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We study the paradigmatic model of a qubit interacting with a structured environment and driven by an external
field by means of a microscopic and a phenomenological model. The validity of the so-called fixed-dissipator
(FD) assumption, where the dissipation is taken as the one of the undriven qubit, is discussed. In the limit of a flat
spectrum, the FD model and the microscopic one remarkably practically coincide. For a structured reservoir, we
show in the secular limit that steady states can be different from those determined from the FD model, opening
the possibility for exploiting reservoir engineering. We explore it as a function of the control field parameters,
of the characteristics of the spectral density, and of the environment temperature. The observed widening of the
family of target states by reservoir engineering suggests new possibilities in quantum control protocols.
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I. INTRODUCTION

Generally speaking, no quantum system can be considered
as completely isolated from its environment, which is at the
origin of dissipation and decoherence [1,2]. These dissipative
processes could negatively influence control protocols which
aim at bringing a quantum system toward a desired target
state, such as the ones considered in quantum control [3–9]
and in remote state preparation [10,11]. Dissipative dynamics
can be strongly modified by using, for instance, dynamical de-
coupling strategies [12–14] or tuned into a useful tool, e.g., by
properly engineering the characteristics of the environment, to
generate specific states [15–18].

The study of open quantum systems usually involves
approximations [1]. Master equations are often derived in
the weak-coupling regime between the system and the bath
(Born approximation) and for memoryless dynamics with
time-independent dissipation rates (Markovian approxima-
tion). Other common assumptions concern the absence of
initial correlations between the system and its environment
and the secular approximation. A standard way to obtain a
master equation is based on a microscopic approach which
takes into account the full Hamiltonian of the system and
the environment, including their mutual coupling, and by per-
forming all or some of the approximations described above.
The system dynamics is completely positive as long as the
master equation is in the Lindblad form [19,20].

An alternative route to take into account environmental
effects relies on a phenomenological description of standard
dissipative and dephasing mechanisms where Lindblad super-
operators are designed to reproduce the desired process and
the dissipator is built “by hand,” for instance, by inferring the
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decay rates from experimental data. This approach may lead
to a drastic simplification of the dynamics [1]. However, there
are scenarios for which the phenomenological technique may
not be reliable, as it may not be able to capture all the relevant
aspects of the dynamics. In particular, this problem becomes
crucial when an external control field is exerted to the system
or when different systems are coupled to each other while
dissipating locally [21–23].

In the context of phenomenological modeling of open
quantum systems subject to external control fields, a standard
assumption is the so-called fixed-dissipator (FD) assumption
[24–28]. This is based on the hypothesis that the dissipative
part of the master equation is not changed by the control term.
Comparisons between phenomenological and microscopic
master equations have been realized, also considering, in the
case of bipartite systems, the effects due to a strong coupling
between the internal parts [29–33]. Comparisons have been
done also in the context of adiabatic population transfer
in three-level systems, pointing out some relevant differ-
ences [34–36]. Problematic consequences of phenomenolog-
ical master equations in quantum thermodynamics have been
recently discussed [22,37,38] and, as shown in Ref. [39], the
FD assumption can be at the origin of nonphysical trajectories
in the non-Markovian limit. A generalized approach trying
to unify phenomenological and microscopic approaches has
been recently proposed [40].

The scope of this paper is to study the case of a driven
qubit interacting with a structured environment by means of a
microscopic model and to analyze the consequences of the FD
assumption. This includes the possibility of using reservoir
engineering as a tool for quantum control. For that purpose,
we mainly study the dynamics on asymptotic timescales
and compare the steady states reachable with a microscopic
master equation (MME) with the ones given by a master
equation based on a fixed dissipator (FDME). We show that
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manipulating the environment through reservoir engineering,
which is possible when the environment spectrum is not flat,
allows one to obtain a collection of stationary states that can
be very different from the ones given by the FDME.

The paper is organized as follows. In Sec. II, we introduce
the model of a qubit driven by a monochromatic laser and
interacting with a bosonic environment. In Sec. III, the MME
for such a system is explicitly derived, with some technical
details reported in the Appendix. In Sec. IV, we review the
FD assumption, while in Sec. V, we present the main results
of this study in the case of structured environments, both
at zero and nonzero temperatures. Conclusive remarks and
prospective views are presented in Sec. VI.

II. THE MODEL SYSTEM

For the sake of simplicity, we tackle the problem of com-
paring microscopic and phenomenological models of driven
systems in structured environments by revisiting a simple
quantum system made of a qubit of frequency ω0 driven by
a monochromatic control laser field whose frequency is ωL

and whose initial phase is ϕ [41,42]. We define the detuning
as � = ω0 − ωL and we refer to the Rabi frequency �, related
to the intensity of the laser field, as the driving amplitude. We
assume henceforth that ω0 and ωL are much larger than � and
�. The starting Hamiltonian is given by

H̄S = h̄ω0

2
σz + h̄� cos(ωLt + ϕ)σx, (1)

where σz and σx are Pauli matrices. Under the above condition
on the parameters we may apply the rotating wave approxima-
tion on H̄S , obtaining

H̄RW
S = h̄ω0

2
σz + h̄�

2
[e−i(ωLt+ϕ)σ+ + e+i(ωLt+ϕ)σ−], (2)

where σ+ and σ− are, respectively, the raising and the
lowering qubit operator. We also move to a frame rotating
at frequency ωL, by means of the unitary operator UL =
exp[−i(ωLt + ϕ)σz/2] (also absorbing the time-independent
phase factor ϕ). In such a rotating frame, any state |ψ̄〉
is mapped into |ψ〉 = U †

L |ψ̄〉, and the Schrödinger equa-
tion ih̄∂t |ψ̄〉 = H̄RW

S |ψ̄〉 becomes ih̄∂t (UL|ψ〉) = H̄RW
S UL|ψ〉,

that can be rewritten as ih̄∂t |ψ〉 = HS|ψ〉, where HS =
U †

L H̄RW
S UL − ih̄(∂tU

†
L )UL, which leads to

HS = h̄�

2
σz + h̄�

2
σx. (3)

The interaction between the system and the environment,
which is assumed not to depend on the control field (see, for
instance, Ref. [43]), reads as follows:

H̄I =
∑

k

h̄(gkak + g∗
ka†

k )σx, (4)

where ak and a†
k are, respectively, the annihilation and the

creation operators of the bosonic bath and gk are the coupling
constants. In the above rotating frame, H̄I becomes HI =
U †

L H̄IUL, which gives

HI =
∑

k

h̄(gkak + g∗
ka†

k )[ei(ωLt+ϕ)σ+ + e−i(ωLt+ϕ)σ−]. (5)

The free Hamiltonian of the environment has the form HE =∑
k h̄ωka†

kak and, of course, is not touched by the change
of frame. HS can be diagonalized as HS = h̄ν

2 (|φ+〉〈φ+| −
|φ−〉〈φ−|), with ν = √

�2 + �2. Its eigenstates are

|φ+〉 = C|e〉 + S|g〉, |φ−〉 = C|g〉 − S|e〉, (6)

where |g〉 and |e〉 are, respectively, the ground and the excited
states of the qubit free Hamiltonian (h̄ω0/2)σz, C = cos(θ/2),
S = sin(θ/2), and

θ = 2 arctan[(ν − �)/�]. (7)

For example, for a given � > 0, θ goes from 0 to π/2 when
� goes from 0 to infinity.

III. MICROSCOPIC MASTER EQUATION

To derive a microscopic master equation, the qubit driven
by the field is treated first. The resulting dressed qubit is
next coupled to the environment by expressing HI in terms of
the eigenoperators of HS and the standard Born and Markov
approximations are applied (see also Refs. [41,42]).

Defining σ̃z = |φ+〉〈φ+| − |φ−〉〈φ−| and σ̃± = |φ±〉〈φ∓|,
these are connected to σz, σ+, and σ− by

σ± = C2σ̃± − S2σ̃∓ + SCσ̃z, σz = cos θσ̃z − sin θσ̃x. (8)

Using the expressions for σ+ and σ−, the qubit operators in HI

can be written in terms of eigenoperators of HS . The detailed
derivation of the MME is presented in the Appendix. Its final
form in the Schrödinger picture is

ρ̇ = − i

h̄
[HS + HLS, ρ] + Dsec(ρ) + Dnsec(ρ), (9)

where HLS is the Lamb shift Hamiltonian, whose role is
discussed in the Appendix, while Dsec(ρ) and Dnsec(ρ) are,
respectively, the secular and the nonsecular parts of the dis-
sipator, the latter featuring terms oscillating at frequencies ν

and 2ν.
With regards to Dsec(ρ), it is given by

Dsec(ρ) = γ θ
−L[σ̃+](ρ) + γ θ

+L[σ̃−](ρ) + γ θ
z L[σ̃z](ρ), (10)

where the Lindblad superoperator is L[X̂ ](ρ) = X̂ρX̂ † −
{ρ, X̂ †X̂ }/2, with

γ θ
− = 2π{C4J (ωL + ν)n(ωL + ν) + S4 J (ωL − ν)

× [1 + n(ωL − ν)]},
γ θ

+ = 2π{C4J (ωL + ν)[1 + n(ωL + ν)] + S4J (ωL − ν)

× n(ωL − ν)},
γ θ

z = 2π{S2C2J (ωL )[1 + 2n(ωL )]}, (11)

where J (ω) is the spectral density of the environment and
n(ω) = 1/[eh̄ω/(kBT ) − 1] is the average number of excitations
in the bath at frequency ω, with kB being the Boltzmann
constant. The above coefficients can be rewritten as

γ θ
− = C4γ+n+ + S4γ−(1 + n−),

γ θ
+ = C4γ+(1 + n+) + S4γ−n−,

γ θ
z = S2C2γ0(1 + 2n0), (12)
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where γp = 2πJ (ωL + pν) and np = n(ωL + pν), where p =
{−1,+1, 0} (for any parameter l depending on p we use
the shorthand notation l−1 = l− and l+1 = l+). Because
of the control field, the qubit experiences dephasing- and
thermal-like dissipative effects already in the case of a zero-
temperature bath (np = 0), as shown by the fact that also in
this case all the γ θ

p contribute to the dynamics and the steady
state is not expected to be pure anymore.

The operator Dnsec(ρ) and its coefficients are reported in
the Appendix. In Sec. V A, we give some comments about
when their effect cannot be neglected. A detailed analysis
of the limits of validity of the secular approximation in our
system can be found in Ref. [44].

IV. THE REFERENCE CASE: THE FIXED DISSIPATOR

In Sec. III, we have seen that, in the microscopic approach,
the dissipator depends on the control field acting on the qubit.
The FD approach consists in neglecting this dependance and
in assuming that the dissipative part of the master equation
is equal to the one in the absence of the control field, i.e.,
the qubit coupled to the environment is treated first, and this
single entity is next coupled to the laser. The application of
this procedure is well known in quantum control protocols
(see, e.g., Refs. [24–28]). Recently, this approach has been
used to determine the control Hamiltonian that counteracts a
given dissipation [25,28]. In this context, we consider a den-
sity matrix evolving according to a general Lindblad master
equation

ρ̇ = − i

h̄
[H, ρ] + Dfd(ρ). (13)

The set of stationary solutions ρ̇fd = 0, which are compatible
with the fixed dissipator Dfd(ρfd ) can be computed by disre-
garding the coherent part. Since the coherent part of the master
equation cannot change the spectrum and then the purity of the
state, the same must also be true for the dissipator [25,26,28].
Then, the collection of stationary states ρfd must obey the
relation

Tr{(ρfd )n−1Dfd(ρfd )} = 0, ∀n ∈ {2, . . . , d}, (14)

where d is the dimension of the Hilbert space. Thus, we have
defined a fixed dissipator and a family of Hamiltonians. For
any steady state, we can find the Hamiltonian H such that
ρ̇fd = 0. Writing the steady state as ρfd = ∑d

α=1 λα|α〉〈α|, it
follows that [25,28]

H = h̄
∑

α,β:λα 	=λβ

i〈α|Dfd(ρfd )|β〉
λα − λβ

|α〉〈β|. (15)

For the case of the qubit introduced in Sec. II, we only need
to satisfy Tr{ρfdDfd(ρfd )} = 0. In this model, at a given bath
temperature T , the FD is equal to the dissipator one would
obtain in the absence of the control field (� → 0). This can
be obtained from the microscopic dissipator of Eq. (9) taking
θ = 0 and ν = �. In this limit, the decay rates of Eq. (12) tend
to γ 0

− = γfdnfd, γ 0
+ = γfd(1 + nfd ), and γ 0

z = 0, where γfd =
2πJ (ω0) and nfd = n(ω0). The fixed dissipator is then of the

FIG. 1. Bloch sphere (gray) and steady-state ellipsoid (red). The
components of the Bloch vector of an arbitrary state ρ are rx =
2 Re[ρeg], ry = −2 Im[ρeg], and rz = 2ρee − 1. The ellipsoid has
been drawn by taking T = 0.

form

Dfd(ρ) = γfdnfdL[σ+](ρ) + γfd(1 + nfd )L[σ−](ρ). (16)

It follows that in the FD approach the steady state depends
on γfd. To compute it, we use H = HS in Eq. (13), neglecting
the Lamb shift. We observe that when it is present and not
negligible, it could be taken into account by considering that it
just leads to a different value of the parameter �. In this sense,
in all the parts where the result depends only on the ratio
�/�, the same result could be obtained by just changing �

according to the change of �. In particular, in the limit of flat
spectrum, it is possible to see that the Lamb shift computed in
this phenomenological framework is zero (see the Appendix
for an explanation of how this can be found in the microscopic
approach). The nonsecular terms that one could obtain using
a microscopic derivation applied to the qubit coupled to the
environment in the absence of the driving laser will not be
considered here since the FDME is introduced on phenomeno-
logical grounds. The steady states can be then expressed in
the σz basis in terms of some of its density matrix elements
(hereafter we use the notation ρi j = 〈i|ρ| j〉) as (restoring the
dependence on ϕ)

ρfd
ee = nfd

1 + 2nfd
+ �2/(1 + 2nfd )

γ 2
fd(1 + 2nfd )2 + 4�2 + 2�2

,

ρfd
eg = −�

2�/(1 + 2nfd ) + iγfd

γ 2
fd(1 + 2nfd )2 + 4�2 + 2�2

e−iϕ, (17)

being, of course, for any ρ, ρgg = 1 − ρee and ρge = ρ∗
eg. The

FD steady solutions by varying the control field parameters,
�, �, and ϕ, are represented in Fig. 1 (for T = 0) where they
are shown to lie on the surface of an ellipsoid inside the Bloch
sphere [25,26,28,45]. This ellipsoid is a standard geometric
structure in nuclear magnetic resonance [26,46,47]. For T 	=
0, the steady states lie on a smaller ellipsoid inside the one
depicted in Fig. 1.
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V. RESERVOIR ENGINEERING THROUGH
MICROSCOPIC MASTER EQUATION WITH

STRUCTURED ENVIRONMENT

We present in this section the control of steady states by
using the MME of Sec. III. In particular, we compare the
steady-state solutions of the FDME with the ones provided by
the MME to discuss how the control of the system is modified
when the environment is used as a tool to suitably tailor the
asymptotic states. We also compare some specific dynamics
to highlight our results.

In the case of flat spectrum, it holds γ− = γ+ = γ0 =
γfd and one can show the remarkable property that, under
the approximation n− ≈ n+ ≈ n0 ≈ nfd, the MME coincides
exactly with the FDME [41] (see the Appendix for a complete
derivation). The steady states of the MME and of the FDME
are thus the same for any T . In particular, in the secular limit,
in the frame rotating at the laser frequency (after restoring
the phase ϕ), the MME steady solutions are equal to the
ones of Eq. (17) after discarding the terms containing γfd,
which are indeed negligible in this limit. One can show that
the geometric form of the steady-state solutions obtained by
varying the control field parameters, �, �, and ϕ, corresponds
to the very same ellipsoid of Fig. 1. When nonsecular terms
are added, the microscopic steady states coincide with the
ones obtained with the FD, given in Eq. (17). We consider
below the case of structured environments in which relevant
differences can instead occur.

We consider in particular the MME in the secular regime,
noting that this regime is typically encountered in several
contexts such as in quantum optics setups [1]. The steady
state ρsec, which satisfies both [ρsec, HS + HLS] = 0 and
Dsec(ρsec) = 0, is

ρsec = γ θ
−

γ θ+ + γ θ−
|φ+〉〈φ+| + γ θ

+
γ θ+ + γ θ−

|φ−〉〈φ−|, (18)

where the superscript “sec” refers to the secular master
equation. The collection of steady states that are obtained
as functions of the control parameter θ and of the phase ϕ

(once it is restored) describes a surface in the Bloch vector
representation which is invariant under a rotation around the z
axis.

We consider structured environments characterized by a
spectral density varying notably around ωL on the scale of the
dressed frequency ν. In this scenario, even in the limit where
the secular approximation holds, the microscopic approach
provides target steady states that may be not close to the ones
obtained with the FDME. In the Markovian limit, while in
the FD case there is only one value of the spectral density
that matters, the two additional sidebands at ωL ± ν must
be considered according to the microscopic derivation [see
Eq. (11)].

When n− ≈ n+ ≈ n0 ≈ nfd, Eq. (18) gives (after restoring
the phase ϕ)

ρsec
ee ≈ nfd

1 + 2nfd
+ S2C2

1 + 2nfd

S2γ− + C2γ+
S4γ− + C4γ+

,

ρsec
eg ≈ SC

1 + 2nfd

S4γ− − C4γ+
S4γ− + C4γ+

e−iϕ. (19)

Exploiting the dependence on the two frequencies ωL ± ν

opens the possibility for taking profit from reservoir engineer-
ing. It indeed allows one to deform the ellipsoid of Fig. 1,
thus modifying the family of target states. For instance, one of
the possible consequences is that the equator of the ellipsoid
can be broadened, allowing one to get higher values for the
absolute value of the nondiagonal elements of the density
matrix, as it is always possible to reduce the weight of the
smaller term in Eq. (18) and then to obtain purer states.
We observe that 2|ρeg| is a measure of the resource named
quantum coherence [48].

A. The case of zero temperature

We start the analysis with the zero-temperature case. The
scenarios where J (ωL + ν) ≷ J (ωL − ν) are compared with
the flat spectral density case in Fig. 2, where the components
x and z of the Bloch vector of the steady states, rx = 2 Re[ρeg]
and rz = 2ρee − 1, are plotted. In Fig. 2(a), we consider fixed
values for the ratio μ = γ−/γ+ = J (ωL − ν)/J (ωL + ν) for
all values of the dressed energy. This analysis permits to
visualize for any value of the control parameters θ of Eq. (7)
(or equivalently of �/�) and ϕ how much the steady states
differ in the two approaches for a given μ. In the two panels,
all the parts of the different lines are obtained by considering
a fixed positive � and using �, assuming values �0, and ϕ,
being equal to 0 or π , as control parameters. In particular,
with respect to the FDME, purer states can be obtained (|ρeg|
may become closer to the maximum allowed value of 1/2) and
even the population inversion can be reached. We observe that
the FDME is considered in the case when its dependence on
γfd is negligible, and so the steady state practically coincides
with the microscopic secular one in the limit of flat spectrum
(or more in general when μ = 1).

As an example, let us consider the case where the target
state reached using the FD dynamics at zero temperature is
one of the states with maximally allowed |ρeg|, that is, a
point that lies on its equator [25,28]. This class of states
is obtained using � = ±√

2� and, written in the Bloch
form, is �rmc = {∓ cos ϕ/

√
2, ∓ sin ϕ/

√
2, −1/2}. We focus

on the case � = √
2� and ϕ = π , obtaining then �rmc =

{1/
√

2, 0, −1/2}. On the other hand, in the presence of
structured reservoir, taking � = √

2� and ϕ = π , we would
end up in �r  {0.805, 0,−0.569} using μ = 0.1 or in �r 
{0.134, 0,−0.095} using μ = 10. The three states, reached
with the same control field, are visualized with points in
Fig. 2(a). The distances between these points clearly point out
how much could be the error due to using the FDME to predict
the steady state in a given control protocol.

In order to treat a specific physical scenario where μ

varies when the control field parameters are changed, we
now consider the case in which the spectral density has the
Lorentzian profile

JLor (ω) = γl

2π

λ2

(ω − ωc)2 + λ2
, (20)

where the parameter λ defines the width of the curve and ωc its
center. We consider values of λ much greater than γl , such that
the Markovian approximation used for the derivation of the
MME is satisfied. The flat spectral density case is recovered
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rx

r z

(b)

FIG. 2. Families of steady states (components x and z of the
Bloch vector, rx and rz) determined from the FDME (the dependence
on γfd is assumed to be negligible) and from the secular MME by
varying the control field parameters �, assuming values � 0, and
ϕ, being equal to 0 or π , for a positive fixed value of �. (a) The
FDME case is represented by the blue solid line while the red dotted
and the black dashed lines represent the microscopic steady states
when μ = γ−/γ+ is kept fixed for any ν and equal to, respectively,
0.1 and 10. The three enlightened points represent the three steady
states obtained by using � = √

2� and ϕ = π , which, in the FDME
case, gives the maximum allowed |ρeg|. (b) The family of stationary
states has been calculated either assuming the FDME (solid line) or
the Lorentzian density of states given in Eq. (20) with ωc = ω0 and
λ = � (dashed line).

in the limit λ → ∞. Using Eq. (20), one can expect that
only in some parts of the parameter space the deformation
is relevant. On the tails of the curve, we fall for instance in
something similar to the flat spectral density case, which gives
the same results of the FDME. The differences in the case of
a Lorentzian spectral density are depicted in Fig. 2(b), where
we have assumed that the dependence on γfd of the FDME
steady solutions is negligible and calculated the steady states
by varying �/� in the case of a fixed Lorentzian, with λ = �

(we have fixed a positive value for � and varied �, assuming
values � 0, and ϕ, being equal to 0 or π ).

We have numerically compared the secular MME curve
in Fig. 2(b) with the one obtained by adding the nonsecular
terms at zero temperature and for values of γfd much smaller
than �. In general, the nonsecular curve is very close to the
MME curve except when one approaches the origin of the

10−4 0.001 0.010 0.100 1 10 100
−1.0

−0.5

0.0

0.5

1.0

γ 0t

FIG. 3. The Bloch vector components rx and rz, as a function of
time (in units of γ −1

0 and in logarithmic scale). The initial state is |g〉,
� = √

2�, ϕ = π , and γ0 = 0.001�. Three cases are considered:
the MME with μ = 0.1 (γ− = 0.2γ0 and γ+ = 2γ0), the FDME with
γfd = γ0, and the MME with μ = 10 (γ− = 2γ0 and γ+ = 0.2γ0).
All the rx curves start from 0 and reach the larger value for the case
μ = 0.1, the intermediate one for the FDME, and the lower one for
the case μ = 10. All the rz curves start from −1 and reach the larger
value (in modulus) for the case μ = 0.1, the intermediate one (in
modulus) for the FDME, and the lower one (in modulus) for the case
μ = 10. The fixed dissipator dynamics is practically identical to the
one of the MME in the limit of flat spectrum, γ− = γ+ = γ0 = γfd

(μ = 1).

axis, for values of � much larger than �. For instance, for
γfd/� = 0.001 we observe differences for �/� greater than
100. When this ratio overcomes a given value, we observe
steady values of rx different from zero, with rz becoming
positive but very close to zero, and at a certain point the
nonsecular MME starts to predict nonphysical steady states.
The occurrence of differences between secular and nonsecular
master equations has been discussed in Ref. [44].

In order to show how different steady states for the same
values of the control field parameters are dynamically ob-
tained, we report in Fig. 3 the time evolution of rx and rz

for the same cases of the points highlighted in Fig. 2(a),
obtained with � = √

2� and ϕ = π . In particular, we choose
γ− = 0.2γ0 and γ+ = 2γ0 for the case μ = 0.1, the FDME
for the fixed dissipator case (μ = 1), and γ− = 2γ0 and γ+ =
0.2γ0 for the case μ = 10. The FDME dynamics is practically
identical to the one of the MME in the limit of flat spectrum,
γ− = γ+ = γ0 = γfd (μ = 1) for values of γfd small enough,
as in this case where γfd = 0.001�. The qubit is initially in
the ground state |g〉. The values of the rates γp are chosen
without referring to a specific spectral density (no Lamb shift
is considered).

We have then shown that, in general, using the FDME
can cause a lack of accuracy in determining the steady state,
which would be detrimental in a quantum control protocol.
This effect can be enlightened by considering the distance
between the stationary state induced by a structured spectral
density, as predicted by the MME, and the one given by the
FDME as a function of the control field parameter �/� (this
distance does not depend on ϕ). In Fig. 4, we use the fidelity
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FIG. 4. Fidelity between the FDME steady states (their depen-
dence on γfd is assumed to be negligible) and the ones obtained
with the secular MME by releasing the flat-spectrum assumption,
as a function of the control field parameter �/� and of the ratio
μ = γ−/γ+ (in logarithmic scale).

as a measure of such distance. For two arbitrary states ρ and
σ , it is defined as [Tr{√√

ρσ
√

ρ}]2 [49]. It is important to
stress that a fidelity of the order of 3/4 is already an indication
of a dramatic difference between two states. For instance, the
fidelity between a two-qubit Bell state and the state obtained
from it by removing the coherence is 1/

√
2. In Fig. 4, an

important discrepancy may be observed for �/� � 1. In
particular, for a given value of �/�, smaller values of fidelity
are obtained when μ moves away from 1. The behavior for
�/� < 1 is instead reminiscent of the fact that for small
angles θ the microscopic dissipator tends to the FD one, as
shown before Eq. (16).

One may raise doubts about the freedom in the choice of
the spectral density. In particular, the Markovian approxima-
tion could break down for some frequency region. Here, we
remark that the results of this section hold for values of the
system-bath coupling such that we are well behind the weak-
coupling limit and the Markovian character of the dynamics
is warranted. In any case, even for an intermediate coupling
constant, we are interested in the stationary regime that takes
place long after all the possible non-Markovian effects have
been washed out.

B. The case of nonzero temperature

According to what has been said so far, a structured spec-
tral density allows for a broader family of target states but, at
the same time, would typically give solutions that are distinct
from the ellipsoid predicted by the FDME. We now show
that zero-temperature FDME steady states can be recovered
in the case of a structured environment by exploiting tailored
thermal effects.

To this aim, we consider the FDME steady states of
Eq. (17) in the limit when the terms depending on γfd are

0 1 2 3 4 5
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

FIG. 5. Thermal factor nfd (μ = 0.1) as a function of �/� nec-
essary to compensate the effects due to a ratio μ = γ−/γ+ = 0.1 in
order for the MME steady state at the temperature corresponding
to nfd (μ = 0.1) to end up in the zero-temperature flat-spectrum
ellipsoid formed by the (approximated) FDME steady states.

negligible (being always n− ≈ n+ ≈ n0 ≈ nfd):

ρsec
ee (μ = 1) ≈ nfd

1 + 2nfd
+ �2/(1 + 2nfd )

4�2 + 2�2
,

ρsec
eg (μ = 1) ≈ −��/(1 + 2nfd )

2�2 + �2
e−iϕ. (21)

We indicate them with superscript “sec” since they coincide
with the steady states of the secular MME [see Eq. (19)] in
the limit of flat spectrum (μ = 1). We compare them at zero
temperature with the general case of Eq. (19) that depends
both on nfd and on the ratio μ = γ−/γ+, and look, for any
given μ, for the existence of solutions of

ρsec
ee (μ = 1, nfd = 0) = ρsec

ee (μ, nfd )

ρsec
eg (μ = 1, nfd = 0) = ρsec

eg (μ, nfd )
. (22)

The solution of both equations is given by

nfd(μ) = S4C4(1 − μ)

(C2 − S2)(C4 + μS4)
. (23)

Solutions corresponding to physical values of nfd (that is nfd �
0) only appear for 0 � μ � 1, which is easy to understand
looking at Fig. 2(a). In fact, thermal effects are expected to
reduce the value of |ρeg| of any state, making it impossible to
move from the black line (μ = 10) to the blue one (μ = 1).
The behavior of nfd(μ = 0.1) is plotted in Fig. 5 as a function
of the control field parameter �/�. The needed thermal cor-
rection is very small as long as � < �, as the same argument
used to explain the behavior observed in Fig. 4 holds.

VI. DISCUSSION AND CONCLUSIONS

Master equations are a powerful tool to analyze the dissipa-
tive dynamics of quantum systems. They are usually obtained
by making a series of assumptions that need to be fulfilled
and to be verified in realistic setups, as, in general, exact
solutions are not available. They are often introduced on
the basis on phenomenological assumptions. Here, we have

012122-6



MICROSCOPIC AND PHENOMENOLOGICAL MODELS OF … PHYSICAL REVIEW A 101, 012122 (2020)

derived a microscopic master equation for a driven qubit and
compared it with the fixed dissipator model, which is widely
used, especially in the quantum control community, as it
allows one to explore the behavior of entire families of control
Hamiltonians in a simple way. We have found that, in the
weak-coupling regime, the steady states of the two approaches
can be very different in the case of a structured environment,
while they are practically identical for a flat spectrum.

In conclusion, considering the simplest case of a driven
qubit, we have assessed the limit of validity of the phe-
nomenological approach for the specific task on asymptotic
timescales. We have explored the possibility of implementing
reservoir engineering techniques to widen the family of target
states, which are correctly predicted by using microscopic
master equations.

Quantum control protocols most often use time-dependent
fields, implying time-dependent Rabi frequency, detuning,
and phase as control parameters. For slowly varying param-
eters, one expects that the FDME and MME still coincide for
a flat environment spectrum and that the difference between
them still persists for structured environments. The expected
rich variety of target states resulting from structured environ-
ments could then be exploited using microscopic models in
quantum control and reservoir engineering schemes.
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APPENDIX: MASTER EQUATION

In this Appendix, we derive the microscopic master equa-
tion of the driven qubit, presenting its various parts. Using
Eq. (8), in the interaction picture with respect to HS + HE , the
interaction Hamiltonian of Eq. (5) reads

H̃I (t ) = B(t )
(

f t
+σ̃+ + f t

−σ̃− + f t
z σ̃z

)
, (A1)

with B(t ) = ∑
k h̄(gkake−iωkt + g∗

ka†
keiωkt ) and where

f t
+ = [C2ei(ωLt+ϕ) − S2e−i(ωLt+ϕ)]eiνt ,

f t
− = [C2e−i(ωLt+ϕ) − S2ei(ωLt+ϕ)]e−iνt ,

f t
z = SC[ei(ωLt+ϕ) + e−i(ωLt+ϕ)]. (A2)

The operators entering the master equation are multiplied
by f t

i f t−s
j , with i, j = +,−, z. Thus, there will be secular

terms for {i, j} such that f t
i = f t∗

j and nonsecular terms in
all other cases. In general, the products f t

i f t−s
j may have parts

oscillating at the laser frequency e±2iωLt . For instance,

f t
+ f t−s

+ = {C4ei[ωL (2t−s)+2ϕ] + S4e−i[ωL (2t−s)+2ϕ]

− 2S2C2 cos ωLs}eiν(2t−s). (A3)

On the basis of the condition assumed in Sec. II, ωL � �,�,
we note that the first two fast-oscillating terms in Eq. (A3) can
be neglected. We observe that neglecting this kind of terms
is completely equivalent to obtaining the master equation
writing the interaction Hamiltonian in rotating wave approxi-
mation:

HI =
∑

k

h̄[gkakei(ωLt+ϕ)σ+ + g∗
ka†

ke−i(ωLt+ϕ)σ−]. (A4)

In this limit, the products linked to the secular terms

f t
− f t−s

+ ≈ [C4e−iωLs + S4eiωLs]e−iνs,

f t
+ f t−s

− ≈ [C4eiωLs + S4e−iωLs]eiνs,

f t
z f t−s

z ≈ 2S2C2 cos ωLs (A5)

determine the coefficients of Eq. (11). Nonsecular terms are
determined by the products

f t
+ f t−s

+ ≈ −2S2C2eiν(2t−s) cos ωLs,

f t
+ f t−s

z ≈ SC(C2eiωLs − S2e−iωLs)eiνt ,

f t
z f t−s

+ ≈ SC(C2e−iωLs − S2eiωLs)eiν(t−s), (A6)

together with f t
− f t−s

− = ( f t
+ f t−s

+ )∗, f t
− f t−s

z = ( f t
+ f t−s

z )∗, and
f t
z f t−s

− = ( f t
z f t−s

+ )∗. The factors e±iνt and e±2iνt are taken
out when one moves back to the Schrödinger picture. We
indicate with f t

i f t−s
j the products f t

i f t−s
j after the elimination

of the factors e±iνt and e±2iνt and, taking the continuum limit,
we introduce the spectral density J (ω) = ∑

k |gk|2δ(ω − ωk ),
such that the trace over the bath’s degrees of freedom is
transformed into an integral over all the frequencies. The
Born-Markov master equation, assuming a factorized initial
condition for the system and its bath, is then given by [1,2]

ρ̇ = − i

h̄
[HS, ρ] + 1

h̄2

∑
i, j=+,−,z

∫ ∞

0
ds

[
f t∗
i f t−s

j 〈B(t )B(t − s)〉(σ̃ jρσ̃
†
i − σ̃

†
i σ̃ jρ) + H.c.

]
, (A7)

where H.c. denotes Hermitian conjugation and the bath cor-
relation functions, taking a thermal equilibrium state ρB at
temperature T , are given by

TrB{B(t )B(t − s)ρB}

= h̄2
∫ ∞

0
dωJ (ω){[1 + n(ω)]e−iωs + n(ω)eiωs}. (A8)

The explicit development of Eq. (A7) leads to Eq. (9). In
particular, in order to calculate the coefficients of the master
equation, one makes use of the identity∫ ∞

0
e±iεsds = πδ(ε) ± iP 1

ε
, (A9)

where δ(ε) is the Dirac δ function and P denotes the Cauchy
principal value.
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The Lamb shift Hamiltonian of Eq. (9) is given by

HLS = h̄
(
sθ
−σ̃−σ̃+ + sθ

+σ̃+σ̃− + sθ
z σ̃

2
z

)
, (A10)

where

sθ
− = P

∫ ∞

0
dωJ (ω)

{
S4[1 + n(ω)]

(ωL − ν) − ω
− C4n(ω)

(ωL + ν) − ω

}
,

sθ
+ = P

∫ ∞

0
dωJ (ω)

{
C4[1 + n(ω)]

(ωL + ν) − ω
− S4n(ω)

(ωL − ν) − ω

}
,

sθ
z = P

∫ ∞

0
dωJ (ω)

S2C2

ωL − ω
. (A11)

We observe that it holds [HS, HLS] = 0.
As for the nonsecular part Dnsec(ρ), we have

Dnsec(ρ) = (γ θ
+++isθ

++)σ̃+ρσ̃+

+ (
γ θ

+z+isθ
+z

)
(σ̃+σ̃zρ − σ̃zρσ̃+)

+ (
γ θ

−z+isθ
−z

)
(σ̃−σ̃zρ − σ̃zρσ̃−)

+ (
γ θ

z++isθ
z+

)
(σ̃zσ̃+ρ − σ̃+ρσ̃z )

+ (
γ θ

z−+isθ
z−

)
(σ̃zσ̃−ρ − σ̃−ρσ̃z ) + H.c., (A12)

where the various coefficients γ θ
i j and sθ

i j can be computed by
explicitly developing Eq. (A7):

γ θ
++ = − 1

2 S2C2[γ−(1 + 2n−) + γ+(1 + 2n+)],

γ θ
z+ = − 1

2 SC[γ+n+C2 − γ−(1 + n−)S2],

γ θ
z− = − 1

2 SC[γ+(1 + n+)C2 − γ−n−S2],

γ θ
+z = − 1

2γ0SC[(1 + n0)C2 − n0S2],

γ θ
−z = − 1

2γ0SC[n0C
2 − (1 + n0)S2], (A13)

and

sθ
++ = −P

∫ ∞

0
dωJ (ω)S2C2

×
[

1 + 2n(ω)

(ωL − ν) − ω
− 1 + 2n(ω)

(ωL + ν) − ω

]
,

sθ
z+ = P

∫ ∞

0
dωJ (ω)SC

×
{

S2[1 + n(ω)]

(ωL − ν) − ω
+ C2n(ω)

(ωL + ν) − ω

}
,

sθ
z− = −P

∫ ∞

0
dωJ (ω)SC

×
{

S2n(ω)

(ωL − ν) − ω
+ C2[1 + n(ω)]

(ωL + ν) − ω

}
,

sθ
+z = −P

∫ ∞

0
dωJ (ω)SC

[
C2 + n(ω)

ωL − ω

]
,

sθ
−z = P

∫ ∞

0
dωJ (ω)SC

[
S2 + n(ω)

ωL − ω

]
. (A14)

For each pair {i, j} in Eq. (A7), the part of the integrals
involving the δ function gives us the decay rates of Eq. (11)
when i = j and the ones of Eq. (A13) when i 	= j, for any
spectral density. The principal part in Eq. (A9) leads to
the Lamb shift Hamiltonian of Eq. (A10) and the terms in
Eq. (A14). Note that the subscripts of γ θ

i , sθ
i , γ θ

i j , and sθ
i j

are chosen independently of the actual values of i and j in
Eq. (A7), leading to the various terms where these parameters
appear.

It can be shown (see, for instance, Ref. [41]) that, in the
case of a flat spectral density, all the terms deriving from the
principal part of Eq. (A9) vanish. This can be obtained by
first performing the integrals by using a Lorentzian spectral
density and by then taking the width of this Lorentzian to
infinity. In the case of a nonflat spectrum, we treat these terms,
taking again the Lorentzian spectral density. In the secular
MME, the terms in the Lamb shift Hamiltonian lead to nothing
but energy shift, and then their effect is not relevant for the
steady states. Instead, the contribution of the terms deriving
from the principal part of Eq. (A9) appearing in the nonsecular
MME [see Eq. (A14)], in general, cannot be neglected (see
comment in Sec. V A on the comparison between secular and
nonsecular master equations).

Finally, keeping the terms of Eq. (A12) in Eq. (9), it is
possible to show that in the flat-spectrum limit, under the ap-
proximation n− ≈ n+ ≈ n0 ≈ nfd, the nonsecular MME gives
exactly the same result as the FDME; i.e., using H = HS ,
Eq. (9) becomes Eq. (13) for any γfd.
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