
Who Learns Better Bayesian Network Structures: Accuracy and Speed of
Structure Learning Algorithms

Marco Scutari

Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA), Lugano, Switzerland

Catharina Elisabeth Graafland, José Manuel Gutiérrez

Institute of Physics of Cantabria (CSIC-UC), Santander, Spain

Abstract

Three classes of algorithms to learn the structure of Bayesian networks from data are common in the litera-

ture: constraint-based algorithms, which use conditional independence tests to learn the dependence structure

of the data; score-based algorithms, which use goodness-of-fit scores as objective functions to maximise; and

hybrid algorithms that combine both approaches. Constraint-based and score-based algorithms have been

shown to learn the same structures when conditional independence and goodness of fit are both assessed

using entropy and the topological ordering of the network is known [1].

In this paper, we investigate how these three classes of algorithms perform outside the assumptions

above in terms of speed and accuracy of network reconstruction for both discrete and Gaussian Bayesian

networks. We approach this question by recognising that structure learning is defined by the combination of

a statistical criterion and an algorithm that determines how the criterion is applied to the data. Removing

the confounding effect of different choices for the statistical criterion, we find using both simulated and real-

world complex data that constraint-based algorithms are often less accurate than score-based algorithms,

but are seldom faster (even at large sample sizes); and that hybrid algorithms are neither faster nor more

accurate than constraint-based algorithms. This suggests that commonly held beliefs on structure learning

in the literature are strongly influenced by the choice of particular statistical criteria rather than just by the

properties of the algorithms themselves.

Keywords: Bayesian networks, structure learning, conditional independence tests, network scores, climate

networks.

1. Background and Notation

Bayesian networks [BNs; 2] are a class of graphical models defined over a set of random variables

X = {X1, . . . , XN}, each describing some quantity of interest, that are associated with the nodes of a

Email address: scutari@idsia.ch (Marco Scutari)

Preprint submitted to International Journal of Approximate Reasoning August 1, 2019

ar
X

iv
:1

80
5.

11
90

8v
3

 [
st

at
.M

E
]

 3
1

Ju
l 2

01
9

directed acyclic graph (DAG) G. (They are often referred to interchangeably.) The structure of the DAG,

that is, the set of arcs A of G, encodes the independence relationships between those variables, with graphical

separation in G implying conditional independence in probability. As a result, G induces the factorisation

P(X | G,Θ) =

N∏
i=1

P(Xi |ΠXi ,ΘXi), (1)

in which the global distribution of X (with parameters Θ) decomposes in one local distribution for each Xi

(with parameters ΘXi) conditional on its parents ΠXi . This decomposition holds only in the absence of

missing data, which we will assume in the following.

The DAG G does not uniquely identify a single BN: all BNs with the same underlying undirected graph

and v-structures (patterns of arcs like Xi → Xj ← Xk, with no arc between Xi and Xk) fall into the same

equivalence class [3] of models and are probabilistically indistinguishable. It is easy to see that the two other

possible patterns of two arcs and three nodes result in equivalent factorisations:

P(Xi) P(Xj |Xi) P(Xk |Xj)︸ ︷︷ ︸
Xi→Xj→Xk

= P(Xj , Xi) P(Xk |Xj) = P(Xi |Xj) P(Xj) P(Xk |Xj)︸ ︷︷ ︸
Xi←Xj→Xk

. (2)

Hence each equivalence class is represented by the completed partially-directed acyclic graph (CPDAG) that

arises from the combination of these two quantities.

While in principle there are many possible choices for the distribution of X, the literature has focused

for the most part on two sets of assumptions:

• Discrete BNs [4] assume that the Xi are multinomial random variables:

Xi |ΠXi ∼ Mul(πik | j), πik | j = P(Xi = k |ΠXi = j);

the πik | j are the conditional probabilities of Xi given the jth configuration of the values of its parents.

As a result, X is also multinomial. When learning BNs from data, generally we further assume positivity

(πik | j > 0), parameter independence (πik | j for different parent configurations are independent) and

parameter modularity (πik | j associated with different nodes are independent).

• Gaussian BNs [GBNs; 5] assume that the Xi are univariate normal random variables linked by linear

dependencies to their parents,

Xi |ΠXi ∼ N(µXi + ΠXiβXi , σ
2
Xi),

in what is essentially a linear regression model of Xi against the ΠXi with regression coefficients

βXi = {βXi,Xj , Xj ∈ ΠXi}. X is then multivariate normal, and we generally assume that its covariance

matrix Σ is positive definite. Equivalently [6], we can consider the precision matrix Ω = Σ−1 and

2

parameterise the Xi |ΠXi with the partial correlations

ρXi,Xj |ΠXi\Xj =
Ωij√
ΩiiΩjj

between Xi and each parent Xj ∈ ΠXi given the rest, since

βXi,Xj = ρXi,Xj |ΠXi\Xj

√
Ωii
Ωjj

.

Other distributional assumptions have seen less widespread adoption for various reasons. For instance,

copulas [7] and truncated exponentials [8] lack exact conditional inference and simple closed-form estimators;

and conditional linear Gaussian BNs [9] cannot encode DAGs with arcs pointing from discrete to continuous

nodes.

2. Learning a Bayesian Network from Data

The task of learning a BN with DAG G and parameters Θ from a data set D containing n observations

can be performed in two steps in an inherently Bayesian fashion:

P(G,Θ | D)︸ ︷︷ ︸
learning

= P(G |D)︸ ︷︷ ︸
structure learning

· P(Θ | G,D)︸ ︷︷ ︸
parameter learning

. (3)

Structure learning consists in finding the DAG G that encodes the dependence structure of the data; pa-

rameter learning consists in estimating the parameters Θ given the G obtained from structure learning. If

we assume parameters in different local distributions are independent, they can be learned separately and

efficiently for each node because (1) then implies

P(Θ | G,D) =

N∏
i=1

P(ΘXi |ΠXi ,D).

On the other hand, structure learning is well known to be NP-complete [10], even when assuming the

availability of an independence and inference oracle [11]; only some relaxations such as [12] are not NP-hard.

Using Bayes theorem once more, we can formulate it as

P(G |D) ∝ P(G) P(D |G);

and following (1) we can decompose the marginal likelihood P(D |G) into one component for each local

distribution

P(D |G) =

∫
P(D |G,Θ) P(Θ | G) dΘ = =

N∏
i=1

∫
P(Xi |ΠXi ,ΘXi) P(ΘXi |ΠXi) dΘXi . (4)

Closed-form expressions for (4) are available for both discrete BNs and GBNs; and (4) can be approximated

using the Bayesian information criterion (BIC) [13] as well. Both will be described in Section 2.2. As

3

for P(G), the most common choice in the literature is the uniform distribution; we will default to it in the

following as well. The space of the DAGs grows super-exponentially in N [14] and that makes it cumbersome

to specify informative priors: two notable exceptions are presented in [15] and [16]. [15] described a completed

prior in which they elicitated prior probabilities for a subset of arcs and completed the prior to cover the

remaining arcs with a discrete uniform distribution. As an alternative, [16] proposed an informative prior

using a log-linear combination of arbitrary patterns of arcs. Some structure learning approaches [e.g. 17]

also assume the topological ordering of G to be known a priori and assign a prior probability of zero to any

DAG that is incompatible with that ordering. This effectively assigns a prior probability of zero to many

arcs; and it completely side-steps the identifiability issues arising from the existence of equivalence classes

because, for each arc, only one direction is compatible with the topological ordering.

2.1. Structure Learning Algorithms

Several algorithms have been proposed to implement BN structure learning, following one of three possible

approaches: constraint-based, score-based and hybrid.

Constraint-based algorithms are based on the seminal work of Pearl on causal graphical models [18],

which found its first practical implementation in the PC algorithm [19]. Its modern implementation, called

PC-stable [20], is illustrated in Algorithm 1. Steps 1 and 2 identify which pairs of variables (Xi, Xj) are

connected by an arc, regardless of its direction. Such variables cannot be separated by any subset of the

other variables; this condition is tested heuristically by performing a sequence of conditional independence

tests Test(Xi, Xj |S;D) with increasingly large candidate separating sets S. Step 3 identifies the v-structures

among all the pairs of non-adjacent nodes Xi and Xj with a common neighbour Xk using the separating

sets found in step 2. At the end of step 3 both the skeleton and the v-structures of the network are known;

step 4 then sets the remaining arc directions using the rules from [3] to obtain the CPDAG describing the

identified equivalence class. More recent algorithms such as Grow-Shrink (GS) [21] and Inter-IAMB [22]

proceed along similar lines, but use faster heuristics to implement the first two steps; an overview can be

found in [23].

Score-based algorithms represent the application of general-purpose optimisation techniques to BN struc-

ture learning. Each candidate DAG is assigned a network score reflecting its goodness of fit, which the algo-

rithm then attempts to maximise. Some examples are heuristics such as greedy search, simulated annealing

[24] and genetic algorithms [25]; a comprehensive review of these and other approaches is provided in [26].

They can also be applied to CPDAGs, as in the case of Greedy Equivalent Search [GES; 27]. In recent years

exact maximisation of P(G |D) and BIC has become feasible as well for small data sets thanks to increasingly

efficient pruning of the space of the DAGs and tight bounds on the scores [28, 29, 30]. Another possible

choice is exploring the space of DAGs using Markov chain Monte Carlo methods, which have the advantage

of producing a sample of DAGs from P(G |D) thus making posterior inference possible. This approach, which

4

Algorithm 1 PC-Stable Algorithm

Input: a data set D from X, a (conditional) independence test Test(Xi, Xj |S;D).

Output: a CPDAG G.

1. Initialise a complete undirected graph G spanning X.

2. For l = 0, 1, . . . , N − 2:

(a) For all adjacent pairs of nodes (Xi, Xj), i 6= j such that Xi has at least l neighbours in the current

G, excluding Xj :

i. Choose a new subset S of size l from the neighbours of Xi excluding Xj ;

ii. If Test(Xi, Xj |S;D) accepts the hypothesis that Xi is independent from Xj given S, remove

Xi −Xj from G and set SXiXj = S as the separating set of (Xi, Xj).

iii. If Xi and Xj are no longer adjacent or there are no more possible subsets S of size l to

consider, move to the next pair of nodes.

3. For each triplet Xi−Xk−Xj such that Xi is not adjacent to Xj and that Xk /∈ SXiXj , replace it with

the v-structure Xi → Xk ← Xj .

4. Set more arc directions by applying recursively the following two rules:

(a) if Xi is adjacent to Xj and there is a strictly directed path from Xi to Xj then replace Xi −Xj

with Xi → Xj (to avoid introducing cycles);

(b) if Xi and Xj are not adjacent but Xi → Xk and Xk −Xj , then replace the latter with Xk → Xj

(to avoid introducing new v-structures).

dates back to [31], has been improved upon [32, 33] by first sampling from the space of topological orderings

to accelerate mixing.

Greedy search, illustrated in Algorithm 2, represents by far the most common group score-based algorithm

in practical applications. It consists of an initialisation phase (step 1) followed by a hill climbing search (step

2), which is then optionally refined with a tabu list (step 3) and random restarts (step 4). In each iteration,

hill climbing tries to delete and to reverse each arc in the current candidate DAG Gmax ; and to add each

possible arc that is not already present in Gmax and that does not introduce any cycles. These are local

moves that impact only one or two local distributions in th BN, which greatly reduces the computational

complexity of greedy search by avoiding the need to re-score all nodes at each iterations. The resulting G

with the highest score SG is compared to Gmax ; if it has a better score (SG > Smax) then G becomes the

new Gmax . If, on the other hand, SG < Smax , greedy search has reached an optimum. There is no guarantee

that G is a global optimum; hence greedy search may perform further steps to reduce the chances that G is

in fact a sub-optimal local optimum. One option is to restart the search in step 2 from a different starting

5

Algorithm 2 Greedy Search

Input: a data set D from X, an initial (usually empty) DAG G, a score function Score(G,D).

Output: the DAG Gmax that maximises Score(G,D).

1. Compute the score of G, SG = Score(G,D), and set Smax = SG and Gmax = G.

2. Hill climbing: repeat as long as Smax increases:

(a) for every possible arc addition, deletion or reversal in Gmax resulting in a DAG:

i. compute the score of the modified DAG G∗, SG∗ = Score(G∗,D):

ii. if SG∗ > Smax and SG∗ > SG , set G = G∗ and SG = SG∗ .

(b) if SG > Smax , set Smax = SG and Gmax = G.

3. Tabu list: for up to t0 times, repeat step 2 but choose the DAG G with the highest SG that has not

been visited in the last t1 steps regardless of Smax . If a DAG such that SG > Smax is found, restart

the search from step 2.

4. Random restart: for up to r times, perturb Gmax with multiple arc additions, deletions and reversals

to obtain a new DAG G′ and search from step 2.

point, obtained by changing r arcs in the current optimal G. This gives what is called the hill climbing with

random restarts algorithm. Another option is to keep a tabu list of previously-visited DAGs and to continue

searching for a better DAG that has yet been considered, giving the tabu search algorithm. Clearly, it is

possible to perform both steps 3 and 4 and obtain a tabu search with random restarts.

A second group of score-based algorithms seek to speed-up structure learning by first obtaining a topo-

logical ordering T for the nodes, and then learning the optimal G | T for the optimal T . The first approach

of this kind was the K2 algorithm [17], which assumed T to be known a priori ; other algorithms such as

[34] and more recently [35] learn the variable ordering from the data. Among these algorithms, we will focus

on the simulated annealing [36] modification of the Metropolis-Hastings topological ordering search covered

in [2]. The algorithm is illustrated in Algorithm 3: step 1 maximises P(T |D), while step 2 maximises

P(G | T ,D). Hence Algorithm 3 maximises

P(G |D) = P(G, T |D) = P(T |D) P(G | T ,D)

since the topological ordering T is a function of G. Step 1 generates a new topological ordering Ti at each

iteration, which then is carried forward to the next iteration with a transition probability P(Ti | Ti−1, β) that

depends on the relative goodness-of-fit of of Ti and Ti−1. The latter can be calculated either by averaging

over all possible DAGs compatible with each topological ordering

P(T |D) ∝ P(D | T) ∝
∫

P(D |G) P(G | T) dG; (5)

6

Algorithm 3 A Simulated Annealing Approach to Structure Learning

Input: a data set D, and initial node ordering T0, a score function Score(G,D)

Output: the DAG Gmax that maximises Score(G,D).

1. For a large number of iterations i = 1, . . . , m:

(a) Generate a new topological ordering Ti by randomly permuting the nodes in Ti−1.

(b) Accept the new ordering with some probability P(Ti | Ti−1, β), where β is the temperature; oth-

erwise Ti = Ti−1.

(c) Reduce the temperature β.

2. For the best ordering T̂ , find the G with the highest Score(G,D | T̂).

or by finding the DAG with the best score for each topological ordering subject to some constraints such

as the maximum number of parents for each node. The role of β is to control the annealing schedule by

gradually reducing the transition probability.

Finally, hybrid algorithms combine the previous two approaches. They consist of two steps, called restrict

and maximise. In the first step, a candidate set CXi of parents is selected for each node Xi from X \ Xi

using conditional independence tests. Assuming that all CXi are small compared to X, we are left with a

smaller and more regular space in which to search for our network structure. The second step seeks the DAG

that maximises a given network score function subject to the constraint that the parents of each Xi must be

in the corresponding CXi . In practice, the first step is implemented using the part of some constraint-based

algorithm that identified the skeleton of the network, corresponding to steps 1 and 2 in Algorithm 1. The

second step, on the other hand, is implemented using a score-based algorithm such as Algorithms 2 and 3

above. The best-known member of this family is the Max-Min Hill Climbing algorithm (MMHC) by [37];

two other examples are RSMAX2 from our previous work [38] and H2PC [39].

2.2. Statistical Criteria: Conditional Independence Tests and Network Scores

The choice of which statistical criterion to use in structure learning, be that a conditional independence

test or a network score, depends mainly on the distribution of X; and is orthogonal to the choice of algorithm.

Here we provide a brief overview of those in widespread use in the literature, while referring the reader to

[2] for a more comprehensive treatment.

For discrete BNs, conditional independence tests are functions of the observed frequencies {nijk; i =

1, . . . , R, j = 1, . . . , C; k = 1, . . . , L} for any pair of variables (X, Y) given the configurations of some

conditioning variables Z. In other words, X, Y and Z take one of R, C and L possible values for each

observation. The two most common tests are the log-likelihood ratio G2 test and Pearson’s X2 test. G2 is

7

defined as

G2(X,Y |Z) = 2 log
P(X |Y,Z)

log P(X |Z)
= 2

R∑
i=1

C∑
j=1

L∑
k=1

nijk log
nijkn++k

ni+kn+jk
, (6)

where ni+k =
∑C
j=1 nijk, n+jk =

∑R
i=1 nijk and n++k =

∑R
i=1

∑C
j=1 nijk are the marginal counts for i, k

(summed over i); j, k (summed over i); and k (summed over i and j). X2 is defined as

X2(X,Y |Z) =

R∑
i=1

C∑
j=1

L∑
k=1

(nijk −mijk)
2

mijk
, where mijk =

ni+kn+jk

n++k
.

Both are asymptotically equivalent1 and have the same χ2
(R−1)(C−1)L null distribution. Notably, G2 is also

numerically equivalent to mutual information (they differ by a 2n factor).

For GBNs, conditional independence tests are functions of the partial correlation coefficients ρXY |Z. The

log-likelihood ratio (and Gaussian mutual information) test takes form

G2(X,Y |Z) = n log(1− ρ2
XY |Z) ∼ χ2

1. (7)

Other common options are the exact Student’s t test

t(X,Y |Z) = ρXY |Z

√
n− |Z| − 2

1− ρ2
XY |Z

∼ tn−|Z|−2;

and the asymptotic Fisher’s Z test, defined as

Z(X,Y |Z) = log

(
1 + ρXY |Z

1− ρXY |Z

) √
n− |Z| − 3

2
∼ N(0, 1).

As for network scores, the Bayesian Information criterion

BIC(G;D) =

N∑
i=1

[
log P(Xi |ΠXi)−

|ΘXi |
2

log n

]
, (8)

is a common choice for both discrete BNs and GBNs, because it provides a simple approximation to

log P(G |D) that does not depend on any hyperparameter. log P(G |D) is also available in closed form

for both discrete BNs and GBNs.

In discrete BNs, P(D |G) is called the Bayesian Dirichlet (BD) score [4] and it is constructed using a

conjugate Dirichlet prior with imaginary sample size α (the size of an imaginary sample supporting the prior

distribution, giving the weight given to the prior compared to the data). It takes the form

BD(G,D;α) =

N∏
i=1

BD(Xi |ΠXi ;αi) =

N∏
i=1

qi∏
j=1

[
Γ(αij)

Γ(αij + nij)

ri∏
k=1

Γ(αijk + nijk)

Γ(αijk)

]
(9)

where

1X2 −G2 converges to zero in probability, meaning P(|X2 −G2| < ε)→ 1 as n→∞ for any ε > 0 [40].

8

• ri is the number of states of Xi;

• qi is the number of configurations of ΠXi ;

• nij =
∑
k nijk, the marginal count for the kth parents configuration;

• the αijk are the hyperparameters of the Dirichlet distribution, and αij =
∑
k αijk, αi =

∑
j αij .

The most common choice for the hyperparameters is αijk = αi/(riqi), which gives the Bayesian Dirichlet

equivalent uniform (BDeu) score, the only BD score that satisfies score equivalence. It is typically used with

small imaginary sample sizes such as αi = 1 as suggested by [2] and [41]. Alternative BD scores have been

proposed in [42] and [43, 44].

As for GBNs, log P(D |G) is called the Bayesian Gaussian equivalent (BGe) score and it is constructed us-

ing a conjugate normal-Wishart prior for X with expected values ν (for the mean) and T (for the covariance).

It takes the form [45]

BG(G,D;αw, αµ, T,ν) =

N∏
i=1

BG(Xi |ΠXi ;αw, αµ, T,ν)

=

N∏
i=1

qi∏
j=1

(
αµ

n+ αµ

) Γ
(
n+αw−N+|ΠXi |+1

2

)
πn/2Γ

(
αw−N+|ΠXi |+1

2

)
·
∣∣TXi,ΠXi ∣∣αw−N−|ΠXi |−1

2∣∣TΠXi

∣∣αw−N−|ΠXi |2

∣∣RΠXi

∣∣n+αw−N−|ΠXi |
2∣∣RXi,ΠXi ∣∣n+αw−N−|ΠXi |−1

2

(10)

where:

• αµ and αw are the imaginary sample sizes that give the weight of the normal and Wishart components

of the prior compared to the sample;

• R is the posterior covariance matrix and is given by

R = T + Sn +
nαµ
n+ αµ

(x− ν)T (x− ν), x̄ =
1

n

n∑
i=1

xi, Sn =

n∑
i=1

(xi − x)(xi − x)T ,

where xi is a complete instantiation of X;

• TXi,ΠXi and RXi,ΠXi are the submatrices of T and R corresponding to the (Xi, ΠXi);

• similarly, TΠXi
and RΠXi

are the submatrices of T and R corresponding to the ΠXi .

[45] suggests using the smallest valid values for both imaginary sample sizes (αµ = 1, αw = N+2), a diagonal

T = tIN with

t =
αµ(αw −N − 1)

αµ + 1
,

and ν = x as a set of default values with wide applicability for the hyperparameters.

9

3. Performance as a Combination of Statistical Criteria and Algorithms

As it may be apparent from Sections 2.1 and 2.2, we take the view that the algorithms and the statistical

criteria they use are separate and complementary in determining the overall behaviour of structure learning.

Cowell [1] followed the same reasoning when showing that constraint-based and score-based algorithms can

select identical discrete BNs. He noticed that the G2 test in (6) has the same expression as a score-based

network comparison based on the log-likelihoods log P(X |Y,Z)− log P(X |Z) if we take Z = ΠX . He then

showed that these two classes of algorithms are equivalent if we assume a fixed, known topological ordering2

and we use log-likelihood and G2 as matching statistical criteria.

In this paper we will complement that investigation by addressing the following questions:

Q1 Which of constraint-based and score-based algorithms provide the most accurate structural reconstruc-

tion, after accounting for the effect of the choice of statistical criteria?

Q2 Are constraint-based algorithms faster than score-based algorithms, or vice-versa?

Q3 Are hybrid algorithms more accurate than constraint-based or score-based algorithms?

Q4 Are hybrid algorithms faster than constraint-based or score-based algorithms?

Q5 Do the different classes of algorithms present any systematic difference in either speed or accuracy

when learning small networks and large networks?

More precisely, we will drop the assumption that the topological ordering is known and we will compare

the performance of different classes of algorithms outside of their equivalence conditions for both discrete

BNs and GBNs. We choose questions Q1, Q2, Q3, Q4 and Q5 because they are most common among

practitioners [e.g. 46] and researchers [e.g. 37, 2, 47]. Overall, there is a general view in these references and

in the literature that score-based algorithms are less sensitive to individual errors of the statistical criteria,

and thus more accurate, because they can reverse earlier decisions; and that hybrid algorithms are faster and

more accurate than both score-based and constraint-based algorithms. These differences have been found to

be more pronounced at small sample sizes. Furthermore, score-based algorithms have been found to scale

less well to high-dimensional data.

We find two important limitations in such investigations. The first is that they focus almost exclusively

on discrete BNs, ignoring that GBNs are based on very different distributional assumptions and thus that

their conclusions will not necessarily hold for the latter. The second is the confounding between the choice of

2This assumption is required because G2 can only be used to test arc addition or removal; given a fixed topological ordering

these are the only two possible single-arc operations because arc reversing any arc would change the topological ordering of the

nodes. Cowell briefly suggests in the Conclusions of [1] that it might be possible to relax it if it were possible to test arc reversal

in a single statistical test, as opposed to performing two separate tests for removing an arc and adding it back in the opposite

direction. However, to the best of our knowledge no such test has been proposed so far in the literature.

10

the algorithms and that of the statistical criteria, which makes it impossible to assess the merits inherently

attributable to the algorithms themselves. Therefore, similarly to [1], we construct matching statistical

criteria in the form of pairs of scores and independence tests that make algorithms directly comparable.

Without loss of generality, consider two DAGs G+ and G− which differ by a single arc Xj → Xi. In a

score-based approach, we can compare them using BIC from (8) and select G+ over G− if

BIC(G+;D) > BIC(G−;D)⇒ 2 log
P(Xi |ΠXi ∪ {Xj})

P(Xi |ΠXi)
> (|ΘG

+

Xi
| − |ΘG

−

Xi
|) log n (11)

which is equivalent to testing the conditional independence of Xi and Xj given ΠXi using the G2 test from

(6) or (7), just with a different significance threshold than a χ2
1−α quantile at a pre-determined significance

level α. We will call this test G2
BIC and use it as the matching statistical criterion for BIC to compare

different learning algorithms. In addition, we will construct a second test along the same lines using graph

posterior probabilities in order to confirm our conclusions with a second set of matching criteria. Following

(11), we write

log P(G+ | D) > log P(G− | D)⇒ log BF = log
P(G+ | D)

P(G− | D)
> 0

which decides between G+ and G− using a Bayes factor with a threshold of 1, similarly to what was previously

done in [48]. The resulting (BIC, G2
BIC) and (log P(G |D), log BF) will be used to investigate discrete BNs and

GBNs in the following section. An extension of (BIC, G2
BIC) to the family of matching criteria (BICγ ,G

2
BICγ

)

will be used to investigate GBNs learned from real-world complex data in Section 5.

4. Simulation Study

We address Q1, Q2, Q3, Q4 and Q5 with a simulation study based on reference BNs from the Bayesian

network repository [49]; we will later confirm our conclusions using real-world complex climate data in Section

5. Both will be implemented using the bnlearn [50] and catnet [36] R packages and TETRAD [51] via the

r-causal R package [52].

We assess the structure learning algorithms listed in Table 1: three constraint-based (PC-Stable, GS,

Inter-IAMB), three score-based (tabu search, simulated annealing for BIC, GES for log P(G |D)) and three

hybrid algorithms (MMHC, RSMAX2, H2PC). For this purpose we use the 10 discrete BNs and 4 GBNs in

Table 2. For each BN:

1. We generate 20 samples of size n/|Θ| = 0.1, 0.2, 0.5, 1.0, 2.0, and 5.0 to allow for meaningful compar-

isons between BNs of very different size and complexity. Intuitively, an absolute sample of size of, say,

n = 1000 may be large enough to learn reliably a small BN with few parameters, say |Θ| = 100, but

it may be too small for a larger or denser network with |Θ| = 10000. Using the relative sample size

n/|Θ| ensures small and large sample regimes are consistent for different BNs.

11

2. We learn G using (BIC, G2
BIC) and (log P(G |D), log BF). For the latter we use the BDeu and BGe

scores in (9) and (10) with the hyperparameter values suggested in Section 2.2. In addition we set

a prior probability of inclusion of 1/(N − 1) for each parent of each node, which is the default in

TETRAD.

3. We measure the accuracy of the learned DAGs using the Structural Hamming Distance [SHD; 37] from

the reference BN scaled by the number of arcs |A| of that BN (lower is better). This again motivated

by the need to compare networks of different sizes: if both the reference BN and the learned network

are sparse then we expect SHD to be O(|A|), since both will have O(|A|) arcs.

4. We measure the speed of the learning algorithms with the number of calls to the statistical criterion

(lower is better). This is a classic measure of computational complexity in BN structure learning.

4.1. Discrete BNs

The results for discrete networks are illustrated in Figure 1 for (BIC, G2
BIC) and in Figure 2 for (log P(G |D),

log BF). Results for small samples (n/|Θ| < 1) and large samples (n/|Θ| > 1) are shown separately in each

figure. For ease of interpretation, we divide each panel in four quadrants corresponding to “fast, inaccurate”

(top left), “slow, inaccurate” (top right), “slow, accurate” (bottom right) and “fast, accurate” (bottom, left)

algorithms with respect to the overall mean value of the scaled SHD (y axis) and the number of calls to the

statistical criterion (x axis, on a log10-scale). Algorithms are grouped visually by colour: constraint-based

algorithms are in shades of blue, hybrid algorithms are in shades of green and score-based algorithms are in

warm colours (yellow, red).

Using (BIC, G2
BIC) we find that:

• Simulated annealing is the slowest algorithm for 9/10 BNs when applied to small samples, and for 9/10

BNs when applied to large samples; only H2PC is slower, and only for PATHFINDER. At the same

time, simulated annealing also has the highest scaled SHD for 7/10 BNs for small samples, and for

4/10 BNs for large samples. Overall, it is located in the top right panel (“slow, inaccurate”) in 14/20

combinations of BNs and sample sizes.

• On the other hand, tabu search has the lowest scaled SHD for 4/10 BNs for small samples and for 10/10

BNs for large samples. It is also in the bottom left quadrant (“fast, accurate”) in 16/20 combinations

of BNs and sample sizes.

• The scaled SHD of hybrid algorithms is comparable to that of constraint-based algorithms for all

sample sizes and BNs. For small samples it is approximately equal to 1 for both classes of algorithms

because they learn nearly empty networks; 75% of them have less than 0.2|A| arcs, so the SHD is

driven by the number of false negative arcs. For large samples, scaled SHD is in the (0.8, 1) range,

which suggests the accuracy of learning improves very slowly as the sample size increases.

12

algorithm class discrete BNs GBNs (BIC, G2
BIC) (log P(G |D), log BF)

PC-Stable constraint-based X X X X

Grow-Shrink (GS) constraint-based X X X X

Inter-IAMB constraint-based X X X X

tabu search score-based X X X X

simulated annealing score-based X X X ×

Greedy Equivalent Search (GES) score-based X × × (only discrete BNs)

Max-Min Hill Climbing (MMHC) hybrid X X X X

RSMAX2 hybrid X X X X

H2PC hybrid X X X X

Table 1: Structure learning algorithms compared in this paper, with their availability in the different simulation settings.

discrete BN N |A| |Θ| discrete BN N |A| |Θ|

ALARM 37 46 509 MUNIN1 186 273 15622

ANDES 223 338 1157 PATHFINDER 135 200 77155

CHILD 20 25 230 PIGS 442 592 5618

HAILFINDER 56 66 2656 WATER 32 66 10083

HEPAR2 70 123 1453 WIN95PTS 76 112 574

GBN N |A| |Θ|

ARTH150 107 150 364

ECOLI70 46 70 162

MAGIC-IRRI 64 102 230

MAGIC-NIAB 44 66 154

Table 2: Reference BNs from the Bayesian network repository [49] with the respective numbers of nodes (N), arcs (|A|) and

parameters (|Θ|).

13

• The scaled SHD of constraint-based algorithms is comparable to or better than that of score-based

algorithms for small sample sizes in 7/10 BNs, but for large samples tabu search is more accurate in

10/10 BNs. This suggests that the accuracy of learning of tabu search improves more quickly than that

of constraint-based algorithms; and of hybrid algorithms as well, since their performance is similar.

• While there is no consistent overall ranking of constraint-based and hybrid algorithms in terms of

accuracy and speed, RSMAX2 and PC-Stable are among the fastest two in 15/20 combinations of BNs

and sample sizes. H2PC, on the other hand, has the smallest scaled SHD in 13/20 BNs.

The performance of the learning algorithms is broadly the same when replacing (log P(G |D), log BF)

with (BIC, G2
BIC). Given the lack of suitable software, we benchmark GES instead of simulated annealing

as the second score-based algorithm under consideration. The main differences we observe are:

• Tabu search has the lowest scaled SHD algorithm for 9/10 BNs in small samples, and in 8/10 BNs in

large samples, but at the same time it is one of the slowest two algorithms for 15/20 combinations of

BNs and sample sizes.

• GES is always faster than tabu search, but also has a higher scaled SHD in 18/20 combinations of BNs

and sample sizes.

14

S
ca

le
d

S
H

D
0.

8
1.

0
1.

2

3.2 3.4 3.6 3.8 4.0 4.2

ALARM
(small samples)

0.
6

0.
8

1.
0

1.
2

4.8 5.0 5.2 5.4 5.6

ANDES
(small samples)

0.
6

0.
8

1.
0

1.
2

1.
4

2.6 2.8 3.0 3.2 3.4 3.6 3.8

CHILD
(small samples) 0.

6
0.

8
1.

0

3.6 3.8 4.0 4.2 4.4 4.6

HAILFINDER
(small samples)

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

3.8 4.0 4.2 4.4 4.6

HEPAR2
(small samples)

0.
9

1.
0

1.
1

4.8 5.0 5.2 5.4

MUNIN1
(small samples)

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

4.5 5.0

PATHFINDER
(small samples)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

5.4 5.6 5.8 6.0 6.2 6.4

PIGS
(small samples) 0.

85
0.

90
0.

95
1.

00

3.0 3.2 3.4 3.6 3.8 4.0

WATER
(small samples)

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

3.8 4.0 4.2 4.4 4.6 4.8

WIN95PTS
(small samples)

log10(calls to the statistical criterion)

S
ca

le
d

S
H

D 0.
4

0.
6

0.
8

1.
0

3.2 3.4 3.6 3.8 4.0 4.2

ALARM
(large samples) 0.

2
0.

4
0.

6
0.

8
1.

0

4.8 5.0 5.2 5.4 5.6

ANDES
(large samples) 0.

2
0.

4
0.

6
0.

8
1.

0

2.6 2.8 3.0 3.2 3.4 3.6 3.8

CHILD
(large samples)

0.
2

0.
4

0.
6

0.
8

3.6 3.8 4.0 4.2 4.4

HAILFINDER
(large samples) 0.

4
0.

6
0.

8
1.

0
3.8 4.0 4.2 4.4 4.6

HEPAR2
(large samples)

0.
85

0.
90

0.
95

1.
00

1.
05

4.8 5.0 5.2 5.4 5.6

MUNIN1
(large samples)

0.
8

0.
9

1.
0

1.
1

1.
2

4.5 5.0

PATHFINDER
(large samples)

0.
0

0.
2

0.
4

0.
6

0.
8

5.5 6.0 6.5

PIGS
(large samples)

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

3.2 3.4 3.6 3.8 4.0 4.2

WATER
(large samples) 0.

4
0.

6
0.

8
1.

0

4.0 4.2 4.4 4.6 4.8

WIN95PTS
(large samples)

Figure 1: Scaled SHD versus speed for GS (blue), Inter-IAMB (sky blue), PC-Stable (navy blue), MMHC (green), RSMAX2

(lime green), H2PC (dark green), tabu search (red) and simulated annealing (gold) and (BIC, G2
BIC) for the discrete BNs.

Shaded points correspond to individual simulations, while diamonds are algorithm averages.

15

S
ca

le
d

S
H

D 0.
4

0.
6

0.
8

1.
0

3.2 3.4 3.6 3.8

ALARM

(small samples)

0.
4

0.
6

0.
8

1.
0

4.7 4.8 4.9 5.0 5.1

ANDES

(small samples)

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

2.6 2.8 3.0 3.2

CHILD

(small samples)

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

3.5 3.6 3.7 3.8 3.9 4.0

HAILFINDER

(small samples)

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

3.7 3.8 3.9 4.0

HEPAR2

(small samples)

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

4.6 4.8 5.0 5.2 5.4

MUNIN1

(small samples)

0.
6

0.
8

1.
0

1.
2

1.
4

4.5 5.0 5.5

PATHFINDER

(small samples)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

5.4 5.6 5.8

PIGS

(small samples)

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

3.0 3.1 3.2 3.3 3.4 3.5

WATER

(small samples) 0.
6

0.
8

1.
0

3.8 3.9 4.0 4.1

WIN95PTS

(small samples)

log10(calls to the statistical criterion)

S
ca

le
d

S
H

D 0.
2

0.
4

0.
6

0.
8

1.
0

3.2 3.4 3.6 3.8

ALARM
(large samples) 0.

2
0.

4
0.

6
0.

8
1.

0

4.7 4.8 4.9 5.0 5.1 5.2 5.3

ANDES
(large samples)

0.
2

0.
4

0.
6

0.
8

2.7 2.8 2.9 3.0 3.1 3.2

CHILD
(large samples)

0.
4

0.
6

0.
8

1.
0

3.6 3.7 3.8 3.9 4.0

HAILFINDER
(large samples)

0.
4

0.
6

0.
8

1.
0

3.7 3.8 3.9 4.0 4.1

HEPAR2
(large samples)

0.
7

0.
8

0.
9

1.
0

1.
1

5.0 5.5 6.0

MUNIN1
(large samples)

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

5 6 7

PATHFINDER
(large samples)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

5.5 6.0 6.5 7.0 7.5

PIGS
(large samples)

0.
6

0.
7

0.
8

0.
9

3.2 3.4 3.6 3.8

WATER
(large samples) 0.

2
0.

4
0.

6
0.

8
1.

0

3.8 4.0 4.2 4.4

WIN95PTS
(large samples)

Figure 2: Scaled SHD versus speed for GS (blue), Inter-IAMB (sky blue), PC-Stable (navy blue), MMHC (green), RSMAX2

(lime green), H2PC (dark green), tabu search (red) and GES (gold) and (log P(G |D), log BF) for the discrete BNs. Shaded

points correspond to individual simulations, while diamonds are algorithm averages.

16

4.2. GBNs

The results for GBNs are shown in Figure 3 for (BIC, G2
BIC), and in Figure 4 for (log P(G |D), log BF).

From the simulations with (BIC, G2
BIC), we observe that:

• Tabu search and simulated annealing have a larger scaled SHD than both constraint-based and hybrid

algorithms for all combinations of BNs and sample sizes. This can be attributed to the fact that the

networks learned by tabu search and simulated annealing have a much larger number of arcs (between

10|A| and 2|A| for small samples, between 2|A| and |A| for large samples) compared to those learned

by constraint-based and hybrid algorithms (between 0.1|A| and 0.8|A| for small samples, and between

0.5|A| and |A| for large samples); many of those arcs will be false positives and thus increase SHD.

• Constraint-based and hybrid algorithms have very similar scaled SHDs for all combinations of BNs

and sample sizes.

• While scaled SHD for large samples is about 40% smaller compared to small samples for constraint-

based and hybrid algorithms, tabu search and simulated annealing show a much larger improvement

in accuracy (50% to 66% reduction in scaled SHD) since they start from a much worse accuracy.

• As was the case for discrete BNs, there is no consistent ranking of constraint-based and hybrid algo-

rithms in terms of speed, PC-Stable and RSMAX2 are the two fastest algorithms in 7/8 combinations

of BNs and sample sizes.

The results from the simulations performed using (log P(G |D), log BF) paint a similar picture but for

three important points:

• Due to the lack of available software, the only score-based algorithm which could be used with BGe

was the tabu search implementation in bnlearn. This limits the conclusions that can be made from

this set of simulations.

• Tabu search is in the bottom left quadrant (“fast, accurate”) in 7/8 combinations of BNs and sample

sizes, where it is also the algorithm with the lowest scaled SHD.

• While PC-Stable is still one of the two fastest among constraint-based and hybrid algorithms in 8/8

combinations of BNs and sample size, the same is true for RSMAX2 in only 4/8 combinations.

17

log10(calls to the statistical criterion)

S
ca

le
d

S
H

D
2

4
6

8
10

4.5 5.0 5.5 6.0

ARTH150
(small samples)

1
2

3
4

5

3.6 3.8 4.0 4.2 4.4 4.6

ECOLI70
(small samples)

1
2

3
4

5
6

7

4 5 6 7

MAGIC−IRRI
(small samples)

1
2

3
4

5
6

3.5 4.0 4.5 5.0 5.5 6.0

MAGIC−NIAB
(small samples)

0.
5

1.
0

1.
5

2.
0

4.5 5.0 5.5 6.0 6.5 7.0

ARTH150
(large samples)

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

4.0 4.5 5.0

ECOLI70
(large samples)

0.
6

0.
8

1.
0

1.
2

3.8 4.0 4.2 4.4 4.6 4.8

MAGIC−IRRI
(large samples)

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

3.4 3.6 3.8 4.0 4.2 4.4

MAGIC−NIAB
(large samples)

Figure 3: Scaled SHD versus speed for GS (blue), Inter-IAMB (sky blue), PC-Stable (navy blue), MMHC (green), RSMAX2

(lime green), H2PC (dark green), tabu search (red) and simulated annealing (gold) and (BIC, G2
BIC) for the GBNs. Shaded

points correspond to individual simulations, while diamonds are algorithm averages.

log10(calls to the statistical criterion)

S
ca

le
d

S
H

D
0.

5
1.

0
1.

5
2.

0

5 6 7 8

ARTH150
(small samples)

0.
6

0.
8

1.
0

1.
2

3.6 3.8 4.0 4.2 4.4

ECOLI70
(small samples)

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

3.6 3.8 4.0 4.2 4.4 4.6 4.8

MAGIC−IRRI
(small samples)

1.
0

1.
2

1.
4

1.
6

3.4 3.6 3.8 4.0 4.2 4.4

MAGIC−NIAB
(small samples)

0.
6

0.
8

1.
0

4.5 5.0 5.5 6.0 6.5

ARTH150
(large samples)

0.
4

0.
5

0.
6

0.
7

0.
8

3.8 4.0 4.2 4.4 4.6 4.8

ECOLI70
(large samples)

0.
6

0.
7

0.
8

0.
9

1.
0

3.8 4.0 4.2 4.4 4.6

MAGIC−IRRI
(large samples)

0.
4

0.
6

0.
8

1.
0

3.4 3.6 3.8 4.0 4.2

MAGIC−NIAB
(large samples)

Figure 4: Scaled SHD versus speed for GS (blue), Inter-IAMB (sky blue), PC-Stable (navy blue), MMHC (green), RSMAX2

(lime green), H2PC (dark green), tabu search (red) and (log P(G |D), log BF) for the GBNs. Shaded points correspond to

individual simulations, while diamonds are algorithm averages.

18

4.3. Small Networks versus Large Networks

From the simulations above we can look into Q5 as well. For this purpose we define a “small network” as

a BN with less than 50 nodes, and a “large network” as a BN with more than 50 nodes. Hence, the former

include ALARM, CHILD, WATER, ECOLI70 and MAGIC-NIAB; and the latter include ANDES, HAIL-

FINDER, HEPAR2, MUNIN1, PATHFINDER, PIGS, WIN95PTS, ARTH150 and MAGIC-IRRI. Making

this distinction based on the number of nodes is imperfect at best, since networks of similar size can have

vastly different numbers of parameters and thus very different levels of complexity. However, it provides a

categorisation of networks that is intuitive to practitioners and that can be used when |Θ| is unknown. In

practical applications, if we assume that the discrete BN we are trying to learn is uniformly sparse3 and

that each variable takes at most l values, each local distribution will have O(l|ΠXi |+1) parameters and we

can estimate |Θ| with O(Nlc+1) taking |ΠXi | 6 c for all Xi. As for GBNs, |Θ| is proportional to the number

of arcs and can be estimated as O(cN); which is even more closely aligned with the number of nodes.

Interestingly, we do not notice any systematic change in the rankings of the learning algorithms either in

terms of speed or accuracy between the two groups of BNs. All the considerations we have made above for

discrete BNs and GBNs hold equally for small and large networks. This is important to note because:

• Different algorithms have different computational complexities, as measured by the expected number

of calls to statistical criteria with respect to N ; which may have meant that their ranking in terms of

speed might have been different between large and small networks.

• Various algorithms compute different sequences of conditional independence tests and network scores,

and thus have varying levels of robustness against errors in the learning process. When the matching

statistical criteria erroneously include or exclude an arc from the network, different algorithms are

more or less likely to erroneously include or exclude other arcs incident on the same nodes, which may

have lead to important variations in the relative speed and scaled SHDs of the algorithms.

5. Real-World Complex Data: A Climate Case Study

In this section we address Q1, Q2, Q3, Q4 and Q5 for real-world data considering a climate case

study where dependencies of various orders coexist. Climate data has recently attracted a great deal of

interest due to the potential application of networks to analyse the underlying complex spatial structure

[53]. This includes spatial dependence among nearby locations (first-order), but also long-range (higher-

order) spatial dependencies connecting distant regions in the world, known as teleconnections [54]. These

3There is no universally accepted threshold on the number of arcs for a DAG to be called “sparse”; typically it is taken to

have O(cN) arcs, with c between 1 and 5. A “uniformly sparse” DAG will have these arcs well spread among the nodes; or

equivalently, each node will have a bounded in-degree with a bound at most as large as c.

19

teleconnections represent large-scale oscillation patterns—such as the El Niño Southern Oscillation (ENSO)—

which modulate the synchronous behaviour of distant regions [55]. The most popular climate network

models in the literature are complex networks [56], which are easy to build since they are based on pairwise

correlations (arcs are established between pairs of stations with correlations over a given threshold) and

provide topological information in the network structure (e.g. highly connected regions). BNs have been

proposed as an alternative methodology for climate networks that can model both marginal and conditional

dependence structures and that allows probabilistic inference [57]. However, learning BNs from complex data

is computationally more demanding and choosing an appropriate structure learning algorithm is crucial. Here

we consider an illustrative climate case study modelling global surface temperature. We adapt the matching

score and independence test (BIC, G2
BIC) to the family of matching scores and independence tests (BICγ ,

G2
BICγ

), suitable for complex data, and we reassess the performance of the learning methods used in Section

4.

5.1. Data and Methods

We use monthly surface temperature values on a global 10◦-resolution (approx. 1000 km) regular grid

for a representative climatic period (1981 to 2010), as provided by the NCEP/NCAR reanalysis4. Figure 5

shows the mean temperature (climatology) for the whole period as well as the anomaly (difference from the

mean 1981-2010 climatological values) for a particular date (January 1998, representing a strong El Niño

episode with high tropical Pacific temperatures).

The surface temperature at each gridpoint is assumed to be normally distributed; hence we choose to

learn GBNs in which nodes represent the (anomaly of) surface temperature at the different gridpoints and

arcs represent spatial dependencies. Thus, we define Xi as the monthly anomaly value of the temperature

at location i for a period of 30 years (n = 30× 12 = 360). The anomaly value is obtained by removing the

mean annual cycle from the raw data (i.e. the 30-year mean monthly values) month by month. The location

of a gridpoint i is defined by its latitude and longitude. Hence the node set X in the GBN is characterised

as X = {X1, . . . , XN} with N = 18× 36 = 648.

In line with Section 4, we assess two constraint-based algorithms (PC-Stable, GS), two score-based

algorithms (tabu search and hill climbing, HC) and two hybrid algorithms (MMHC, H2PC). Note, however,

that in this case the sample size is fixed to what was considered a “small sample” even for a DAG with no

arcs: n/|Θ| 6 360/(648× 2) = 0.28.

The complex spatial dependence structure of climate data is characterised by both local and distant

(teleconnected) dependence patterns. Local dependencies are strong since they are the result of the short-

term evolution of atmospheric thermodynamic processes. Distant teleconnected dependencies—resulting

4https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html

20

https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html

from large-scale atmospheric oscillation patterns—are in general weaker, but they are key for understanding

regional climate variability. The various-order dependencies in complex data are challenging for BN structure

learning algorithms and have made it necessary to introduce some adjustments in the methodology compared

to Section 4. We show in Section 5.1.1 that constraint-based algorithms are problematic when using the

G2
BIC independence test as defined in (11). To improve the performance of constraint-based algorithms for

complex data we introduce below the family of extended BIC scores and independence tests. The extension

makes constraint-based, score-based and hybrid algorithms directly comparable for complex data.

5.1.1. Limitations of Constraint-Based Algorithms: Extended BIC for Complex Data

The heuristics that underlie constraint-based algorithms (PC-Stable and GS) and the G2
BIC independence

test, which does not enforce sparsity, are a problematic combination when learning a CPDAG from complex

data. We illustrate how and where problems arise using climate data as an example. The algorithms

first discover highly connected local regions and some large distance arcs (Algorithm 1, step 2). Then

the algorithms attempt to identify v-structures (step 3). This is done directly, in the case of PC-Stable, by

applying independence tests for two nodes with a common neighbour which is not in one of their d-separating

sets; and indirectly, in the case of GS, by identifying the parents and children in the Markov blanket. In

either case, since G2
BIC does not explicitly enforce sparsity, locally connected regions are dense (step 2)

and, due to the low sample size, G2
BIC may also learn conflicting directions for the same arcs within each

locally connected region (step 3). Even though we can try to address these conflicts with simple heuristics,

such as prioritising arc directions in which G2
BIC shows the strongest confidence, v-structures are likely

to be identified incorrectly. Furthermore, such errors are bound to cascade in step 4 when propagating arc

directions to produce a final DAG. In the worst case, the algorithms may not be able to set the remaining arc

directions in and between highly connected regions without creating cycles or new v-structures; an example

of such a situation is shown in Figure 6. In this case the partially directed acyclic graph (PDAG) that was

learned by the algorithm in step 3 does not represent an equivalence class of DAGs, and cannot be completed

into a valid CPDAG in step 4. The learned PDAG does not encode any underlying probabilistic model and

will be referred to as an invalid CPDAG.

In order to construct an appropriate pair of matching criteria that allow constraint-based algorithms to

return valid CPDAGs for complex data, we introduce an extended version of BIC that can produce different

levels of sparsity in the graph. The extended BIC comes with an additional regularisation coefficient γ ∈ R+

that penalises the number of parameters in the BN; which in turn are proportional to the number of arcs

in the graph. Large values of γ thus reduce the probability of errors in steps 3 and 4 for constraint-based

algorithms. We refer to this family of scores as BICγ , with BICγ = BIC if γ = 0, defined as

BICγ(G;D) =

N∑
i=1

[
log P(Xi |ΠXi)− |ΘXi |

(
log n

2
− γ logN

)]
.

21

(a) Mean monthly temperature 1981:2010

−60
−50
−40
−30
−20
−10
0
10
20
30

(b) Anomaly January 1998

−6

−4

−2

0

2

4

6
ºCºC

Figure 5: (a) Global mean temperature from 1981 to 2010 on a global 10◦ grid from the NCEP reanalysis. (b) Anomaly for

January 1998 (strong El Niño episode).

Figure 6: Partially directed graph produced by GS at the end of step 3 with BIC. Grey arcs are directed, blue arcs are undirected

arcs whose directions are to be set in step 4. The bottom left panel illustrates a case in which step 4 fails to set arc directions

between teleconnected regions. The bottom right panel illustrates a similar case in a highly connected region. Short-range

arcs in the latter and long-distance arcs in the former can not be set in step 4 without introducing a directed cycle or a new

v-structure (conflicting directions are shown in red).

22

We have chosen to scale γ with the factor |ΘXi | logN as in the EBIC score from [58] due to its effectiveness

in feature selection. From BICγ we then construct the corresponding independence test G2
BICγ

as follows:

BICγ(G+;D) > BICγ(G−;D)⇒ 2 log
P(Xi |ΠXi ∪ {Xj})

P(Xi |ΠXi)
> (|ΘG

+

Xi
| − |ΘG

−

Xi
|)(2γ logN + log n).

In our analysis, step 4 in Algorithm 1 did not produce valid CPDAGs at all for γ = 0, and not in general

for every γ > 0. We refer to the range of γs for which an algorithm can return valid CPDAGs, which can

then be extended into DAGs, as the parameter range of the algorithm. The matching statistical criteria

(BICγ , G2
BICγ

) allow us to compare the networks learned by all algorithms along their parameter range.

Motivated by the above, we proceed as in Section 4 but with the following changes:

1. We generate 5 permutations of the order of the variables in the data to cancel local preferences in the

learning algorithms [see e.g. 20].

2. From each permutation, we learn G using (BICγ , G2
BICγ

) for different values of γ ∈ [0, 50].

3. Since we do not have a “true” model to use as a reference, we measure the accuracy of learned BNs along

the parameter range of the algorithm by their log-likelihood. We also analyse the long-distance arcs

(teleconnections) established in the DAGs; and we assess their suitability for probabilistic inference by

testing the conditional probabilities obtained when introducing some El Niño-related evidence. Finally

we analyse the conditional dependence structure by the relative amount of unshielded v-structures5 in

the network.

4. We measure the speed of the learning algorithms with the number of calls to the statistical criterion.

5.2. Results

Figure 7(a-c) shows the performance (speed, goodness of fit, number of arcs) of various structure learning

algorithms as a function of γ, using the same colours as in Figure 3 (with the exception of hill climbing,

which is new in this figure and is shown in orange). Figure 7(d) shows the conditional dependence structure

(characterised by relative number of unshielded v-structures) of the CPDAGs returned by the algorithms

as a function of γ. Filled dots for PC-Stable and GS denote invalid CPDAGs. Figure 7(d) is discussed

separately at the end of this section. Figure 8 (a-b) shows the the two representative networks from H2PC

and tabu search that are highlighted with a label in Figure 7(c) overlaid with the world map. This figure

also compares the suitability of the learned BNs for probabilistic inference by propagating an El Niño-like

evidence (X81 = 2, i.e. warm temperatures in the corresponding gridbox in tropical Pacific).

From the networks learned with (BICγ , G2
BICγ

) for γ ∈ [0, 50], we observe that:

5An unshielded v-structure is a pattern of arcs Xi → Xj ← Xk in which Xi and Xk are not connected by an arc. In

contrast, in a shielded v-structure there is a directed arc between Xi and Xk.

23

0 10 20 30 40 50

(a) Speed

γ

5
5.

5
6

6.
5

7

0 10 20 30 40 50−3
50

00
0

−3
00

00
0

−2
50

00
0

−2
00

00
0

−1
50

00
0

(b) Score (log−likelihood)

γ

0 10 20 30 40 50

0
50

0
10

00
15

00
20

00
25

00 (c) Size

γ
0 5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

(d) Relative number of unshielded v−structures

γ

|v
−s

tru
ct

ur
es

| /
 |n

um
be

r o
f 2

−p
at

hs
|

lo
g1

0(
ca

lls
 to

 th
e

st
at

is
tic

al
 c

rit
er

io
n)

|A
| =

 n
um

be
r o

fa
rc

s

Lo
g

P
(x

|G
,θ

)
7868
3503

501

1121

8.8
7.7
7.1

7.8

Figure 7: (a) Speed, (b) goodness of fit (log-likelihood), (c) number of arcs, (d) conditional dependence structure (unshielded

v-structures) for different values of γ learned by GS (blue), PC-Stable (navy), MMHC (green), H2PC (dark green), tabu search

(red) and HC (orange). Note that orange results are on top of red ones in some cases. For clarity panel (a) includes the mean

of the 5 realisation results for each γ. Labelled points in (a) have means returned by MMHC and H2PC for γ ∈ {0, 0.2, 0.5}

that are in speed-range higher than 7.0. Labelled points in (c) represent the biggest networks of tabu for γ ∈ {0, 0.2} and the

biggest networks found by H2PC and PC-Stable (to be analysed in Figure 8). Filled dots in (d) indicate invalid equivalence

classes (CPDAGs).

24

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

��

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(c) H2PC: P(X >= 1|X81 = 2)−P(X >= 1)

(a) H2PC: |A| = 1121 (b) Tabu: |A| = 2127

(d) Tabu: P(X >= 1|X81 = 2)−P(X >= 1)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 8: DAGs learned by (a) tabu search (γ = 0.5) and (b) H2PC (γ = 0.2). Long range links (representing teleconnections)

are shown in black. (c) and (d) show the differences of the conditional and marginal probabilities obtained with both Bayesian

networks after propagation of X81 = 2 (denoted with a black box), simulating El Niño conditions; the graph obtained with

tabu encodes well known teleconnection regions (e.g. Indian ocean) for this evidence.

25

• GS and PC-Stable produce BNs with the highest log-likelihood for large values of γ (γ ≥ 10, Figure

7(b)).

• However, GS and PC-Stable do not produce valid CPDAGs for small values of γ (γ < 10); and

for γ ≥ 10 they learn CPDAGs with at most 501 arcs (smaller than the number of nodes) and no

teleconnections, which are not useful for inference. (A constraint-based network is therefore excluded

of Figure 8.)

• H2PC and MMHC exhibit the poorest log-likelihood values when γ ≥ 10. However, in contrast with

PC-Stable and GS, for γ < 10 they do return valid CPDAGs resulting in a maximum number of 1121

arcs for H2PC, including some teleconnections (Figure 8(a)).

• Inference on networks learned by hybrid and constraint-based algorithms does not highlight altered

probabilities of high temperatures in the Indian Ocean when El Niño-like evidence is given (Figure

8(c), largest H2PC network). High temperatures in the Indian ocean, induced by atmospheric telecon-

nection, are typical when El Niño occurs as was illustrated in figure (5(b)) and found in literature[59].

The absence of a sufficient number of long-range arcs makes hybrid and constraint-based algorithms

incapable to model teleconnections and therefore unsuitable for propagating evidence.

• Tabu search and HC (with almost identical results) produce networks with the highest likelihood and

the largest number of arcs for γ < 10 (with |A| > 2500 for γ ≤ 0.2). Even intermediate networks

(γ = 0.5, |A| = 2127) include a large number of teleconnections and allow propagating evidence with

realistic results (Figure 8(b,d)).

• Score-based algorithms are faster than both hybrid and constraint-based algorithms. The difference

in speed with H2PC and MMHC for γ ∈ {0, 0.2, 0.5, 1, 1.5, 2} is markedly larger, because in this range

the score-based algorithms return DAGs containing more arcs than the hybrids for the same γ.

Finally, in Figure 7(d) we examine the relative number of unshielded v-structures in a network, defined

as the number of unshielded v-structures divided by the amount of adjacent pairs of arcs in a graph. In a

DAG, on average, 25% of all adjacent pairs of arcs are (shielded or unshielded) v-structures. The proportion

of unshielded v-structures is smaller and depends on |N | and |A|. For N = 648 and |A| ∈ [25, 7868], the

average proportion of unshielded v-structures over all possible DAGs lies between 0.2499 (|A| = 25) and

0.2125 (|A| = 7868). Note that, among the DAGs we learned, those with up to 1500 arcs contain only

short-range arcs and no teleconnections. It is intuitive that most pairs of adjacent arcs connecting nearby

locations will not be modelled as an unshielded v-structure: they will be part of a dense cluster of nodes that

are dependent just because of local weather patterns, and either the path is not a v-structure or the parents

in the v-structure are likely to be connected. For a dense DAG (with more than 1500 arcs, as returned by

26

HC and tabu search for γ ≤ 0.5) it makes sense that the amount of unshielded v-structures is higher than

random as two nodes corresponding to distant geographical locations will be connected by a path of length

two only when their association is strong enough to overcome the effect of local weather patterns. Results

in Figure 7(d) show that all algorithms seem to follow this intuition except for PC-Stable at large values

of γ where it has the biggest relative amount of unshielded v-structures and discovers more conditional

dependence structure than random.

5.3. Small Networks versus Large Networks (Climate Data)

Different classes of structure learning algorithms learn networks with different levels of sparsity when

using (BICγ , G2
BICγ

). Since the number of nodes in the networks is fixed by the geographical grid, we

will treat sparse graphs as “small” and dense graphs as “large networks” because the former will have a

smaller number of parameters and thus will represent simpler BNs. All algorithms are able to learn small

networks with up to 500 arcs. Hybrid and score-based algorithms can also learn medium networks with up

to 1200 arcs. Only score-based algorithms can successfully learn dense networks containing up to 8000 arcs.

Constraint-based algorithms learn the most accurate small networks in terms of log-likelihood. Score-based

algorithms learn small networks faster than constraint-based algorithms and score-based algorithms learn

medium networks faster and more accurately than hybrid algorithms. As score-based algorithms are the

only algorithms that can model large graphs, they are the only viable choice in that case. Since only large

graphs capture complex spatial dependencies we consider score-based algorithms unique in their capacity to

model climate data with short- and long-range dependence structures.

6. Discussion and Conclusions

In this paper we revisited the problem of assessing different classes of BN structure learning algorithms;

we improved over existing comparisons of learning accuracy and speed in the literature by removing the

confounding effect of different choices of statistical criteria. Interestingly, we found that constraint-based

algorithms are overall less accurate than tabu search (but not simulated annealing) for both small and large

sample sizes (Q1), but are more accurate than other score-based algorithms in many simulation settings.

There is no systematic difference in accuracy between constraint-based and hybrid algorithms (Q3). We also

found that tabu search, as a score-based algorithm, is often faster than most constraint-based and hybrid

algorithms (Q2). Finally, we found that hybrid algorithms are not faster overall than constraint-based or

score-based algorithms; in fact, there was no consistent ordering of the algorithms from these classes across

different simulation scenarios (Q4). We noted that PC and RSMAX2 were consistently among the fastest

two constraint-based/hybrid algorithms for most of the considered BNs and sample sizes. No systematic

difference in the ranking of different classes of algorithms in terms of speed and accuracy was observed for

any class of algorithms for small networks compared to large networks (Q5).

27

All these conclusions are in contrast with other findings in the literature; among others:

• Tsamardinos et al. [37] used a set of discrete reference BNs (including ALARM, CHILD, HAILFINDER

and PIGS) to compare MMHC with tabu search, GES and PC (in its original formulation from [19]).

They found MMHC to be faster than tabu search (2.34×) and much faster than PC (9.22×), while at

the same time to have a smaller SHD (1.85× larger SHD for tabu search, 7.25× for PC). However, these

conclusions are limited by several issues: statistical criteria in different algorithms do not match; both

BDeu’s imaginary sample size and the significance threshold for the conditional independence tests are

much larger than current best practices suggest [41]; sample sizes in the simulation are absolute (n)

instead of relative (n/Θ), making the aggregation of the results problematic.

• Spirtes [47] states that, unlike score-based algorithms, constraint-based algorithms “are generally fast”,

but that “mistakes made early in constraint-based searches can lead to later mistakes” which is exac-

erbated by “the problem of multiple testing” especially in large networks.

• Similarly, Koller and Friedman [2] state that constraint-based algorithms are “sensitive to failures in

individual independence tests” and that “it suffices that one of these tests return a wrong answer

to mislead the network construction procedure”; while score-based algorithms are “less sensitive to

individual failures” but “that they pose a search problem that may not have an elegant and efficient

solution”.

• Natori et al. [48] state that constraint-based algorithms can “relax computational cost problems and

can extend the available learning network size for learning” compared to score-based algorithms. In the

follow-up paper [60], where they compare the Recursive Autonomy Identification (RAI) [61] constraint-

based algorithm with PC (in its original formulation) and MMHC using a a set of discrete reference

BNs (including ALARM, ANDES, MUNIN and WIN95PTS), they confirmed this with a simulation

study in PC and RAI scale better for large networks compared to MMHC. These results, however,

are problematic because speed was measured in seconds and the simulations were run with bespoke

implementations of the structure learning algorithms that were heterogeneous in terms of efficiency

(Matlab vs Java). In addition, the table of results in [60] is incomplete due to artificially limiting the

running time of individual simulations.

• Niinimäki and Parviainen [62] compare, among other algorithms, tabu search, GES and MMHC in

terms of SHD and running time (in seconds) over 4 discrete reference BNs (HAILFINDER and modified

versions of ALARM, CHILD, INSURANCE). The figures included in the paper show MMHC as being

both faster and more accurate than tabu search; and to be as accurate as GES while being faster.

Again the results are limited by the confounding effect of choosing different statistical criteria, and by

the measuring speed in absolute running times with heterogeneous software implementations.

28

In addition, we note that the literature referenced in the above list provides these guidelines using only

discrete BNs as a base, even when not stated explicitly. Our conclusions about the relative speed and

accuracy of various classes of structure learning algorithms for GBNs is completely novel to the best of our

knowledge.

For complex data we found that only score-based algorithms produce large networks in which higher-

order dependencies are profoundly represented. In climate data higher-order dependencies are related to

teleconnections that are key to model climate variability.

These results, which we confirmed on both simulated data and real-world complex data, are intended

to provide guidance for additional studies; we do not exclude the existence of other sources of confounding,

such as tuning parameters, which should be further investigated.

Acknowledgements

CEG and JMG were supported by the project MULTI-SDM (CGL2015-66583-R,

MINECO/FEDER).

References

[1] R. Cowell, Conditions Under Which Conditional Independence and Scoring Methods Lead to Identi-

cal Selection of Bayesian Network Models, in: Proceedings of the 17th Conference on Uncertainty in

Artificial Intelligence, 2001, pp. 91–97.

[2] D. Koller, N. Friedman, Probabilistic Graphical Models: Principles and Techniques, MIT Press, 2009.

[3] D. M. Chickering, A Transformational Characterization of Equivalent Bayesian Network Structures, in:

P. Besnard, S. Hanks (Eds.), Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence,

Morgan Kaufmann, 1995, pp. 87–98.

[4] D. Heckerman, D. Geiger, D. M. Chickering, Learning Bayesian Networks: The Combination of Knowl-

edge and Statistical Data, Machine Learning 20 (3) (1995) 197–243.

[5] D. Geiger, D. Heckerman, Learning Gaussian Networks, in: Proceedings of the 10th Conference on

Uncertainty in Artificial Intelligence, 1994, pp. 235–243.

[6] C. E. Weatherburn, A First Course in Mathematical Statistics, Cambridge University Press, 1961.

[7] G. Elidan, Copula Bayesian Networks, in: J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S.

Zemel, A. Culotta (Eds.), Advances in Neural Information Processing Systems 23, 2010, pp. 559–567.

29

[8] S. Moral, R. Rumi, A. Salmerón, Mixtures of Truncated Exponentials in Hybrid Bayesian Networks,

in: Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU), Vol. 2143 of

Lecture Notes in Computer Science, Springer, 2001, pp. 156–167.

[9] S. L. Lauritzen, N. Wermuth, Graphical Models for Associations Between Variables, Some of which are

Qualitative and Some Quantitative, The Annals of Statistics 17 (1) (1989) 31–57.

[10] D. M. Chickering, Learning Bayesian networks is NP-Complete, in: D. Fisher, H. Lenz (Eds.), Learning

from Data: Artificial Intelligence and Statistics V, Springer-Verlag, 1996, pp. 121–130.

[11] D. M. Chickering, D. Heckerman, C. Meek, Large-sample Learning of Bayesian Networks is NP-hard,

Journal of Machine Learning Research 5 (2004) 1287–1330.

[12] T. Claassen, J. M. Mooij, T. Heskes, Learning Sparse Causal Models is not NP-hard, in: Proceedings

of the 29th Conference on Uncertainty in Artificial Intelligence, 2013, pp. 172–181.

[13] G. Schwarz, Estimating the Dimension of a Model, The Annals of Statistics 6 (2) (1978) 461–464.

[14] F. Harary, E. M. Palmer, Graphical Enumeration, Academic Press, 1973.

[15] R. Castelo, A. Siebes, Priors on Network Structures. Biasing the Search for Bayesian Networks, Inter-

national Journal of Approximate Reasoning 24 (1) (2000) 39–57.

[16] S. Mukherjee, T. P. Speed, Network Inference Using Informative Priors, Proceedings of the National

Academy of Sciences 105 (38) (2008) 14313–14318.

[17] G. F. Cooper, E. Herskovits, A Bayesian Method for Constructing Bayesian Belief Networks from

Databases, in: Proceedings of the 7th Conference on Uncertainty in Artificial Intelligence, 1991, pp.

86–94.

[18] T. S. Verma, J. Pearl, Equivalence and Synthesis of Causal Models, Uncertainty in Artificial Intelligence

6 (1991) 255–268.

[19] P. Spirtes, C. Glymour, R. Scheines, Causation, Prediction, and Search, MIT Press, 2000.

[20] D. Colombo, M. H. Maathuis, Order-Independent Constraint-Based Causal Structure Learning, Journal

of Machine Learning Research 15 (2014) 3921–3962.

[21] D. Margaritis, Learning Bayesian Network Model Structure from Data, Ph.D. thesis, School of Computer

Science, Carnegie-Mellon University, Pittsburgh, PA (May 2003).

30

[22] S. Yaramakala, D. Margaritis, Speculative Markov Blanket Discovery for Optimal Feature Selection, in:

ICDM ’05: Proceedings of the Fifth IEEE International Conference on Data Mining, IEEE Computer

Society, 2005, pp. 809–812.

[23] C. F. Aliferis, A. Statnikov, I. Tsamardinos, S. Mani, X. D. Xenofon, Local Causal and Markov Blanket

Induction for Causal Discovery and Feature Selection for Classification Part I: Algorithms and Empirical

Evaluation, Journal of Machine Learning Research 11 (2010) 171–234.

[24] R. R. Bouckaert, Bayesian Belief Networks: from Construction to Inference, Ph.D. thesis, Utrecht

University, The Netherlands (1995).

[25] P. Larrañaga, B. Sierra, M. J. Gallego, M. J. Michelena, J. M. Picaza, Learning Bayesian Networks

by Genetic Algorithms: A Case Study in the Prediction of Survival in Malignant Skin Melanoma, in:

Proceedings of the 6th Conference on Artificial Intelligence in Medicine in Europe (AIME’97), Springer,

1997, pp. 261–272.

[26] S. J. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 3rd Edition, Prentice Hall, 2009.

[27] D. M. Chickering, Optimal Structure Identification With Greedy Search, Journal of Machine Learning

Research 3 (2002) 507–554.

[28] J. Cussens, Bayesian Network Learning with Cutting Planes, in: Proceedings of the 27th Conference

on Uncertainty in Artificial Intelligence, 2012, pp. 153–160.

[29] J. Suzuki, An Efficient Bayesian Network Structure Learning Strategy, New Generation Computing

35 (1) (2017) 105–124.

[30] M. Scanagatta, C. P. de Campos, G. Corani, M. Zaffalon, Learning Bayesian Networks with Thousands

of Variables, in: Advances in Neural Information Processing Systems 28, 2015, pp. 1864–1872.

[31] D. Madigan, J. York, Bayesian Graphical Models for Discrete Data, International Statistical Review 63

(1995) 215–232.

[32] M. Grzegorczyk, D. Husmeier, Improving the Structure MCMC Sampler for Bayesian Networks by

Introducing a New Edge Reversal Move, Machine Learning 71 (2008) 265–305.

[33] J. Kuipers, G. Moffa, Partition MCMC for Inference on Acyclic Digraphs, Journal of the American

Statistical Association 112 (517) (2017) 282–299.

[34] P. Larrañaga, C. M. H. Kuijpers, R. H. Murga, Y. Yurramendi, Learning Bayesian Network Structures

by Searching for the Best Ordering with Genetic Algorithms, IEEE Transactions on Systems, Man, and

Cybernetics - Part A: Systems and Humans 26 (4) (1996) 487–493.

31

[35] M. Scanagatta, G. Corani, M. Zaffalon, Improved Local Search in Bayesian Networks Structure Learning,

Proceedings of Machine Learning Research (AMBN 2017) 73 (2017) 45–56.

[36] N. Balov, P. Salzman, catnet: Categorical Bayesian Network Inference, r package version 1.15.3 (2017).

[37] I. Tsamardinos, L. E. Brown, C. F. Aliferis, The Max-Min Hill-Climbing Bayesian Network Structure

Learning Algorithm, Machine Learning 65 (1) (2006) 31–78.

[38] M. Scutari, P. Howell, D. J. Balding, I. Mackay, Multiple Quantitative Trait Analysis Using Bayesian

Networks, Genetics 198 (1) (2014) 129–137.

[39] M. Gasse, A. Aussem, H. Elghazel, A Hybrid Algorithm for Bayesian Network Structure Learning with

Application to Multi-Label Learning, Expert Systems with Applications 41 (15) (2014) 6755–6772.

[40] A. Agresti, Categorical Data Analysis, 3rd Edition, Wiley, 2012.

[41] M. Ueno, Learning Networks Determined by the Ratio of Prior and Data, in: Proceedings of the 26th

Conference on Uncertainty in Artificial Intelligence, 2010, pp. 598–605.

[42] J. Suzuki, A Theoretical Analysis of the BDeu Scores in Bayesian Network Structure Learning, Behav-

iormetrika 44 (2016) 97–116.

[43] M. Scutari, An Empirical-Bayes Score for Discrete Bayesian Networks, Journal of Machine Learning

Research (Proceedings Track, PGM 2016) 52 (2016) 438–448.

[44] M. Scutari, Dirichlet Bayesian Network Scores and the Maximum Relative Entropy Principle, Behav-

iormetrika 45 (2) (2018) 337–362.

[45] J. Kuipers, G. Moffa, D. Heckerman, Addendum on the Scoring of Gaussian Directed Acyclic Graphical

Models, The Annals of Statistics 42 (4) (2014) 1689–1691.

[46] F. Cugnata, R. S. Kenett, S. Salini, Bayesian Networks in Survey Data: Robustness and Sensitivity

Issues, Journal of Quality Technology 4 (3) (2016) 253–264.

[47] P. Spirtes, Introduction to Causal Inference, Journal of Machine Learning Research 11 (2010) 1643–1662.

[48] K. Natori, M. Uto, Y. Nishiyama, S. K. M. Ueno, Constraint-Based Learning Bayesian Networks Using

Bayes Factor, in: Advanced Methodologies for Bayesian Networks, Springer, 2015, pp. 15–31.

[49] M. Scutari, Bayesian Network Repository, http://www.bnlearn.com/bnrepository (2012).

[50] M. Scutari, Learning Bayesian Networks with the bnlearn R Package, Journal of Statistical Software

35 (3) (2010) 1–22.

32

[51] J. A. Landsheer, The Specification of Causal Models with Tetrad IV: A Review, Structural Equation

Modeling 17 (4) (2010) 703–711.

[52] C. Wongchokprasitti, rcausal: R-Causal Library, r package version 0.99.9 (2017).

[53] I. Fountalis, A. Bracco, C. Dovrolis, Spatio-Temporal Network Analysis for Studying Climate Patterns,

Climate Dynamics 42 (3-4) (2014) 879–899.

[54] A. A. Tsonis, K. L. Swanson, G. Wang, On the Role of Atmospheric Teleconnections in Climate, Journal

of Climate 21 (12) (2008) 2990–3001.

[55] K. Yamasaki, A. Gozolchiani, S. Havlin, Climate Networks around the Globe are Significantly Affected

by El Niño, Phys. Rev. Lett. 100 (2008) 228501.

[56] A. A. Tsonis, K. L. Swanson, P. J. Roebber, What Do Networks Have to Do with Climate?, Bulletin of

the American Meteorological Society 87 (5) (2006) 585–595.

[57] R. Cano, C. Sordo, J. M. Gutiérrez, Applications of Bayesian Networks in Meteorology, in: J. A. Gámez,

S. Moral, A. Salmerón (Eds.), Advances in Bayesian Networks, Springer, 2004, pp. 309–328.

[58] J. Chen, Z. Chen, Extended BIC For Small-n-Large-p Sparse GLM, Statistica Sinica 22 (2) (2012)

555–574.

[59] J. B. Kajtar, A. Santoso, M. H. England, W. Cai, Tropical Climate Variability: Interactions Across the

Pacific, Indian, and Atlantic Oceans, Climate Dynamics 48 (7–8) (2017) 2173–2190.

[60] K. Natori, M. Uto, M. Ueno, Consistent Learning Bayesian Networks with Thousands of Variables,

Proceedings of Machine Learning Research (AMBN 2017) 73 (2017) 57–68.

[61] R. Yehezkel, B. Lerner, Bayesian Network Structure Learning by Recursive Autonomy Identification,

Journal of Machine Learning Research 10 (2009) 1527–1570.

[62] T. Niinimäki, P. Parviainen, Local Structure Discovery in Bayesian Networks, in: Proceedings of the

28th Conference on Uncertainty in Artificial Intelligence, 2012, pp. 634–643.

33

	1 Background and Notation
	2 Learning a Bayesian Network from Data
	2.1 Structure Learning Algorithms
	2.2 Statistical Criteria: Conditional Independence Tests and Network Scores

	3 Performance as a Combination of Statistical Criteria and Algorithms
	4 Simulation Study
	4.1 Discrete BNs
	4.2 GBNs
	4.3 Small Networks versus Large Networks

	5 Real-World Complex Data: A Climate Case Study
	5.1 Data and Methods
	5.1.1 Limitations of Constraint-Based Algorithms: Extended BIC for Complex Data

	5.2 Results
	5.3 Small Networks versus Large Networks (Climate Data)

	6 Discussion and Conclusions

