SINTESIS PARCIAL DE UN ISOMERO DE LA DIHIDROCOLENE NONA

POR

B. M. FRAGA, M. G. HERNANDEZ, J. G. LUIS
NOTA

SINTESIS PARCIAL DE UN ISÓMERO DE LA DIHIDROCOLENSENONA

BRAULIO M. FRAGA,ª MELCHOR G. HERNANDEZª y JAVIER G. LUISª

ªInstituto de Productos Naturales y Agrobiología, CSIC, 38206-La Laguna, Tenerife
ªInstituto de Bioorgánica, Universidad de La Laguna, Tenerife

Recibido el 18 de noviembre de 1994
En versión definitiva el 23 de enero de 1995

RESUMEN - A partir del diterpeno ribenona se ha preparado un isómero de la dihidrocoleensenona, la cual no fue idéntica con la dihidrotiganona, indicando que la estructura dada previamente a la tiganona era errónea.

SUMMARY - Starting from the diterpene ribenone, a isomer of dihydrocoleensenone has been prepared. Its structure was different of dihydrotiganone, showing that the structure previously assigned to tiganone was erroneous.

Palabras clave: Sideritis canariensis, diterpenos, tiganona, coleensenona

INTRODUCCIÓN Y DISCUSION

En una comunicación previa hemos dado cuenta de la determinación estructural de la tiganona (1), un nuevo norditerpeno aislado de la Sideritis canariensis (1). Este compuesto es isomérico con la colelsenona (2), otro diterpenoide que ha sido obtenido del Dacrydium colensoi (2). La tiganona y la colelsenona poseen esqueletos carbonados enantioméricos y, además, son epiméricas en el C-13. La determinación estructural de la colelsenona (2) se realizó por síntesis parcial de la dihidrocolelsenona a partir del 2-oxo-manoil óxido (2). De forma analoga, con la realización del trabajo que describimos ahora, nosotroos pretendíamos demostrar la estructura de la tiganona por síntesis de su correspondiente dihidroderivado, un isómero de la dihidrocolelsenona. Como sustancias naturales de partida se han empleado los diterpenos 3-oxo-entr-13-epi-manoil oxido (ribenona) (3) y su correspondiente 3β-alcohol (ribenol). La ribenona la hemos aislado de la Sideritis lotys (3) y S. canariensis (4) y se encontró por primera vez en el Solidago missouriensis (5). El ribenol se obtuvo como producto natural de la S. canariensis (4).

La hidrogenación de la ribenona, utilizando como catalizador C/Pd, condujo al dihidroderivado 4. Este compuesto también se obtuvo por hidrogenación del ribenol y posterior oxidación del grupo alcohólico en C-3 en la forma descrita anteriormente (4). La dihidroibenona (4) fue autooxidadada con oxígeno en medio alcalino (2,6) para dar el correspondiente diosfenol 5. Este compuesto muestra una absorción en el ultravioleta a 260 nm y en su espectro de RMN de 1H el hidrógeno en C-1 resuena como un singulete a 6,56 δ. Un reagrupamiento tipo ácido benfílico del diosfenol 5 condujo, por acortamiento de ciclo, al hidroxi-ácido 6. Como esta reacción es estereoselectiva (2, 7) el compuesto formado presentaba el grupo hidroxilo con la estereoquímica β. El ácido 6 se redujo con hidruro de aluminio y litio lo que condujo a la formación del correspondiente diol 7. La ruptura de este diol con ácido peracídico dio la cetona 8.

Esta cetona (8) debía ser idéntica al
compuesto obtenido por hidrogenación de la tiganona (2). Sin embargo los datos espectrales de estos dos dihidroderivados fueron diferentes, indicando que la estructura asignada a la tiganona era errónea. Posteriormente hemos estudiado, por dos veces, la S. canariensis y también una de sus variedades, la S. canariensis var. pannosa (8), sin embargo, no hemos podido volver a obtener una sustancia con las características de la tiganona. Ni tampoco la hemos aislado de otras especies estudiadas del género Sideritis (9-13), por lo que pensamos que quizás esta sustancia fuera una mezcla de ent-13-epi-manoil oxido y de un compuesto con un grupo cetónico. La presencia del primero de ellos explicaría su espectro de masas, su actividad óptica y en parte su espectro de resonancia.

\[\text{1} \] \quad \text{2} \\

\[\text{3} \] \quad \text{4} \quad \text{5} \\

\[\text{6} \] \quad \text{7} \quad \text{8} \\

\text{i) } \text{H}_2, \text{C/Pd} \quad \text{ii) } \text{O}_2, \text{t-BuOK}, \text{t-BuOH} \quad \text{iii) } \text{NaOH}, \text{H}_2\text{O}, \text{EtOH} \quad \text{iv) } \text{LiAlH}_4 \quad \text{v) } \text{HIO}_4, \text{H}_2\text{O}, \text{EtOH} \]
PARTE EXPERIMENTAL

Los puntos de fusión se realizaron en un aparato tipo "Koffler" y están sin corregir. Los espectros infrarrojos y ultravioletas se realizaron en espectrofotómetros de la firma Perkin Elmer, modelos 237 y 137, respectivamente. Las actividades ópticas se realizaron en etanol utilizando un aparato Perkin Elmer mod 141. Los espectros de RMN de 1H se efectuaron a 60 y 200 MHz en aparatos de las firmas Perkin Elmer y Bruker, respectivamente, y los de RMN de 13C en un Bruker mod. WP200-SY a 50.3 MHz. Los espectros de masas de bajas y altas resolución se realizaron en un VG Micromass ZAF-FF.

Ribenona (3). Calculado para M+, C20H32O2, 304.2402. Encontrado 304.2396. RMN 1H (200 MHz) δ: 0.82, 0.99, 1.07, 1.12 y 1.24 (cada uno 3H; s), 2.49 (2H, m, H-2), 4.95 (2H, m, H-15), 6.00 (1H, dd, J = 11 y 18 Hz, H-14); RMN 13C (50.3 MHz) δ: 38.1 (C-1), 33.7 (C-2), 217.4 (C-3), 47.2 (C-4), 54.5 (C-5), 20.7 (C-6), 42.0 (C-7), 75.5 (C-8), 57.5 (C-9), 36.3 (C-10), 16.3 (C-11), 34.7 (C-12), 73.6 (C-13), 147.2 (C-14), 109.7 (C-15), 32.5 (C-16), 23.2 (C-17), 20.8 (C-18), 25.6 (C-19), 15.4 (C-20); EM m/z (int. rel. %): 304 [M]+(1), 289 (100), 277 (7), 271 (9), 259 (2), 253 (2), 234 (5), 206 (31), 191 (16).

Hidrogenación de 3. La ribenona (3) (490 mg) disuelta en acetato de etilo (25 ml) se hidrogenó, utilizando como catalizador C/Pd (5%) (150 mg), durante 8 h a la temperatura ambiente. Se obtuvo así, después de purificarlo por cromatografía, el dihidroderivado 4 (415 mg). Calculado para [M-CH3]+, C19H31O2, 291.2324. Encontrado 291.2324. RMN 1H (200 MHz) δ: 0.90 (3H, t, J = 7 Hz, H-15), 0.89, 1.03, 1.09, 1.28 y 1.31 (cada uno 3H; s), 1.80 (2H, m, H-14), 2.50 (2H, m, H-2); RMN 13C (50.3 MHz) δ: 38.0 (C-1), 33.8 (C-2), 217.4 (C-3), 47.3 (C-4), 54.7 (C-5), 20.8 (C-6), 42.7 (C-7), 74.3 (C-8), 57.1 (C-9), 36.5 (C-10), 15.1 (C-11), 33.1 (C-12), 73.9 (C-13), 37.2 (C-14), 9.0 (C-15), 29.6 (C-16), 23.5 (C-17), 20.9 (C-18), 26.6 (C-19), 15.3 (C-20); EM m/z (int. rel. %): 291 [M-CH3]+ (11), 277 (100), 259 (17), 241 (4), 206 (3), 201 (7), 191 (5).

Autoxidación de la dihidro-ribenona (4). El compuesto 4 (400 mg) se añadió a una suspensión 1N de t-butilóxido de potasio en alcohol t-butilico. La mezcla se mantuvo en agitación en atmósfera de oxígeno y a temperatura ambiente durante 1 h. La mezcla de reacción se vertió sobre una solución de ácido clorhídrico 6N (100 ml) y luego se extrajo con diclorometano. Evaporación del disolvente y cromatografía del residuo dio 5 (330 mg), p.f. 135-138° (de metanol); [α]D -66.5° (c, 1.6). Calculado para C20H32O3: C, 74.96; H, 10.06. Encontrado: C, 74.87; H, 10.23. UV λmax (EtOH) 260 nm; IR νmax (nujol) 3410, 2940, 1700, 1460, 1390, 1380, 1250, 1220, 1130, 1080, 995, 970, 870, 865. RMN 1H (60 MHz) δ: 0.90 (3H, t, J = 7 Hz, H-15), 1.10 (9H, s), 1.23 y 1.33 (cada uno 3H, s), 6.12 (1H, s ancho, OH), 6.56 (1H, s, H-1).

Reagrupamiento del diosfeno 5. Al producto 5 (300 mg) disuelto en etanol (18 ml) se le añadió una solución acuosa de NaOH (20 ml) y se mantuvo a ebullición en atmósfera inerte durante 5 h. La mezcla de reacción se vertió sobre una solución de ácido clorhídrico al 5% y se extrajo de la forma usual. Por evaporación del disolvente y cristalización se obtuvo el ácido 6 (220 mg), p.f. 189-193° (de etor de petróleo); [α]D -33° (c, 0.75). Calculado para C20H34O4: C, 70.94; H, 10.12. Encontrado C, 69.90, H, 10.18. IR νmax (KBr) 3520, 2930, 2860, 1700, 1460, 1380, 1265, 1240, 1185, 1170, 1070, 1005, 970.

Reducción de 6. El hidroxiácido 6 (200 mg) disuelto en eter seco (10 ml) se añadió a una suspensión de hidruro de aluminio y litio (130 mg) en eter seco (20 ml) y se mantuvo a reflugo durante 3 h. El exceso de reactivo se eliminó al añadirle cuidadosamente agua, gota a gota. Finalmente se extrae con etor de la manera usual dando el diol 7 (170 mg). IR νmax (CHC13): 3620, 3550, 2940, 1460, 1395, 1380, 1150, 1130, 1070, 1040, 1005, 960; RMN 1H (60 MHz) δ: 0.87 (3H, t, J = 6 Hz, H-15), 1.02 y 1.27 (cada uno 6H, s), 1.08 (3H, s), 3.55 (2H, s ancho, W1/2 20 Hz, H-3).

Tratamiento del diol 7 con ácido peryódico. El compuesto 7 (160 mg) disuelto en etanol (20 ml) se añadió a una solución de ácido peryódico (750 mg) en agua (10 ml) y se dejó a la temperatura ambiente durante 12 h. Se extrajo de la manera usual dando la cetona 8, p.F. 113-115° (de metanol-acetona); [α]D -175.3° (c, 0.9). Calculado para C19H30O2: C, 78.02; H, 11.03. Encontrado, C, 78.50; H, 10.92. IR νmax (KBr) 2950, 1740, 1450, 1420, 1400, 1380, 1145, 1100, 1060, 1045, 1020, 1000, 970; RMN 1H (60 MHz) δ: 0.81 (3H, t, J = 6 Hz, H-15), 0.81, 0.98, 1.04, 1.12 y 1.32 (cada uno 3H, s).
Hidrogenación de la tiganona. Se realizó en la misma forma que se describe para la hidrogenación de 3; RMN \(^1H \) (60 MHz) \(\delta \): 0.80 (6H, s), 0.87 y 1.08 (cada uno 3H, s), 1.28 (6H, s).

BIBLIOGRAFÍA

3. FRAGA, B.M., FERNANDEZ, C. y HERNANDEZ, M.G.; resultados pendientes de publicación.