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ABSTRACT More versatile, user-independent tools for recognizing and predicting locomotionmodes (LMs)
and LM transitions (LMTs) in natural gaits are still needed. This study tackles these challenges by proposing
an automatic, user-independent recognition and prediction tool using easily wearable kinematic motion
sensors for innovatively classifying several LMs (walking direction, level-ground walking, ascend and
descend stairs, and ascend and descend ramps) and respective LMTs. We compared diverse state-of-the-
art feature processing and dimensionality reduction methods and machine-learning classifiers to find an
effective tool for recognition and prediction of LMs and LMTs. The comparison included kinematic patterns
from 10 able-bodied subjects. The more accurate tools were achieved using min-max scaling [−1; 1]
interval and ‘‘mRMR plus forward selection’’ algorithm for feature normalization and dimensionality
reduction, respectively, and Gaussian support vector machine classifier. The developed tool was accurate
in the recognition (accuracy >99% and >96%) and prediction (accuracy >99% and >93%) of daily LMs
and LMTs, respectively, using exclusively kinematic data. The use of kinematic data yielded an effective
recognition and prediction tool, predicting the LMs and LMTs one-step-ahead. This timely prediction is
relevant for assistive devices providing personalized assistance in daily scenarios. The kinematic data-based
machine learning tool innovatively addresses several LMs and LMTs while allowing the user to self-select
the leading limb to perform LMTs, ensuring a natural gait.

INDEX TERMS Kinematic data, machine learning, motion intention recognition, motion transition
prediction.

I. INTRODUCTION
Humans can perform distinct locomotion modes (LMs) in a
variety of conditions and terrains in their daily routine. The
classification of daily LMs and LM transitions (LMTs) is
required to timely tune the assistance provided by the robotic
assistive devices (e.g., orthoses and prostheses) according to
the patient’s LM and to generate smooth transitions, respec-
tively [1]. The recognition and prediction of LMs and LMTs
is a requirement in the assist-as-needed paradigm to foster
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personalized gait assistance in daily-life scenarios [1], [2].
Recognition tackles the classification of the ongoing LMs
and LMTs, whereas the prediction refers to the classification
one-step-ahead of their occurrence. For this purpose, it is
necessary to develop automatic, user-independent tools capa-
ble of recognizing and predicting the LM and LMTs using
wearable sensors [1].

Multiple efforts have been made to develop automatic LM
recognition tools. Part of them tackles pattern-recognition
from electromyography (EMG) data [3]–[5]. However,
EMG sensors present some drawbacks when compared to
kinematic sensors, such as the lengthy and expert-based
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installation, difficulty for keeping them attached during the
user’s daily locomotion, and the shifting electrodes may
change EMG patterns and degrade the classification over
time [2], [4], [6].

To avoid these limitations, more cost-effective, wear-
able kinematic sensors, namely inertial measurement units
(IMUs), have been applied. Previous studies [2], [6], [7]
have proposed LM recognition tools driven by IMU sen-
sors and validated in able-bodied subjects. Jang et al. [7]
and Li et al. [2] applied a finite state machine whereas
Liu et al. [6] and Leuenberger et al. [8] employed machine
learning approaches, namely the linear discriminant analy-
sis (LDA) and the k-nearest neighbors (KNN), respectively.
Despite their contribution to accurate recognition tools, these
works did not tackle the LM prediction problem, nor LMT
classification, both demanded on robotic-based rehabilitation
and assistance.

The existing state-of-the-art [5], [10], [11], for predicting
LMs and recognizing LMTs, presents some methodological
drawbacks. Huang’s work [5] used LDA and support vector
machine (SVM) to recognize five LMTs (level-ground walk-
ing to stair ascent, ramp ascent, and stepping over an obstacle
and stair descent and ramp descent to level-ground walking).
Despite the successful classification, some factors are limit-
ing this work; namely, the tool depends on EMG information,
and transitions were recognized when one of the legs was
already on the next terrain type. This transition assumption,
also observed in [10], does not lead to a genuinely user-
independent tool since the user is asked to start the terrain
transition with a predefined limb, and it may interfere with
the natural gait flow. In contrast, Chen et al. [11] applied
LDA for LMT recognition without imposing a predefined
leg for performing the transition. This tool was not prepared
to recognize common LMTs between the level-ground and
ramp.

There is still a set of challenges to be pursued, such as to
(i) develop a more versatile tool for predicting and recogniz-
ing more daily performed LMs and LMTs; (ii) use discrimi-
native sensor data measured by easily wearable sensors, such
as kinematic data collected from IMUs, to ensure a natural
gait; and, (iii) allow the user to freely choose the leading
limb to perform the LMT. The latter challenge demands less
cognitive effort from the user and enabling a more natural
walk during daily activities.

This study tackles the mentioned challenges. It proposes
a versatile, automatic, user-independent recognition and pre-
diction tool for classifying LMs and LMTs using kinematic
patterns collected from easily wearable sensors (i.e., IMUs)
that fosters a more natural gait. The recognition and pre-
diction tool aims an efficient classification of the LMs
commonly encountered in the daily life while covering dif-
ferent walking directions (i.e., forward, back, clockwise, and
counter-clockwise) along with variations in gait speed and
terrains (i.e., flat, ascending and descending stairs, climbing
up and down ramp, stepping over obstacles). The tool also
approaches transitions from/to those terrains using the user’s

self-selected lower limb. We used heterogenous kinematic
patterns from 10 able-bodied subjects, including variation
in walking direction, gait speed, and terrain, to assess the
tool’s effectiveness. To the best knowledge of the authors,
there is yet no available automatic tool that is capable of
accurately recognizing and predicting all these daily LMs and
respective LMTs independently of the leading limb, and no
prior study has addressed the transition prediction problem
only including kinematic data of the step that precedes the
LMT. Moreover, the proposed tool was able to achieve gener-
alization for a given set of healthy subjects. It may be applied
to establish a recognition and prediction tool for a segment
of the population of pathological end-users. We exclusively
used kinematic data from IMUs to explore the potential of
using easily tracked data in high-complex decision making
of several daily LMs and LMTs. The kinematic data contains
valuable information on the time domain, which is essential
for evaluating the natural human motion progress.

Additionally, we compared standard machine learning
classifiers of gait pattern recognition to find an accurate
tool for both recognition and prediction purposes. We imple-
mented a machine learning-based framework for enabling
the fast and systematic benchmark, by applying various
state-of-the-art algorithms namely, feature selection and pre-
processing methods, and supervised machine learning classi-
fiers (DA, KNN, random forest (RF), SVM, and multilayer
perceptron-neural network (MLP)).

This work aims to pursue two main research questions,
as follows: (i) which machine learning-based configuration
is best for the recognition and prediction of LMs and LMTs?,
and (ii) Is it possible to recognize and predict LMs and LMTs
using only kinematic data? These questions are explored
in Section III and Section IV, respectively, considering the
methods described in Section II.

II. METHODS
This section describes themachine learning-based framework
implemented in Matlab R© (2017b, The Mathworks, MA,
USA). The framework, presented in Fig. 1, was designed to
enable the fast implementation, testing, and comparison of
different feature processing methods and machine learning
classifiers to identify an accurate classification model for
both recognition and prediction purposes. This framework
considers the most applied procedures in gait pattern recog-
nition, as reviewed in [12].

The framework describes the conducted stages in the train-
ing and testing phases. Given the possibility of comparing dif-
ferent techniques with the same kinematic data, we used this
framework to answer the first research question to propose a
versatile, effective, and benchmarking tool for the recognition
and prediction of LMs and LMTs. We explain each stage of
the proposed framework in the following.

A. DATA ACQUISITION
In the raw data table (Fig. 1), we included kinematic data,
sampled at 200 Hz, namely the angle and angular velocity of
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FIGURE 1. Schematic of the machine learning-based framework for LMs
and LMTs recognition and prediction purposes.

the lower limb segments (thigh, shank, and foot) in the sagittal
plane, and the angle and angular velocity of the torso in the
sagittal and axial planes. Data were filtered by a 1st order low-
pass filter (exponential smoothing) with 0.5 as the smoothing
factor and a cut-off of 10 Hz [13]. Appendix I provides
instances of the collected data.

1) PARTICIPANTS
We included 10 able-bodied subjects (6 males, 4 females).
The participants’ mean age was 27±7.35 years old, with a
height of 1.70 ± 0.12 m and a weight of 62.63 ± 9.39 kg.
All participants provided written and informed consent,
according to the ethical conduct defined by the University of
Minho Ethics Committee that follows the standards set by the
declaration of Helsinki and the Oviedo Convention.

2) EQUIPMENT
We collected kinematic data using a wearable IMU-based
system, InertialLAB (Fig. 2.A), given its usability and oper-
ability in daily scenarios, such as those considered in this
study. It includes 7 IMUs (MPU-6050) connected via I2C
protocol to the STM32F4microcontroller, which has attached
a USB flash drive to store the data. A 2000 mAh power-bank
powered the InertialLAB. The IMUs were positioned on the
outer side of the thighs and shanks, on top of the feet, and one
IMU on the torso (Fig. 2.A).

3) EXPERIMENTAL PROTOCOL
Before data collection, we calibrated the InertialLAB while
the subject was in the upright standing position for 5 s. Then,
the participants performed randomly 9 trials per walking
direction (3 trials per gait speed) considering the output of

FIGURE 2. A) Wearable sensor system (InertialLAB) used in the Data
Acquisition stage. B) Instances of experimental protocol performed at the
indoor staircase and outdoor ramp.

FIGURE 3. Representation of two circuits (staircase and obstacles),
highlighting the transitional step, transitional moment, and the explored
time window sizes for recognition and prediction using heel-strike (HS)
and toe-off (TO) events.

a random number generator (used to set the trial number
randomly). The trials included different walking directions
(forward, backward, clockwise, and counterclockwise) per-
formed on a 10 m level-ground at 3 self-selected gait speeds
(slow, normal, and fast) in an indoor corridor.

Additionally, the subjects conducted 10 trials on four walk-
ing circuits at a self-selected gait speed. In the first cir-
cuit (Fig 3.A), they walked 2 m forward on level-ground;
ascended the staircase; walked forward on level-ground for
2 m and stopped; and descended the staircase back to the
starting position. This circuit included 3 LMs (level-ground

33252 VOLUME 8, 2020



J. Figueiredo et al.: Daily Locomotion Recognition and Prediction

walking (LW), stair ascent (SA), and stair descent (SD)) and
4 LMTs (LW→SA, SA→LW, LW→SD, SD→LW). The
indoor staircase (Fig 2.B) had 8 steps each with 17 cm of
height, 31 cm of depth, and 110 cm width. On the second
circuit, the participants walked 2 m forward on level-ground;
ascended a ramp; walked forward on level-ground for 2m and
stopped; and descended the ramp back to the starting position.
The outdoor ramp (Fig 2.B) was 10 m with a 10◦ inclination.
This circuit included 3 LMs (LW, ramp ascent (RA), and ramp
descent (RD)) and 4 LMTs (LW→RA, RA→LW, LW→RD,
RD→LW). On the 2 last circuits, the subjects walked forward
2 m on level-ground, step over an obstacle (SO), and walked
forward 2 m (Fig. 3.B). These circuits differ in the obstacle
dimension. One circuit included an obstacle with 22 cm in
height and 34 cm depth; whereas, the other circuit involved an
obstacle with 34 cm in height and 22 cm depth. The subjects
could freely perform the LMTs with any leading leg to enable
transition seamlessly and intuitively between LMs.

An experimenter walked alongside the subjects marking
the transitional moments (vertical red line in Fig. 3) using a
digital button, similarly to [10], [14]. A transitionalmoment is
a moment belonging to the interval from the instant the lead-
ing limb left the terrain to the instant that this limb touched
the other terrain. Fig. 3 shows that a transitional step differs
for recognition and prediction purposes. For recognition, a
transitional step refers to the period from the moment that
the leading limb leaves the prior terrain (last foot contact)
to the first moment that this limb touches the upcoming
terrain (initial foot contact). For prediction, we used the step
that precedes the ongoing transitional step (the one used in
recognition), i.e., the prediction tackles one-step-ahead of
ongoing LM or LMT.

FIGURE 4. Feature table with 5 types of features per kinematic data.

B. FEATURE CALCULATION
The Feature Calculation stage aims to obtain a feature table
that includes five types of features (the mean value, standard
deviation value, range, and the values of the first and last
positions of the stride) calculated per gait stride for each
kinematic data of the raw data table, resulting in a total
of 80 features. Previous intent recognition tools used these
features [10], [14], [15]. Fig. 4 presents the content of the
feature table.

The gait stride’s boundaries were defined as the heel-strike
and toe-off events for recognition and prediction models,
respectively, as illustrated in Fig. 3.We considered the toe-off
event for prediction since it is a critical point for transition
(i.e., the beginning of the transitional step) [10], and it has
achieved low prediction errors [16].We used an adaptive rule-
based finite state machine [13] to segment these gait events
from the feet gyroscopes’ signal monitored by InertialLAB.

We investigated different timewindow sizes, established as
fractions of the stride (namely, full-stride, 1/2, 1/3, 1/4, 1/5,
and 1/6), to identify the most representative window’s size
for recognition and prediction models. We arbitrary selected
the fractions of the stride, as in [16], to explore segmentation
approaches less dependent on external tools for gait event
detection in an attempt to minimize cumulative errors. As the
time window size is based on fractions of the stride, it adapts
automatically to gait speed variations instead of considering
a fixed timing size.

As depicted in Fig. 3, for recognition and prediction mod-
els, the features were calculated from a time window that
starts with the heel-strike event and ends according to the
selected stride’s fraction, and from a time window that starts
according to the selected stride’s fraction and ends with the
toe-off event, respectively.

The feature table contains data from both legs [17]. There
is evidence that bilateral features improve intent recogni-
tion [14] and that walking, especially transitions, requires
bilateral coordination of the lower limbs because the lead-
ing and opposite legs have distinct biomechanical functions,
even for unilaterally-impaired subjects. We explored two-leg
feature approaches to study the relevance of discriminating
the leading and opposite legs. The first approach considers
the leading and opposite leg, whereas the second approach
considers the left and right leg.

C. PRE-PROCESSING
The Pre-Processing stage is relevant for improving features
using normalization techniques and for identifying discrimi-
native features to build the models.

We normalized the features by the subject’s height since
the anthropometric scaling features reduce the variability of
the feature table [12]. Additionally, we compared different
normalization techniques, namely centering, z-score stan-
dardization, and min-max scaling [18].

Subsequently, we compared the effects on the mod-
els’ performance of one filter feature selection method
and one feature extraction method. As the filter method,
we applied an ANOVA-based method, which uses the
minimum-redundancy maximum-relevancy (mRMR) algo-
rithm to rank features in descending order according to their
relevance [19]. Then, we used the ANOVA, starting on the
highest-ranked feature, to assess which classes are distin-
guishable for the feature considering the feature’s mean and
variance per class. This procedure was done until there are a
set of features that distinguish between all classes.
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As the feature extraction method, we applied the principal
component analysis (PCA) considering the Horn’s Parallel
Analysis as a cut-off criterium for extracting the number of
components to retain [20]. A component is retained whether
the associated eigenvalue is higher than the 95th of the distri-
bution of eigenvalues derived from the random data.

D. DATA LABELING
In the Data Labeling stage, the processed feature table was
labeled according to the LM or LMT from whereas it was
collected. For this purpose, we merged a priori knowledge
of the feature’s origin with the transitional moment recorded
during gait trials. During the training, the labeled feature
table is the ground truth on which the model bases its
decisions.

We implemented 8 classification models for both recog-
nition and prediction purposes (4 models for each one), fol-
lowing the classification scheme depicted in Fig. 5. From the
processed feature table, we created the labeled feature table
organized into 4 databases, one to train each classification
model for recognition and prediction purposes.

FIGURE 5. Schematic of the classification model’s sequence for
recognition and prediction purposes. Identification of databases and
corresponding classes.

The features of the recognition and prediction databases
were equally labeled as follows. The direction_ft database
includes features from the trials varying the walking direc-
tion. This database contains 4 classes (i.e., forward, back-
ward, counter-clockwise, and clockwise), and the features
were labeled according to these classes. The database named
sts_trs_ft contains two classes; the steady-state step, that con-
siders all gait steps associated with the LMs; and transition
step, that includes the gait steps related to LMTs. We labeled
the features of the steady_state_type_ft database according to
the five steady-state classes, one per LM (i.e., LW, SA, SD,
RA, and RD). The database transition_type_ft includes fea-
tures from transitional steps, which were labeled according
to nine classes: LW→SA; SA→LW; LW→SD; SD→LW;
LW→RA; RA→LW; LW→RD; RD→LW; and, SO. The
period for crossing the obstacle (SO) refers to a transitional
step from the first terrain (LW) to the second one (LW).

E. MODEL BUILDING
The Model Building stage builds the classification models
for recognition and prediction purposes. It may involve the

application of wrapper and embedded feature selection meth-
ods and the optimization of the model’s hyperparameters.

In this stage, we explored two wrapper methods,
the ‘‘mRMR plus forward selection’’ and ‘‘forward selection
plus backward selection’’.When using ‘‘mRMR plus forward
selection’’, the features were ranked through the mRMR
method, and a classification model was built and evaluated
using the highest rated feature. A feature was only kept
when it increased the performance. This selection was made
for every feature or until the model reached the maximum
performance (Mathew’s correlation coefficient equal to 1).

When using ‘‘forward selection plus backward selection’’,
the feature that improves the performance the most in com-
bination with the already established feature set was added
to the set. Afterward, the backward selection was used on the
obtained feature set, and the process was inverted; the features
were iteratively removed if their absence did not affect the
model’s performance.

Moreover, we compared five machine learning classifiers,
namely DA with linear and quadratic approaches; KNN,
using both weighted and unweighted (regular) neighbor dis-
tances; RF; MLP; and, SVM, using linear, quadratic, cubic
and Gaussian kernels. We implemented these classifiers due
to their prevalence in gait pattern recognition [12]. This com-
parison aims to identify the better-suited classifier for the LM
and LMT prediction and recognition purposes.

We optimized the classifiers’ hyperparameters for each
selected feature dataset until the best hyperparameter’s values
were found. The KNN and RF were tuned by increasing the
number of nearest neighbors (k) and the number of deci-
sion trees, respectively, starting with 1 until the performance
reached the maximum value or started decreasing. For the
SVM, we applied the grid-search strategy ([−10,10] interval)
to tune the box constraint parameter (C) and the kernel scale
parameter (σ ) for the Gaussian kernel. For DA, we used the
delta threshold set to 0, and gamma regularization set to 1.
The MLP consisted of one input layer (number of neurons
equal to the number of selected features), two hidden layers
of 10 neurons, and one output layer with the number of
possible classes. The sigmoidal was the used activation func-
tion. The weights were updated through the backpropagation
algorithm for 1000 iterations with a learning rate set to 0.01.

The implemented classification scheme seems to be advan-
tageous compared with the one proposed in [10], [14] since
it demands fewer models, decreasing the computational load,
and allows the easy incorporation of further LMs and LMTs,
adding versatility to the framework to act as a benchmark tool.

This stage produced 4 classification models (Fig. 5), one
per database (direction_ft, sts_trs_ft, transition_type_ft, and
steady_state_type_ft). The Direction Classification Model
classified the gait step data according to the walking direc-
tion. If a gait step has been classified as forward, then it
was classified as a steady-state step or a transitional step by
the Steady-State/Transition Type Classification Model. If it
has been classified as steady-state, the Steady-State Type
Classification Model was used for the final classification.
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Otherwise, the final classification used the Transition Type
Classification Model. This classification sequence was
applied to build the recognition and prediction models.

F. MODEL EVALUATION
We evaluated the built model through cross-validation meth-
ods with a two-fold applicational goal. The first goal aims the
hyperparameter tuning and comparison of the classification
models using the different features and techniques, as listed
in Table 1. In this case, theModel Evaluation was performed
by 2-fold cross-validation with 5 repetitions for minimizing
the computational burden associated with the models’ com-
parison. As the second goal, we evaluated the generalization
capability of the final classification models using the leave-
one-out cross-validation [12]. We used Mathew’s correlation
coefficient (MCC) for both comparison and reporting of
model’s performances due to its good representative proper-
ties of unbalanced classes [21], as considered in this work.
We also computed the accuracy (ACC) for comparing the
results with the literature’s findings.

TABLE 1. Experimental comparison of techniques from framework’s
stages.

III. MACHINE LEARNING-BASED FRAMEWORK:
RESULTS AND DISCUSSION
This section presents a comparative analysis of the different
techniques explored in some stages of the machine learning-
based framework detailed in Section II to answer the first
research question for finding the machine learning-based
configuration for the recognition and prediction of LMs and
LMTs. Table 1 summarizes the purpose and conditions con-
sidered in this comparative analysis.

A. FEATURE CALCULATION ANALYSIS
Results of the recognition models show that using the
full- stride fraction with the left/right approach outperforms

(MCC = 0.907) all the other cases by a significant mar-
gin (MCC < 0.808). On the other hand, for prediction, the
leading/opposite approach and 1/4 fraction of gait stride
yielded the best results (MCC = 0.857). The latter remark
suggests that the interval from 1/4 stride’s fraction to the
toe-off event (likely from terminal stance phase to preswing
phase) contains relevant information for the user’s motion
prediction. We considered these findings in the subsequent
analyses. They suggest that both the feature leg approach and
the time window size affect the model’s performance, but
these parameters depend on whether it is a recognition or pre-
diction model.

B. FEATURE NORMALIZATION ANALYSIS
We verified that min-max scaling with the interval [−1;1]
yielded the best results for recognition (MCC = 0.852) and
prediction (MCC = 0.728). It was chosen for the remaining
analyses, as proposed in [22]. Althoughmin-max scalingmay
be sensitive to outliers, we did not observe this fact in this
comparative analysis. Using no normalization or centering
data had the same effect, suggesting that centering data to
zero does not improve the classification based on kinematic
features. Overall, the normalization had amore positive effect
in recognition models (MCC > 0.711) than in the prediction
ones (MCC > 0.630).

C. FEATURE SELECTION AND EXTRACTION ANALYSIS
Overall, feature selection and extraction methods performed
better in recognition models (0.677 < MCC < 0.96) than in
the prediction ones (0.589 <MCC < 0.87).
The application of an adequate dimensionality reduction

method improved the effectiveness of the classifier com-
pared to the inclusion of the entire dataset. This finding
is according to the literature [12] since it results from the
ability to create a compact set of uncorrelated features
that still characterize the original data without redundancy.
Using the ‘‘mRMR plus forward selection’’ method (MCC>
0.8483) or ‘‘forward selection plus backward selection’’
(MCC > 0.8696), both feature selection methods, yielded
similar results. However, the former is less computationally
intensive, and while it selects a larger number of features than
the latter method (20 and 13 features, respectively), it was the
selected method allowing a feature reduction of 75% from
a total of 80 features. This sequential selection and ranking-
based methods were used in [8], [23], [24]. In particular,
the findings are consistent with [23], who concluded that
the mRMR was faster and more effective than the ‘‘forward
selection’’ and ‘‘backward selection’’ methods.

On the other hand, the ANOVA was less effective
(MCC < 0.677) due to the low number of selected features
(2 to 3 features) to discern between the classes.

These findings suggest that the dimensionality reduction
methods that depend on the built model outperformed the
ones (as ANOVA and PCA) that consider neither the clas-
sification model nor the classification goal.
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FIGURE 6. Average performance (MCC and computational load) for each
machine learning classifier across every database and subject.

D. MODEL BUILDING ANALYSIS
Fig. 6 shows that the SVM classifier with the Gaussian kernel
performed better than other classifiers for both prediction
(MCC = 0.86) and recognition (MCC = 0.94). The SVM’s
ability to define more complex decision boundaries by apply-
ing optimization instead of probabilities, and its inherent flex-
ibility to suit the data may explain this finding [12]. Previous
literature indicates this classifier as the best, mainly when
the Gaussian kernel is involved. Begg et al. [25] concluded
that SVM performs better than MLP, as observed in this
benchmarking analysis. Badesa et al. [26] noted that the SVM
is more appropriate than LDA, QDA, and KNN methods.
Huang et al. [5] reported that SVM yielded better results than
LDA to recognize six LMs and predict five LMTs.

The results achieved for RF models indicate their middle-
ranked performance for prediction and recognition. Despite
the optimization of the hyperparameter related to the num-
ber of decision trees, the optimization procedure could have
addressed further hyperparameters.

On the other hand, both DA models produced the worst
classification performance (MCC< 0.73), in contrast to [14],
where the LDA performance was comparable to the SVM.
Three reasons can explain this finding: LDA does not work
well if the design is not balanced, such as the one in this study;
LDA is not suitable for non-linear data, such as the kinematic
data; and, LDA simplicity was perhaps not sufficient to dis-
criminate the LMs and LMTs using the calculated features.

Due to the increased complexity of SVM, the built model
took almost double time to classify data comparing to other
classifiers (Fig. 6). However, this computational burden is
acceptable for recognition and prediction applications, con-
sidering human gait frequency at a normal pace (>1s).

This comparative analysis suggests that the SVM classifier
with a Gaussian kernel is an effective classifier to yield a
benchmark tool for both recognition and prediction purposes,
despite the higher computational burden than other classi-
fiers. This remark is based on its higher prediction perfor-
mance, which is still a critical challenge in the literature.

IV. RECOGNITION AND PREDICTION TOOL:
RESULTS AND DISCUSSION
This section shows the performance of the final recognition
and prediction tool built from the best machine learning
configuration found in Section III. The findings presented
in this section allow investigating whether kinematic data is
enough to recognize and predict LMs and LMTs, addressing
the second research question of this study.We approached the
first steps on a user-independent recognition and prediction
tool by including inter-subject gait pattern variability into the
tool building, i.e., the tools were built using data from all
subjects instead of building a subject-specific tool [10]. More
participants will increase the user-independent character.

A. EVALUATION OF RECOGNITION TOOL
The final recognition models were built using features cal-
culated from a window size covering full-stride with the
left/right approach and normalized by min-max scaling in
[−1; 1] interval. Table 2 summarizes the results of the Gaus-
sian SVMclassifier (C = 64, σ = 4) in terms ofMCC andAC
and presents the number of classified steps and the number
of selected features by ‘‘mRMR plus forward selection’’
algorithm. The obtained confusion matrices are presented in
Appendix II for a more in-depth analysis.

TABLE 2. Recognition models’ performance.

The number of selected features was variable, given the
different decision-making complexity between the models.
The features collected from the IMU placed on the back
were exclusively used in the recognition models, as follows:
standard deviation of the axial torso angle for Direction
Recognition Model; mean of sagittal torso angular velocity
for Transition Type Recognition Model; standard deviation
of the axial torso angular velocity for Steady-State Type
Recognition Model; and, mean, range and first position of
the sagittal torso angle, first and last position of the sagittal
torso angular velocity, mean and first position of the axial
torso angle for Steady-State/Transition Recognition Model.
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The feature selection for the different models was consistent
across subjects and involved features from all 7 IMUs.

The Direction Recognition Model had near-perfect results
(MCC = 0.998, ACC = 99.9%) with only few forward
steps being classified as counter-clockwise or clockwise. This
model used 43 features from a total of 80. It shows that not
all information is necessary for accurate classification of the
walking direction.

On the other hand, the Steady-State/Transition Recogni-
tion Model was less effective (MCC= 0.817, ACC= 96.5%)
even using more features (69 features). The selection of more
features may indicate that the discrimination between steady-
state and transition is complex. Previous studies [10], [16]
reported that the inclusion of ramps as an LM introduced
some error due to the similarities between ramps and LW.
This remark is according to the obtained results since all mis-
classifications involved walking on or transitioning to ramps.
The fusion of kinematic data with environment-aware data [6]
might improve the ramp classification. The performance of
the Steady-State/Transition Recognition Model may affect
end-stage classification accuracy, i.e., the performance of the
Transition Type Recognition Model and Steady-State Type
Recognition Model.

The Transition Type Recognition Model was accurate
(MCC = 0.993, ACC = 99.6%), even when it was built
with one-tenth of the steps and with the least number of
used features (19 features). This finding shows that it is
possible to accurately distinguish transition steps using a
small number of kinematic features. The Steady-State Type
Recognition Model had near-perfect results (MCC = 0.995,
ACC= 99.8%) using 53 features. Errors were due to the clas-
sification of level walking steps as ramp steps and vice-versa.

By comparing with the existing machine learning-based
recognition tools based on kinematic data from wearable
sensors, the proposed framework can perform a more ver-
satile classification. At the best of the authors’ knowledge,
there is still no accurate recognition tool able to classify
LMs and LMTs that considers different walking directions
in LW (forward, back, clockwise, and counter-clockwise)
and terrains (LW, RA, RD, SA, and SD). Chan et al. [24]
limited the recognition to SA and SD by using a less accurate
tool (ACC = 96.8%) than the one proposed in this work
(ACC = 99.8%). Further, the proposed recognition tool per-
forms better when comparing to the one in [8], which iden-
tified the LW, SA, and SD with a sensitivity of 97%, 94%,
and 87%, respectively.

The achieved results for recognizing steady-state steps in
the LMs (LW, SA, SD, RA, RD) are consistent with the
ones reported in [11] (ACC = 99.8% and ACC = 99.7%,
respectively), where the lowest recognition accuracy
occurred for RA. Nonetheless, this tool [11] and other studies
[5], [6], [23], [24], [27] did not define transitional steps
as a class; instead, they set a boundary between LMs after
which the upcoming LM was attributed. In contrast, our tool
recognizes the transitional steps to allow some time to the
robotic device to timely generate smooth LMTs.

Lastly, we observed that the most effective recognition
tools proposed in the literature [5], [10] only recognized an
LMT after the leading leg is already on the next terrain.
In contrast, our recognition tool recognizes an LMT before
the leading leg reaches the second terrain type, without
demanding any predefined leading leg, allowing a more nat-
ural walk in daily activities.

B. EVALUATION OF PREDICTION TOOL
The final prediction models were built using features cal-
culated over a window size of 1/4 of the stride preceding
the leading/opposite leg approach and normalized by min-
max scaling in [−1; 1] interval. We used the ‘‘mRMR plus
forward selection algorithm’’ for feature selection and Gaus-
sian SVM classifier (C = 64, σ = 4). Table 3 presents the
results considering the number of classified steps, the num-
ber of selected features, and the MCC and ACC metrics.
Appendix III presents the confusion matrices.

TABLE 3. Prediction models’ performance.

The prediction models incorporate a different number of
features by including features from all wearable sensor units.
Thus, the dimensionality reduction did not contribute to
reducing the number of IMUs. Around eighteen features
(almost 25% of the total) were common to all models.

Some features were exclusively used in the prediction
models, as follows: mean of the event foot angular velocity
for Direction Prediction Model; first and last positions of
the sagittal torso angle, and standard deviation of the sagittal
torso angular velocity for Steady-State/Transition Prediction
Model; mean angular velocity of the opposite shank, range
of the opposite foot angle, range of the sagittal torso angle,
last position of the sagittal torso angular velocity for Steady-
State Prediction Model. No specific feature was associated
exclusively with the Transition Type Prediction Model, and
there is no evidence for indicating the critical sensors per
prediction model.

From Table 3, we concluded that the prediction models
used more features than the analogous recognition models.
The Direction Prediction Model presented a near-perfect
behavior (MCC = 0.989, ACC = 99.6%), even when con-
sidering variations in gait speed. We observed few misclas-
sifications that occurred when forward steps were classified
as counter-clockwise or clockwise and vice-versa, similarly
to the recognition models. The model used 52 features from
a total of 80 features, showing that there were still quite
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a few features irrelevant to the model. A previous automatic
turn system with IMUs reported results similar to the ones
achieved in this work (ACC > 97% vs. ACC = 99.6%,
respectively) [17].

The Steady-State/Transition Prediction Model had the
worst performance (MCC= 0.67, ACC= 93.3%)while using
the most features (64 features). The use of an unbalanced
sts_trs_ft database, including a higher number of steady-
state steps than transitional steps, may explain this finding.
Experiments with more transition steps are needed.

The Transition Type Prediction Model was suitable
(MCC = 0.887, ACC = 95.7%), mainly for SA→LW,
SD→LW, RD→LW transitions. Moreover, the Steady-State
Type Prediction Model has shown to be effective (MCC =
0.9857, ACC = 99.4%) when using 59 features.
A previous study [10] developed a prediction system

based on kinematic data and LDA that was able to classify
LW, ramp, and stair steady-states with 99% accuracy. Our
proposal (ACC = 99.4%) also matches this performance.
This suggests that the proposed prediction tool, when com-
pared with similar works, is more versatile (by considering
more steady-state and transition steps) and similarly effec-
tive. Moreover, our protocol was, in part, identical to the
study [14], by investigating kinematic data from the step
that precedes the LMT. However, our prediction models are
more accurate, more versatile by varying walking direction
and speed on LW, and followed a lower complex predic-
tion scheme than the one proposed in [14]. Furthermore,
our approach is more practical considering daily application
requirements given the faster time for wearing the IMUs and
provided a less intrusive experience than the one reached with
the tethered solution proposed in [14].

Other studies [16], [23] have combined EMG with kine-
matic sensors, addressing a neuromechanical sensor fusion
for improving the steady-state and transition prediction.
The sensor fusion used in [23] was slightly more effec-
tive (ACC = 0.95) in the transition prediction problem
than the proposed kinematic-based tool (ACC = 93.3% for
Steady-State/Transition Prediction Model and ACC= 95.9%
for Transition Type Prediction Model). On the other hand,
the developed transition prediction model was more accurate
than the models described in [16] (ACC= 88%), which used
EMG sensors that also reported uncomfortable usability [10].

C. LIMITATIONS AND FUTURE DIRECTIONS
In this study, we presented a proof-of-concept of applica-
bility of kinematic data to recognize and predict LMs and
LMTs with able-bodied subjects walking without an assistive
device. Our long-term goal is to test the recognition and
prediction tool with neurologically impaired subjects walking
with an assistive orthosis to investigate whether the achieve-
ments of this study translate to meaningful clinical benefit.
The cross-validation results indicate that the proposed tool
was able to achieve generalization for a given set of sub-
jects; consequently, it may be applied to individual subjects

afterward.We expect that we could use the presentedmachine
learning-based framework to establish a recognition and pre-
diction tool for a segment of the population of pathological
end-users. The procedure described in this study will be
part of further validation to obtain a pathological data-driven
recognition and prediction tool.

There is still room for improving the decision-making
from/to ramp, as reported in [10], [16]. For this purpose,
environment-aware data [28] may be fused with kinematic
data towards improving the Steady-State/Transition and Tran-
sition Type Prediction Models. Furthermore, we expect
to increase the accuracy of the Steady-State/Transition
Prediction Model with more data from the transitional steps
of a larger number of participants.

This study shows the potential of lower limbs’ kinematic
data to recognize and predict LMs and LMTs. The future
investigation aims to reduce the number of sensors while
ensuring the models’ effectiveness. The use of smartphone
sensors is a practical solution for daily use; however, their
application has been limited to recognition purposes [9].

The developed classification scheme requires accurate
classification models throughout the classification sequence
since classification errors would propagate from the initial to
the final classification stage.

The combination of variable walking direction and gait
speed with terrains still has to be approached, extending
the implemented classification sequence presented. Other-
wise, the Direction Classification Model is only useful for
level-ground.

V. CONCLUSION
This study showed that the automatic recognition and predic-
tion tool built from a kinematic data-based machine learn-
ing framework correctly classify LMs and LMTs commonly
encountered in daily life. Themost effectivemachine learning
configuration includes min-max scaling in [−1;1] interval
and ‘‘mRMR plus forward selection algorithm’’ for feature
normalization and dimensionality reduction, respectively,
and Gaussian SVM classifier. The machine learning-based
framework offers methodological directions for future studies
to find an effective machine learning-based tool for recogni-
tion and prediction purposes.

The contribution of this study to the state-of-the-art is man-
ifold; it proposes a more versatile tool that classifies several
LMs and LMTs while covering different walking directions
and terrains; it tackles the transition prediction problem only
using kinematic data; and, it allows the user to self-select
the leading limb for performing the transitional step. There
is evidence that kinematic data are appropriate for predicting
LMs and LMTs one step before their occurrence.

APPENDIXES
APPENDIX I
Appendix I presents representative signals of the angular
velocity and angles of lower limb segments collected from
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FIGURE 7. Angular velocity and angles of the lower limb segments
collected from one female subject walking forward on level-ground.

FIGURE 8. Angular velocity and angles of the lower limb segments
collected from one female subject in clockwise walking on level-ground.

one female subject while walking at different conditions
(forward level-ground walking, clockwise level-ground
walking, stair ascent and descent, ramp ascent and descent)
at self-selected gait speed. This information will allow a

FIGURE 9. Angular velocity and angles of the lower limb segments
collected from one female subject in stair ascend. The transitional
moments are marked with the vertical black line.

FIGURE 10. Angular velocity and angles of the lower limb segments
collected from one female subject in stair descend. The transitional
moments are marked with the vertical black line.

meaningful understanding of the used kinematic data for
extracting the features.
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FIGURE 11. Angular velocity and angles of the lower limb segments
collected from one female subject in ramp ascend. The transitional
moments are marked with the vertical black line.

FIGURE 12. Angular velocity and angles of the lower limb segments
collected from one female subject in ramp descend. The transitional
moments are marked with the vertical black line.

APPENDIX II
Table 4, Table 5, Table 6, and Table 7 present the confusion
matrices of the final recognition models, as follows.

TABLE 4. Confusion matrix of direction recognition model.

TABLE 5. Confusion matrix of steady-state/transition recognition model.

TABLE 6. Confusion matrix of steady-state type recognition model.

TABLE 7. Confusion matrix of transition type recognition model.

APPENDIX III
Table 8, Table 9, Table 10 and Table 11 present the confusion
matrices of the final prediction models, as follows.

TABLE 8. Confusion matrix of direction prediction model.
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TABLE 9. Confusion matrix of steady-state/transition prediction model.

TABLE 10. Confusion matrix of steady-state type prediction model.

TABLE 11. Confusion matrix of transition type prediction model.
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