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ABSTRACT 

Photopolymerization is a selective technique that takes advantage of light-sensitive 

molecules to initiate and propagate monomeric structures to render covalently bonded 

macromolecular materials known as polymers. Herein, we present a novel one-step 

microfluidic synthesis of customized hybrid-thermoresponsive Poly(N-

isopropylacrylamide) (PNIPAm) based microparticles (MPs) containing plasmonic 

hollow gold nanoparticles (HGNPs) and bupivacaine (BVP) used as a model drug. 

Those hybrid microparticles were prepared using a flow-focusing microreactor coupled 

to a UV LED device built with a simple outer PTFE tubing and an inner flexible 

capillary. Different tubing characteristics and flow rate ratios were altered in order to 

control the size of the resulting microparticles. In addition, components such as 

monomer, crosslinker and photoinitiator concentrations, as well as LED intensity and 

irradiation time were tuned to obtain different MPs and their characteristics and 

polymerization rates were compared by Gel permeation Chromatography (GPC). 

Thermoresponsive properties were analyzed and the presence of HGNPs was confirmed 

in light-activated triggered drug release applications. Bupivacaine loading and release 

studies were demonstrated with the resulting hollow and solid microparticles (which 

were obtained depending on the polymerization rate used) and their temperature 

responsiveness was assessed using a NIR laser when HGNPs were present in the 

constructs. Finally, cytotoxicity studies, cell-cycle arrest and apoptotic induction were 

carried out to certify their suitability for further biomedical applications to be used as 

triggerable drug depots.  



1 Introduction 

Engineered polymeric microparticles (MPs) have become very interesting 

multifunctional platforms in biomedicine.1 Biosensing2, drug delivery3 or tissue 

engineering4 are some of the areas in which MPs standout as advanced materials at the 

cutting edge of functional polymers. However, their biological suitability depends on 

their properties, which have a direct relationship with their size, composition, structure 

and configuration. Thus, controlling them has turned into the key challenge for 

researchers of the field.5,6 

Conventional discontinuous polymerization methods, such as emulsion6,7, dispersion8 or 

spraying9, do not allow a good control over the final MPs properties. This usually leads 

to polydispersity and low reproducibility10,11,12 even at reduced production scales due to 

the heterogeneous distribution of reactants and temperatures and an insufficient mixing. 

In the last years, the production of monodisperse particles for biomedical use has 

stimulated great interest in a myriad of scientific and engineering fields to take 

advantage of their benefits in controlling drug release rates and obtaining reliable 

results. Continuous microfluidic devices have introduced different approaches to 

overcome these previous limitations.13,14 Micro-sized channels permit to handle fluid 

flows at the microscale very precisely leading to highly reproducible synthesis and 

narrow size distributions in the resulting MPs due to an efficient mixing driven by 

molecular diffusion.15,16 Microfluidic systems offer also some advantages against 

classical systems17: homogenous reaction conditions, portability, high  sensitivity, low 

energy consumption, highly integrated multifunction and easy scalability. 

Droplet microfluidics has been demonstrated to be one of the most efficient 

microfluidic approaches thanks to the facile control of the reaction conditions and fast 

MP formation18. Two types of flow focusing devices have been considered in the 



droplet based microfluidics approach to produce spherical MP19: 1) a chip-based flow 

focusing device with a T or Ψ shaped microchannel integrated on a chip, and 2) a 

capillary-based flow focusing device (coaxially aligned microcapillaries). Glass-made 

microchips and capillaries are very expensive, as well as fragile materials.20,21 Glass 

manufacturing has the limitations of a complicated welding and gas tight sealing, a 

difficult integration in a macro-system (connecting to the macro scale) and also any 

posterior modification is not economically viable. On the other hand,  the design and 

fabrication of microfluidic silicon-based chips could be expensive, labour-intensive and 

requires clean room facilities. Furthermore, polymerization reactions can easily promote 

chip blockage, precluding a stable flow. Consequently, while some problems can be 

overcome by careful choice of the reaction conditions, there is a need for low-cost, 

modular components that can be easily assembled into flow-focusing devices by users 

lacking proficiency or access to microfabrication facilities22. In this sense, polymeric 

PTFE  coaxially aligned capillaries provide a real alternative thanks to their ease of 

fabrication and modification, flexibility, re-usability and excellent chemical and 

mechanical properties and optical transparency.23,24 

Microparticle precipitation can be provoked by ionic crosslinking25, temperature 

induced gelation26 or by polymerization27. Polymerization can be carried out upon heat 

assisted radical generation or by UV irradiated photopolymerization among other 

techniques.28 In this sense, photopolymerization represents a fast process having a 

precise control over the characteristics of the final polymer after the induction by UV-

light lamp exposure20 avoiding the potential problems that high temperature may 

provoke on biomolecules used during the synthesis. The use of light emitting diodes 

(LEDs) holds great promise in the field of photopolymerization due the following 

advantages29: 1) low energy consumption, 2) no ozone release, 3) low heat generation, 



4) low operating costs and maintenance, 5) high lifetimes, 6) easy and safe handling, 7) 

100% output immediately obtained after turn-on, and 8) easily controlled intensity. 

Then, the assembly of LED devices and microfluidics to control the polymerization 

process is an interesting alternative to deal with the controlled production of polymer 

MPs. Polymerization of droplets can be accomplished upon incorporating a curing agent 

directly into the droplet, or in the continuous phase. The photoinitiator solubility in the 

disperse or continuous phase will be the key value to select the polymerization 

approach. Droplet polymerization can be accomplished during droplet formation, inside 

the microreactor chip30,31, or in a totally separated step off-chip32,33,34. Time, intensity of 

light, and reaction components determine the composition, size and properties of the 

synthetized MPs.35,36  

MPs prevail as drug delivery vehicles, considering that a large number of products 

based on polymer MPs have already been commercialized. To name a few: 1) Trelstar® 

injectable microspheres loaded with triptorelin pamoate and Enantone LP® loaded with 

Leuprorelin and Lupron® depot loaded with leuprolide acetate for prostate cancer 

treatment. 2) Sandostatin LAR® depot loaded with octreotide acetate and Somatulin L 

loaded with  lanreotide for acromegaly treatment. 3) Risperdal Consta® depot loaded 

with risperidone for the treatment of schizophrenia as well as for the longer-term 

treatment of Bipolar I disorder. 4) Nutropin® depot  loaded with recombinant human 

growth hormone as growth hormone regulator; and 5) Vivitrol® depot loaded with 

naltrexone for treating alcohol dependence and preventing relapse to opioid 

dependence. One of the most promising MPs so far for biomedical applications are gel 

structures.37 Their capability to respond to several external stimuli such as temperature38 

or pH39 make them extremely interesting in biomedicine. Among them, microgels based 

on thermoresponsive polymers are widely studied. One of them, poly(N-



isopropylacrylamide) (PNIPAm) presents a broad variety of opportunities in order to 

customize the final product according to the desired application40,41,42. Crosslinking, 

monomer and initiator concentration as well as flow rate ratio, irradiation time and 

intensity of the UV-light source, lead to MPs with completely different properties43. 

Mechanical and thermoresponsive properties of resulted MPs are determined by the 

fine-tuning of the synthesis variables. Synthesis of hybrid PNIPAm MPs has been 

conducted in conventional batch type reactors, showing the possibility to combine the 

function of both thermoresponsive polymers and stimuli sensitive inorganic NPs. For 

example, Ekici et al.44 incorporated magnetic iron NPs in hyaluronic acid-PNIPAm 

nanogels obtaining a double magnetism-temperature responsive system. Moreover, 

microfluidics allows the precise and controlled encapsulation in MPs of different 

components from fluorescent dyes45 to live cells46,47 that can be useful in drug delivery 

studies or biosensing48. In general, the loading of cargos capable to respond to external 

stimuli such as light, ultrasound or magnetic fields are very interesting to explore the 

versatility of hybrid MPs. Superparamagnetic Fe3O4 NPs (SPIONs) have also been used 

as triggers for achieving a burst release of lipophilic substances encapsulated in oil 

cores from core-shell PNIPAm microparticles after induction by alternating magnetic 

fields49. Also, gold nanostructures have been widely used for light-triggered drug 

release from PNIPAm microcapsules42. Wang et al.50 recently showed the possibility to 

activate shape transition of Au nanorods-PNIPAm hybrid MPs using high power NIR 

laser irradiation. Those hybrid MPs were produced in several stages, resulting in a semi-

continuous process: 1) Drop formation in continuous flow, 2) Drop sedimentation in 

stagnant conditions for 5 minutes after collection in order to fine tune the shape and 3) 

Drop photopolymerization in stagnant conditions under 365 nm UV light during 5 min. 

Kim et al.51 also used the same microfluidic approach to generate hollow PNIPAm 



microcapsules containing gold nanorods. But in this last case the double-emulsion 

droplets were incubated in a glass vial for 12 hours at room temperature to complete the 

polymerization, turning it also as a semi-continuous process, which represents a 

drawback to increase the productivity. Although a high control over the size and 

thermoresponsive properties of the MPs were achieved by the reported methods50,51, the 

production of PNIPAm hybrid MPs co-loading in the same MP drugs and metal 

nanoparticles (HGNPs) using a single flow device in continuous fashion by 

photopolymerization is still lacking. The development of a new flow synthesis approach 

that enables to address previous drawbacks would accelerate the translation of hybrid 

MPs applications for their future biomedical use. 

Herein, we present a facile, low-cost, and efficient method of producing drug loaded 

HGNPs-PNIPAm hybrid MPs, capable to tune the structure of the drug carrier MPs in 

order to achieve different pharmacokinetics in drug delivery applications. A capillary-

based flow focusing device with coaxially aligned micro capillaries was coupled to a 

UV-LED to facilitate the controlled droplet formation and fast polymerization at 

different synthesis conditions obtaining customized MPs for purpose-specific drug 

delivery applications. Flow dynamics, reagents ratio and UV exposure time were 

studied to achieve two types of MPs that behave in a different way, accordingly to the 

type of drug delivery targeted. The efficient simultaneous loading of a drug and HGNPs 

is also described. HGNPs were selected as trigger NPs for on-demand light-responsive 

drug delivery. On its part, bupivacaine was used as a model drug in order to test the 

pharmacokinetic response of MPs with different shell thicknesses together with the 

reversible temperature-dependence of hybrid MPs sizes. HGNPs immobilized in the 

hydrogel network enable the localized heating of the MPs after NIR light illumination, 

providing the remote control in the permeability of the shell and the triggered release of 



bupivacaine. Cytotoxicity analyses were carried out with the materials developed in two 

different cell lines studying their subcytotoxic concentration and their effect in cell 

membrane and cell cycle. 

2 Materials and methods 

2.1 Materials 

N-isopropylacrylamide ≥99% (NIPAM), N,N’-methylenebis(acrylamide) 99% (BIS), 

Span® 80, hexadecane, ReagentPlus®, 99%, cobalt chloride hexahydrate (ACS reagent 

grade), sodium citrate tribasic dihydrate (98%), poly(vinylpyrrolidone) (PVP, Mw = 

55000 Da), sodium borohydride (99%), gold(III) chloride hydrate (50% Au basis) and 

bupivacaine hydrochloride monohydrate (99%)  were purchased from Sigma-Aldrich. 

2,2 Diethoxyacetophenone (DEAP) was purchased from Acros Organics. 

2.2 Synthesis of hollow gold nanoparticles (HGNPs) 

Hollow gold nanoparticles (HGNPs) were synthetized following previous works 

developed in our group.52,53 In brief, 400 mL of deionized (DI) water (0.1 % of 0.35 M 

cobalt chloride hexahydrate) and 1.6 mL of 0.1 M sodium citrate trihydrate were 

deoxygenated in a two-necked round-bottom flask by bubbling the solution with argon 

gas for 45 min. Both, 2 mL of 1 wt.% of PVP and 400 µL of 1.0 M sodium borohydride, 

were added to the previous solution under magnetic stirring forming cobalt NPs. Argon 

flux and stirring were kept for 15 min. After that, 380 mL of the resulting NPs 

dispersion was transferred to a beaker containing 120 mL of DI water and 180 µL of 0.1 

M gold (III) chloride hydrate under stirring. Magnetic stirring under room temperature 

conditions was sustained for 30 min until a complete oxidation of the residual cobalt 



was produced. A green colored dispersion indicates the presence of HGNPs, which were 

subsequently washed by several centrifugation steps. 

2.3 Microreactor characteristics 

To produce HGNPs-PNIPAm hybrid microparticles, a coaxial capillary microfluidic 

device was assembled (Figure 1). The dimensions of the inner and outer capillaries were 

modified to tune the resulting microparticle sizes. The inner and outer capillaries were 

made of PEEK (hydrophilic) and PTFE (hydrophobic), respectively. The inner capillary 

diameter was varied from 150 µm or 25 µm, whereas outer capillary diameter was 

altered from 560 µm to 790 µm. The dispersed phase (aqueous) was injected at low 

rates of flow (2.5-30 µL/min) in order to avoid co-laminar flows and unsteady 

microparticle formation. The inner capillary was coaxially localized under an optical 

microscope in order get an axisymmetric flow-focusing device where the dispersed 

phase is surrounded symmetrically by the continuous phase. The coaxial capillary 

reactor was supported in a polymer housing fabricated by 3D-printing to avoid 

capillaries misalignment and to favor fluid dynamic reproducibility. In the downstream 

flow after droplet formation, a UV irradiation provided by a 4.6 W LED (365 nm 

wavelength) was used to activate the photoinitiator and promote the formation of 

radicals to polymerize the monomers inside the resulted droplets. LED intensity was 

modulated in order to obtain the optimum polymerization rate.  

Two different syringe pumps (Harvard Apparatus PHD ULTRA™) at selected flow 

rates were used to control the drop residence time of the injected reagent streams. 

Finally, microparticles were collected in a water recipient in order to avoid the blockage 

of the outer tubing. 



2.4 Preparation of PNIPAm Microparticles 

PNIPAm microparticles (MPs) synthesis was based on the protocol published by Choi 

et al.54. However, in this work we have used a facile-fabricated PTFE coaxial 

microreactor commercially available without clean-room fabrication needs. This 

platform is combined with a low-cost and environmental friendly UV-LED source not 

used in the work described by Choi et al. Moreover, chemical composition and reaction 

conditions were tuned to achieve different pharmacokinetic patterns for specific drug 

delivery applications. In brief, two immiscible phases were coaxially injected to create a 

coaxial flow in dripping mode to form w/o monodisperse droplets at the tip of the inner 

capillary. The disperse aqueous phase was injected through the inner capillary and was 

composed of the monomer NIPAM (N-isopropylacrylamide) with concentrations 

between 150 and 250 mg/mL (aqueous solution), and the crosslinker N,N-

methylenebisacrylamide (BIS) with a monomer/crosslinker ratio ranging  from 25 to 75. 

On the other hand, the continuous phase was injected through the outer capillary and 

was composed by hexadecane, Span 80, as surfactant, at a constant concentration (0.043 

mg/mL) and 2, 2-diethoxyacetophenone (DEAP) as photoinitiator, ranging its 

concentrations between 4–50 µL/mL. Flow ratio between both phases was tuned to 

generate MPs with different chemical and physical properties.  

Hybrid HGNPs-PNIPAm MPs were obtained under the same procedure aforementioned 

but adding different concentrations of HGNPs in the disperse phase stream. Once the 

hybrid HGNPs-PNIPAm MPs was successfully produced and characterized, the 

production of a therapeutic vector with a drug permeability function remotely controlled 

was attempted. The production of the drug loaded hybrid HGNPs-PNIPAm MPs was 

addressed by a modification of previous HGNPs-PNIPAm MPs protocol, but adding 

diverse concentrations of bupivacaine hydrochloride monohydrate together with the 



NIPAM monomers, crosslinker and HGNPs in the disperse phase stream of the 

microfluidic system. 

2.5 Characterization techniques 

The characterization of the resulted HGNPs was carried out by Z-Potential 

measurements at pH=6 in water using a Zeta Plus, Brookhaven Instruments 

Corporation, NY, USA.  Ultraviolet-visible (UV-Vis) absorption spectra were retrieved 

via a Varian Cary® 50 UV-Visible spectrometer (Agilent Technologies, USA). In 

addition, Transmission Electron Microscopy (TEM) analyses were developed in a T20-

FEI Tecnai thermoionic microscope operated at an acceleration voltage of 200 kV. 

TEM samples were prepared by dropping 20 µl of sample in Holey carbon coated nickel 

grid (200 mesh), dried at room temperature. 

Characterization of the chemical structure of resulted MPs was carried out by Fourier 

Transformed Infrared Spectroscopy (FTIR) with a Vertex 70, Bruker with an ATR 

Golden Gate accessory and by Proton Nuclear Magnetic Resonance (1H-NMR) 

spectroscopy carried out on a Bruker AV-400 spectrometer operating at 400 MHz using 

CDCl3 as solvent. In order to demonstrate the proper behavior and reversibility of 

conformational changes due to temperature variations, the swelling ratio, images and 

videos were obtained in a multidimensional real time microscope Leica AF6000 LX. 

The inner presence and distribution of HGNPs inside the polymeric MPs was confirmed 

by electronic imaging with a Cryogenic Dual Beam Nova 200 (Electron Voltage 200V-

30kV; Ion voltage 2kV-30kV). Encapsulation efficiency of gold derived from HGNPs 

was determined by MP-AES (4100 MP-AES, Agilent Technologies, USA). Calibrations 

were carried out using Au standards from 0 to 10 ppm in 10 % Aqua regia. 

Scanning Electron Microscopy (SEM) images were taken for morphology 

characterization. Gel Permeation Chromatography (GPC) studies were carried out in 



order to study the molecular weight of the resulted samples using a Waters Alliance 

2695 HPLC with an evaporative light scattering detector (Waters 2420) and PLgel 5 µm 

MIXED-C Agilent columns (7.5 mm x 300 mm), using THF (HPLC grade) as eluent 

(flow 1 mL/min). Calibration was made with poly(methyl methacrylate) standards. 

Samples were analyzed at 1 mg/mL after filtration using a 0.2 µm PTFE filter. 

2.6 Bupivacaine release studies 

Drug release experiments were carried out in 1 mL of distilled water with 1 mg/mL of 

loaded hybrid MPs. The samples were kept at 37ºC under stirring and at predefined 

times they were collected, centrifuged and the content of bupivacaine measured using 

Gas Chromatography (GC-MS QP2010 SE, Shimadzu). Limonene was used as internal 

standard. 

2.7 In vitro cell culture studies 

The cytocompatibility of solid and hollow MPs loaded with HGNPs and bupivacaine 

was tested in two different cell types, human dermal fibroblasts and macrophages, 

through the evaluation of their effects in cell metabolism, apoptosis and cell cycle. 

Regarding the micrometric size of the synthesized materials, which implies the 

unfeasibility to be phagocytized by cells, in vitro cell cultures were treated with the 

exudates released from the MPs for 24h in cell culture medium.  

Human dermal fibroblasts (Lonza) were grown in Dulbecco’s Modified Eagle’s 

Medium (DMEM) high glucose with stable glutamine (Biowest) supplemented with 

10% v/v fetal bovine serum (FBS; Thermo Fisher Scientific) and 1% v/v antibiotic-

antimycotic (60 μg/mL penicillin, 100 μg/mL streptomycin, and 0.25 μg/mL 

amphotericin B; Biowest). THP1 human monocytes (ATCC TIB-202; LGC Standards) 

were cultured in RPMI 1640 with stable glutamine (Biowest) containing 10% v/v FBS 



(Thermo Fisher Scientific), 0.1% v/v 2-mercaptoethanol 50 mM (Gibco), 1% v/v non-

essential amino acids, 1% v/v HEPES, 1% v/v sodium pyruvate 100 mM and 1% v/v 

antibiotic-antimycotic, all purchased from Biowest. Phorbol 12-myristate 13-acetate 

(PMA, Sigma-Aldrich; 1 µM) was added to the culture for 72h to induce the in vitro 

differentiation of monocytes to macrophages. All cell lines were maintained in a 

humidified atmosphere containing 5% CO2 at 37 °C. 

Blue Cell Viability assay (Abnova) was performed to evaluate the effects of MPs 

exudates (0.01-0.5 mg/mL) on cell metabolism for 24h. After incubation, the reagent 

(10% v/v) was added to the samples and incubated for 4h at 37 ºC and 5% CO2. Finally, 

cell viability was evaluated by fluorescence intensity reading (535/590 nm ex/em) in a 

Synergy HT Microplate Reader (Biotek) through the interpolation of the emission data 

obtained from the treated and the control (100% viability) samples. The effects of MPs 

exudates in apoptosis and cell cycle distribution, at the subcytotoxic concentration (0.5 

mg/mL) found in the viability assay described above, were evaluated by flow cytometry 

(Cell Separation and Cytometry Unit, CIBA, IIS Aragon). The analysis of cell apoptosis 

was developed through a double-staining with Annexin V-FITC and propidium iodide. 

In brief, after cell incubation with the exudates obtained from solid and hollow MPs 

loaded with HGNPs and bupivacaine (24h, 37 ºC and 5% CO2), cells were harvested 

and stained with annexin V-FITC, propidium iodide and annexin V binding buffer. 

Then, cell suspensions were incubated for 15 min with binding buffer prior to their 

analysis by flow cytometry (FACSARIA BD equipment and FACSDIVA BD software). 

The distribution of cell cycle phases after incubation with MPs exudates was carried out 

by using the PI/RNASE Solution (Immunostep). Briefly, after treatment, cells were 

harvested, fixed in 70% ice-cold ethanol and kept at 4 ºC at least for 30 min. Then, 

samples were washed in 2% BSA-PBS, centrifuged (300g, 5 min) and the pellet was 



resuspended in the PI/RNASE Solution. After incubation at room temperature for 15 

min, flow cytometry (FACSARRAY BD equipment and MODIFIT 3.0 Verity software) 

was carried out. In both flow cytometry assays, control samples were also run to 

evaluate cell basal status and compare it with the treated cells.  

3 Results and discussion 

3.1 Production of PNIPAm MPs in a capillary-based flow focusing device 

The study of single step photopolymerization of PNIPAm MPs was carried out using 

the capillary-based flow focusing device depicted in Figure 1. As it was described in the 

materials and methods section, the capillary-based flow focusing device was coupled 

with a UV LED lamp in order to continuously produce thermoresponsive MPs. Both 

systems were assembled in a 3-D printed housing to assure a good alignment of the 

capillaries and an axisymmetric flow-focusing production of MPs. The UV-LED lamp 

was also assembled in the same housing to preserve the same light distance and thus the 

same light depth in the capillary in all case studies (Figure 1-b). Previous 

considerations, capillaries alignment and UV-light distance will be key factors to ensure 

an excellent MPs production reproducibility.  In addition, this production strategy exerts 

the advantage that each MP is loaded with a similar cargo and that either the 

polymerization rate or the grade of crosslinking can be easily controlled. 

 



Figure 1: Microfluidic device. a) Complete platform used to synthesize all MPs. Upper right 

corner shows a detail image of the coaxial capillary microfluidic system; b) UV-LED 

photopolymerization stage coupled to the microfluidic device; c) Scheme of coaxial droplet 

formation and MPs formation after LED irradiation. (Yellow arrows represents the inlet 

precursor flows and red arrows guide the already formed MPs outlet flow. 

As shown in Figure 1, the capillary-based flow focusing device depended on the use of 

two immiscible streams. The hydrophilic stream (arrow 1) is injected in the inner 

capillary (disperse phase) and contains the monomer, crosslinker and the cargo to load 

inside the thermoresponsive MPs both hollow gold nanoparticles (HGNPs) and 

bupivacaine. On the other hand, the hydrophobic stream (arrow 2) is the continuous 

phase injected in the outer capillary. The disperse phase is driven into a UV light 

transparent capillary and encounters the immiscible carrier stream, which is driven 

independently. The geometry of the junction where both immiscible phases meet, 

together with the phases flow rate and physical properties of fluids will determine the 

local flow field and the interface deformation that promotes droplet breakup in co-

flowing streams. The continuous phase stream consists of hexadecane as organic 

solvent, Span 80® as surfactant, and DEAP as photoinitiator of the polymerization 

process.  In co-flowing streams, the dripping regime occurs at low flow rates of inner 

and outer fluids and is characterized by the periodic formation of individual droplets 

that pinch off from the inner capillary tip (Figure 1-c). Once the injected aqueous 

droplets co-flow with the continuous phase containing the photoinitiator and are 

introduced in the UV-irradiated region, the photoinitiator is activated and radicals 

enable the droplet gelification and further polymerization. 

Considering previous limitations50,51 that unable PNIPAm MPs polymerization in 

continuous flow, we selected dripping regime conditions instead of jetting conditions to 



promote a fast polymerization during the drop flow in the microfluidic system. The 

residence time of formed droplets is usually larger in dripping mode because low flow 

rates (inner and outer phases) are required. In addition, droplets produced under 

dripping mode are pinched off near the inner capillary tip, whereas in jetting regime, 

droplets are pinched off from an extended thread generated downstream of the inner 

capillary tip. Droplet formation in co-flowing microfluidic systems is sensitive to the 

viscous shear stress of the external flow and the capillary pressure resisting the 

deformation of the internal phase.20 The dimensionless capillary number (Ca) compares 

the relative importance between the friction force and the surface tension. Then, we 

considered previous studies of droplet formation in dripping mode using similar 

fluids54, to select the fluid dynamic conditions to get stable droplet formation. Several 

factors such as stream composition or capillary dimensions were tuned in order to 

control the morphology and the polymerization efficiency of the system. The effect of 

those parameters will be discussed in the following sections. 

3.2  Microparticles Morphology and dimensions 

It is well accepted that the size of droplet formation in a co-flowing microfluidic device 

depends on the capillaries dimensions, and inner and outer flow rates. These parameters 

are highly important because they can modulate the competition between viscous shear 

stress of the external stream and capillary pressure resisting deformation of the internal 

stream. In this work, we have selected two different inner and outer capillaries to tune 

the size of MPs under a stable droplet formation in dripping regime.  

Figure 2 shows the averaged MPs diameter obtained under different capillary 

dimensions and flow rates. In general the most important effect is observed when the 

external PTFE capillary was modified.  



 

Figure 2: Average MPs size depending on flow ratio and inner diameter of the microreator 

channels. a) and b) show the results for the smallest external PTFE tubing (560 µm) and large 

(150 µm) and small (25 µm) internal capillary, respectively. c) and d) present the results for the 

larger PTFE tubing (790 µm) and large (150 µm) and small (25 µm) internal capillary, 

respectively. Same colors represent the same inner flow. For each of them, from left to right 

continuous flow increases. Inverted microscope images of MPs synthesized with flow ratio of 5-

100 L/min are shown in: e) ID: 150 µm and OD 560 µm; f) ID: 25 µm and OD 560 µm; g) ID: 

150 µm and OD 790 µm; h) ID: 25 µm and OD 790 µm. i) Summary and comparison of MPs 

diameter synthesized with two different flow ratios and all combinations of internal and external 

tubing diameters. 

Smaller outer capillary yielded to microparticles between 400 and 500 µm (Figure 2 b) 

and a)); while a larger outer capillary diameter generated MPs over 700 µm in diameter 

(Figure 2 c) and d)). These results can be rationalized by the droplet formation 

mechanism. The junction close to the inner capillary tip is obstructed by the inner fluid 

protrusion. The continuous flow close to the protrusion is restricted as the protrusion is 

enlarged, establishing a pressure gradient across the protrusion. The droplet is pinched 

off once the pressure gradient in the continuous flow is sufficiently high to overcome 



the capillary pressure inside the dispersed drop. Viscous shear forces are usually 

sufficiently large to pinch off the droplet before it grows to block the outer capillary55. 

Then, the droplet diameter is usually smaller than the outer channel diameter. In 

addition, the droplet diameter is inversely proportional to the average velocity of the 

carrier flow because the drag force increases as the continuous phase velocity does56. 

This fact confirms that the MPs diameter increases as the flow rate of the outer stream is 

decreased when the inner flow rate is kept constant (the drug force is reduced). On the 

other hand, the inner capillary size mainly affects MPs polydispersity. A more confined 

droplet formation benefited from a smaller capillary, generating narrower diameter 

deviation. This is reflected in the different coefficient of variance (CV) of MPs sizes 

obtained with the four systems studied. While MPs CVs obtained with larger inner 

capillary (790 µm) have values between 15 nm (when inner flow rate is 10 µL/min) to 

100 nm (when continuous phase gets to 30 µL/min), a maximum variance of 30 nm is 

achieved in experiments when using 25 µm inner capillary. Similar results were 

previously observed with analogous platforms.57 Dripping frequency production (f) for 

all samples ranges between 7.5 Hz to 0.2 Hz depending on the inner flow rate and final 

size of MPs. Slow flow rate (2.5 µL/min) and large final MPs (~700 µm) lead to slow 

droplet formation and frequencies around 0.2 Hz. However, increasing the inner flow 

rate up to 30 µL/min and confining the size of the outer capillary, and thus the final 

MPs size (~400 µm), provoked a faster droplet formation and frequencies over 7.5 Hz. 

It is of paramount importance to highlight that this low dripping frequency was required 

in order to get a complete polymerization reaction in continuous fashion, a fact that is 

novel in this work.   

According to the aforementioned polymerization requirements, it is essential to achieve 

certain level of polymerization rate in order to obtain stable MPs with a competent 



functionality for a potential biomedical use. This fact, together with the fluid dynamic 

restrictions required to achieve a stable droplet generation limit the available phase flow 

rates. In this work a single LED source has been considered, however using several 

LEDs in series would potentially increase the irradiation time allowing the use of larger 

flow rates. 

 It has been demonstrated that droplet size in coaxial flow platforms with flow ratios 

within our working limits do not change significantly21. However, it can still have small 

effects on the final MPs sizes. Statistical analysis of our results (Figure S1) showed 

some significant differences in almost all flow ratio combinations suggesting that as 

mentioned before, keeping the same inner flow, the increase in the continuous flow rate 

for all samples led to a slight decrease in the final MPs size. In all cases, monodisperse 

MPs were obtained with variations less than 15 % of their size in the worst-case 

scenario (150 µm inner capillary) but with average CV of 2.5 % in the most stable cases 

(25 µm inner capillary). 

3.3 Polymerization efficiency and thermoresponsive properties 

Photopolymerization reactions depend on a set of different variables (monomer, 

photoinitiator and crosslinker concentrations and LED irradiance and time of 

irradiation) and some of them were studied using this co-flowing microfluidic device. 

Considering that the main goal of this research was to produce MPs with on-demand 

light-responsive drug delivery ability and allow a remote control of the polymeric shell 

permeability, we attempted the analysis of volume ratio shrinkage in the resulted MPs. 

This parameter was also selected as a key factor to analyze the polymerization 

efficiency and thermo-responsive properties. It must be highlighted that either an 

unsuccessful or limited polymerization yield can induce MP collapse, aggregation or a 



scarce volume shrinkage upon a temperature variation in the lower critical solution 

temperature (LCST) range. 

On the other hand, crosslinking agent entails a key role in the shrinkage behavior of any 

hydrogel. Higher concentration of crosslinking molecules among formed polymer 

chains leads to steric difficulties to achieve a complete shrinkage of the hydrogel from 

its swollen hydrated state to its shrunken dehydrated form. 

 

Figure 3: Volume change with temperature for a) MPs synthetized with 250 mg/mL monomer 

concentration and 40 µL DEAP and different crosslinker concentrations; b) to g) Time-lapse 

microscopy images of MPs synthetized with the same conditions at different temperatures. All 

samples were synthetized under flow ratio of 5/100 µL/min, inner capillary diameter: 25 µm 

and outer capillary: 560 µm. 

Figure 3 a) represents the volume ratio with temperature obtained for three different 

samples containing 25, 50 and 75 monomer-crosslinker NIPAM-BIS ratio, respectively. 



The results confirm that all MPs produced show a fast response to environmental 

temperature. It is relevant that dramatic changes occur between 32-39ºC (LCST of 

PNIPAm is 32ºC). This may be attributed to polydispersity in the polymer chain lengths 

and crosslinking degree58,59. It was also confirmed that the highest the NIPAM-BIS 

ratio, the largest the rate of volume change of the photo-polymerized MPs is. The 

volume change in PNIPAm MPs is rationalized because MPs are in a swollen and 

hydrophilic state below the LCST that is switched to a shrunken and hydrophobic state 

above the LCST.  The state transition was studied in a time-lapse inverted microscope at 

different temperatures. Figure 3 b) to g) depict representative optical images at different 

environmental temperatures, where the dramatic reduction of MPs size above the LCST 

is clearly observed as well as the reversibility of this process once the temperature 

decreases. Similar behavior was also observed when monomer concentration and 

monomer/crosslinker ratios (NIPAM/BIS) were modified (Figure S2) confirming the 

thermoresponsive behavior of the final polymer conforming MPs. 

Polymerization efficiency is related to the polymerization rate and it has direct influence 

in the length of the polymeric chains formed and the possibility to collapse and reduce 

their volume and size under high temperatures. Figure 4 shows the effect of monomer 

(NIPAM) and photoinitiator (DEAP) concentration on final molecular weight of 

resulted MPs and their ability to reduce their volume under temperature variations. 



  

Figure 4: a) Volume ratio observed in samples synthesized with different monomer and 

photoinitiator concentrations; b) GPC results for three different samples with different 

DEAP/monomer ratio; c) Volume ratio shown for two samples polymerized with two different 

LED light irradiation intensities. 

Figure 4 a) demonstrates that the photoinitiator (DEAP) concentration is crucial to 

achieve a desired grade of polymerization that is high enough to endow MPs formation 

with the appropriate rate of volume change and thermosensitive behavior. A high DEAP 



concentration leads to a high concentration of radical species that initiate 

polymerization. However, the fastest the polymerization is, the shorter the polymer 

chains formed and then, the less the volume change when the environmental 

temperature increases. This observation was also confirmed by Gel Permeation 

Chromatography (GPC) (Figure 4 b). The GPC chromatogram provides the molecular 

weight distribution of the resulting species, labeling the main molecular weight peaks 

(Figure 4-b). According to GPC analysis, the molecular weight of the resulted polymer 

is lower as the photoinitiator concentration is increased because a high density of 

monomer building blocks is activated by the radical species. This fact was also 

evidenced by inverted microscopy, where optical images taken at different 

environmental temperatures depicted a significant shrinkage as the photoinitiator 

content was decreased (Figure S3). On the other hand, the activity of the photoinitiator 

molecules is determined by their stimulation source, the UV-LED light in our system. 

The irradiance of LED source determines the velocity of the polymerization process 

leading to different polymer chain lengths and thus to different photothermal properties. 

There is an intensity threshold that determines the minimum intensity necessary in order 

to obtain rigid and mechanically stable MPs below the one where no enough polymer 

chains were formed, and MPs did not keep their shape after exiting the microfluidic 

platform. Intensities from 0.2 to 0.9 A were used in our study finding the threshold 

described before set at 0.7 A. At intensities of 0.2 and 0.4 A no MPs formation took 

place and easily breakable MPs were obtained, respectively. However, above 0.7 A no 

significant changes were observed when UV-LED light intensity was increased to 0.9 A 

(Figure 4 c) in our system. 

As the polymerization is initiated at the interface of the aqueous/organic phase of 

detached droplets, the diffusion of radical species that conduct the polymerization 



reaction might have a relevant role in the MPs structure.  In these terms, hollow or solid 

MPs could be produced depending on the radical species droplet internalization. Kim et 

al.31 corroborated the relationship of a high polymerization ratio with the improved 

mechanical strength of the resulted MPs. Long irradiation times, high DEAP 

concentration and high irradiation intensity favored to obtain a solid structure and 

mechanically resistant MPs. However, the highly solid MPs obtained under these 

conditions resulted in low shrinkage ratios (~24 v/v%).  

The polyethylene glycol diacrylate (PEGDA) photopolymerization reaction from a 

droplet microfluidic device emulsification process was also studied by Filatov et al.36 

showing the importance of the photoinitiator concentration and the reaction time in the 

final core-shell structure and MPs resistance. However, a plateau of time reaction exists 

at very high photoinitiator concentration where increasing photoinitiator concentration 

does not lead to faster polymerization reaction. On the other hand, when the monomer 

concentration increases, more monomer molecules are available at the droplet surface 

leading to thicker MP shells and thus more mechanically resistant MPs. This is 

explained due to a faster polymerization process with the same reaction time. 

 Considering our previous remarks, it was devised the formation of two types of MPs 

with a different internal structure and good mechanical properties, where the density of 

polymeric chains was tuned in order to modulate the void fraction and the rate of 

volume shrinkage. Figure 5 shows some of the most representative MPs produced by 

tuning the polymerization rate, either by modifying the flow rate of the continuous outer 

phase or the photoinitiator concentration. MPs produced at the opposite conditions were 

discarded because they unfeasible applicability. That is, MPs produced with the smallest 

flow rate and photoinitiator concentration (Figure 5-a), because they were not 

mechanically stable. On the other hand, MPs produced at the highest flow rate and 



photoinitiator concentration (Figure 5-d), because of the high density of polymeric 

chains and rigidity would seriously affect the rate of volume shrinkage. As a result, 

intermediate conditions were selected as the proper ones in order to load the cargo and 

study the temperature assisted drug release (Figure 5 b-c).  

 

Figure 5: From left to right MPs synthesized with monomer concentration of 150 mg/mL (a) 

and b)) and 250 mg/mL (c) and d)). Images a) and c) were synthetized with 40 µL of 

photoinitiator (DEAP); while 500 µL of photoinitiator (DEAP) were used in images b) and d). 

Transition temperature in drug delivery applications may lead to different drug release 

profiles which could be appropriate for a broad variety of disease treatments. This 

tuning of LCST can be achieved by combining different monomers in the polymeric 

structure. It has been previously demonstrated that the presence of diverse functional 

groups at the side chains of the polymer chain results in variations of hydrophobicity 

and thus polymer-water interactions60. Acrylamide monomer has been widely used in 

order to increase the transition temperature in PNIPAm-based polymers. The lack of 

isopropyl groups in its side chain increases water-polymer interactions making more 

energy necessary to fold the polymer chains. 

In our proposed microfluidic platform, this varied monomer combinations driven to 

obtain customized thermoresponsive MPs with desired LCST is easy to carry out. We 

demonstrated that adding Acrylamide (AAm) as co-monomer the LCST of the resulting 

MPs can be easily modified (See Figure S4). LCSTs for MPs with different acrylamide 

percentages are summarized in Table 1. 



Table 1: LCST summary for P(NIPAM-co-AAm) MPs. LCST were selected as the 50% of 

volume change during temperature increase. Three different samples were analyzed for each 

condition 

Sample 150 mg/mL 250 mg/mL 
PNIPAm 37.3 ± 0.8°C 35.5 ± 0.5 °C 
P(NIPAM-co-AAm) 7 % 38.7 ± 0.7 °C 39.1 ± 0.7 °C 
P(NIPAM-co-AAm) 10 % 39.1 ± 0.4°C 39.5± 0.6 °C 

In all cases, the addition of extra AAm monomers leads to higher LCST over body 

temperature making them ideal for triggered on-demand drug delivery applications. 

Therefore, the proposed microfluidic platform allows easily modifying the resulting MP 

particle size including its LCST and composition depending on the needs. 

3.4 HGNPs encapsulation and NIR triggered drug delivery 

It is well known that hollow gold nanoparticles (HGNPs) present excellent plasmonic 

properties based on their Surface Plasmon Resonance (SPR) band with a maximum at 

~808 nm. This property has been widely used in biomedical applications because of the 

coincidence with the water window absorption. Water molecules and tissues have 

reduced light absorption at wavelengths around 808 nm making HGNPs the perfect 

candidates for NIR light excitation in light-activated biomedical treatments. Thus, we 

took advantage of the optical properties of HGNPs in order to obtain hybrid 

thermoresponsive MPs for triggered drug delivery. 

For this, we added the separately prepared HGNPs in the disperse phase of the coaxial 

flow microfluidic device to translate the synthesis conditions optimized in the previous 

section. Based on previous works where nanoparticles with photothermal properties61,50 

were encapsulated, the concentration of HGNPs was set at 10 mg/mL. Further, we 

confirmed their NIR responsive effect under laser irradiation (2.2 W/cm2; λ= 808 nm). 

(Figure 66) 



 

Figure 6: a) and b) PNIPAm MPs without and with HGNPs; c) and d) Optical microscopy 

images without and with laser irradiation (2.2 W/cm2); e) Time heating evolution of bulk water 

in presence of MPs@HGNPs. Red dots represent selected times where MPs@HGNPs cluster 

(i.e., agglomerated MPs) temperature was measured. 

Figure 6 a) and b) show the notable color differences when HGNPs were loaded in 

PNIPAm MPs (66% HGNPs encapsulation efficiency obtained by MP-AES analysis). It 

must be highlighted than the proposed production approach enables a selective loading 

of HGNPs, where the dose of HGNPs can be easily modified by tuning their 

concentration in the disperse phase stream. No size and shape modifications were 

observed after adding HGNPs to the disperse phase together with the monomer 

molecules. The continuous phase wraps the droplet and inhibits the diffusion of HGNPs 



during the polymerization process. It was selected an IR laser with a wavelength of 808 

nm (2.2 W/cm2) to heat the MPs@HGNPs owing to its larger penetration depth 

compared to the one reached with visible light. MPs@HGNPs were illuminated at 25ºC 

with the laser to study the rate of volume shrinkage. As it is depicted in Figure 6d, upon 

laser illumination, MPs@HGNPs shrunk due to a local temperature increase caused by 

the light to heat transduction generated by the HGNPs. This result confirms the new 

functionality of the proposed hybrid MPs, where the MP collapse can be triggered by 

externally applied NIR illumination. It is also interesting to remark that the optical 

properties of HGNPs were not modified during the loading and polymerization process 

under the presence of highly oxidant radical species. The shape transition during the 

MPs@HGNPs collapse upon laser heating and the reversibility of the process once the 

laser was switched off were also recorded in a single MP using time-lapse microscopy, 

obtaining that the collapse occurs instantaneously at the selected laser intensity (See 

Supporting Movie S1). 

Temperature rise under NIR laser irradiation is plotted in Figure 6 e). Due to the size of 

MPs studied, MPs@HGNPs settle in the bottom of the vial and temperature of bulk 

water around them and the one of the MPs@HGNPs themselves were separately tested. 

It was observed that the bulk water temperature raised slowly under the presence of 

MPs@HGNPs, however, it was the MPs@HGNPs cluster itself the one which suffered 

an abrupt temperature rise. Temperature was monitored with a thermocouple located in 

the middle of MPs@HGNPs cluster at selected times. It increased clearly above the 

aqueous medium temperature almost 10 ºC reaching 45 ºC after 6 minutes of irradiation. 

This suggested a local heating effect in the surroundings of HNPs loaded MPs, what 

together with the shrunk morphology observed under optical microscopy confirm their 

suitability for triggered on demand drug delivery applications. 



As it was described in the previous section, two different polymeric MPs were selected 

for drug loading and release studies obtained under distinct synthesis conditions. The 

porosity of drug delivery vectors determine not only their drug loading capacity but also 

drug release profile once they are in the application environment. In our case, two kinds 

of MPs determined as hollow (NIPAM: 250 mg/mL and DEAP: 40 µL) and solid (NIPAM: 

150 mg/mL and DEAP: 500 µL) were studied. Even with the same size, the structure of the 

MPs studied was different: hollow MPs were more fragile and with a thinner polymeric 

shell while solid MPs had a polymeric dense structure even in their core reducing their 

porosity but increasing their mechanical strength. Bupivacaine was selected as model 

drug due to its common applications in peripheral nerve blocking in pain treatment and 

due to its inert behavior under UV-LED light irradiation (See Figure S6). 



 

Figure 7: a) FTIR spectra of Bupivacaine (BVP), PNIPAm-based MPs and BVP loaded MPs; 

b) Drug loading of hollow and solid MPs after adding two different BVP concentrations in the 

disperse phase; c) Cumulative release profile for both solid and hollow MPs. Yellow band 

shows the burst release under a single laser pulse irradiation. Upward black triangle and 

downward red triangle represent the bupivacaine release value for Hollow and Solid 

microparticles, respectively. 



Figure 7 a) shows the FTIR spectra for empty and BVP loaded MPs together with free 

BVP. Here, we can observe the existence of a shift in the peak (772 to 768 nm-1) 

associated to the aromatic ring of BVP molecule suggesting an interaction between the 

polymer and the bupivacaine molecules present in the sample. In Figure 7 b) drug 

loadings of BVP for hollow and solid MPs are compared. The higher the BVP content 

is, the higher the final BVP content in the sample. However, notable differences are 

present comparing hollow and solid MPs. While solid MPs are composed by an inner 

entangled core of polymer chains, hollow MPs have more empty space available to 

adsorb the drug inside, what is clearly shown in our case. Also, the thickness of the MPs 

wall has an important effect in the release profile as depicted in Figure 7 c). The drug 

release at body temperature for hollow MPs is faster than the one obtained for solid 

ones. Bupivacaine molecules interact strongly with polymer chains inside solid MPs 

probably due to hydrogen bonding and hydrophobic Van der Waals interactions leading 

to a sustained drug release. These two drug delivery vectors can be used for different 

purposes. Khan et al.57 had already observed a similar behavior in the simultaneous 

release of two drugs (i.e., ketoprofen and ranitidine HCl) from MPs with different 

polymer density. A faster release was achieved when crosslinker and monomer 

concentrations decreased. 

3.5 Cell viability, apoptosis and cycle evaluation 

Due to the MPs sub-millimetric size and inability to be internalized by cells and their 

proposed applications as depots in local subcutaneous or intramuscular triggered drug 

delivery, the cytocompatibility studies were carried out in two different cell lines 

(phagocytic macrophages and human dermal fibroblasts) analyzing the exudates 

released by the MPs during 24h as described in the materials and methods section. 

Figure 8 presents cell viability results for concentrations from 0.1 to 0.5 mg/mL and the 



corresponding bupivacaine concentration. High cell viability (> 70%) was observed for 

all MPs concentration tested for both solid and hollow MPs exudates showing more 

compatibility than free BVP in human fibroblast. Following studies were developed at a 

MPs concentration of 0.5 mg/mL as it was considered as subcytotoxic dose following 

the ISO 10993-5 standard, which states a viability of 70% as the threshold for 

considering non-cytotoxic concentrations.62 

Cell apoptosis studies by flow cytometry were selected to show the potential cell 

membrane effect caused by the MPs exudes (Table 2). The incubation of the two cell 

lines (TPH1 macrophages and human dermal fibroblasts) at the subcytotoxic 

concentration (0.5 mg/mL) with MPs exudates loaded with HGNPs and BVP did not 

show remarkable changes compared to non-treated samples. Only macrophages showed 

a slight increase in necrosis and late apoptosis for hollow and solid loaded MPs, 

respectively (<3%) and a consequent decrease in cellular viability (<4%). 



 

Figure 8: Cytotoxicity results for two cell lines: a) Human fibroblasts and b) macrophages for 

two different shell thickness MPs denominated solid and hollow MPs loaded with HGNPs and 

Bupivacaine; and free bupivacaine. Mean values and SD obtained from fives samples. 

Table 2: Apoptosis results obtained by flow cytometry 

Control Exude solid MPs Exude hollow MPs 
 Macrophages (%) 

Necrosis 4.43 2.09 7.41 
Late apoptosis 1.72 5.74 2.58 
Early apoptosis 0.59 1.44 1.14 
Viability 93.26 90.74 88.87 

Fibroblasts (%) 
Necrosis 0.51 0.33 0.38 
Late apoptosis 1.99 2.47 2.01 
Early apoptosis 3.05 3.18 2.76 
Viability 94.44 94.02 94.85 

Cell cycle studies are depicted in Table 3. Cell treatment for 24 h with HGNPs-BVP 

loaded PNIPAm MPs exudates at subcytotoxic doses (0.5 mg/mL) did not display 

accentuated effects on cell cycle. A slight increase in G2 phase in macrophages (<2%) 



and in S phase in fibroblasts (<4%) are the only changes observed after treatment 

compared to control samples. Therefore, at the doses tested the exudates released by the 

MPs here prepared did not show cytotoxicity, cell-cycle arrest or apoptotic induction. 

Table 3: Cell cycle results obtained by flow cytometry 

 Control Exude solid MPs Exudate hollow MPs 
Macrophages (%) 

G1 55.72 53.44 54.11 
S 13.32 13.49 13.41 
G2 30.96 33.08 32.48 

Fibroblasts (%) 

G1 45.72 43.83 44.19 
S 31.34 35.99 35.17 
G2 22.94 20.18 20.64 
 

4 Conclusions 

Summing up, in this work we obtained thermosensitive light-responsive hybrid MPs 

loaded with an anesthetic drug using an innovative one-step continuous synthesis 

method. A simple, versatile and highly productive microfluidic synthesis was developed 

for this purpose. The influence of the reaction conditions in the final MPs characteristics 

was analyzed. The presence of plasmonic HGNPs in the MPs was demonstrated as 

potential trigger for drug delivery applications in biomedicine. In order to test drug 

loading and release behavior, bupivacaine was selected as a drug of interest and the 

interaction, loading capacity and release studies confirmed the suitability of the MPs 

obtained for reaching tunable drug delivery profiles. Finally, cytotoxicity assays showed 

a subcytotoxic dose of 0.5 mg/mL further used to study the cell metabolism and cell 

cycle showing no remarkable influence in any of the cell lines studied. Altogether, make 

this microfluidic device suitable for MPs synthesis for further local treatment 

applications such as the treatment of chronic pain where an anesthetic depot could be 



externally activated to release its cargo on demand. Further improvements such as 

different capillary sizes, LED irradiation arrangements or introduction of other drug 

molecules or inorganic nanoparticles would be the next steps to expand the possibilities 

of this novel microfluidic device. 
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