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Abstract

Kinetoplastid parasites are responsible for serious diseases in humans and livestock such as
Chagas disease and sleeping sickness (caused by Trypanosoma cruzi and Trypanosoma brucei,
respectively), and the different forms of cutaneous, mucocutaneous and visceral leishmaniasis
(produced by Leishmania spp). The limited number of antiparasitic drugs available together
with the emergence of resistance underscores the need for new therapeutic agents with novel
mechanisms of action. The use of agents binding to surface glycans has been recently sug-
gested as a new approach to antitrypanosomal design and a series of peptidic and non-pepti-
dic carbohydrate-binding agents have been identified as antiparasitics showing efficacy in
animal models of sleeping sickness. Here we provide an overview of the nature of surface
glycans in three kinetoplastid parasites, T. cruzi, T. brucei and Leishmania. Their role in viru-
lence and host cell invasion is highlighted with the aim of identifying specific glycan–lectin
interactions and carbohydrate functions that may be the target of novel carbohydrate-binding
agents with therapeutic applications.

Introduction

The occurrence of surface glycoconjugates in parasitic protozoa is of paramount importance
since they are crucially involved in processes such as immune evasion, host cell invasion
and endocytosis. Most parasitic protozoa undergo complex life cycles and must adapt to chan-
ging hosts and environments. Surface glycans constitute a protective barrier that contributes to
adaptation and the establishment of infection by participating in the subversion of the
immune response and in specific interactions with host surface molecules. Thus, specific
sugar–lectin interactions are involved in the colonization of the gut of the insect vector as
well as in mammalian host cell recognition and parasite internalization. In this latter process,
specific glycan–lectin interactions mediate mammalian host cell recognition and parasite
uptake. Pattern recognition receptors (PRRs) present on the surface of immune cells distin-
guish pathogen-associated molecular patterns (PAMPs). The receptors used for parasite infec-
tion vary and include complement receptors, scavenger receptors, Toll-like receptors (TLR)
and mannose receptors. The understanding of these interactions will provide an insight into
how protozoa implement infection and subvert the host immune response.

In relation to the immune response, several carbohydrate-binding proteins, either expressed
on the surface of cells of the immune system or released, play an essential role in the control of
innate and adaptive immunity. These include C-type lectin receptors, sialic acid-binding
immunoglobulin (Ig)-like lectins (siglecs) and galectins that interact with distinct glycan struc-
tures (van Kooyk and Rabinovich, 2008). DC-SIGN, a C-type lectin receptor found on the
surface of dendritic cells specifically binds mannose and/or fucose-terminated glycans.
Siglecs are included in the group of Ig-type (I-type) lectins and interact with a wide variety
of structurally distinct carbohydrate ligands (Pillai et al., 2012). Galectins are a family of sol-
uble lectins that bind β-galactose (β-Gal)-containing glycoconjugates such as glycans contain-
ing N-acetyllactosamine and are thought to be able to associate with host membrane glycans to
form a cell-surface network for an optimal receptor spacing and signalling (Liu and
Rabinovich, 2005; Nieminen et al., 2007). While they can act as effector factors, inhibiting
pathogen adhesion and entry or stimulating phagocytosis, parasites can also make use of
host galectins to facilitate host cell invasion. Furthermore, in the case of secreted glycoproteins,
such as cytokines, chemokines and antibodies, the sugar portion has been described to per-
form important functions. This is the case of the N-glycans attached to the Fc portion of
IgG, that when sialylated send an inhibitory signal to the immune system (Kaneko et al.,
2006; Anthony et al., 2011). Glycans are also central to lymphocyte development (Stanley
and Okajima, 2010) and leucocyte homing (Lowe, 2003; Mitoma et al., 2007). Finally, an add-
itional immunomodulatory pathway in which surface glycans have a major role is the lectin
pathway (LP) for complement activation, which requires the mannose-binding lectin and fico-
lins, rather than the standard components (Matsushita, 2010) necessary for the activation of
the classical and alternative pathways (AP). The identification of singular aspects related to
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glycan composition in kinetoplastids and their interaction with
host lectins may unveil opportunities for drug design using agents
that specifically bind to carbohydrate moieties important for
parasite survival within the mammalian host.

The nature of surface glycans in Trypanosoma cruzi

As in the case of other protozoan parasites of medical and veter-
inary relevance, the surface of T. cruzi is heavily glycosylated. The
dense glycocalyx performs specific and significant functions such
as protection against the host defence mechanisms and/or the
interaction with changing environments (Noireau et al., 2009;
Romano et al., 2012). The carbohydrate nature of the surface
coat strongly depends on the life stage and differentiation involves
unique changes in its composition (de Lederkremer and Agusti,
2009).

The most abundant components of the T. cruzi surface coat,
especially in the epimastigote form, are glycosylphosphatidylino-
sitol (GPI)-anchored glycoconjugates of varied nature (Ferguson,
1999). The structure of this coat has been described as a basal
layer of glycoinositolphospholipids (GIPLs) and phospholipid
(Previato et al., 1990; de Lederkremer et al., 1991; Carreira
et al., 1996) from which other GPI-anchored molecules protrude
(Previato et al., 2004). The major species are mucin-like proteins
(Pereira-Chioccola et al., 2000; Buscaglia et al., 2006), which are
heavily O-glycosylated, while the less abundant include trans-
sialidase (TS) (Previato et al., 1985; Schenkman and Eichinger,
1993), mucin-associated proteins (MASPs) (dos Santos et al.,
2012), Gp85 surface glycoproteins (Mattos et al., 2014), trypo-
mastigote small surface antigen (TSSA) (Canepa et al., 2012)
and Toll-T antigens (Quanquin et al., 1999). Recent studies sup-
port the idea that lipid-based domains, and particularly lipid rafts,
are responsible for the fine organization of all these components
(Mucci et al., 2017).

GIPL was the first glycoconjugate characterized in T. cruzi and
can be found as a free entity or anchored to proteins. GIPLs were
originally defined as lipopeptidophosphoglycans (LPPGs) because
of the amino acids present in the early preparations (De
Lederkremer et al., 1976). However, with the solution of their
structure, it was established that these LPPGs are typical GPIs
(Previato et al., 1990; de Lederkremer et al., 1991). The core of
GIPLs is constituted by Manα(1,2)-Manα(1,6)-Manα(1,4)-
GlcNα(1,6)-myo-inositol-PO4-lipid, in some cases with four
mannose residues, where the lipid moiety is either 1-O-hexadecyl-
2-O-palmitoyl glycerol or ceramide (McConville and Ferguson,
1993). Galactofuranose (Galf ) and aminoethylphosphonic acid are
substituents that can be found attached to different positions of
the main core, conferring a certain microheterogeneity to the oligo-
saccharide structure (McConville and Ferguson, 1993).

Mucins are the most abundant glycoproteins in the T. cruzi sur-
face membrane. They are a complex and heterogeneous group of
variable proteins constituted by a polypeptidic core of 50–200
amino acids, rich in serine and threonine residues many of
which are O-glycosylated (Buscaglia et al., 2006). Mucins are
O-glycosylated with N-acetylglucosamine (GlcNAc), which is
rather unique since the glycosyltransferases that catalyse this trans-
fer in other organisms usually use UDP-N-acetylgalactosamine as a
precursor (Previato et al., 1995, 1998). The O-linked GlcNAc resi-
dues can be further elongated or remain unsubstituted. Galactose is
present in all mucin oligosaccharide elongations in either the pyr-
anosic (Galp) or Galf configuration (Acosta-Serrano et al., 2001).
Terminal β-Galp residues can be further branched with sialic
acid acquired from the host through TSs present on the membrane
surface (Previato et al., 1994; Serrano et al., 1995).

TSs are another group of GPI-anchored proteins found on the
surface of T. cruzi, and their activity allows the parasite to bypass

its lack of de novo synthesis of sialic acid, that is instead salvaged
from the host (Previato et al., 1985). TSs catalyse the transfer of
sialic acid from an α(2,3)-linkage in the donor to a terminal
β-Galp acceptor of the parasite mucins (Schenkman et al.,
1993). It has also been shown that T. cruzi TS (TcTS) can
efficiently transfer α(2,3)-linked N-glycolylneuraminic acid
(Neu5Gc) to terminal β-Gal groups (Agusti et al., 2007;
Schroven et al., 2007). This specific activity of TcTS is unique
because of several aspects. First, TcTSs, unlike mammalian TSs,
do not use cytidine monophospho (CMP)-sialic acid as the
monosaccharide donor. Additionally, they appear to be located
on the parasite surface and not in the Golgi apparatus, which is
where they carry out their normal function in other organisms.
Finally, unlike conventional sialidases, TcTSs are more efficient
in transferring terminal sialic acids between glycoconjugates
rather than hydrolysing them. Recent studies have also shown
that sialylated mucins are present in membrane lipid-rafts far
away from TS and that the sialylation process is performed by
microvesicles associated with active TcTS (Lantos et al., 2016).

Other GPI-anchored proteins are the Gp85 surface glycopro-
teins, TSSAs and MASPs. Gp85 glycoproteins are usually
included in the TS superfamily as TS-like proteins yet they lack
TS activity (Buscaglia et al., 2006) and appear to be involved in
host–parasite interactions (Alves and Colli, 2008). TSSAs are
polymorphic mucin-like molecules with a conserved hydrophobic
C-terminus compatible with the GPI-anchoring signal, and a vari-
able central region responsible for their antigenicity (Di Noia
et al., 2002). Finally, MASPs are GPI-anchored proteins that
have been found predominantly in the proteome of trypomasti-
gotes (Atwood et al., 2005). Like mucins, they contain highly con-
served N- and C-terminal domains plus a variable central region
(Bartholomeu et al., 2009) yet they appear to be N-glycosylated
(Atwood et al., 2006).

Glycans and immunomodulation during T. cruzi infection

The complement is the first line of defence of the innate immune
system against invading microbes. Trypanosoma cruzi invasion
generates an immediate immune response due to the interaction
of the parasite with complement molecules. It has been shown
that the complement can be activated by all T. cruzi forms: amas-
tigote (Iida et al., 1989), epimastigote (Nogueira et al., 1975) and
trypomastigote (Kipnis et al., 1985), but only the non-infective
epimastigotes are susceptible to complement lysis. During the
first seconds after T. cruzi infection, signal glycoproteins on the
parasite surface can interact with host PRRs such as mannose-
binding lectins and ficolins and lead to the activation of the LP
and AP (Fig. 1) (Cestari et al., 2013). However, T. cruzi parasites
can undertake a series of strategies to escape the effects of both
innate and adaptive immunity. There are at least three different
mechanisms of complement system evasion by T. cruzi. One of
such mechanisms is the translocation of calreticulin (TcCRT), a
calcium binding protein normally expressed in the endoplasmic
reticulum, to the surface membrane on the flagellar portion of
the parasite (Ferreira et al., 2004a, 2004b; Gonzalez et al.,
2015). This translocation allows TcCRT to interact with mannose-
binding lectins and ficolins and this way interfere with the normal
activation of the LP and classical pathway and enhance the rate of
the internalization of parasites by host cells (Fig. 1) (Gonzalez
et al., 2015). Another escape mechanism from the innate immune
response is the release of plasma membrane microvesicles by
T. cruzi parasites. Extracellular vesicles contain several signal fac-
tors including glycoproteins and enzymes involved in carbohy-
drate metabolism, which also interfere with the LP and classical
pathway activation (Geiger et al., 2010; Ramirez et al., 2017).
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One of the most important carbohydrates interfering with the
immune response against T. cruzi infection is sialic acid.
Trypanosoma cruzi transfers sialic acid from the host to its own
surface glycoproteins creating this way a perfect molecular cam-
ouflage that hinders an effective immune response (Fig. 1)
(Argibay et al., 2002; Gao et al., 2002; Freire-de-Lima et al.,
2010). In addition, sialylated mucins may interact with siglecs
expressed on the T cell surface and inhibit clonal expansion
and cytokine production by CD4+ lymphocytes (Nunes et al.,
2013). On the other hand, TcTS interferes with the activation
of T lymphocytes (Fig. 1) (Pennock et al., 2013). This latter pro-
cess involves the loss of sialic acid residues from O-linked oligo-
saccharides and the exposure of free Galβ(1,3) residues (Galvan
et al., 1998; Priatel et al., 2000).

Host cell invasion

Trypanosoma cruzi has a quite complex life cycle that involves an
obligate intracellular stage for parasite duplication. Cell invasion
involves a strict and complex interaction between the parasite
and the host cell. The first step of this process is the adhesion
of the parasite to the target cell which involves the recognition
of molecules present on the surface of both parasite and host
cells. Several molecules of T. cruzi surface are involved, among
them glycoproteins of the Gp85/TS family, and mucins are of
greatest interest. β-Gal residues on surface glycoproteins have
been suggested to mediate parasite attachment and entry in den-
dritic (Vray et al., 2004) and smooth muscle cells (Kleshchenko
et al., 2004; Vray et al., 2004). In addition, cruzipain, a major cyst-
eine peptidase has also a role in immune evasion, host cell inva-
sion and intracellular development. After the binding and
recognition of the parasite by the host cell surface, T. cruzi is
internalized by two possible mechanisms: phagocytosis (Vieira
et al., 2002) and endocytosis (Schenkman and Mortara, 1992).
Once inside the host cell, parasites are confined in the parasito-
phorous vacuole, a membrane structure that protects them from
lysosome attack while replicating. Probably one of the most

important events of host cell invasion is the ‘escape’ from the
parasitophorous vacuole. Also in this process surface glycopro-
teins have a major function (Andrews and Whitlow, 1989;
Stecconi-Silva et al., 2003).

Surface glycans in Trypanosoma brucei

The T. brucei surface coat exhibits a dense layer of GPI-anchored
glycoproteins, such as the variant surface glycoproteins (VSGs) or
procyclin found in the bloodstream or procyclic forms of the
parasite, respectively. In a minor amount, other glycosylated pro-
teins are expressed in the surface membrane, such as the trans-
membrane invariant surface glycoproteins (ISGs) (Ziegelbauer
and Overath, 1992; Ziegelbauer et al., 1992), the transferrin recep-
tor (TfR) (Grab et al., 1993) and the haptoglobin–haemoglobin
receptor (Vanhollebeke et al., 2008) which are both GPI-anchored
and located in the flagellar pocket. In addition, it has been
reported that epimastigote forms found in the salivary glands of
the tsetse fly present a stage‐specific coat of a GPI‐anchored pro-
tein named bloodstream stage alanine‐rich protein or Brucei ala-
nine‐rich protein (BARP) (Nolan et al., 2000; Urwyler et al.,
2007). The differentiation of epimastigotes to metacyclic trypo-
mastigote forms is associated with the loss of BARP and to the
expression of a new coat of metacyclic VSGs (Tetley et al.,
1987; Ginger et al., 2002) and of a small family of metacyclic
invariant surface glycoproteins which protrude and remain
accessible for antibody recognition (Casas-Sánchez et al., 2018).
All these glycoproteins are mainly N-glycosylated with different
structures containing oligomannose, paucimannose and complex-
type glycans (Bangs et al., 1988; Zamze et al., 1990; Strang et al.,
1993; Treumann et al., 1997; Mehlert et al., 1998a, 1998b, 2012;
Acosta-Serrano et al., 2004).

Specifically, VSGs are homodimers susceptible to N-glycosylation
with one, two or three N-linked oligosaccharides depending on the
VSG class. Thus, in Class 1 VSGs only one asparagine is modified
with triantennary oligomannose structures (Man9–5GlcNAc2);
Class 2 VSGs have two N-glycosylation sites, one of them is

Fig. 1. Scheme of the interplay between T. cruzi surface glycans and mammalian host cells. Upon infection, surface glycans within PAMPs can interact with host cell
(i.e. myeloid and dendritic cells) PRRs and lead to the activation of the complement LP and AP. TcCRT translocates from the endoplasmic reticulum to the surface
membrane in the zone of flagellum emergence and interacts with PRRs interfering in the normal activation of the complement LP and AP. Sialic acid (SIA) is trans-
ferred from the host cell membrane to parasite surface proteins such as mucins (TcMUC), conferring this way a molecular camouflage that hinders an effective
immune response. The transfer of SIA is catalysed by TcTS and leads to an inhibition of the activation of T lymphocytes. In addition, sialylated mucins may interact
with siglecs expressed on the surface of T cells and inhibit cytokine production.
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occupied with oligomannose structures and the other with structure
type Man4–3GlcNAc2 and biantennary complex glycans and Class 3
VSGs are modified with a combination of oligomannose and com-
plex biantennary glycans (Zamze et al., 1990, 1991; Mehlert et al.,
1998b). Recently, it has been reported that VSGs can also be
O-glycosylated (Pinger et al., 2018).

TfR is a heterodimeric protein expressed in the bloodstream
form that is encoded by expression site-associated genes
(ESAGs) 6 and 7 exhibiting eight N-glycosylation sequons. Both
ESAG6 and ESAG7 are heterogeneously N-glycosylated with pau-
cimannose and oligomannose moieties such as VSGs but not with
complex N-glycans (Mehlert et al., 2012). In contrast to the gly-
coproteins described above, the N-glycosylation profile of the
ISGs has not been characterized so far.

On the other hand, the GPI structure built-up by NH2CH2CH2-
PO4H-6-Manα(1,2)-Manα(1,6)-Manα(1,4)-GlcNα(1,6)-myo-
inositol-1-PO4H-3(sn-1,2-dimyristoylglycerol) by which the
aforementioned glycoproteins, except for ISGs, are anchored to
the surface membrane is further modified by N-glycosylation
(Holder, 1985; Ferguson et al., 1988; Redman et al., 1994).

Glycans and interaction of T. brucei with the mammalian host

Trypanosoma brucei parasites dwelling in the mammalian blood-
stream are exposed to innate and adaptive responses by the
immune system for which they have developed sophisticated eva-
sion strategies. An essential mechanism for effective immune eva-
sion is the antigenic variation of VSGs whereby parasites switch to
a new, immunologically distinct VSG, selected from among a huge
collection of silent VSG genes. At the initial stages of the humoral
immune response, when antibody levels are still low, the VSG–
antibody complexes are rapidly internalized at the flagellar pocket
by clathrin-dependent endocytosis, to be further dissociated in iso-
lated VSG which is recycled to the surface, and the Ig that is direc-
ted to the lysosome to be proteolysed (O’Beirne et al., 1998; Pal
et al., 2003; Engstler et al., 2004; Overath and Engstler, 2004).
Antibody internalization becomes insufficient as the titre
increases, and the complement system, mediated by specific anti-
bodies against the predominant form of VSG, promotes efficient
opsonization and lysis of parasites except for those expressing

the new VSG that will spread again the infection, as they are
able to escape the adaptive immune response. As the infection pro-
gresses, slender proliferative bloodstream parasites differentiate
into a stumpy non-proliferative form that plays an important
role in different ways. It contributes to avoid massive parasitaemia
and premature host death, allows for pre-adaptation to the tsetse
fly and by reducing the VSG repertoire expression it restricts anti-
body generation by the host, thus extending the functionality of
antigenic variation (MacGregor et al., 2011; Matthews, 2015).

While trypanosomes mainly rely on antigenic variation to cir-
cumvent immune detection, VSG glycosylation modulates host–
parasite interactions, contributing to the formation of an efficient
surface barrier, with increased antigenic variability and protective
properties (Blum et al., 1993). Supporting this notion, it has been
shown that O-glycosylation of VSGs confers the parasite add-
itional surface heterogeneity, impairs the functionality of the
host immune response and enhances parasite virulence (Pinger
et al., 2018). Furthermore, specific carbohydrate branches at the
trypanosome surface are involved in the process of binding
and uptake of host macromolecules. The conserved VSGs
chitobiose-oligomannose (GlcNAc2-Man5–9) moieties have been
proposed to act as ligands for TNF-α, a cytokine with lectin-like
properties inducing a pro-inflammatory response and parasite
lysis (Fig. 2) (Magez et al., 2001) although the direct induction
of trypanolysis by TNF-α has been recently questioned
(Vanwalleghem et al., 2017).

VSGs also act as immunomodulatory factors involved in the
production of TNF-α and nitric oxide (NO). During the differen-
tiation process, slender trypanosomes suffer a VSG shedding pro-
cess releasing to the bloodstream of the mammalian host soluble
VSG portions from the membrane (Gruszynski et al., 2003).
These fragmented VSGs containing glycosylinositolphosphate
induce myeloid cell activation and thereby the expression of
pro-inflammatory cytokines (Fig. 2) (Leppert et al., 2007). This
process is amplified by T cell activation and IFN-γ release,
which promotes macrophages to achieve a whole activated/M1
polarization and consequently increases TNF-α and NO secretion
to control the infection (Stijlemans et al., 2016).

Other parasite-released factors interfere with the pro-inflam-
matory response of activated macrophages thus contributing to

Fig. 2. Immunomodulatory events mediated by glycans during infection with T. brucei. VSGs interact with host immune cells and act as immunomodulatory factors.
The conserved VSGs chitobiose-oligomannose moiety of VSGs binds to TNF-α, a cytokine with lectin-like properties and induces a pro-inflammatory response.
Likewise, during differentiation to stumpy forms a VSG shedding process takes place allowing for the release of soluble VSG portions into the bloodstream of
the mammalian host. These fragmented VSGs containing glycosylinositolphosphate induce myeloid cell activation and thereby the expression of pro-inflammatory
cytokines and the release of NO and TNF-α. Other parasite-released factors interfere with the pro-inflammatory response such as the Kinesin Heavy Chain 1
(TbKHC1), which binds to the mannose-specific Intercellular Adhesion Molecule-3-Grabbing Nonintegrin-Related 1 (SIGN-R1) receptor and inhibits the host
pro-inflammatory response.
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parasite infection. For instance, Kinesin Heavy Chain 1
(TbKHC1) is released in the blood by the parasite and interacts
with the mannose-specific intercellular adhesion molecule-3-
grabbing nonintegrin-related 1 (SIGN-R1) receptor, a C-type lec-
tin expressed in the surface of immune cells to inhibit the host
pro-inflammatory response and at the same time stimulates the
production by the host of essential trypanosomal nutrients
(Fig. 2). TbKHC1 reduces the conversion of L-arginine into NO
by inducing arginase-1 activity via IL-10 of macrophages/myeloid
cells. The modulation of arginase activity promotes the formation
of L-ornithine and consequently of polyamines required for tryp-
anosome growth (De Muylder et al., 2013).

Other glycoproteins that play major roles in host–parasite
interaction are the trypanosome-derived lymphocyte-triggering
factor, which is secreted by T. brucei parasites promoting early
IFN-γ production by CD8+ T lymphocytes (Vaidya et al., 1997),
the GPI-phospholipase C, a bloodstream stage-specific enzyme
that is concentrated in the flagellar membrane and participates
in VSG shedding during differentiation of bloodstream forms
to procyclic forms (Grandgenett et al., 2007) and the TfR,
which is located in the flagellar pocket and is involved in provid-
ing iron to the parasite (Steverding et al., 1994). The
N-glycosylation of both TfR protein subunits has been proposed
to provide a spatial localization in the plasma membrane together
with the VSG coat that allows transferrin binding without signifi-
cant exposure to the immune system (Mehlert et al., 2012).

Surface glycans in Leishmania

In the case of Leishmania, the surface coat is covered by a dense
external glycocalyx harbouring different glycoconjugates with an
important role in the parasite–host interaction. Its nature varies
between species and different forms of the parasite during the
life cycle. Promastigote cells contain a series of glycoconjugates,
which include GPI-anchored proteins such as the metalloprotease
leishmanolysin/GP63, the parasite surface antigen-2 complex
(PSA-2/GP46) and the mucin-like proteophosphoglycan (PPG),
a complex GPI-anchored lipophosphoglycan (LPG) and low
molecular weight GIPLs which are not attached to either proteins
or polysaccharides. Leishmania also secretes protein-linked phos-
phoglycans, such as the secreted proteophosphoglycan (sPPG)
and secreted acid phosphatase (Sacks and Kamhawi, 2001).

LPG is the main cell-surface glycoconjugate in promastigotes
covering the whole parasite including the flagellum. It is com-
prised a 1-O-alkyl-2-lyso-phosphatidyl(myo)inositol lipid anchor
with a heptasaccharide glycan core, Galpβ(1,6)- Galpβ(1,3)-
Galfα(1,3)(Glcβ(1)-PO4-(6))-Manβ(1,3)-Manβ(1,4)-GlcN, which
is joined to a long polyglycosyl phosphate (PG) consisting of
repeating units of a disaccharide and a phosphate (Galβ
(1,4)-Manα(1)-PO4) and terminated by an oligosaccharide cap
structure consisting of Manα(1,2)-Manα(1) or as Galβ(1,4)
(Manα(1,2))-Manα(1). The PG units appear to be modified by
carbohydrate chains that differ markedly between species and
stage (McConville et al., 1995). In amastigotes, LPG expression
is highly downregulated (Turco and Sacks, 1991).

PPG is the second major phosphoglycan but, unlike LPG, it
contains a polypeptide backbone rich in serines to which phos-
phoglycans are linked via phosphodiester bonds. The PG mole-
cules consist of three differently branched phosphodisaccharides
that end with a neutral capping structure (Ilg, 2000).

GP63 is the most abundant surface glycoprotein expressed on the
Leishmania promastigote cell membrane. GP63 is N-glycosylated
with paucimannose structures such as Man6GlcNAc2 and
GlcMan6GlcNAc2 (Funk et al., 1997), and Man3GlcN structure
in the GPI-anchor (Cabezas et al., 2015). It is a zinc-dependent

protease with a wide range of substrates including casein, haemo-
globin, fibrinogen, etc. (Yao et al., 2003).

Differentiation to the amastigote form involves the thinning of
the glycocalyx; in addition to LPG, the levels of GP63 are also dra-
matically decreased and GIPLs become the major surface glyco-
conjugate in this form (McConville and Blackwell, 1991;
Schneider et al., 1992; Winter et al., 1994). GIPLs are composed
of the Manα(1,4)-GlcNα(1,6)-myo-inositol unit, which is substi-
tuted with either high mannose (type-1) or Galp-Galf (type-2)
structures or with both forming a hybrid glycoside (McConville
and Ferguson, 1993; Cabezas et al., 2015). Like in T. cruzi,
Leishmania also presents its cell surface decorated with sialic acid-
bearing glycoconjugates. Leishmania donovani promastigotes
exhibit 9-O-acetylated sialic acid and distinct 9-O-acetylated sialo-
glycoproteins while the amastigote form harbours an unusual
derivative of sialic acid, Neu5Gc, absent in promastigotes
(Ghoshal and Mandal, 2011).

Role of Leishmania surface glycans in immunomodulation and
parasite–host cell interactions

The presence of a cell surface glycocalyx has a critical role in host–
parasite interactions and infectivity thanks to an array of well-
defined epitopes of branched N-glycans that act as ligands for
receptors on cells of the insect or the vertebrate host. In
Leishmania promastigotes, the dense glycocalyx formed by LPG
performs a number of functions for parasite survival within the
insect and for macrophage infection within the mammalian
host. LPGs confer physical protection against digestive hydrolytic
enzymes of the sandfly and are involved in the attachment to the
gut epithelium and migration of metacyclic parasites to the
mouthparts of the insect (Ilg, 2000; Sacks and Kamhawi, 2001).
In the blood stream, LPG prevents lysis by complement proteins
and serves as a ligand for attachment and receptor-mediated
phagocytosis by the macrophage. LPG triggers TLR signalling
and interferes with pro-inflammatory and signalling pathways
in host cells (Fig. 3) (Becker et al., 2003; Rojas-Bernabe et al.,
2014). Once inside the macrophage, LPG delays the fusion of
the parasitophorous vacuole with lysosomes and inhibits protein
kinase C and the production of cytokines related to the microbi-
cidal oxidative and nitrosative stress response (Fig. 3) (Descoteaux
and Turco, 1993; Kavoosi et al., 2009; Franco et al., 2012).

Besides LPG, other glycoconjugates such as GIPLs and PPGs are
involved in the first stages of macrophage infection (McConville
and Blackwell, 1991; Piani et al., 1999). Mannose-terminating
GIPLs interact with mannose receptors on the macrophage surface
(Blackwell et al., 1985) and modulate many macrophage functions
such as PKC activity (Chawla and Vishwakarma, 2003), cytokine
production, release of NO and differentially activate MAPK
(Fig. 3) (Assis et al., 2012). While the implication of GIPLs in
Leishmania–macrophages interaction is well established, their
role in intramacrophage development is still unclear. On the
other hand, PPGs play important biological roles in the establish-
ment of Leishmania infection and virulence (Capul et al., 2007;
Gaur et al., 2009; Olivier et al., 2012). Filamentous PPGs are
found in the promastigote secretory gel, a viscous mucin-like
material which accumulates in sandfly gut and mouthparts and
improves Leishmania transmission by promoting multiple insect
bites and increasing the number of parasites per bite (Rogers
et al., 2004; Rogers and Bates, 2007). PPGs regurgitated by
Leishmania-infected sandflies favour macrophage recruitment to
the bite site and target the L-arginine metabolism of host macro-
phages to promote establishment of the infection (Rogers et al.,
2009). In a murine model, sPPG has been shown to inhibit
TNF-α release to facilitate the establishment of the infection
(Piani et al., 1999).
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GPI-anchored glycoproteins that exhibit pivotal functions in
the parasite–mammalian host interplay in Leishmania are GP63
and PSA-2. Metalloprotease GP63 is abundant in promastigotes
but expressed to a lesser extent in amastigotes (Schneider et al.,
1992). GP63 is an important virulence factor which modulates
a wide range of host cell signalling pathways that regulate macro-
phage anti-microbial and inflammatory functions. GP63 facili-
tates parasite escape from lysis by the complement pathway and
the movement through the extracellular matrix, favours promasti-
gote internalization into macrophages, inhibits natural killer cell
responses, promotes resistance to antimicrobial peptides and
seems to play a key role in protecting intracellular parasites
from the hostile environment of macrophages (Fig. 3) (Olivier
et al., 2012; Yao et al., 2003, 2010). Likewise, the PSA-2 protein
is involved in the binding and invasion of parasites on macro-
phages and resistance to complement lysis (Kedzierski et al.,
2004; Lincoln et al., 2004).

Another type of interaction with host cells by which parasites
can establish successful infection takes place through sialic acid-
siglec binding. Leishmania utilizes sialic acids to bind these
membrane-bound receptors present in the haematopoetic cell
lineages promoting parasite entry within macrophages,
NO-resistance, host immunomodulation and strain virulence
(Fig. 3) (Ghoshal and Mandal, 2011; Roy and Mandal, 2016).

Carbohydrate-binding agents as antimicrobials

Several studies support the therapeutic potential of carbohydrate-
binding agents (CBAs). Lectins are CBAs of peptidic nature that
specifically bind diverse carbohydrate structures. By acting as rec-
ognition and adhesion molecules and as signal transducers they
perform a wide variety of physiological functions. Cell membrane
proteins and lipids in many pathogens exhibit specific glycosyla-
tion patterns different from the mammalian host and are poten-
tial binding sites for lectins of selected specificity. Thus, lectins
naturally occurring in plants, microbes, animals and humans
exhibit antimicrobial activity (Petrova et al., 2016; Zhang and
Gallo, 2016) through the interaction with complex carbohydrates

on microbial surfaces and there is growing interest in their applic-
ability due to the possible interference with host cell–pathogen
interactions and disease development (Breitenbach Barroso
Coelho et al., 2018). Decreased capacity of invasion and infection,
inhibition of proliferation and impairment of pathogen cell adhe-
sion and migration has been reported to occur upon incubation
with lectins from different sources (da Silva et al., 2019; Hasan
and Ozeki, 2019; Li et al., 2019). In addition, lectins have been
acknowledged as promising potential carrier molecules for direc-
ted drug delivery (Žurga et al., 2017) since by binding to mem-
brane glycan moieties, they can elicit cell internalization of
molecules of therapeutic interest.

Indeed with regards to their anti-infective potential, multiple
studies have demonstrated the enormous antiviral capacities of
CBAs (Francois and Balzarini, 2012; Gondim et al., 2019). The
infectivity of several viruses requires surface glycoproteins and
interference with host cell recognition has been the basis of the
antiviral activity of lectins that specifically bind mannose-rich sur-
face glycans (Dey et al., 2000; Hoorelbeke et al., 2010). Prolonged
exposure to CBAs resulted in defects in the glycosylation status of
surface glycoproteins giving rise to defective binding and
increased exposure of underlying epitopes to the host immune
response adding this way a new feature to their mode of action
(Balzarini et al., 2005). In addition, non-peptidic CBAs have
been successfully used in the treatment of fungal infections
both in vitro and in vivo supporting the possible employment
of this class of compounds in a clinical setting (Tomita et al.,
1990; Walsh and Giri, 1997).

Therapeutic opportunities in kinetoplastids

In the case of kinetoplastid diseases, treatment often suffers from
toxicity, side-effects and limited efficacy. New entities with novel
modes of action are therefore needed to address the increasing
demand for novel medicines. Despite extensive screening and in
vitro and in vivo studies, only very few compounds have advanced
to clinical trials. Taking into account the importance of protein
glycosylation, the unique character of cell surface glycans during

Fig. 3. Schematic representation of the major parasite–macrophage interactions mediated by surface glycans in Leishmania. The major glycoconjugates involved in
the parasite–macrophage interplay are indicated: PPG, GPI-anchored LPG GIPLs and the metalloprotease GP63. After infection, promastigote LPG triggers TLR sig-
nalling and interferes with pro-inflammatory and signalling pathways. Once inside the macrophage, LPG delays the fusion of the parasitophorous vacuole with
lysosomes and inhibits protein kinase C and therefore, the production of cytokines and the oxidative and nitrosative stress response. Likewise, mannose-
terminating GIPLs interact with mannose receptors on the macrophage surface and inhibit PKC activity. sPPGs impair important macrophage functions such
as the release of TNF-α. Finally, GP63 is an important virulence factor which, among other functions, promotes Leishmania internalization and facilitates escape
from lysis by the complement pathway.
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the infective stages of parasitic protozoa opens exciting possibil-
ities for the use of CBAs as antiparasitics. A mode of action
can be foreseen where these agents would act directly exerting
toxicity by binding to the cell surface and inducing parasite
lysis and/or additionally by preventing pathogen infection in the
host by impairing crucial interactions involved in the attenuation
of the immune response or parasite uptake. The direct cytotoxic
activity upon incubation with CBAs has been demonstrated in
T. brucei bloodstream forms where peptidic agents such as the
amaryllis lectin Hippeastrum hybrid (HHA) and the stinging net-
tle lectin (UDA) from Urtica dioica perturb endocytosis
(Castillo-Acosta et al., 2013, 2015). Likewise, a specific block in
endocytosis was observed after exposure of T. cruzi to a
Poly-LAcNAc binding lectin (Brosson et al., 2016). However,
while many plant peptidic CBAs exist with a wide range of glycan
specificities, including mannose, galactose, glucose, fucose, sialic
acid, GlcNAc and GalNAc oligomers, the approach involves
major challenges. The toxicity of many peptidic lectins precludes
their use as drugs and the identification of CBAs that exhibit
selectivity towards parasite glycans and low toxicity towards
mammalian cells are required.

Previous studies on the utility of CBAs in kinetoplastid dis-
eases are limited. Certain plant lectins have demonstrated utility
as adjuvants when studying the mouse humoral immune response
to T. cruzi (Albuquerque et al., 1999). The cramoll 1,4 lectin, is a
protein that recognizes and interacts with specific glycans on the
cell surface inducing mitogenic activity (Maciel et al., 2004) which
in T. cruzi, induces changes in plasma membrane permeability,
production of reactive oxygen species and defects in mitochon-
drial function (Fernandes et al., 2010). A protective effect of lectin
administration in Leishmania infections has also been documen-
ted. Thus, lectins such as the ConBr from Canavalia brasiliensis
and KM+ from Artocarpus integrifolia induce IFN-γ and IL-12
p40 production promoting a reversal of the Th2 cytokine pattern
to Th1 pattern in BALB/c mice infected with Leishmania amazo-
nensis and Leishmania major, respectively (Barral-Netto et al.,
1996; Panunto-Castelo et al., 2001). Pretreatment of murine
inflammatory peritoneal macrophages with a D-galactose-binding
lectin from Synadenium carinatum latex (ScLL) reduced by 65.5%
the association index of macrophages and L. amazonensis
promastigotes (Afonso-Cardoso et al., 2011). ScLL also reduced
the growth of L. amazonensis amastigote intracellular forms,
showing no in vitro cytotoxic effects in mammalian host cells
(Afonso-Cardoso et al., 2011).

Remarkably, evidence has been recently presented showing that
the use of CBAs could involve a completely novel approach to
chemotherapy of protozoan-infectious diseases in the case of
sleeping sickness. Thus products from natural sources of both pep-
tidic and non-peptidic nature have demonstrated their antitrypa-
nosomal potential in the case of T. brucei both in vitro and in
vivo (Castillo-Acosta et al., 2013, 2016). Certain α(1,3)-α(1,6)
Man-specific peptidic CBAs such as the HHA or the α(1,3)
Man-specific snowdrop lectin from Galanthus nivalis (GNA)
inhibit growth of bloodstream forms of T. brucei while exhibiting
very low toxicity against mammalian cells in vitro (Castillo-Acosta
et al., 2013) although as peptides their therapeutic potential was
limited. In the case of non-peptidic glycan binding agents, the
identification of low molecular weight, non-toxic compounds to
date has been restricted mostly to the natural products from
Actinomycetes namely pradimicin A (Walsh and Giri, 1997) and
benanomicin A (Watanabe et al., 1996) and their synthetic analo-
gues although several groups have aimed at the synthesis and char-
acterization of synthetic CBAs that bind specific oligosaccharide
structures (Striegler and Dittel, 2003; Mazik et al., 2005). Indeed
treatment with the non-peptidic CBA pradimicin S procured para-
sitological cure in mouse models of acute sleeping sickness with no

evidence of toxicity or side-effects further supporting the potential
of the approach (Castillo-Acosta et al., 2016). Pradimicin A exhi-
bits α(1,2)Man specificity and binds tightly to the parasite VSGs
presumably through specific interactions with oligomannose sur-
face glycans that are highly abundant in the bloodstream form
of the parasite. Binding of pradimicin to bloodstream form trypa-
nosomes induced defects in endocytosis and parasite lysis.
Interestingly induction of resistance to pradimicin A in vitro
resulted in parasites with defective glycosylation and a reduction
in the content of mannose-rich glycans that exhibited reduced
infectivity thus clearly supporting the proposed mechanism of
action (Castillo-Acosta et al., 2016). Binding to mannose-rich sur-
face glycoproteins was also the basis for the potent activity of pra-
dimicins against HIV by the interaction with the heavily
mannosylated surface glycoprotein gp120 (Balzarini et al., 2005).

When understanding the antiprotozoal activity of CBAs, as
previously mentioned, the complement system, mediated by spe-
cific antibodies against VSGs, allows for efficient opsonization
and lysis of parasites. Considering the capability of CBAs to inter-
act with T. brucei membrane glycoproteins and in particular
VSGs, we hypothesize that CBAs could act as opsonins per se
and therefore increase phagocytosis by macrophages. In addition,
it is possible that the endocytosis block mediated by CBAs may
also interfere with VSG recycling leading to a reduced clearance
of surface coat antibodies and further promoting the opsonization
process. On the other hand, CBAs may bind to specific carbohy-
drate branches at the trypanosome surface that are crucially
involved in the process of binding of host macromolecules.
Thus in T. brucei transferrin binding by the TfR could also be
compromised (Mehlert et al., 2012). Furthermore, TbKHC1 inter-
acts with the mannose-specific SIGN-R1 receptor and inhibits the
pro-inflammatory response of the host (De Muylder et al., 2013).
Again it is possible that CBAs interfere with these or other events
that may be related to its mode of action in vivo.

In the case of T. cruzi, the core of GIPLs, a major surface con-
stituent, is made up by Manα(1,2)-Manα(1,6)-Manα(1,4)-GlcNα
(1,6)-myo-inositol-PO4-lipid (McConville and Ferguson, 1993)
while galactose can be found attached to different positions. As
previously mentioned TcCRT, which interacts with host PRRs
mannose-binding lectins, increases host cell parasite internaliza-
tion. Perturbation of this process through the use of mannose
binding CBAs could reduce infection of new cells. The abundant
mucins contain galactose in their oligosaccharide elongations and
are O-glycosylated with GlcNAc. In addition, the exposure of free
β(1,3)Gal residues and β-Gal residues has been suggested to medi-
ate parasite attachment and entry in dendritic cells. Indeed,
human galectin-3, a member of the lectin family with affinity to
β-Gal and derivatives, plays a pivotal role in controlling T. cruzi
infection. It has been recently proposed that galectin-3 deficiency
during T. cruzi experimental infection resulted in increased in
vivo systemic parasitaemia, and reduced leucocyte recruitment
(da Silva et al., 2017). Since galactose-specific lectins are available,
their possible interaction with infection mechanisms in the case of
T. cruzi warrants investigation of the potential of this class of
CBAs in the case of Chagas disease.

Finally, the use of treatment with CBAs in the case of infections
caused by Leishmania spp. should also be further considered.
Leishmania can target several macrophage membrane-bound recep-
tors to subvert the inflammatory response. Mannose-terminating
GIPLs interact with mannose receptors on the macrophage sur-
face (Blackwell et al., 1985) modulating macrophage functions
such as PKC activity (Chawla and Vishwakarma, 2003), cytokine
levels and the production of NO. Sialic acids on the parasite sur-
face interact with siglec receptors on macrophages to diminish the
immune response (Roy and Mandal, 2016). Additionally, of inter-
est is the observation that TLR-2 is involved in parasite survival in
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macrophages upon activation by LPG and interactions between
LPG and TLR-2 reduce anti-leishmanial responses via cytokine-
mediated decrease of TLR-9 expression (Srivastava et al., 2013).
All these important mechanisms of parasite survival may be per-
turbed upon treatment with mannose-specific CBAs.

Concluding remarks

As highlighted in the present review, kinetoplastids interact with
mammalian host cells by recognizing specific glycan ligands.
Parasite surface carbohydrates are involved in parasite attachment
and entry as well as in the modulation of the immune response
and the progression of infection. Based on observations with lec-
tins and non-peptidic pradimicins in the case of sleeping sickness,
the use of CBAs emerges as a promising antitrypanosomal strat-
egy. Specificity of the interactions and the unique structure of
kinetoplastid surface sugars may provide a basis for future drug
design. Many bioactive natural carbohydrate-binding compounds
are present in nature that often exhibit exquisite specificity for
binding to carbohydrates, particularly carbohydrate sequences
that occur on the surface of living cells. These molecules have
the potential for treatment of kinetoplastid diseases. While speci-
ficity and toxicity may constitute important issues, the possibility
of identifying agents that can be used to block the attachment of
the parasite to cell surfaces (or interfere with the subversion of the
immune response), and thus prevent or suppress infection is
appealing. Future identification of new CBAs with improved
pharmacological profiles and reduced side-effects may provide
novel avenues for the exploitation of this innovative concept.
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