895 Rohde, K., Hau, Y., Kranz, N., Weinberger, J., Elle, O., & Hochkirch, A. (2017).
- 896 Climatic effects on population declines of a rare wetland species and the role of
- spatial and temporal isolation as barriers to hybridization. *Functional Ecology*,

898 *31*(6), 1262-1274. doi:10.1111/1365-2435.12834

- 899 Rosenberg, N. A. (2004). DISTRUCT: a program for the graphical display of population
- 900 structure. *Molecular Ecology Notes*, 4(1), 137-138. doi:10.1046/j.1471-
- 901 8286.2003.00566.x
- 902 Roux, C., Fraisse, C., Romiguier, J., Anciaux, Y., Galtier, N., & Bierne, N. (2016).
- 903 Shedding light on the grey zone of speciation along a continuum of genomic
- 904 divergence. *PLoS Biology*, *14*(12), e2000234. doi:10.1371/journal.pbio.2000234
- 905 Saldamando, C. I., Tatsuta, H., & Butlin, R. K. (2005). Hybrids between Chorthippus
- 906 *brunneus* and *C. jacobsi* (Orthoptera: Acrididae) do not show endogenous

907	postzygotic isolation. Biological Journal of the Linnean Society, 84(2), 195-203.
908	doi:10.1111/j.1095-8312.2005.000424.x
909	Sankararaman, S., Mallick, S., Dannemann, M., Prüfer, K., Kelso, J., Paabo, S.,
910	Reich, D. (2014). The genomic landscape of Neanderthal ancestry in present-day
911	humans. Nature, 507(7492), 354-357. doi:10.1038/nature12961
912	Sankararaman, S., Patterson, N., Li, H., Paabo, S., & Reich, D. (2012). The date of
913	interbreeding between Neandertals and modern humans. PLoS Genetics, 8(10),
914	e1002947. doi:10.1371/journal.pgen.1002947
915	Sasa, M. M., Chippindale, P. T., & Johnson, N. A. (1998). Patterns of postzygotic
916	isolation in frogs. Evolution, 52(6), 1811-1820. doi:10.1111/j.1558-
917	5646.1998.tb02258.x
918	Scattolini, M. C., Confalonieri, V., Lira-Noriega, A., Pietrokovsky, S., & Cigliano, M.
919	M. (2018). Diversification mechanisms in the Andean grasshopper genus
920	Orotettix (Orthoptera: Acrididae): ecological niches and evolutionary history.
921	Biological Journal of the Linnean Society, 123(4), 697-711.
922	doi:10.1093/biolinnean/bly008
923	Schenk, J. J., Kontur, S., Wilson, H., Noble, M., & Derryberry, E. (2018). Allopatric
924	speciation drives diversification of ecological specialists on sandhills.
925	International Journal of Plant Sciences, 179(4), 325-339. doi:10.1086/697073
926	Schmitt, T. (2009). Biogeographical and evolutionary importance of the European high
927	mountain systems. Frontiers in Zoology, 6, 9. doi:10.1186/1742-9994-6-9
928	Seddon, J. M., Santucci, F., Reeve, N. J., & Hewitt, G. M. (2001). DNA footprints of
929	European hedgehogs, Erinaceus europaeus and E. concolor. Pleistocene refugia,
930	postglacial expansion and colonization routes. Molecular Ecology, 10(9), 2187-
931	2198. doi:10.1046/j.0962-1083.2001.01357.x

- 932 Servedio, M. R., & Kirkpatrick, M. (1997). The effects of gene flow on reinforcement.
- 933 *Evolution, 51*(6), 1764-1772. doi:10.2307/2410999
- 934 Servedio, M. R., & Noor, M. A. F. (2003). The role of reinforcement in speciation:
- 935 Theory and data. *Annual Review of Ecology Evolution and Systematics*, 34, 339-
- 936 364. doi:10.1146/annurev.ecolsys.34.011802.132412
- 937 Soltis, P. S., & Soltis, D. E. (2009). The role of hybridization in plant speciation.
- 938 Annual Review of Plant Biology, 60, 561-588.
- 939 doi:10.1146/annurev.arplant.043008.092039
- 940 Song, H. J., Amedegnato, C., Cigliano, M. M., Desutter-Grandcolas, L., Heads, S. W.,
- Huang, Y., . . . Whiting, M. F. (2015). 300 million years of diversification:
- 942 elucidating the patterns of orthopteran evolution based on comprehensive taxon
- 943 and gene sampling. *Cladistics*, *31*(6), 621-651. doi:10.1111/cla.12116
- 944 Stift, M., Kolar, F., & Meirmans, P. G. (2019). STRUCTURE is more robust than other
- 945 clustering methods in simulated mixed-ploidy populations. *Heredity*, 123(4),
- 946 429-441. doi:10.1038/s41437-019-0247-6
- 947 Takahashi, T., Nagata, N., & Sota, T. (2014). Application of RAD-based phylogenetics
- to complex relationships among variously related taxa in a species flock.
- 949 Molecular Phylogenetics and Evolution, 80, 137-144.
- 950 doi:10.1016/j.ympev.2014.07.016
- 951 Taylor, E. B., Boughman, J. W., Groenenboom, M., Sniatynski, M., Schluter, D., &
- 952 Gow, J. L. (2006). Speciation in reverse: morphological and genetic evidence of
- 953 the collapse of a three-spined stickleback (*Gasterosteus aculeatus*) species pair.
- 954 *Molecular Ecology*, *15*(2), 343-355. doi:10.1111/j.1365-294X.2005.02794.x
- 955 Thome, M. T. C., & Carstens, B. C. (2016). Phylogeographic model selection leads to
- 956 insight into the evolutionary history of four-eyed frogs. *Proceedings of the*

957	National Academy of Sciences of the United States of America, 113(29), 8010-
958	8017. doi:10.1073/pnas.1601064113
959	Tonzo, V., Papadopoulou, A., & Ortego, J. (2019). Genomic data reveal deep genetic
960	structure but no support for current taxonomic designation in a grasshopper
961	species complex. Molecular Ecology, 28(17), 3869-3886.
962	doi:10.1111/mec.15189
963	Tzedakis, P. C., Emerson, B. C., & Hewitt, G. M. (2013). Cryptic or mystic? Glacial
964	tree refugia in northern Europe. Trends in Ecology & Evolution, 28(12), 696-
965	704. doi:10.1016/j.tree.2013.09.001
966	Vera, M., Díez-del-Molino, D., & García-Marín, J. L. (2016). Genomic survey provides
967	insights into the evolutionary changes that occurred during European expansion
968	of the invasive mosquitofish (Gambusia holbrooki). Molecular Ecology, 25(5),
969	1089-1105. doi:10.1111/mec.13545
970	Virdee, S. R., & Hewitt, G. M. (1994). Clines for hybrid dysfunction in a grasshopper
971	hybrid zone. Evolution, 48(2), 392-407. doi:10.2307/2410100
972	Wachter, G. A., Papadopoulou, A., Muster, C., Arthofer, W., Knowles, L. L., Steiner, F.
973	M., & Schlick-Steiner, B. C. (2016). Glacial refugia, recolonization patterns and
974	diversification forces in Alpine-endemic Megabunus harvestmen. Molecular
975	Ecology, 25(12), 2904-2919. doi:10.1111/mec.13634
976	Wall, J. D., Yang, M. A., Jay, F., Kim, S. K., Durand, E. Y., Stevison, L. S., Slatkin,
977	M. (2013). Higher levels of Neanderthal ancestry in east Asians than in
978	Europeans. Genetics, 194(1), 199-209. doi:10.1534/genetics.112.148213
979	
980	SUPPORTING INFORMATION

981 Additional supporting information may be found online in the Supporting Information

982 section at the end of the article.

to periodo on the one of the one

983 Tables

984

TABLE 1 Comparison of alternative migration models (detailed in Figure 2) tested

- 986 using FASTSIMCOAL2. For each model, the table shows the maximum likelihood
- 987 estimate of the model $(log_{10}L)$, the number of parameters (k), the Akaike's information
- 988 criterion score (AIC), the difference in AIC value of each model from that of the
- strongest model (ΔAIC), and AIC weight (ω_i). Best-supported model ($\Delta AIC < 2$) is
- 990 indicated in bold.

991

Model	k	log ₁₀ L	AIC	ΔΑΙϹ	ω_i
Model 0	6	-3539.32	7090.64	90.01	0.00
Model 1	7	-3518.85	7051.71	51.08	0.00
Model 2	8	-3518.42	7052.84	52.21	0.00
Model 3	9	-3515.49	7048.98	48.34	0.00
Model 4	10	-3515.54	7051.09	50.45	0.00
Model 5	10	-3490.32	7000.63	0.00	0.86
Model 6	12	-3490.09	7004.19	3.56	0.14

992

993

994

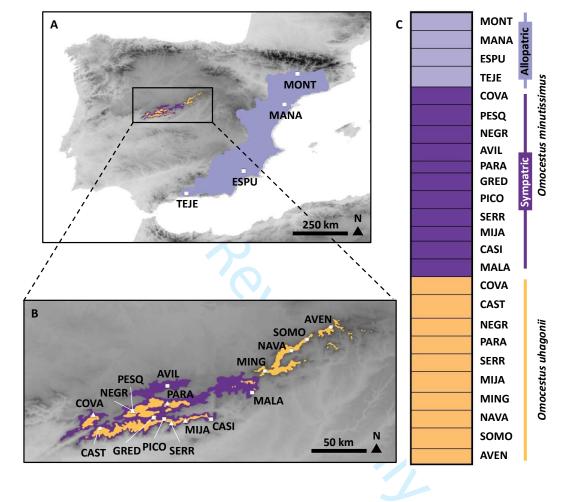
Molecular Ecology

996	TABLE 2 Parameters inferred from coalescent simulations with FASTSIMCOAL2 under
997	the most supported demographic model (Model 5). Table shows point estimates and
998	lower and upper 95% confidence intervals. Note that the effective population size of O.
999	uhagonii is not presented in this table because it was fixed in FASTSIMCOAL2 analyses to
1000	enable the estimation of other parameters (see the Materials and Methods section for
1001	further details). θ , mutation-scaled effective population sizes; T_{DIV} and T_{ADM} , timing of
1002	population divergence and admixture, respectively (given in number of generations); m ,
1003	migration rates per generation. Each specific parameter is illustrated in Figure 2.
1004	

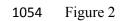
Parameter	Point estimate	Lower Bound	Upper Bound
$ heta_{ m ANC}$	702,036	376,562	832,461
$ heta_{ m MS}$	813,263	686,748	890,000
$ heta_{ m MA}$	1,556,235	1,293,951	1,675,243
T _{DIV1}	1,199,191	922,762	1,380,088
T _{DIV2}	1,382,958	1,278,828	1,670,203
T _{ADM1}	14,090	1632	23,626
T _{ADM2}	29,040	50,260	750,959
m_1	1.28×10^{-07}	9.02×10^{-08}	1.82×10^{-07}
<i>m</i> ₂	2.41×10^{-07}	2.14×10^{-08}	1.37×10^{-07}

1009 Legends to figures

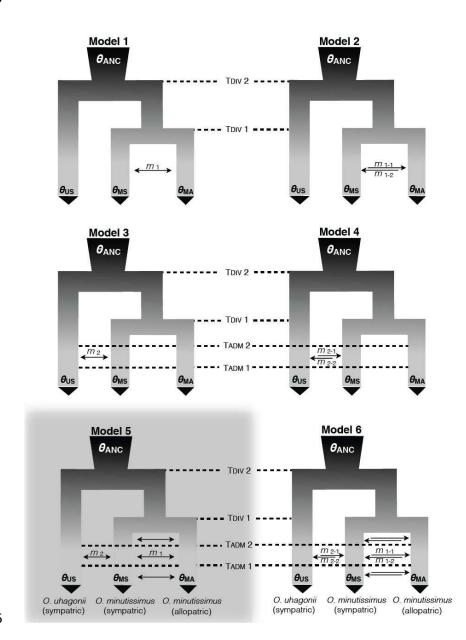
1011	FIGURE 1 Biogeographical setting of the study system. (A-B) Maps show the sampled
1012	populations and the distribution range of the two studied taxa based on our own species
1013	records (O. minutissimus: purple areas and squares; O. uhagonii: light orange areas and
1014	dots). Omocestus minutissimus presents a partially overlapping distribution with O.
1015	uhagonii in the Central System (deep purple) and allopatric populations (light purple) in
1016	eastern Iberia. Triangles indicate sampling localities where the two species were found
1017	living in sympatry. (C) Genetic assignment of individuals based on the results of
1018	FASTSTRUCTURE. Individuals are partitioned into K coloured segments representing the
1019	probability of belonging to the cluster with that colour and thin vertical black lines
1020	separate individuals from different populations. Population codes as in Table S1.
1021	
1022	FIGURE 2 Alternative migration models tested using FASTSIMCOAL2. Parameters
1022 1023	FIGURE 2 Alternative migration models tested using FASTSIMCOAL2. Parameters include ancestral (θ_{ANC}) and contemporary (θ_{US} , θ_{MS} , θ_{MA}) effective population sizes,
1023	include ancestral (θ_{ANC}) and contemporary (θ_{US} , θ_{MS} , θ_{MA}) effective population sizes,
1023 1024	include ancestral (θ_{ANC}) and contemporary (θ_{US} , θ_{MS} , θ_{MA}) effective population sizes, timing of population split (T_{DIV}) and admixture (T_{ADM}), and migration rates (<i>m</i>) between
1023 1024 1025	include ancestral (θ_{ANC}) and contemporary (θ_{US} , θ_{MS} , θ_{MA}) effective population sizes, timing of population split (T_{DIV}) and admixture (T_{ADM}), and migration rates (<i>m</i>) between
1023 1024 1025 1026	include ancestral (θ_{ANC}) and contemporary (θ_{US} , θ_{MS} , θ_{MA}) effective population sizes, timing of population split (T_{DIV}) and admixture (T_{ADM}), and migration rates (<i>m</i>) between different pairs of populations. Grey background highlights the most supported model.
1023 1024 1025 1026 1027	include ancestral (θ_{ANC}) and contemporary (θ_{US} , θ_{MS} , θ_{MA}) effective population sizes, timing of population split (T_{DIV}) and admixture (T_{ADM}), and migration rates (<i>m</i>) between different pairs of populations. Grey background highlights the most supported model. FIGURE 3 Genetic assignment of <i>O. minutissimus</i> and <i>O. uhagonii</i> from the Central
1023 1024 1025 1026 1027 1028	include ancestral (θ_{ANC}) and contemporary (θ_{US} , θ_{MS} , θ_{MA}) effective population sizes, timing of population split (T_{DIV}) and admixture (T_{ADM}), and migration rates (<i>m</i>) between different pairs of populations. Grey background highlights the most supported model. FIGURE 3 Genetic assignment of <i>O. minutissimus</i> and <i>O. uhagonii</i> from the Central System based on the results of (A) FASTSTRUCTURE and (B) STRUCTURE. Individuals are
1023 1024 1025 1026 1027 1028 1029	include ancestral (θ_{ANC}) and contemporary (θ_{US} , θ_{MS} , θ_{MA}) effective population sizes, timing of population split (T_{DIV}) and admixture (T_{ADM}), and migration rates (<i>m</i>) between different pairs of populations. Grey background highlights the most supported model. FIGURE 3 Genetic assignment of <i>O. minutissimus</i> and <i>O. uhagonii</i> from the Central System based on the results of (A) FASTSTRUCTURE and (B) STRUCTURE. Individuals are partitioned into <i>K</i> coloured segments representing the probability of belonging to the
1023 1024 1025 1026 1027 1028 1029 1030	include ancestral (θ_{ANC}) and contemporary (θ_{US} , θ_{MS} , θ_{MA}) effective population sizes, timing of population split (T_{DIV}) and admixture (T_{ADM}), and migration rates (<i>m</i>) between different pairs of populations. Grey background highlights the most supported model. FIGURE 3 Genetic assignment of <i>O. minutissimus</i> and <i>O. uhagonii</i> from the Central System based on the results of (A) FASTSTRUCTURE and (B) STRUCTURE. Individuals are partitioned into <i>K</i> coloured segments representing the probability of belonging to the cluster with that colour and thin vertical black lines separate individuals from different


Molecular Ecology

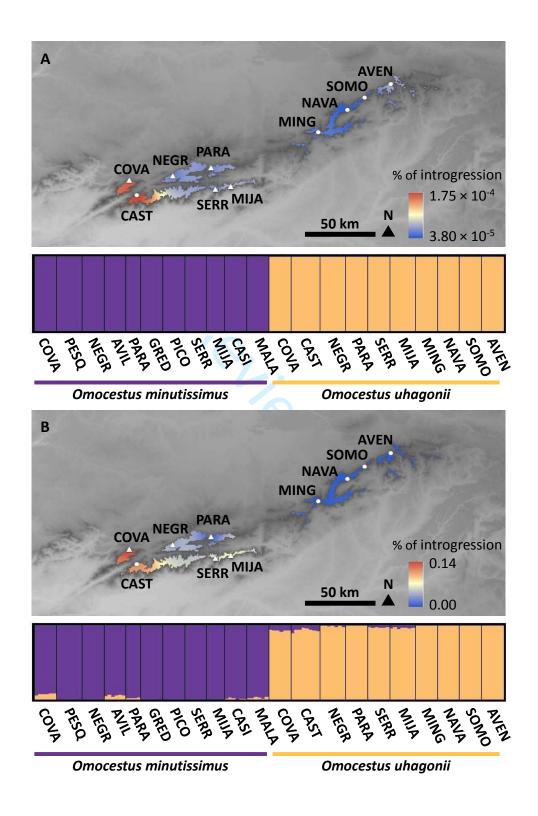
1033	of O. minutissimus (i.e., the degree of introgression from O. minutissimus to O.
1034	uhagonii). Population codes as in Table S1.
1035	
1036	FIGURE 4 Maximum-likelihood tree inferred with TREEMIX for O. uhagonii (US) and
1037	sympatric (MS) and allopatric (MA) populations of O. minutissimus. The direction of
1038	gene flow (from MS to US) for the most likely migration event ($m = 1$) inferred is
1039	represented with an arrow colored according to the percentage of alleles (weight)
1040	originating from the source.
1041	
1042	FIGURE 5 Schematic representation of the events documented in this study and the
1043	inferred biological processes. These correspond to the best-fit demographic model
1044	(Model 5) for O. uhagonii (US) and sympatric (MS) and allopatric (MA) populations of
1045	O. minutissimus. Vertical bars connecting MS and US represent historical gene flow.
1046	Note that geological reference time is not scaled and only point estimates inferred by
1047	FASTSIMCOAL2 are presented to simplify visualization.
1048	

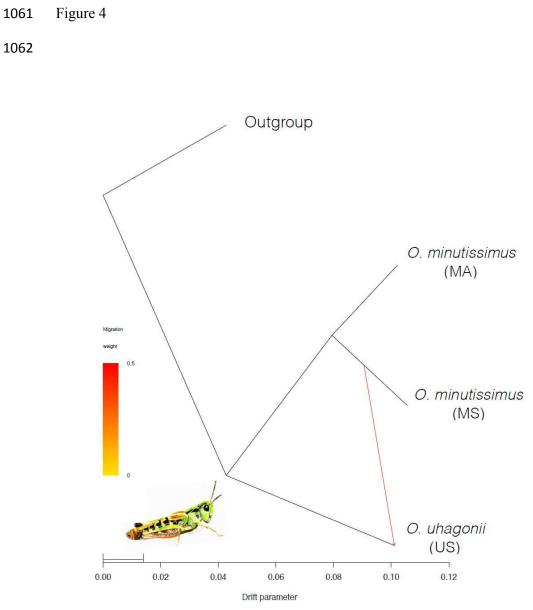

1049 Figure 1

1050


1051

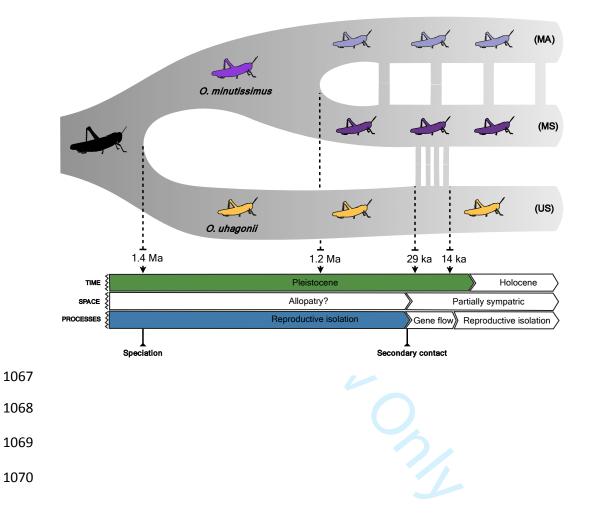
1052


1055



1056

1058 Figure 3


1059

1065 Figure 5

