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Non-Bloch-Band Collapse and Chiral Zener Tunneling
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Non-Bloch-band theory describes bulk energy spectra and topological invariants in non-Hermitian
crystals with open boundaries, where the bulk eigenstates are squeezed toward the edges (skin effect).
However, the interplay of non-Bloch-band theory, skin effect, and coherent Bloch dynamics is so far
unexplored. In two-band non-Hermitian lattices, it is shown here that collapse of non-Bloch bands and skin
modes deeply changes the Bloch dynamics under an external force. In particular, for resonance forcing
non-Bloch-band collapse results in Wannier-Stark ladder coalescence and chiral Zener tunneling between

the two dispersive Bloch bands.
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Introduction.—Bloch band theory is the fundamental
tool to describe electronic states in crystals [1]. Under the
action of a weak dc electric field, Bloch theory predicts that
electrons undergo an oscillatory motion, the famous Bloch
oscillations (BOs) [1], which can be explained from the
formation of a Wannier-Stark (WS) ladder energy spectrum
[2]. Transitions among different bands occur for stronger
fields because of Zener tunneling (ZT) [3]. BOs and ZT are
ubiquitous phenomena of coherent wave transport in
periodic media and have been observed in a wide variety
of physical systems [4—14]. It is remarkable that, after one
century from the seminal paper by Felix Bloch [1], there are
still treasures to be uncovered within Bloch band theory.
For example, Bloch band theory is central in the under-
standing of topological insulators [15-17] and in the
description of flat band systems showing unconventional
localization, anomalous phases, and strongly correlated
states of matter [18-28]. Recently, a great interest is
devoted to extend Bloch band theory and topological order
to non-Hermitian lattices [29-67]. In Bloch band theory,
an electronic state is defined by the quasimomentum Kk,
which spans the first Brillouin zone, and is delocalized all
along the crystal, regardless periodic boundary conditions
(PBC) or open boundary conditions (OBC) are assumed.
However, in non-Hermitian crystals, something strange
happens: energy bands in crystals with OBC are described
by non-Bloch bands that deviate from ordinary Bloch
bands, bulk eigenstates cease to be delocalized and get
squeezed toward the edges (non-Hermitian skin effect), and
the bulk-boundary correspondence based on Bloch topo-
logical invariants generally fails to correctly predict the
existence of topological zero-energy modes [32-38,44,55,
58,68]. Recent seminal works [34,36,44] showed that to
correctly describe energy spectra and topological invariants
in crystals with OBC one needs to extend Bloch band
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theory so as the quasimomentum k becomes complex and
varies on a generalized Brillouin zone. Bloch and non-
Bloch bands can show different symmetry breaking phase
transitions and, interestingly, band flattening near an
exceptional point (EP) can be observed for non-Bloch
bands, while ordinary Bloch bands remain dispersive
[37,55,65]. As BOs and ZT in non-Hermitian lattices have
been investigated in some recent works [69-74], the
implications of non-Bloch band theory to particle Bloch
dynamics remain obscure. In this Letter we consider Bloch
dynamics in a two-band non-Hermitian crystal and unveil
a dynamical behavior unique to non-Hermitian crystals:
ZT between dispersive Bloch bands, induced by resonance
forcing, becomes chiral at the non-Bloch-band collapse
point; i.e., electrons irreversibly tunnel from one dispersive
Bloch band to the other one, contrary to Hermitian systems
where ZT is reversible (oscillatory). Chirality of ZT can be
regarded as the signature of non-Bloch-band collapse.

Non-Bloch-band  collapse.—We consider a one-
dimensional tight-binding lattice with chiral symmetry
and with two sites per unit cell, driven by an external
dc force F. In the Wannier basis representation, the
Schrodinger equation describing the evolution of the
occupation amplitudes a, and b, in the two sublattices
A and B at the nth unit cell reads

da q q
" = 0,b,_; — Fna,, 1
l f Z Pidn—i + Z 1Y n—-1 nay ( )

d I=—q I=—q
db q q
i T Z Y1, — Z pibu_y — Fnb,, (2)
I=—q I=—q

where p,, 6,, and ¢, describe the hopping amplitudes
and where we assume that electrons can hop up to the
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gth nearest unit cells. A Hermitian crystal corresponds to
p_, = p; and O_, = ¢;,. For an undriven lattice (F = 0),
the Hamiltonian in Bloch basis representation reads

H(k) = dex(k) + Uydy(k) + Uzdz(k)’ (3)

where o, . are the Pauli matrices and d,. (k)= (1/2)
(6, + g exp(=ikn). (k) = (1/20) 3, (g, ~ 6,)
exp(—ikn), d (k) =", p,exp(—ikn). The energy spec-
trum shows chiral symmetry E <> —F with the dispersion
curves of the two bands given by

Ey =+ O(p). (4)

where f = exp(—ik) and Q(p) = di + d; + d?. Note that
Q(p) is given by a sum of powers of 5, namely

q
0B = " (pn + O = Poy(p) + 2 P)

2q
lLn=—q ﬂ

(5)

where P,, and R,,_; are two polynomials of /§ of order 2¢
and 2g — 1, respectively. Owing to the non-Hermitian skin
effect, the energy bands and corresponding eigenfunctions
for a long crystal, comprising N unit cells, are different for
PBC and OBC [34,44]. For PBC, k spans the first Brillouin
zone —z < k < &, f = exp(—ik) varies on the unit circle
Cy in complex plane, i.e., |#| = 1, and the energy curves
(4) describe the ordinary lattice Bloch bands. We assume
that the two Bloch bands are separable and Q(f) # 0 in the
interior of Cy, so that E (k + 27) = E (k). For a lattice
with OBC, the energy spectrum is obtained again from
Eqs. (4) and (5) but with f varying on a generalized
Brillouin zone C s in complex plane [34,44]. The corre-
sponding curves E_(f) describe so-called non-Bloch
bands, and the bulk eigenstates are squeezed toward the
left or right lattice edges depending on whether || > 1 or
|B| < 1. The generalized Brillouin zone C 3 and correspond-
ing non-Bloch energy bands are obtained from the implicit
relation [44]

|ﬂ2q(E)| = |ﬁ2q+1(E) > (6)

where, for a given complex energy E, f§;(E) are the roots of
the algebraic equation

PPy (P)

ordered such that |5, (E)| < |,(E)| <, ... < |fay (E)| [44].
A remarkable property of non-Hermitian lattices is that one
can observe non-Bloch flat bands; i.e., Q() is independent
of /3 as /3 varies on the generalized Brillouin zone C 5> While
the ordinary Bloch bands remain dispersive; i.e., Q(f) is

~E} 4 Ryt () =0. ()

not constant when g varies on the unit circle Cg. In
particular, it can be shown [75] that, whenever the hopping
terms p,,, 8, and ¢,, become small and vanish for any n < 0
(or likewise for any n > 0), the two non-Bloch bands
become flat around the two values E, = +F,, where we

have set
Ey= \/P% + @obp. (8)

Correspondingly, the generalized Brillouin zone C 3 shrinks
toward the point # = 0 (or 1/ = 0); i.e., the collapse of the
non-Bloch bands is associated with the coalescence of the
skin modes, indicating that at the band collapse the OBC
Hamiltonian has two high-order EPs [75]. An example of
non-Bloch-band collapse is shown in Fig. 1 for a lattice
model which is a variant of the Hamiltonian earlier
introduced in Ref. [34] (see also [37,55,68]). The model
corresponds to the following nonvanishing values of
couplings [Fig. 1(a)]: po = A, 6y = g =ty, 01 =1+,
and ¢p_; =t — 8, with A, 1, t, and 6 real positive numbers.
The lattice is Hermitian for 6 = 0. As § is increased, a non-
A+ 13
occurs at § = ¢. The generalized Brillouin zone C ;s for this
model is a circle of radius R = /(¢ —8)/(t + &), which
shrinks as 6 — ¢ [Fig. 1(c)]. Note that, at the non-Bloch-
bands’ collapse point, the ordinary Bloch bands remain
dispersive; i.e., band flattening occurs for non-Bloch bands

Bloch-band collapse at the energies £E, =

(a) unit cell

E, Ep ) Re(E)

g
o U/
% F2£0 @ A Im(E) N

Eh% ;

\_/ ¢—eo-o
! unit cell n Re(E)

FIG. 1. (a) Example of non-Hermitian lattice showing skin

effect. The lattice is Hermitian for 6 = 0. As 6 is increased, non-
Bloch-bands collapse at = ¢. An external force F introduces a
gradient in the site energies (lower panel). (b) Bloch and non-
Bloch lattice bands in complex energy plane for F = 0. The PBC
energy spectrum (solid curve) is a closed loop around E, =

\/A? + 1, whereas the OBC energy spectrum (dashed curve) is
the segment (E;,E,) on the real energy axis, with E;, =
\/Az + (to F V1* = 8*)%. The OBC band collapses to E, at

5= +r. Only the positive energy branch E, (k) is shown.
(c) Diagram of the Brillouin zone Cy (unit circle) and generalized

Brillouin zone Cﬁ. C'/, is the circle of radius R which shrinks to
f = 0 (skin mode collapse) as 6 — t. (d) Energy spectrum for a
nonvanishing force. The spectrum is entirely discrete (point
spectrum) and formed by two interleaved WS ladders.
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solely, which is a distinctive feature than Bloch band
flatting in non-Hermitian systems studied in some recent
works [76-79].

Chiral Zener tunneling between dispersive Bloch
bands.—Let us now consider the case of a driven lattice,
ie., F#0. Like for an Hermitian lattice [80,81], the
external force changes the energy spectrum from an
absolutely continuous spectrum (the two energy bands)
into a point spectrum composed by two interleaved WS
ladders [75]; see Fig. 1(d). Owing to the formation of the
WS ladders, the eigenstates become localized in the bulk.
Hence in the driven non-Hermitian lattice the distinction
between PBC and OBC smears out and one can disregard
boundary conditions assuming that excitation in the
lattice remains confined far from the edges. To study ZT
between the two dispersive Bloch bands, let us consider
wave dynamics in the Bloch basis representation.
After setting a, (1) = [* dkA(k,t)exp(ikn) and b, (1) =
J™_ dkB(k,t)exp(ikn), the evolution equation for the
spectral amplitudes A and B reads

2V (- 2)(4). o

The energy spectrum EWS) of the two interleaved WS
ladders can be calculated from Eq. (9) by standard methods
and reads (technical details are given in [75])

(WS) F9
E =IF+—, 10
{ . (10)
(I=0,£1,42,...), where 8 = O(F) is a complex angle
such that cos@ is the half trace of the 2 x 2 ordered
exponential matrix

U= /”dkexp{—iH(k)/F}. (11)

Here we are mainly interested in the case where the angle 6
is real, so that the energy spectrum E(iws) is real (despite the
Hamiltonian is not Hermitian). This case occurs rather
generally when py is a real number (positive for the sake of
definiteness) and the couplings |p;| (I # 0), |¢,|, and |0,| are
much smaller than pg. In this limiting case the two weakly
dispersive Bloch bands of the lattice describe closed loops
around +FE( ~ +p, and correspond to particle occupation
mostly in the sublattice A (for the “higher” energy band £, )
and in sublattice B (for the other “lower” energy band E_).
In the weak forcing limit F' — 0, an approximate expres-
sion of @ can be derived by a standard WKB analysis
and reads
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FIG. 2. Left panels: Behavior of cosé vs normalized force
F/E in the driven lattice of Fig. 1 for a few increasing values of
o/t: (a) 6/t =0.2, (b) 6/t =0.6, (c) §/t =1 (non-Bloch-band
collapse). Other parameters are A/t = 2, t,/t = 0.4. The dashed
curves show the behavior of cos @ vs F/ E, predicted by the WKB
analysis. Right panels: behavior of the scalar product ® vs F/E|,.

As shown below, such a result turns out to be exact for any
strength F of forcing at the non-Bloch-band collapse, i.c.,
when p; =60, =¢; =0 for [ <0 (right unidirectional
hopping) or for [/ > 0 (left unidirectional hopping), so as
0 = 2zE/F. Figure 2 shows an example of the numeri-
cally computed behavior of the angle 6 vs F' for the lattice
model of Fig. 1(a) and for increasing values of parameter §
until non-Bloch-band collapse is attained. The dashed
curves in the figure correspond to the approximate result
obtained from the WKB analysis. Note that at non-
Bloch-band collapse point the WKB analysis becomes
exact [Fig. 2(c)]. An interesting case is observed when
0 = 0, z, corresponding to the coalescence of the two WS

ladders E(+WS) and E™S). At the non-Bloch-band collapse

point such a coalescence is attained for resonance forcing

(n=1,2,3,...). While in the Hermitian case such an
accidental coalescence yields exact wave packet revivals
at time intervals multiplies than fz = 2z/F [80,81], in
the non-Hermitian lattice the coalescence of energy ladders
can correspond to the simultaneous coalescence of the
localized WS eigenstates, i.e., to a WS EP [82]. This occurs
when the eigenvectors u;, of the matrix U [Eq. (11)]

become parallel; i.e., when the scalar product ® =

[(u;|uy)|/+/{u;|u;)(u,|u,) becomes equal to one (right

panels in Fig. 2). The main result of this Letter is that (i) a
WS EP is observed when the non-Bloch-bands collapse and
the external force satisfies the resonance condition (13);
(i1) at a WS EP, ZT between the two dispersive Bloch bands
becomes chiral; i.e., it ceases to be oscillatory and irre-
versible tunneling from one dispersive band to the other
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one is observed. To prove such a statement, let us notice
that, according the “acceleration theorem” [81,83,84],
the external force induces a drift of the Bloch wave number
k in time according to k = ko + Ft (ko is the particle
quasimomentum at initial time) to cyclically span the
Brillouin zone Cz. We then look for an exact solution to
Eq. (9) of the form A(k,t)=f(t)6(k—ky—Ft), B(k,t) =
fa()6(k — ko — Ft), and assume without loss of generality
ko = 0. The evolution equation for the amplitudes f,(7)
and f(¢) to find the particle in either sublattices A and B

reads
Lol

The usual picture of ZT in Hermitian crystals is that
Eq. (14) describes a sequence of Landau-Zener transitions
between Bloch bands as & crosses the edges of the Brillouin
zone, where the band gap is narrower [80,81,85]. The
resulting quasiperiodic (oscillatory) dynamics is captured
by the two Floquet exponents of Eq. (14), which are
precisely the terms +F6/(2x) that define the WS ladder
energy spectrum [Eq. (10)]. Note that one can expand
H(k=Ft) in harmonics as H(k=Fr)=Hy+
>l g0 Hiexp(=ilFt), where H; are constant 2 x 2
matrices, and the eigenvalues of H are precisely £E,,
given by Eq. (8). When p; =6, = ¢, =0 for [ <O0; i.e.,
when the non-Bloch-bands collapse, H(k = Ft) is com-
posed solely by negative frequency components for ' > 0,
or positive frequency components for F < 0, so as, under
near-resonant forcing, transitions preferentially occur from
the “lower” (E_) to the “higher” (E,) energy bands for
F > 0, and viceversa for F < 0 [75,86]. According to the
general properties of Floquet systems with one-sided
harmonics [87], provided that the force F does not satisfy
the resonance condition (13), the two Floquet exponents of
Eq. (14) are given by +FE,, the corresponding Floquet
eigenstates are linearly independent and the Bloch dynam-
ics is quasiperiodic [75]. This result justifies the exactness
of the WKB analysis [Eq. (13)] observed at the non-Bloch-
band collapse point [Fig. 2(c)]. On the other hand, when F
satisfies the resonance condition (13), a Floquet EP arises
[87]. In this case the dynamics ceases to be oscillatory and
an irreversible tunneling from sublattice B (band E_) to
sublattice A (band E ) is observed for F > 0, but not for
F < 0; i.e., ZT becomes highly asymmetric under force
reversal. In other words, chiral ZT is observed because
of the appearance of a Floquet EP, which necessarily
requires a non-Bloch-band collapse and resonant driving.
An example of chiral ZT in the lattice model of Fig. 1(a) is
shown in Fig. 3. The figure depicts the dynamical evolution
of the amplitudes a,(¢) and b, (¢) in physical space, norm
P(t) =>,(la,|* + |b,*) and normalized occupation
probabilities of the two sublattices A and B, P,(t) =
(3>, lan)?)/P and Pg(t) = (32, |b,|*)/ P, under resonance

sublattice A
AR LR R L L
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FIG. 3. Chiral ZT in the lattice of Fig. 1 under resonant
driving (a) F = —E,, and (b) F = E,,. Parameter values are as in
Fig. 2(c). At initial time only sublattice B is excited with a
broad Gaussian wave packet of central momentum k, = 0, i.e.,
b,(0) « exp[—(n/w)?] with w =4 and a,(0) = 0. The upper
panels show the evolution of |a,|* and |b,|? in a pseudo color
map, whereas the lower panels depict the evolution of the
normalized occupation probabilities P, and Py in the two
sublattices A and B. The insets show the evolution of the norm
P(r). Note that in (a) tunneling into the sublattice A is weak and
oscillatory, whereas in (b) irreversible ZT is observed with a
secular growth of the norm P(¢). Time ¢ is normalized to the BO
period tz = 2x/F.

forcing. The initial condition corresponds to excitation of
sublattice B. The figure clearly shows that irreversible ZT
to sublattice A occurs for F > 0, but not for F' < 0. In the
former case irreversible tunneling is associated to a secular
growth of the norm P(z), which is a typical signature of a
Floquet EP [87], whereas in the latter case ZT probability is
weak and oscillates with the characteristic BO period
tg = 2x/F. For an imperfect non-Bloch band collapse,
or for exact non-Bloch-band collapse but nonresonant
driving, the tunneling dynamics becomes oscillatory
[75]. A simple physical explanation of the appearance of
chirality in ZT for the lowest-order (n = 1) resonance
forcing at the Floquet EP is discussed in [75].

Conclusion.—Non-Bloch-band theory is a powerful tool
to describe energy bands and to restore the bulk-boundary
correspondence in non-Hermitian crystals showing the skin
effect [34,36,44]. Here we have reconsidered the old
problem of Bloch oscillations and Zener tunneling in the
framework of non-Bloch-band theory, and unveiled a major
physical effect unique to non-Hermitian systems, namely
chiral Zener tunneling between dispersive Bloch bands.
This phenomenon is observed under resonance forcing and
is rooted in the collapse of non-Bloch bands and skin
modes. Such results show major implications of non-
Bloch-band theory into coherent wave transport and are
expected to be of broad relevance in different areas of
physics, where wave transport is described by effective
non-Hermitian models.
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