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A B S T R A C T

Brain aromatase is a key enzyme exclusively expressed in fish radial glial cells that convert androgens into
estrogens, thus controlling neuroendocrine functions and neurogenesis. As an important step in characterizing
the neuroendocrine systems of Rhamdia quelen (jundiá), a partial cDNA sequence (1045 bp) of brain aromatase
(cyp19a1b) was cloned and sequenced. At the nucleotide level the cDNA sequence was found to be 88% identical
to cyp19a1b of two species of catfish, Ictalurus punctatus and Silurus meridionalis. The predicted amino acid
sequence was between 80 and 91% similar to other teleosts. Real-time RT-qPCR analysis revealed that cyp19a1b
was detected in pituitary, hypothalamus, telencephalon, head and posterior kidneys, liver and gonads (testis and
ovary) of both males and females. The effects of E2 on cyp19a1b expression are sexually dimorphic in R. quelen.
The injection of 17β-estradiol (E2) decreased head kidney mRNA levels of cyp19a1b in males and increased
cyp19a1b mRNA levels in the pituitary and head kidney of females. This study demonstrated that the R. quelen
cyp19a1b gene is expressed in brain, pituitary and peripheral tissues in both males and females.

1. Introduction

Rhamdia quelen (jundiá, Silurifomes, Heptapteridae) is a neotropical
catfish widely distributed in Central and South America (Silfvergrip,
1996). This species shows high potential for the aquaculture industry,
due to an elevated growth rate, good carcass yield, and easy re-
production in the subtropical climate (de Amorim et al., 2009;
Fracalossi et al., 2004). R. quelen is the most commercialized native
species in the State of Rio Grande do Sul, Brazil (Baldisserotto, 2009),
representing ~50% of fish markets supplied from aquaculture and 50%
from artisanal fisheries. Some aspects of the biology of this species are
known, for example, growth and activity patterns, gonadal develop-
ment, and responses to several contaminants (Gomes et al., 2000; Mela
et al., 2013; Pereira et al., 2016; Salhi et al., 2004; Schulz and
Leuchtenberger, 2006). However, very little is known about the en-
docrinology of this species. Therefore, the endocrine physiology and
molecular biology of R. quelen requires more attention because this is
essential to enhance the reproductive and growth potential of the spe-
cies in aquaculture.

As a first step to characterize critical neuroendocrine genes in this

species, we focus here on aromatase (cyp19), the only enzyme able to
convert androgens to estrogens, and a key player in vertebrate brain
sexual differentiation (Behl, 2002; Brinton, 2009). In teleost fish, two
aromatase genes arising from genome duplication have been identified.
These are cyp19a1a, mainly expressed in gonads and cyp19a1b, mainly
expressed in the brain (Piferrer and Blázquez, 2005; Tchoudakova and
Callard, 1998). In contrast to mammals in which brain aromatase ac-
tivity is maximal during embryonic development, aromatase expression
in fish brains increases with age in parallel with the levels of sexual
steroids (González and Piferrer, 2003). It is notable that in the teleost
central nervous system cyp19a1b is exclusively expressed in radial glial
cells, which serve as neuronal progenitor cells and, therefore, explains
the high regenerative capacity of the fish brain (Diotel et al., 2013;
Forlano et al., 2001; Xing et al., 2014).

It is well established in mammals and other vertebrates that adult
brain can de novo synthesize steroids from cholesterol (Do Rego et al.,
2009). Indeed, preliminary evidence indicated that goldfish radial glial
cells have the complete enzymatic machinery to synthesize estrogens
from cholesterol (Xing et al., 2014). There is also growing evidence
indicating that 17β-estradiol (E2) modulates neurogenesis in teleost
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fish (Pellegrini et al., 2016).
A limited number of important genes or cDNAs of R. quelen has been

sequenced, e.g., growth hormone, prolactin and somatolactin from the
pituitary (Dolci et al., 2014; Pês et al., 2016; Vaz et al., 2010). However,
neuroendocrine genes in the brain have been not explored. At this way
there is an increasing concern about the detrimental effects of many
natural and synthetic chemicals present in the environment on the
endocrine system of organisms. The cyp19a1b and other genes as vi-
tellogenin and cyp19a1a can be used as a tool for biomonitoring studies
and water quality assessment. Therefore, the aim of this study was to
identify and characterize brain aromatase gene expression (cyp19a1b)
in R. quelen, and to evaluate the effects of E2 on cyp19a1b in different
tissues.

2. Material and methods

2.1. Animals

R. quelen males (12.78 ± 0.53 cm; 18.79 ± 1.84 g) and females
(12.72 ± 0.74 cm; 18.57 ± 2.64 g) were obtained from a local
hatchery and maintained in glass aquaria (100 L capacity, with max-
imum loading of 1.5 g fish L−1). Water was maintained saturated with
oxygen through continuous aeration; temperature was at 25 ± 1 °C,
under a photoperiod of 12 h light:12 h darkness. Fish were fed with
balanced fish food suitable for this species (FRI-ACQUA 40, Fri-Ribe São
Paulo, Brazil). In all cases, fish were anesthetized with 0.02% MS222
(ethyl 3-aminobenzoate methanesulfonate) and euthanized by spinal
section. Tissues were dissected and stored in RNA later (Ambion) until
further analysis. All procedures using animals were performed ac-
cording to the NIH guidelines and to the Committee on Ethics in Animal
Experimentation of Federal University of Paraná, Brazil.

2.2. Cloning and sequencing of R. quelen cyp19a1b

Total RNA from one male brain was isolated using RNeasy mini kit
(including RNase-free DNase step; Qiagen) following the manufacturer's
instructions. The extracted RNA was suspended in RNase-free water and
stored at −80 °C until further analysis. Two micrograms of total RNA
were reverse transcribed into cDNA using Superscript II (Invitrogen)
and 1 μL (200 ng μL−1) of random primers according to manufacturer's
protocol. The resulting cDNA was used to amplify and clone R. quelen
cyp19a1b by the polymerase chain reaction (PCR) using the following
primers (AroBfw1: 5′-CTGCTGTGTACCATGTTCTG-3′ and AroBrev1:
5′-GCCTTCATCATCACCATAGC-3′). Primers were designed based on
homologous brain cyp19a1b sequences from Ictalurus punctatus
(GenBank, AF417239.1) and Silurus meridionalis (GenBank, AY325907.
1). PCR was carried out in the presence of native Taq DNA polymerase
(Invitrogen) and under the following conditions: 95 °C for 2min fol-
lowed by 40 cycles of 95 °C for 45 s, 55 °C for 30 s, and 72 °C for 45 s,
and a final extension step at 72 °C for 10min.

The expected product size amplified by PCR was excised and pur-
ified using QIAquick Gel Extraction kit (Qiagen). The purified PCR
product was inserted into pCR®2.1-TOPO vector and cloned in
Escherichia coli Top10 chemically competent cells (Invitrogen) fol-
lowing the manufacturer's instructions. Plasmids were purified using
QIAprep® spin miniprep kit (Qiagen). To obtain the consensus se-
quence, three plasmid clones were sequenced at Ontario Genomics
Innovation Centre (Ottawa Health Research Institute, Ottawa, Ontario,
Canada).

2.3. Prediction of the amino acid sequence, alignment and phylogenetic
analysis

The predicted protein sequence was determined from the obtained
nucleotide sequence using the Expert Protein Analysis System (Expasy)
translate program (http://www.expasy.ch/tools/dna.html). Domain

Fig. 1. Partial nucleotide and predicted amino acid sequences of cyp19a1b of Rhamdia quelen. Conserved domains are shown (boxes). Primers name and localization
are indicated by thick bars. The arrows indicate the limit between exons. The numbers at the end of each line indicate the position of nucleotides and amino acids. E
(Exons).
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sequences and intron/exon boundaries were determined by comparing
the cloned sequence with other available and characterized fish
cyp19a1b sequences using BLAST (http://www.ncbi.nlm.nih.gov/
BLAST) and Clustal W multiple alignment programs (http://www.ch.
embnet.org/software/ClustalW.html).

A phylogenetic tree was compiled using MEGA5 (Tamura et al.,
2011). The analysis involved full-length amino acid sequences from 33
species and the R. quelen predicted protein sequence cloned in this
study. GenBank accession numbers for those sequences were as follows:
Oncorhynchus mykiss (CAC84574), Gobiodon histrio (AAV91180), Hip-
poglossus hippoglossus (AAY26901), Monopterus albus (ABX45102), Tri-
chogaster trichopterus (ABR66863), Cromileptes altivelis (AAV91181),
Epinephelus coioides (AAR97602), Epinephelus akaara (AAS58447), Ha-
lichoeres tenuispinis (AAR37047), Pseudo labrus japonicus (ABB9646),
Rhabdosargus sarba (ABC70868), Dicentrarchus labrax (AAM95455),
Larimichthys crocea (ACO35042), Micropogonias undulatus (AEL31294),
Oreochromis mossambicus (AAD31030), Oreochromis niloticus
(AAG49480), Mugil cephalus (AAW72730), Kryptolebias marmoratus
(ABC68613), Oryzias latipes (NP_001098563), Fundulus heteroclitus
(AAR97269), Melanotaenia fluviatilis (AED99847), Odontesthes

bonariensis (AAQ88434), Takifugu rubripes (BAF93507), Ictalurus punc-
tatus (AAL14612), Silurus meridionalis (AAP83132), Pelteobagrus fulvi-
draco (AAU25806), Clarias gariepinus (ADH29766), Carassius auratus
(BAA23757), Cyprinus carpio (ACC95443), Danio rerio (NP_571717),
Gobio cyprisrarus (ADB44882) and Rutilus rutilus (BAD91038). The tree
was rooted with Drosophila melanogaster P450 (CAA80549). The amino
acid sequences were aligned using Clustal W. The evolutionary history
was inferred using the Neighbor-Joining method (Saitou and Nei,
1987). The percentage of replicate trees in which the associated taxa
clustered together in the bootstrap test (1000 replicates) was processed
according to Felsenstein (1985). Branches corresponding to partitions
reproduced in<50% bootstrap replicates are collapsed. Bootstrap va-
lues (percent) are shown next to branches. The evolutionary distances
were computed using the Poisson correction method (Zuckerkandl and
Pauling, 1965) and they are in the units of the number of amino acid
substitutions per site. All ambiguous positions were eliminated only in
pairwise sequence comparisons. There were a total of 552 amino acids
positions in the final dataset.

Fig. 2. Phylogenetic tree for vertebrate cyp19a1b proteins. Sequences are presented by species name followed by GenBank accession number in parenthesis.
Taxonomic superorder is indicated (brackets). The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates)
is shown next to the branches. Branches corresponding to partitions reproduced in< 50% bootstrap replicates are collapsed. Bootstrap values (percent) are shown
next to branches.
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2.4. Effect of E2 on cyp19a1b in vivo

Six animals of each sex were injected intraperitoneally with
10mg kg−1 E2 dissolved in canola oil and another six animals for each
sex were injected with canola oil alone (vehicle control). This dose was
used based on previous study that tested three doses of E2 (Moura Costa
et al., 2010) and observed physiological effects in R. quelen with
10mg kg−1 after 17 days of administration (Moura Costa et al., 2010,
2016). The fish were anesthetized with benzocaine 1%, and euthanized
by spinal section. Telencephalon and hypothalamus brain regions, pi-
tuitary, head and posterior kidneys, liver and gonads were dissected
and stored at −80 °C.

2.4.1. RNA isolation, cDNA synthesis and Real-time RT-PCR analysis
Total RNA from tissues was isolated using ReliaPrep™ RNA Tissue

Miniprep System (including DNase step; Promega) following the man-
ufacturer's instructions. The extracted RNA was suspended in RNase-
free water and stored at −80 °C until further analysis. A 260/280 nm
OD ratio ≥1.8 was obtained to ensure high RNA purity, and RNA in-
tegrity was confirmed via electrophoresis on 2% agarose gels. One
microgram of total RNA was reverse transcribed into cDNA using AMV
reverse transcriptase (Promega) and 1 μL (500 ng μL−1) of Oligo(dT)15

primer. The reaction was performed for 10min at 20 °C, 45 min at 45 °C
and 5min at 95 °C.

Specific cyp19a1b cDNA from each tissue was amplified by quanti-
tative polymerase chain reaction (qPCR) using specific primers
(AroBfw2: 5′-GCAGAAGTTACCGTTGATGGA-3′ and AroBrev2: 5′-TTG
GCTTTAGGGAAGAAC-3′) and SYBR Green PCR Master Mix (Applied
Biosystems). The same procedure was carried for expression of refer-
ences genes, β-actin (βacFw: 5′-CACTGGTATTGTGATGGACTC-3′ and
βacRv: 5′- TCATGAGGTAGTCAGTCAGGTC-3′) and elongation factor-
1α (ElFFw: 5′- GTTGGAGTCAACAAGATGG-3′ and ElFRv: 5′-GGGTTG
TAGCCGATCTTC-3′).

A dissociation curve was used to verify primer specificity. Standard
curves for gene expression assays were obtained from serial dilutions of
a randomly pooled subset of female hypothalamus cDNA samples. Each
sample was run in duplicate in optically clear 96-well plates in a final
volume of 25 μL. The reaction contained 40 ng of cDNA, 0.8 μM of each
primer, and 12.5 μL of SYBR green PCR master mix (2×). No template
and no RT controls were run to ensure the absence of DNA con-
tamination. Cycling parameters were as follows: 95 °C for 15min fol-
lowed by 40 cycles of 95 °C for 15 s, 59 °C for 15 s, 72 °C for 40 s. The
qPCR efficiency for all the genes was above 95%. The relative standard
curve method (Applied Biosystems, 1997) was used to determine re-
lative abundance of each gene on the different samples.

The ratio between the cyp19a1b abundance and the arithmetic mean
of the abundance of reference gene was calculated for each sample.
Prior to comparison the relative expression values, data were assessed
for normality by Kolmogorov-Smirnov test. The non-parametric Mann-
Whitney and Kruskal-Wallis tests were used for the non-normal data
and the parametric Student's t-test for normal data. The differences of
cyp19a1b expression levels of each tissue between male and female and
the E2 effects in different tissues of each sex were compared by Mann-
Whitney or Student's t-tests. The cyp19a1b expression levels among the
tissues of females and males fish, separately, were tested by
Kruskal–Wallis test followed by Dunn's post hoc test. Data were con-
sidered significantly different if p < 0.05.

3. Results

We successfully cloned, sequenced a fragment of cyp19a1b from R.
quelen. The amplified product was 1045 bp long and corresponds to
approximately 60–70% of the coding sequence of the expected size of
the cyp19a1b based on a range of related teleost species. The conserved
domains and the exons and introns boundaries were predicted (Fig. 1)
based on the European sea bass cyp19a1b sequence (Blázquez and
Piferrer, 2004). The R. quelen cyp19a1b partial sequence was deposited

Fig. 3. Cyp19a1b mRNA levels in different tissues of 6 males and 6 females of
Rhamdia quelen. abc indicate significant differences among tissues in males,
while xyz indicate significant differences among tissues in females (Kruskal-
Wallis, Dunn's test, p < 0.05). * indicates significant difference between male
and female for each tissue (Student's t or Mann Whitney tests, p < 0.05). Data
are expressed as mean ± S.E.M.

Fig. 4. Regulatory effects of 17β-estradiol (E2) in cyp19a1bmRNA levels in different tissues of 6 males (A) and 6 females (B) of Rhamdia quelen. * indicates significant
difference between the treatments (vehicle control and E2) for each tissue (Student's t, or Mann Whitney tests p < 0.05). Data are expressed as mean ± S.E.M.
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in GenBank under accession number KC525922.1. At the nucleotide
level the sequence was found to be 88% identical to Ictalurus punctatus
and Silurus meridionalis, both closely related species. Multiple amino
acid (aa) alignments showed that the deduced amino acid sequence,
with 347 aa of length, was between 80 and 91% similar to other tele-
osts.

Additionally, we used the predicted Cyp19a1b amino acid sequence
from a number of bony fish species to infer their genetic relatedness and
found that R. quelen occupies an ancient position within the
Siluriformes group. A phylogenetic tree was constructed and it included
both full-length and partial fish Cyp19a1b protein sequences available
in GenBank. The highest sequence similarity of R. quelen Cyp19a1b was
with the Siluriformes, Ictalurus punctatus (88%), Silurus meridionalis
(87%), and Pelteobagrus fulvidraco (86%), consistent with the known
phylogenetic relationships of the catfish (Fig. 2).

The mRNA of cyp19a1b was detected in all studied tissues including
head and posterior kidney, liver and gonads, in addition to the expected
expression in pituitary and brain regions in both male and female
(Fig. 3). Females and males presented similar levels of mRNA cyp19a1b
in pituitary, hypothalamus, telencephalon, anterior and posterior
kidney tissues, while levels in liver and gonad were significantly lower
than pituitary and hypothalamus. Males presented higher levels of
cyp19a1b than females in pituitary and posterior kidney.

We observed sexually-dimorphic effects of E2 injection. In E2-
treated males the expression of cyp19a1b was down-regulated in the
head kidney (Fig. 4A), while in E2-treated females the expression in the
pituitary and head kidney were up-regulated (Fig. 4B).

4. Discussion

To the best of our knowledge, the present study is the first to report
the nucleotide sequences of R. quelen brain aromatase cyp19a1b. R.
quelen cyp19a1b has high identity (~88%) to three other catfish species,
Ictalurus punctatus, Silurus meridionalis and Pelteobagrus fulvidraco. The
R. quelen deduced amino acid sequence, with 347 aa of length, corre-
sponds to 60–70% of the total Cyp19a1b protein for several teleosts
(Blázquez and Piferrer, 2004; Chaube et al., 2015; Gelinas et al., 1998;
Strobl-Mazzulla et al., 2005).

Our predictions suggest that R. quelen cyp19a1b presents I-helix,
Ozol's peptide, aromatase-specific conserved and heme-binding regions,
which are the supposed functional regions of aromatase, confirming
that cyp19a1b is a highly-conserved gene. The presence of these con-
served regions may indicate the conservation of the enzymatic activity.
We also examined potential sex differences in cyp19a1b mRNA levels in
pituitary, telencephalon, hypothalamus, liver, gonads and head and
posterior kidneys.

The presence of cyp19a1b in brain regions and pituitary is well
documented for other fish species, for example, Carassius auratus
(Gelinas et al., 1998), Oncorhynchus mykiss (Menuet et al., 2003), Danio
rerio (Menuet et al., 2005; Pellegrini et al., 2007), Hippoglossus hippo-
glossus (Matsuoka et al., 2006), Salaria pavo (Gonçalves et al., 2008),
Heteropneutes fossilis (Chaube et al., 2015). In the teleost brain ar-
omatase is only expressed in radial glial cells (Coumailleau et al., 2015;
Diotel et al., 2010). Sexually dimorphic expression in telencephalon and
hypothalamus has been observed in Danio rerio (Goto-Kazeto et al.,
2004) and Odontesthes bonariensis (Strobl-Mazzulla et al., 2005) with
males showing higher expression than females. It is known that teleost
have high sexually dimorphic neurogenic capacity, in part due to the
high aromatase activity in the different brain regions (Ampatzis et al.,
2012; Coumailleau et al., 2015).

The expression of cyp19a1b in several peripheral tissues (e.g., liver,
head kidney, testis, ovary, gill, etc.) was reported for several species of
fish (Chang et al., 2005; Chaube et al., 2015; Kwon et al., 2001;
Shanthanagouda et al., 2012; Strobl-Mazzulla et al., 2005; Tang et al.,
2010; Van Nes et al., 2005), although this normally occurs in lower
levels than in brain or pituitary. However, there is no consensus among

the species, sex or tissues where brain aromatase is expressed, which
leads to an unclear role to cyp19a1b expression in these tissues. It is
suggested that the estrogen produced in peripheral organs can act in
local targets modulating mechanisms not related directly to reproduc-
tion, as growth and differentiation of tissues (Blázquez and Piferrer,
2004; Piferrer and Blázquez, 2005). Likewise, is suggested that the
presence of estrogen receptors in different organs is associated with
different functions or tissue-specific mechanisms of regulation (Marlatt
et al., 2012; Strobl-Mazzulla et al., 2008). In this way, the presence of
cyp19a1b in peripheral tissues can modulate, in a tissue-specific way,
the transcription of several genes by the action of estrogen receptors.

In the pituitary of R. quelen mRNA levels of cyp19a1b were found to
be higher in males than females, suggesting a sex-specific function, and
perhaps a local action to regulate gonadotropins or other pituitary
hormone secretion (Olivereau and Callard, 1985; Zhang et al., 2014).
Interestingly, the highest mRNA levels were observed in male pituitary
and this result is not similar to other fishes. In Danio rerio (Goto-Kazeto
et al., 2004), in Cyprinus carpio (Tang et al., 2010) and in Odontesthes
bonariensis (Strobl-Mazzulla et al., 2005) no sex differences were ob-
served in this tissue.

In males, higher cyp19a1b was detected in posterior kidney, but this
difference was not observed in Hippoglossus hippoglossus (Matsuoka
et al., 2006), while in Cyprinus carpio (Tang et al., 2010) and in Ci-
chlasoma dimerus (Ramallo et al., 2017) the expression of cyp19a1b in
kidney was not detected. On the other hand, females presented higher
expression of cyp19a1b in gonads than males, similar to that observed
by Caulier et al. (2015) in Danio rerio. These authors suggested that the
cyp19a1b present in oocytes could be necessary for preliminary synth-
esis of estrogens in the embryos. However, the recent development of
cyp19a1a and cyp19a1b knockout lines in zebrafish point to a dominant
role for gonadal aromatase cyp19a1a (Yin et al., 2017).

We are interested in R. quelen cyp19a1b because it may be a useful
tool for further investigations of the effects endocrine disrupting che-
micals (EDCs) in an ecologically relevant South American species. It is
already known that cyp19a1b is responsive to sexual steroids, especially
to estrogens, since there is an estrogen-responsive element located in
the promoter region of the gene and for its up-regulation is also ne-
cessary the presence of a functional estrogen receptor (Coumailleau
et al., 2015). In this study, we observed that both R. quelen males and
females were sensitive to 17β-estradiol (E2) exposure. In females of R.
quelen an up-regulation in cyp19a1b occurred in pituitary and head
kidney following E2 injection. In males only a down-regulation in
cyp19a1b in the head kidney after E2 treatment was observed. Little is
known about the regulation of cyp19a1b in head kidney in other fish
species. Therefore, this down-regulation was also observed in the brain
of Gobiocypris rarus males exposed to 17α-ethinylestradiol (EE2) (Qin
et al., 2014), and in brain of Pimephales promelas males exposed to E2
(Halm et al., 2002), but in peripheral tissues this effect was not ob-
served. However, decreased expression induced by estrogenic com-
pounds is most frequent observed in cyp19a1a, the gonadal isoform of
aromatase gene (Cheshenko et al., 2007; Hinfray et al., 2006; Kazeto
et al., 2004; Mills et al., 2014).

It is generally accepted that E2 and other estrogens time-and dose-
dependently upregulate cyp19a1b in the brain of different fish species
(Brion et al., 2012; Gupta et al., 2017; Le Page et al., 2010; Menuet
et al., 2005; Pérez et al., 2012; Roggio et al., 2014). The lack of effect of
E2 in the R. quelen hypothalamus and telencephalon was therefore a
surprise. As this is one of the first South American species to be ex-
amined, so perhaps there is an important species difference in brain
responsiveness to exogenous estrogens. The Chinese rare minnow
serves as an interesting example that may not follow this pattern. It has
been reported that cyp19a1b tends to be upregulated in the brains of
female Gobiocypris rarus exposed to waterborne EE2 at 1–125 ng L−1 for
3–6 days (Qin et al., 2014). In the same study, EE2 increased cyp19a1b
in male brain at 3 days, but the treatments either reduced cyp19a1b
(1 ng L−1) or had no effects on brain cyp19a1b at the higher doses
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(5–125 ng L−1). In contrast, cyp19a1a was inhibited by these doses of
EE2 in ovaries of female and testes of male Gobiocypris rarus (Qin et al.,
2014).

From these previously reported results, in comparison to those ob-
tained following injection of E2 in jundia, it is evident that the response
of the various forms of aromatase to estrogens depends on species, sex,
time, dose and tissue considered. This regulation is likely indicative of
combined direct effects via estrogen receptor-estrogen response ele-
ments in gene promoters, and indirect effects of estrogenic chemicals on
other factors controlling expression of cyp19a1b. Here we show that the
head kidney of R. quelen is also a site of cyp19a1b expression and target
of estrogen action.

In conclusion, the partial sequencing and characterization of R.
quelen cyp19a1b provides essential information about this gene and its
presence in peripheral tissues outside of the central nervous system in a
teleost. Furthermore, we covered sex differences in the effects of E2 on
the cyp19a1b gene expression in R. quelen.
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