Grupos sanguíneos en razas vacunas españolas. I.- Rubia gallega y Pirenaica*

Recibido el 11-VII-77

A population of 99 Rubia Gallega and 48 Pirenaica spanish cattle was tested with 56 reagents, belonging to 11 blood groups cattle systems (A, B, C, FV, J, L, M, SU, Z, R'S' y T').

Genetic equilibrium was established on the basis of the distribution of blood group phenotypes in the FV and R'S' systems. Once this situation is tested, gene frequencies of F, J, L, M, Z, R', T' and Z' alleles was estimated. From 4 bulls and 25 offspring we were able to establish 4 A-alleles, 18 B-alleles, 6 C-alleles and 7 SU-alleles.

Finally, we discuss the relationships between R. G. and P. cattle on the basis of χ^2 estimated from the «homogeneity test». We point out some notes about the relationships between R. G. and Cuba-criolla cattle.

INTRODUCCION

El hecho demostrado por Ferguson en 1941, de que las distintas razas vacunas exhiben o presentan diferentes grupos sanguíneos, ha sido el punto de partida de una intensa investigación a nivel mundial, orientada a las aplicaciones que pueden derivarse de dicho conocimiento. El gran número de antígenos eritrocitarios que se han identificado desde esas fechas hasta los momentos actuales

** Departamento de Genética y Mejora, Facultad de Veterinaria, ZARAGOZA.

*** Sección de Selección Animal del Instituto de Economía y Producciones Ganaderas del Ebro (C.S.I.C.). Facultad de Veterinaria, ZARAGOZA
y su simple modo de herencia, han confirmado el interés que ofrece el estudio de los grupos sanguíneos, por la particular información que suministra en relación con la composición de la estructura genética de las poblaciones animales.

En un principio las investigaciones sobre grupos sanguíneos en los animales, se orientaron hacia la determinación de la identidad, control de filiaciones y distinción de gemelos. Más recientemente, coincidente con el desarrollo y caracterización de los fenogrupos de los sistemas B, C y SU, estos estudios se han centrado en el conocimiento de la estructura genética de las razas vacunas, de las diferencias genéticas entre ellas, de sus relaciones, participación en el desarrollo de nuevas razas y de sus orígenes.

Estos últimos aspectos son los que se pretenden abordar en el presente trabajo. Aunque Sotillo et al. (1968) estudiaron la raza Rubia Gallega desde esta óptica, el presente trabajo matiza algunos aspectos relacionados con las frecuencias alélicas de distintos sistemas sanguíneos, e inicia el estudio de las relaciones que pueden existir entre las razas Rubia Gallega y Pirenaica, desde el punto de vista genético, ya que desde el productivo es evidente y desde el filogenético presumible, según los expertos en «evolución», aparte de los criterios de autoridad de Echeverría (1975) y Sánchez (1976), que son coincidentes en asignar a estas dos razas, características morfológicas y de producción comunes.

MATERIAL

El material animal que se ha investigado está representado por 99 bovinos de raza Rubia Gallega, procedentes de la Estación de Selección de Ganado Vacuno de Fuentefiz (Orense), y 48 de raza Pirenaica, procedentes de la provincia de Navarra. Así como entre los animales de esta última raza no existían relaciones de parentesco, en la raza Rubia Gallega se ha podido trabajar con 7 familias y controlar 34 progenies en total, lo que ha permitido la identificación de algunos complejos antigénicos de los sistemas A, B, C y SU (fenogrupos).

Los reactivos (sueros inmunos monoespecíficos) utilizados en el presente trabajo y que se relacionan en el cuadro 1 ascienden a 56,
de los cuales 33 son de elaboración propia (durante los tres últimos años) y el resto cedidos por los «Laboratorios de Grupos Sanguíneos» de Madison (Wisconsin, U.S.A.), Milán (Italia) y La Habana (Cuba).

Las exigüas cantidades existentes del reactivo Cu, han impedido que se tipifiquen todos los animales, reduciéndose el estudio para este factor antigénico a 23 vacunos de la raza Rubia Gallega. Por la misma razón sólo se han testado 23 animales de esta última raza y 24 de la Pirenaica, con el reactivo E.

CUADRO 1.— *Lista de reactivos utilizados.*

<table>
<thead>
<tr>
<th>Loc</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>FV</th>
<th>J</th>
<th>L</th>
<th>M</th>
<th>SU</th>
<th>Z</th>
<th>R'S'</th>
<th>T'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-</td>
<td>A</td>
<td>B</td>
<td>O</td>
<td>B'</td>
<td>G'</td>
<td>O'</td>
<td>Cu</td>
<td>C</td>
<td>X'</td>
<td>F</td>
<td>L</td>
</tr>
<tr>
<td>cuerpos</td>
<td>H</td>
<td>G</td>
<td>O'</td>
<td>B'</td>
<td>G'</td>
<td>P'</td>
<td>E</td>
<td>L'</td>
<td>V</td>
<td>J</td>
<td>L</td>
</tr>
<tr>
<td>utilizados</td>
<td>K</td>
<td>T</td>
<td>O'</td>
<td>T</td>
<td>J</td>
<td>Y'</td>
<td>R'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>Y</td>
<td>E'</td>
<td>F'</td>
<td>J</td>
<td>H'</td>
<td>W</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>A'</td>
<td>F'</td>
<td>K'</td>
<td>M</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MÉTODOLOGIA

La identificación de los grupos sanguíneos (antígenos eritrocitarios) se ha realizado mediante el «test hemolítico standard» desde el punto de vista de su lectura e interpretación, pero utilizando un micrométodo sobre placas de polivinilo desechables tras su utilización de la casa comercial «Cook».

Para los sistemas J, L, M, Z, T' y antígeno Z' del sistema A, donde la reacción serológica no diferencia más que la presencia o ausencia del factor antigénico, las frecuencias génicas se han calculado por el método de la «raíz cuadrada».

Los sistemas FV y R'S', en donde la reacción serológica indica directamente el genotipo, son los que se han empleado para comprobar la situación de equilibrio genético de las poblaciones animales investigadas, habiéndose calculado las frecuencias génicas por el sistema clásico.

Para los sistemas A, B, C y SU, el cálculo de las frecuencias génicas no se ha podido realizar debido al gran número de fac-
CUADRO 2.—Control del equilibrio genético en los loci FV y R'S'.

<table>
<thead>
<tr>
<th>Locus FV</th>
<th>Razas</th>
<th>Rubia Gallega</th>
<th>Pirenaica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Parámetros</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>obs. esp.</td>
<td>58</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>59,63</td>
<td>18,13</td>
</tr>
<tr>
<td>FV</td>
<td>obs. esp.</td>
<td>23</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19,74</td>
<td>22,74</td>
</tr>
<tr>
<td>V</td>
<td>obs. esp.</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,63</td>
<td>7,13</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>0.858</td>
<td>0.615</td>
</tr>
<tr>
<td>V</td>
<td></td>
<td>0.142</td>
<td>0.385</td>
</tr>
<tr>
<td>χ^2</td>
<td></td>
<td>2.219</td>
<td>1.299</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Locus R'S'</th>
<th>Razas</th>
<th>Rubia Gallega</th>
<th>Pirenaica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Parámetros</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R'</td>
<td>obs. esp.</td>
<td>5</td>
<td>3,27</td>
</tr>
<tr>
<td>R'S'</td>
<td>obs. esp.</td>
<td>26</td>
<td>29,45</td>
</tr>
<tr>
<td>S'</td>
<td>obs. esp.</td>
<td>68</td>
<td>66,28</td>
</tr>
<tr>
<td>R'</td>
<td></td>
<td>0.182</td>
<td>0.063</td>
</tr>
<tr>
<td>S'</td>
<td></td>
<td>0.818</td>
<td>0.937</td>
</tr>
<tr>
<td>χ^2</td>
<td></td>
<td>1.355</td>
<td>0,212</td>
</tr>
</tbody>
</table>
tores presentes, la diversidad de fenogrupos y los escasos datos suministrados por las relaciones de parentesco. Por ello se dan, por un lado, las frecuencias fenotípicas de los diferentes factores antígenicos evidenciados y, por otro, los fenogrupos (alelos) que se han podido establecer en estos sistemas a partir de las filiaciones controladas.

RESULTADOS

Como los métodos utilizados para el cálculo de las frecuencias génicas exigen que las poblaciones estén en equilibrio genético, la verificación de dicha situación se ha realizado a partir de los sistemas FV y R'S', extrapolando los resultados a los demás sistemas sanguíneos. En el cuadro 2 se analizan los loci comentados para el control de la hipótesis del equilibrio genético, comprobándose por los valores de χ^2 obtenidos que las poblaciones animales se encuentran en equilibrio genético para los loci FV y R'S'. Consecuentemente puede admitirse que existe igualmente equilibrio para los otros sistemas, circunstancia por otro lado lógica considerando que sobre estas poblaciones no se ha ejercido una intensa selección y el número de animales analizados debe considerarse como significativo.

Establecido el equilibrio genético, en el cuadro 3 se especifican las frecuencias génicas halladas para los loci de los sistemas de grupos sanguíneos, FV, J, L, M, Z, R'S', T' además del antígeno Z'.

CUADRO 3. — Frecuencias génicas en 8 loci de grupos sanguíneos de las razas bovinas Rubia Gallega y Pirenaica.

<table>
<thead>
<tr>
<th>Razas</th>
<th>n</th>
<th>Loci (alelos)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>J</td>
<td>L</td>
<td>M</td>
<td>Z</td>
<td>R'</td>
<td>T'</td>
</tr>
<tr>
<td>Rubia Gallega</td>
<td>99</td>
<td>.585*</td>
<td>.142</td>
<td>.063</td>
<td>.005</td>
<td>.341</td>
<td>.182</td>
<td>.216</td>
</tr>
<tr>
<td>Pirenaica</td>
<td>48</td>
<td>.615</td>
<td>.293</td>
<td>.158</td>
<td>.032</td>
<td>.338</td>
<td>.063</td>
<td>.355</td>
</tr>
</tbody>
</table>

* Esta frecuencia se estableció a partir de 81 animales.

Las frecuencias fenotípicas de los diversos antígenos de los sistemas A, B, C y SU se expresan en los cuadros 4 y 5, habida cuenta
de la imposibilidad de calcular, como se ha comentado anteriormente, sus frecuencias alélicas.

La dificultad que se ha encontrado para elaborar fenogrupos de estos sistemas (A, B, C y SU), dentro de la raza Rubia Gallega, hay que fundamentarla en los siguientes hechos:

— Todos los animales analizados eran de genotipo desconocido. Aunque en el año 1968, Sotillo et al., tipificaron sin lugar a dudas algunos de los ascendientes del material animal investigado en este trabajo, por tener la misma procedencia, no establecieron sin embargo fenogrupos.

CUADRO 4.—Frecuencias fenotípicas de los factores antigenicos investigados en el sistema B.

<table>
<thead>
<tr>
<th>Factor antigénico</th>
<th>Rubia Gallega (n = 99)</th>
<th>Pirenaica (n = 48)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>frecuencia</td>
<td>%</td>
</tr>
<tr>
<td>B</td>
<td>74</td>
<td>74,74</td>
</tr>
<tr>
<td>G</td>
<td>56</td>
<td>56,56</td>
</tr>
<tr>
<td>I'</td>
<td>5</td>
<td>5,05</td>
</tr>
<tr>
<td>K</td>
<td>16</td>
<td>16,16</td>
</tr>
<tr>
<td>O</td>
<td>41</td>
<td>41,41</td>
</tr>
<tr>
<td>O'</td>
<td>16</td>
<td>16,16</td>
</tr>
<tr>
<td>O_k</td>
<td>7</td>
<td>7,07</td>
</tr>
<tr>
<td>O_g</td>
<td>77</td>
<td>84,84</td>
</tr>
<tr>
<td>Q</td>
<td>29</td>
<td>29,29</td>
</tr>
<tr>
<td>T</td>
<td>40</td>
<td>40,40</td>
</tr>
<tr>
<td>Y_2</td>
<td>7</td>
<td>7,07</td>
</tr>
<tr>
<td>A'</td>
<td>14</td>
<td>14,14</td>
</tr>
<tr>
<td>B'</td>
<td>28</td>
<td>28,28</td>
</tr>
<tr>
<td>D'</td>
<td>33</td>
<td>33,33</td>
</tr>
<tr>
<td>E'_1</td>
<td>40</td>
<td>40,40</td>
</tr>
<tr>
<td>F'_1</td>
<td>16</td>
<td>16,16</td>
</tr>
<tr>
<td>F'_2</td>
<td>14</td>
<td>14,14</td>
</tr>
<tr>
<td>G'</td>
<td>48</td>
<td>48,48</td>
</tr>
<tr>
<td>G''</td>
<td>26</td>
<td>26,26</td>
</tr>
<tr>
<td>I'</td>
<td>11</td>
<td>11,11</td>
</tr>
<tr>
<td>J'_1</td>
<td>8</td>
<td>8,08</td>
</tr>
<tr>
<td>J'_2</td>
<td>6</td>
<td>6,06</td>
</tr>
<tr>
<td>K'</td>
<td>28</td>
<td>28,28</td>
</tr>
<tr>
<td>O'</td>
<td>47</td>
<td>47,47</td>
</tr>
<tr>
<td>P'</td>
<td>42</td>
<td>42,42</td>
</tr>
<tr>
<td>Q'</td>
<td>44</td>
<td>44,44</td>
</tr>
<tr>
<td>Y'</td>
<td>6</td>
<td>6,06</td>
</tr>
<tr>
<td>H_12</td>
<td>14</td>
<td>14,14</td>
</tr>
<tr>
<td>M_13</td>
<td>2</td>
<td>2,00</td>
</tr>
<tr>
<td>C_a</td>
<td>4**</td>
<td>17,39</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>—</td>
</tr>
</tbody>
</table>

* Se testaron 91 animales.
** Se testaron 23 animales.
CUADRO 5. — Frecuencias fenotípicas de los factores antigénicos investigados en los sistemas A, C y SU.

<table>
<thead>
<tr>
<th>Sistema</th>
<th>Factor antigénico</th>
<th>Rubia Gallega (n = 99)</th>
<th>Pirenaica (n = 48)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>frecuencia</td>
<td>%</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>89</td>
<td>89,89</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>81</td>
<td>81,81</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>8</td>
<td>8,08</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>60</td>
<td>60,60</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>12*</td>
<td>12,12</td>
</tr>
<tr>
<td></td>
<td>R₁</td>
<td>27</td>
<td>27,27</td>
</tr>
<tr>
<td></td>
<td>R₂</td>
<td>50</td>
<td>50,50</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>79</td>
<td>79,79</td>
</tr>
<tr>
<td></td>
<td>X₁</td>
<td>18</td>
<td>18,18</td>
</tr>
<tr>
<td></td>
<td>X₂</td>
<td>42</td>
<td>18,18</td>
</tr>
<tr>
<td></td>
<td>L'</td>
<td>28</td>
<td>28,28</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>SU</td>
<td>S</td>
<td>47</td>
<td>47,47</td>
</tr>
<tr>
<td></td>
<td>U₁</td>
<td>8</td>
<td>8,08</td>
</tr>
<tr>
<td></td>
<td>H'</td>
<td>85</td>
<td>85,85</td>
</tr>
<tr>
<td></td>
<td>U₁'</td>
<td>13</td>
<td>13,13</td>
</tr>
<tr>
<td></td>
<td>U₁''</td>
<td>3</td>
<td>3,03</td>
</tr>
<tr>
<td></td>
<td>SU</td>
<td>7</td>
<td>7,07</td>
</tr>
</tbody>
</table>

* Se testaron 23 animales.
** Se testaron 24 animales.

— Aunque el 63 % de los animales estaban distribuidos entre 7 familias, 3 de ellas estaban constituidas solamente por padre-madre-hijo; en 2 familias más no se han verificado nada más que 3 descendencias en cada una de ellas; únicamente las 2 familias restantes, con 19 descendencias de primera generación entre las dos, han sido las que han permitido establecer fundamentalmente los fenogrupos que se expresan a continuación.

— Ausencia de alelos dobles recesivos en los sistemas B y C. En los sistemas A y SU se han encontrado un porcentaje de alelos dobles recesivos de 8,08 y 7,07 respectivamente, pero la presencia tan elevada de los antígenos A (89,89 %), H (81,81 %) y H' (85,85 %) han invalidado en gran medida, la frecuencia relativamente alta y, por ello, tan interesante de los alelos dobles recesivos (cuadros 4 y 5).

En 57 animales se ha podido establecer un alelo y en otros 50 los dos alelos, contabilizando todos los sistemas. A pesar de estos re-
sultados algo desalentadores, en el cuadro 6 se especifican los 35 fenogrupos hallados. Comoquiera que el número de padres descendientes controlados ha sido reducido, en el cuadro mencionado se obvia precisar sus frecuencias alélicas, que tendrán interés genético cuando la casuística sea más numerosa.

CUADRO 6.—Alelos de los sistemas A, B, C y SU, en la raza Rubia Gallega.

<table>
<thead>
<tr>
<th>A-alelos</th>
<th>B-alelos</th>
<th>C-alelos</th>
<th>SU-alelos</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>BGKO'</td>
<td>C</td>
<td>su</td>
</tr>
<tr>
<td>A</td>
<td>BGO'</td>
<td>CRX'</td>
<td>SH'</td>
</tr>
<tr>
<td>H</td>
<td>BGO,T,E,F,G'K'O'</td>
<td>CX'</td>
<td>SU'</td>
</tr>
<tr>
<td>AH</td>
<td>BGO,E,G'O'</td>
<td>R,W'L'</td>
<td>UH'</td>
</tr>
<tr>
<td></td>
<td>BL,T'</td>
<td>R,X'</td>
<td>H'</td>
</tr>
<tr>
<td></td>
<td>BO,T,D,E,'J',K'</td>
<td>W</td>
<td>H'U'</td>
</tr>
<tr>
<td></td>
<td>BO,T,E,'J',K'O'</td>
<td></td>
<td>U'</td>
</tr>
<tr>
<td></td>
<td>BO,Q,T,E,'F',K'P'O'</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BO,Q,G'O'P'</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GO,A,G'O'</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I'</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O,T,Y,D,E,'K',K'O'</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O,P'</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O,E,'F',O'</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O'I'O'</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Y,E'</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O'</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DISCUSION

En principio se ha de destacar, en relación con la raza Rubia Gallega, la marcada diferencia que ha podido apreciarse entre los resultados observados en el presente trabajo y los señalados por Sotillo et al. en el año 1968, como puede observarse en el cuadro 7.

Sin embargo, analizados desde la óptica laboratorial pueden comprenderse, toda vez que la lectura de los test hemolíticos con idénticos reactivos, pero en dos laboratorios distintos, no son paralelas, a menos que los reactivos se «titulen» previamente frente a un panel de células perfectamente tipificadas desde el punto de vista de los grupos sanguíneos. Esta condición ha sido la que no ha debido cumplimentarse en el trabajo aludido, pues es la única explicación que puede darse al hecho de que el citado autor no haya
CUADRO 7. — Frecuencias fenotípicas de los factores antígenicos investigados, en la raza Rubia Gallega, según autores.

<table>
<thead>
<tr>
<th>Sistema</th>
<th>Factor antígenico</th>
<th>Rubia Gallega n = 221*</th>
<th>Rubia Gallega n = 99**</th>
<th>Sistema</th>
<th>Factor antígenico</th>
<th>Rubia Gallega n = 221*</th>
<th>Rubia Gallega n = 99**</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>94.1</td>
<td>89.8</td>
<td>B</td>
<td>B</td>
<td>53.4</td>
<td>74.7</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>5.4</td>
<td>81.8</td>
<td></td>
<td>G</td>
<td>17.6</td>
<td>56.3</td>
</tr>
<tr>
<td></td>
<td>Z'</td>
<td>—</td>
<td>1.0</td>
<td></td>
<td>:</td>
<td>0.6</td>
<td>5.0</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>94.1</td>
<td>60.6</td>
<td>K</td>
<td>K</td>
<td>12.2</td>
<td>16.1</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>23.5</td>
<td>77.7</td>
<td>O</td>
<td>O</td>
<td>29.4</td>
<td>64.6</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>52.0</td>
<td>79.7</td>
<td>Q</td>
<td>Q</td>
<td>6.8</td>
<td>29.2</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>47.0</td>
<td>60.6</td>
<td>T</td>
<td>T</td>
<td>17.2</td>
<td>40.4</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>—</td>
<td>52.1</td>
<td>Y</td>
<td>Y</td>
<td>—</td>
<td>39.3</td>
</tr>
<tr>
<td></td>
<td>L'</td>
<td>—</td>
<td>28.2</td>
<td>A'</td>
<td>A'</td>
<td>17.6</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B'</td>
<td>B'</td>
<td>5.9</td>
<td>14.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D'</td>
<td>D'</td>
<td>5.0</td>
<td>28.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E'</td>
<td>E'</td>
<td>23.5</td>
<td>73.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G'</td>
<td>G'</td>
<td>35.3</td>
<td>48.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G''</td>
<td>G''</td>
<td>6.3</td>
<td>26.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I'</td>
<td>I'</td>
<td>5.0</td>
<td>11.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>J'</td>
<td>J'</td>
<td>—</td>
<td>14.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K'</td>
<td>K'</td>
<td>—</td>
<td>28.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O'</td>
<td>O'</td>
<td>35.7</td>
<td>47.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P'</td>
<td>P'</td>
<td>—</td>
<td>42.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Q'</td>
<td>Q'</td>
<td>—</td>
<td>44.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y'</td>
<td>Y'</td>
<td>—</td>
<td>6.0</td>
</tr>
</tbody>
</table>

* Sotillo et al. (1968).
** Datos del presente trabajo.

CUADRO 8. — Presentación de algunos factores antígenicos en distintas razas bovinas.

<table>
<thead>
<tr>
<th>Razas</th>
<th>Y</th>
<th>K’</th>
<th>P’</th>
<th>Q’</th>
<th>E</th>
<th>L’</th>
<th>R’</th>
<th>Autores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polish Red</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Rapacz et al. (1965)</td>
</tr>
<tr>
<td>Pinzgau</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Erhard et al. (1965)</td>
</tr>
<tr>
<td>Spotted</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Erhard et al. (1965)</td>
</tr>
<tr>
<td>Brown Swiss</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Erhard et al. (1965)</td>
</tr>
<tr>
<td>Yelloco</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Erhard et al. (1965)</td>
</tr>
<tr>
<td>Maurano-Wardenfels</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Erhard et al. (1965)</td>
</tr>
<tr>
<td>Cyprus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>Husselholt et al. (1965)</td>
</tr>
<tr>
<td>Egyptian</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>Husselholt et al. (1965)</td>
</tr>
<tr>
<td>Damascus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>Husselholt et al. (1965)</td>
</tr>
<tr>
<td>Red Danish</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>Husselholt et al. (1965)</td>
</tr>
<tr>
<td>Grey-Brown</td>
<td>O</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>Lazzer et al. (1966)</td>
</tr>
<tr>
<td>Light Red-spotted</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Lazzer et al. (1966)</td>
</tr>
<tr>
<td>Cika</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Lazzer et al. (1966)</td>
</tr>
<tr>
<td>Kholmogore</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>Sukorovskii (1966)</td>
</tr>
<tr>
<td>Pre-sierra</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>Sukorovskii (1966)</td>
</tr>
<tr>
<td>Schweyz</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>Sukorovskii (1966)</td>
</tr>
<tr>
<td>Simmental</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>Sloya et al. (1970)</td>
</tr>
<tr>
<td>Red and white</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>Dula et al. (1970)</td>
</tr>
<tr>
<td>Istrian (Cika)</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>Lazzer et al. (1972)</td>
</tr>
<tr>
<td>IndoJinn (Cika)</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>Lazzer et al. (1972)</td>
</tr>
<tr>
<td>Iskard</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Makaveyev (1972)</td>
</tr>
<tr>
<td>Rhodope</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Makaveyev (1972)</td>
</tr>
<tr>
<td>Red</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Makaveyev (1972)</td>
</tr>
<tr>
<td>Brown</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Makaveyev (1972)</td>
</tr>
<tr>
<td>Simmental</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Makaveyev (1972)</td>
</tr>
<tr>
<td>Angus</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>Anónimo (1972)</td>
</tr>
<tr>
<td>Charolais</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>Anónimo (1972)</td>
</tr>
<tr>
<td>Guernsey</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>Anónimo (1972)</td>
</tr>
<tr>
<td>Hereford</td>
<td>+</td>
<td>O</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Anónimo (1972)</td>
</tr>
<tr>
<td>Holstein</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>Anónimo (1972)</td>
</tr>
<tr>
<td>Red Danish</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>Anónimo (1972)</td>
</tr>
<tr>
<td>Shorthorn</td>
<td>+</td>
<td>O</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>Anónimo (1972)</td>
</tr>
<tr>
<td>Ayrshire</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>O</td>
<td>-</td>
<td>-</td>
<td>Anónimo (1972)</td>
</tr>
<tr>
<td>Brown Swiss</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>O</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Anónimo (1972)</td>
</tr>
<tr>
<td>Jersey</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Anónimo (1972)</td>
</tr>
<tr>
<td>Criolla (Cuba)</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>Mitay (1975)</td>
</tr>
<tr>
<td>Telemark</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>Braend (1959)</td>
</tr>
<tr>
<td>Dola</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>Braend (1959)</td>
</tr>
</tbody>
</table>

— No se han hallado referencias.
Locus A

El porcentaje tan elevado de alelos doble recesivos que se han contabilizado en las razas «Rubia Gallega» y «Pirenaica» y que alcanzan las cifras de 8,08 % y 29,16 % respectivamente (cuadro 5), se debe admitir a nivel del presente trabajo, pero no como resultado definitivo, ya que en este locus, donde MIlLOT (1963) y STORMONT (1962) han descrito 10 alelos, el gen recesivo no existe (REUSE, 1969).

La motivación de este resultado hay que fundamentarla en la no utilización del reactivo anti-D, que detecta el antígeno D, uno de los más frecuentes en las razas vacunas estudiadas. En este sentido, el alelo D es el más frecuente en 8 de las 10 razas vacunas codificadas por las Universidades americanas (ANÓNIMO, 1972); además este antígeno se integra en 7 de los 10 fenogrupos descritos en el trabajo citado (A, A:H, D, DH, A:DH, A:D,Z’, A:Z, A:D, A:DH). Por ello, debe presumirse que los resultados hubieran sido distintos en el caso de haberse utilizado el reactivo anti-D y poderse detectar entonces los alelos mencionados.

Aunque se ha evitado el cálculo de las frecuencias de los fenogrupos descritos en la raza Rubia Gallega (cuadro 6) por las razones aludidas, el alelo que ha mostrado un mayor porcentaje de presentación ha sido el AH, seguido del A y H.

Especial interés ofrece la identificación del antígeno Z’ en las dos razas estudiadas por tratarse de un antígeno poco frecuente. Las frecuencias génicas evidenciadas por las razas Rubia Gallega y Pirenaica han sido de .005 y .010 respectivamente, cifras muy bajas pero de indiscutible valor en los estudios filogenéticos, que de momento no pueden abordarse. Así, DOLÀ et al. (1970) destacan la presencia del factor Z’, característico de la raza Jersey, en la raza Lowland Red and White, con una frecuencia muy baja .05. MITAT (1975) en el ganado Criollo cubano (de origen español y posiblemente gallego) encuentra una cifra igualmente baja .09, similar a la de las razas Holstein, Sta. Gertrudis, Beef Shorthorn, Simmental y distintas razas africanas. Sin embargo, de su trabajo se desprende que la frecuencia del factor Z’ puede derivarse directamente del Zebú, que con una frecuencia de .20 ha mestizado intensamente ese ganado Criollo. En este contexto puede comprenderse el interés que ofrece el estudio de este factor, para intentar establecer relaciones filogenéticas, conociéndose la frecuencia igual-
mente alta (.23) de este factor en la raza Charolesa (Mitat, 1975) y el hecho de estar ausente en las razas de origen holandés, inglés y escandinavo, y ser más corriente en los países del centro y sur de Europa.

Locus B

El locus B es el sistema más atractivo de entre todos los conocidos en ganado vacuno, por ser del que se conocen más factores antigénicos y, por lo mismo, un mayor número de alelos (fenogrupos), de indudable interés en identificación animal, estructura genética de las razas vacunas y relaciones filogenéticas. Aunque no se han calculado frecuencias génicas, sí se han podido establecer 18 fenogrupos, en la raza Rubia Gallega (cuadro 6), algunos de los cuales parecen resultar de una variación que se establece alrededor de ciertos agrupamientos de antígenos, tales como BGO,..., BO,T,..., BO,Q,..., lo que permite de alguna manera clasificar los fenogrupos por «familia», como en la raza Charolesa (Millot, 1966). En la recopilación por orden alfabético comentada anteriormente (Anónimo, 1972) la «familia» de fenogrupos más frecuente es la deriva de BGK... En el presente trabajo, este tipo de «familia» no aparece como tal pero, prescindiendo del carácter racial muy importante, debe recordarse que el muestreo realizado no ha sido numeroso. En ese mismo trabajo, el fenotipo I se presenta con frecuencia muy alta en la raza Brown Swiss: el que se haya encontrado este mismo alelo en la Rubia Gallega debe interpretarse con cierto cuidado no exento de interés, considerando que esta raza ha estado y sigue mestizada con la Brown Swiss, detalle a tener en cuenta al establecer la estructura genética en este sentido, o la posible influencia de esta última raza en la situación genética actual de la Rubia Gallega.

Si en el trabajo mencionado (Anónimo, 1972), no se han encontrado más que dos fenogrupos comunes a la Rubia Gallega (BGO, I), en el trabajo de Reuse (1969) en relación con la raza de Herens, las similitudes aparecidas son particularmente interesantes. La raza de Herens parece originaría de Egipto, habiéndose extendido en principio, por el Norte de África y posteriormente por España, desde donde fue introducida por los romanos en los Alpes. Aunque el carácter belicoso de esta raza la diferencia en su aptitud de la Rubia Gallega, no puede descartarse la posibilidad de relaciones
filogenéticas con el grupo vacuno gallego. Efectivamente, de los 65 alelos descritos en el sistema B por Reuse (1969) cuatro de ellos (BGKO', Y₂E₁, E'₃ y O') coinciden con cuatro de los descritos en el presente trabajo. No debe incidirse demasiado en estas semejanzas, pero es evidente que no puede descartarse una vía de expansión cuando no un origen común.

En otro orden de cosas, las relaciones filogenéticas que pueden existir entre la raza Rubia Gallega y la Criolla de Cuba, parecen desprenderse asimismo del estudio del sistema B de grupos sanguíneos. Mitat (1975) describe en el Criollo cubano, 133 alelos del sistema B, de los cuales, si tenemos en cuenta que no utilizó los reactivos anti-E', F', P' y O', 9 fenogrupos coinciden con los descritos en el presente trabajo: BGKO', BGO₁, BO.QG'O'(P'), I₁, O₁(P'), O₁'(O'), Y₂E', E', E'₃, O'.

Particular relieve adquiere en este contexto el antígeno Cu. Como se comentó en el apartado correspondiente, se han testado 23 animales con el reactivo anti-Cu procedente de Cuba, habiendo dado en la Rubia Gallega, un porcentaje de positividades del 17,39% (cuadro 4). Este reactivo, elaborado por iso-inmunización en ganado Criollo cubano, no ha evidenciado positividades en las razas Charolesa, Holstein, Red Danish austríaca y checoslovaca (Mitat, 1975), mientras que el porcentaje de animales Cu positivos, se resume en el cuadro 9.

CUADRO 9. — Animales testados con suero-reactivo anti-Cu.

<table>
<thead>
<tr>
<th>Razas</th>
<th>Número de animales</th>
<th>Número de animales Cu (+)</th>
<th>% de animales Cu (+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criollo</td>
<td>1.377</td>
<td>74</td>
<td>5,4</td>
</tr>
<tr>
<td>Sta. Gertrudis</td>
<td>1.496</td>
<td>24</td>
<td>1,6</td>
</tr>
<tr>
<td>Cebú</td>
<td>1.088</td>
<td>23</td>
<td>2,1</td>
</tr>
<tr>
<td>Rubia Gallega</td>
<td>23</td>
<td>4</td>
<td>17,39</td>
</tr>
</tbody>
</table>

* Datos extraídos de Mitat (1975).

No debe pasar inadvertida la importancia de estos resultados que, aunque no deben considerarse como definitivos*, son muy

* Al estar constituido el «panel de células» del laboratorio de grupos sanguíneos del Departamento de Genética, por animales de la raza Holstein, no se ha podido «titular» el reactivo anti-Cu, por no estar identificado este antígeno.
representativos. Los primeros animales de Bos taurus llevados a América, desde España, llegaron a Cuba a inicios del siglo xvi, procedentes de la isla de la Española (Santo Domingo), a través de la ciudad de Baracoa. El ganado Zebú (Bos indicus) se introdujo en Cuba en el año 1904, a fin de mestizar el ganado Criollo, haciendo desaparecer la raza Criolla, de la que sólo se conservaron pocos hatos puros de esta raza cubana (Mitat, 1975). De la exposición de este autor, en relación con la evolución de la ganadería Criolla por un lado y de los resultados obtenidos en tipificación sanguínea por otro, no pueden establecerse conclusiones respecto al origen de este antígeno del sistema B (Cu), pero es evidente que estos resultados han de constituir aportaciones muy valiosas, máxime si se analizan conjuntamente los resultados de los fenogrupos descritos. En el cuadro 10 puede observarse que de los 9 fenogrupos comunes al ganado Criollo y Rubia Gallega, solamente un fenogrupo (BGO,) es común asimismo al ganado Zebú, de donde puede excluirse la influencia que ha ejercido esta raza en el mantenimiento de determinados alelos del sistema B.

CUADRO 10. — Fenogrupos del sistema B en 5 razas bovinas.

<table>
<thead>
<tr>
<th>Fenogrupo</th>
<th>Holstein*</th>
<th>Charolais*</th>
<th>Criollo*</th>
<th>Zebú*</th>
<th>Rubia Gallega</th>
</tr>
</thead>
<tbody>
<tr>
<td>BKO'</td>
<td>—</td>
<td>—</td>
<td>+</td>
<td>—</td>
<td>+</td>
</tr>
<tr>
<td>BGO,</td>
<td>—</td>
<td>—</td>
<td>+</td>
<td>—</td>
<td>+</td>
</tr>
<tr>
<td>B0O(G'O'(P'))</td>
<td>—</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>+</td>
</tr>
<tr>
<td>I1</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>O1</td>
<td>—</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>+</td>
</tr>
<tr>
<td>O1(O')</td>
<td>—</td>
<td>—</td>
<td>+</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Y2E2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>+</td>
</tr>
<tr>
<td>E2</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>+</td>
</tr>
<tr>
<td>O'</td>
<td>—</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>+</td>
</tr>
</tbody>
</table>

* Datos extraídos de Mitat (1975).

Locus C

El material estudiado no ha servido mucho para la determinación de los alelos en el locus C, en primer lugar porque no se ha evidenciado ningún animal homocigótico recesivo, y en segundo lugar los antígenos principales C, E, W y Xe han presentado una frecuencia muy alta.

De los C-fenogrupos que se han podido establecer en la raza Rubia Gallega, el que ha mostrado un mayor porcentaje de presen-
tación ha sido el W, que también suele ser uno de los más frecuentes en las razas bovinas estudiadas. En la raza Pirenaica no se han establecido alelos como se comentó, pero es indudable que debe existir igualmente en esta raza, al presentar el antígeno W una frecuencia fenotípica muy elevada (91.67 %). Parece confirmarse lo comentado por Amourelle (1964) y Millot (1963), en el sentido de que los alelos del sistema C son menos precisos, para caracterizar una población, que los del sistema B.

Locus SU

Después del sistema B este locus ha sido, juntamente con el C, de los más estudiados en función de dos particularidades: el alelo doble recesivo se presenta con cierta frecuencia y los antígenos S y U no se presentan sin el antígeno H', ni se transmiten sin él. Estas circunstancias han permitido elaborar para la raza Rubia Gallega 7 fenogrupos (cuadro 6), de los cuales los más frecuentes son el H' y SH'.

Así como ha podido constatarse en las dos razas estudiadas, que el antígeno U se ha presentado siempre con el H', se ha identificado, sin embargo, el antígeno S sólo, sin H', en dos animales de la raza Rubia Gallega y en uno de la Pirenaica. Este detalle no considerado como posible (Stormont et al., 1961) no ha podido contrastarse en la raza Rubia Gallega, porque los dos animales de fenogrupo S han sido hijos de dos familias del mismo padre y diferentes madres en las que, a partir del fenotipo del padre SH', no ha podido establecerse el genotipo correspondiente. Por esta razón, aunque se advierte el hecho, no se puede confirmar la existencia del fenogrupo S.

Echeverría (1975) y Sánchez (1976) al estudiar las razas Pirenaicas y Rubia Gallega respectivamente, mantienen que no sería muy aventurado sospechar un origen común y similar al de la Blonde d'Aquitaine. En base a esta suposición ha podido observarse (Grosclaude, 1965) que el fenogrupo U, U' H' es el más frecuente dentro de este sistema, en las razas «Charolaise» (35) y «Blonde d'Aquitaine» (21). Aunque no ha podido establecerse este fenogrupo en las razas Pirenaica y Rubia Gallega, sí ha de destacarse que en la raza Rubia Gallega el fenotipo U U' H' aparece 3 veces y el (S) U U' H' una vez, mientras que en la Pirenaica, el fenotipo U U' H' aparece 4 veces y el (S) U U' H', 3 veces. Si te-
CUADRO 11.—Frecuencias génicas en 6 loci de grupos sanguíneos en diferentes razas bovinas.

<table>
<thead>
<tr>
<th>Razas</th>
<th>F</th>
<th>J</th>
<th>L</th>
<th>M</th>
<th>Z</th>
<th>R</th>
<th>Autores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chipre (vacunos)</td>
<td></td>
<td>.18</td>
<td>.40</td>
<td>.02</td>
<td>.65</td>
<td>.31</td>
<td>HUSSLEHOLT et al. (1965)</td>
</tr>
<tr>
<td>Egipto (vacunos)</td>
<td></td>
<td>.30</td>
<td>.53</td>
<td>.03</td>
<td>.72</td>
<td>.28</td>
<td>HUSSLEHOLT et al. (1965)</td>
</tr>
<tr>
<td>Damasco (vacunos)</td>
<td></td>
<td>.22</td>
<td>.50</td>
<td>.02</td>
<td>.68</td>
<td>.26</td>
<td>HUSSLEHOLT et al. (1965)</td>
</tr>
<tr>
<td>Thaparkar</td>
<td></td>
<td>.23</td>
<td>1.</td>
<td>.06</td>
<td>.90</td>
<td></td>
<td>HUSSLEHOLT et al. (1965)</td>
</tr>
<tr>
<td>Sahiwal</td>
<td></td>
<td>.45</td>
<td>.54</td>
<td>.02</td>
<td>.89</td>
<td></td>
<td>HUSSLEHOLT et al. (1965)</td>
</tr>
<tr>
<td>Red Danish</td>
<td></td>
<td>.15</td>
<td>.07</td>
<td>.18</td>
<td>.19</td>
<td>.32</td>
<td>HUSSLEHOLT et al. (1967)</td>
</tr>
<tr>
<td>Aberdeen Angus</td>
<td>.73</td>
<td>.31</td>
<td>.13</td>
<td>.01</td>
<td>.27</td>
<td></td>
<td>OSTERHOF (1966)</td>
</tr>
<tr>
<td>Afrikaner</td>
<td>.80</td>
<td>.07</td>
<td>.32</td>
<td>.02</td>
<td>.71</td>
<td></td>
<td>OSTERHOF (1966)</td>
</tr>
<tr>
<td>Ayrshire</td>
<td>.86</td>
<td>.21</td>
<td>.07</td>
<td>.00</td>
<td>.30</td>
<td></td>
<td>OSTERHOF (1966)</td>
</tr>
<tr>
<td>Shorthorn</td>
<td>.94</td>
<td>.04</td>
<td>.16</td>
<td>.02</td>
<td>.28</td>
<td></td>
<td>OSTERHOF (1966)</td>
</tr>
<tr>
<td>Bonnemara</td>
<td>.90</td>
<td>.12</td>
<td>.21</td>
<td>.01</td>
<td>.33</td>
<td></td>
<td>OSTERHOF (1966)</td>
</tr>
<tr>
<td>Boran</td>
<td>.85</td>
<td>.39</td>
<td>.59</td>
<td>.06</td>
<td>.73</td>
<td></td>
<td>OSTERHOF (1966)</td>
</tr>
<tr>
<td>Brown Swiss</td>
<td>.80</td>
<td>.23</td>
<td>.14</td>
<td>.02</td>
<td>.20</td>
<td></td>
<td>OSTERHOF (1966)</td>
</tr>
<tr>
<td>Dairy Shorthorn</td>
<td>.76</td>
<td>.13</td>
<td>.19</td>
<td>.01</td>
<td>.18</td>
<td></td>
<td>OSTERHOF (1966)</td>
</tr>
<tr>
<td>Drakensberger</td>
<td>.96</td>
<td>.11</td>
<td>.24</td>
<td>.09</td>
<td>.96</td>
<td></td>
<td>OSTERHOF (1966)</td>
</tr>
<tr>
<td>Friesian</td>
<td>.81</td>
<td>.07</td>
<td>.19</td>
<td>.12</td>
<td>.10</td>
<td></td>
<td>OSTERHOF (1966)</td>
</tr>
<tr>
<td>Guernsey</td>
<td>.94</td>
<td>.23</td>
<td>.20</td>
<td>.01</td>
<td>.29</td>
<td></td>
<td>OSTERHOF (1966)</td>
</tr>
<tr>
<td>Hereford</td>
<td>.93</td>
<td>.07</td>
<td>.52</td>
<td>.01</td>
<td>.23</td>
<td></td>
<td>OSTERHOF (1966)</td>
</tr>
<tr>
<td>Jersey</td>
<td>.67</td>
<td>.25</td>
<td>.21</td>
<td>.02</td>
<td>.37</td>
<td></td>
<td>OSTERHOF (1966)</td>
</tr>
<tr>
<td>Nguni</td>
<td>.88</td>
<td>.18</td>
<td>.38</td>
<td>.06</td>
<td>.62</td>
<td></td>
<td>OSTERHOF (1966)</td>
</tr>
<tr>
<td>Red Poll</td>
<td>.78</td>
<td>.13</td>
<td>.10</td>
<td>.02</td>
<td>.23</td>
<td></td>
<td>OSTERHOF (1966)</td>
</tr>
<tr>
<td>Simmental</td>
<td>.81</td>
<td>.15</td>
<td>.14</td>
<td>.04</td>
<td>.38</td>
<td></td>
<td>OSTERHOF (1966)</td>
</tr>
<tr>
<td>South Devon</td>
<td>.92</td>
<td>.04</td>
<td>.21</td>
<td>.00</td>
<td>.18</td>
<td></td>
<td>OSTERHOF (1966)</td>
</tr>
<tr>
<td>Sussex</td>
<td>.97</td>
<td>.20</td>
<td>.30</td>
<td>.03</td>
<td>.11</td>
<td></td>
<td>OSTERHOF (1966)</td>
</tr>
<tr>
<td>Gray-Brown</td>
<td>.69</td>
<td></td>
<td>.16</td>
<td>.04</td>
<td>.59</td>
<td>.22</td>
<td>LAZAR et al. (1966)</td>
</tr>
<tr>
<td>Light Red-spotted</td>
<td>.77</td>
<td></td>
<td>.20</td>
<td>.08</td>
<td>.49</td>
<td>.14</td>
<td>LAZAR et al. (1966)</td>
</tr>
<tr>
<td>Cika</td>
<td>.75</td>
<td></td>
<td>.16</td>
<td>.05</td>
<td>.58</td>
<td>.19</td>
<td>LAZAR et al. (1966)</td>
</tr>
<tr>
<td>Istria (Cika)</td>
<td>.75</td>
<td>.27</td>
<td>.25</td>
<td>.05</td>
<td>.51</td>
<td>.34</td>
<td>LAZAR et al. (1972)</td>
</tr>
<tr>
<td>Bohinj (Cika)</td>
<td>.85</td>
<td>.05</td>
<td>.12</td>
<td>.03</td>
<td>.43</td>
<td>.13</td>
<td>LAZAR et al. (1972)</td>
</tr>
<tr>
<td>Charolais</td>
<td>.74</td>
<td>.24</td>
<td>.32</td>
<td></td>
<td>.37</td>
<td></td>
<td>ANGUIA (1972)</td>
</tr>
<tr>
<td>Hereford</td>
<td>.84</td>
<td>.02</td>
<td>.86</td>
<td></td>
<td>.18</td>
<td>.41</td>
<td>ANGUIA (1972)</td>
</tr>
<tr>
<td>Red Danish</td>
<td>.81</td>
<td>.27</td>
<td>.05</td>
<td></td>
<td>.24</td>
<td></td>
<td>ANGUIA (1972)</td>
</tr>
<tr>
<td>Brown Swiss</td>
<td>.64</td>
<td>.10</td>
<td>.05</td>
<td></td>
<td>.26</td>
<td>.27</td>
<td>REUSE (1969)</td>
</tr>
<tr>
<td>Hereford</td>
<td>.71</td>
<td>.08</td>
<td>.29</td>
<td>.06</td>
<td>.54</td>
<td></td>
<td>MIYAT (1975)</td>
</tr>
<tr>
<td>Holstein</td>
<td>.77</td>
<td>.28</td>
<td>.22</td>
<td></td>
<td>.40</td>
<td></td>
<td>MIYAT (1975)</td>
</tr>
<tr>
<td>Charolais</td>
<td>.74</td>
<td>.23</td>
<td>.24</td>
<td></td>
<td>.55</td>
<td></td>
<td>MIYAT (1975)</td>
</tr>
<tr>
<td>Sta. Gertrudis</td>
<td>.78</td>
<td>.09</td>
<td>.29</td>
<td></td>
<td>.40</td>
<td></td>
<td>MIYAT (1975)</td>
</tr>
<tr>
<td>Cebu</td>
<td>.71</td>
<td>.09</td>
<td>.66</td>
<td></td>
<td>.83</td>
<td></td>
<td>MIYAT (1975)</td>
</tr>
<tr>
<td>Criollo (Cuba)</td>
<td>.73</td>
<td>.26</td>
<td>.24</td>
<td></td>
<td>.66</td>
<td></td>
<td>MIYAT (1975)</td>
</tr>
<tr>
<td>Rubia Gallego</td>
<td>85</td>
<td>.14</td>
<td>.06</td>
<td>.00</td>
<td>.34</td>
<td>.18</td>
<td>Presente trabajo</td>
</tr>
<tr>
<td>Pirenaica</td>
<td>61</td>
<td>.29</td>
<td>.15</td>
<td>.03</td>
<td>.33</td>
<td>.06</td>
<td>Presente trabajo</td>
</tr>
</tbody>
</table>

--- No se han hallado referencias bibliográficas.

Necesitamos en cuenta que en la raza Pirenaica sólo se han testado 48 animales, estos fenotipos adquieren particular interés, desde el punto de vista de una posible filogenia común.
Loci FV, J, L, M, Z, R'S', T'

Como de estos sistemas sanguíneos se han podido calcular las frecuencias génicas de los mismos (cuadro 3), las estimaciones genéticas que puedan derivarse han de tener una mayor significación que las consideraciones extraídas del estudio de las frecuencias fenotípicas de los factores antígenicos investigados en los anteriores sistemas (cuadros 4 y 5), que únicamente pueden tener un valor orientativo. La situación genética de estos sistemas en las dos razas estudiadas, en comparación con otras razas bovinas, se resumen en el cuadro 11, de cuya observación pueden extraerse las siguientes consideraciones:

— En relación con el sistema FV, la raza Pirenaica ha mostrado la frecuencia más baja (F = .61) de todas las razas recopiladas, juntamente con la Brown Swiss (F = .64) y Jersey (F = .67).

— Por el contrario, la raza Pirenaica ha evidenciado una de las frecuencias más altas del alelo J (.29), sólo superada por las razas vacunas de Egipto (.30), Aberdeen Angus (.31), Boran (.39) y Sahivel (.45).

— En el sistema L, las razas Red Danish (.05-.07), Ayrshire (.07), Rubia Gallega (.06) y Brown Swiss (.05), son las que han presentado las frecuencias más bajas. Este sistema debe tener cierto interés desde el punto de vista filogenético como parece desprenderse del cuadro 11, en donde puede observarse cómo el Zebú (.66), las razas bovinas de Damasco (.50) y de Egipto (.53), además de otras dos razas de la India, Thaparkar (1,00) y Sahival (.54), ofrecen unas frecuencias génicas muy elevadas, en relación con el resto de la mayoría de las razas europeas y americanas, si exceptuamos la Hereford (.52-.86). Aunque el presente trabajo no pretende abordar dicha cuestión, se señala no obstante esta observación porque puede ser interesante para las investigaciones que se realicen en relación con esta temática.

— Las frecuencias alélicas tan bajas mostradas en el sistema M por las razas investigadas minimizan la participación de este sistema en el marco de su estructura genética, participación similar en el resto de las razas estudiadas (cuadro 11). El hecho observado por Rendel (1961), de que los animales
en posesión del factor M producen menor cantidad de leche que los otros, evidencia no obstante su posible relación con factores productivos, a pesar de su débil frecuencia, en el contexto de los grupos sanguíneos.

— El sistema Z se comporta de una forma similar al L, en el sentido de que son igualmente los bovinos de Asia y África los que presentan en general unas frecuencias mucho más altas para este alelo (.62-.96), que la mayoría de las otras razas bovinas europeas y americanas. Las dos razas españolas, con similares frecuencias (R.G. = .34 y P = .33), se sitúan entre las de frecuencias más elevadas dentro de las razas europeas, incidiendo por tanto, de una forma opuesta a como se dedujo al analizar el sistema L. La trascendencia de estas investigaciones se podrá analizar cuando se conozca un mayor número de razas bovinas autóctonas españolas, desde esta óptica genética.

— No se han encontrado demasiadas referencias en relación con el sistema R'S', pero sí las suficientes para comprobar que las dos razas investigadas son las que han mostrado las frecuencias más débiles, sobre todo la raza Pirenaica (R' = .06).

Relaciones entre las razas Rubia Gallega y Pirenaica

Prescindiendo de la posible filogenia común que sospechan ECHEVERRÍA (1975) y SÁNCHEZ (1976), y que en este trabajo se ha intentado fundamentar ya al analizar el sistema SU, en este apartado se va a estudiar las relaciones genéticas que pueden existir entre dos razas «Rubias» tan similares, según los autores citados.

Como una «divergencia o distancia genética» entre razas, expresa finalmente un valor sin significación estadística, la relación genética aludida se ha establecido a partir de los valores \(\chi^2 \) calculados en los «test de homogeneidad» utilizados para comparar dos poblaciones. La hipótesis que se sustenta es la de que si no existen diferencias significativas para los marcadores genéticos investigados, habrá razones biométricas para afirmar que dichas poblaciones proceden de una misma «población» y, por lo tanto, habrán de considerarse como similares desde el punto de vista genético y a partir de los sistemas investigados.
Como para estos análisis biométricos se necesita conocer las frecuencias génicas del sistema que se intenta testar, sólo se han utilizado los sistemas FV, J, L, M, Z, R'S', T' y el alelo Z' del sistema A, naturalmente a niveles independientes. Los resultados de los tests de homogeneidad realizados se resumen en el cuadro 12.

CUADRO 12. — Análisis comparativo de 8 loci entre las razas vacunas Rubia Gallega y Pirenaica (Test de homogeneidad).

<table>
<thead>
<tr>
<th>Sistema</th>
<th>Genes y fenotipos</th>
<th>Frecuencias génicas</th>
<th>Número de animales</th>
<th>G.L.</th>
<th>X²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>R.G.</td>
<td>P.</td>
<td>R.G.</td>
<td>P.</td>
</tr>
<tr>
<td>FV</td>
<td>F</td>
<td>.858</td>
<td>.015</td>
<td>58</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>FV</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>.142</td>
<td>.385</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>J</td>
<td>J</td>
<td>.142</td>
<td>.293</td>
<td>26</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>.858</td>
<td>.707</td>
<td>73</td>
<td>24</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>.063</td>
<td>.158</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>.937</td>
<td>.842</td>
<td>87</td>
<td>34</td>
</tr>
<tr>
<td>M</td>
<td>M</td>
<td>.005</td>
<td>.032</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>.995</td>
<td>.968</td>
<td>98</td>
<td>45</td>
</tr>
<tr>
<td>Z</td>
<td>Z</td>
<td>.341</td>
<td>.338</td>
<td>56</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>.639</td>
<td>.662</td>
<td>43</td>
<td>21</td>
</tr>
<tr>
<td>R'S'</td>
<td>R'</td>
<td>.182</td>
<td>.063</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>R'S'</td>
<td>—</td>
<td>—</td>
<td>26</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>S'</td>
<td>.818</td>
<td>.937</td>
<td>68</td>
<td>42</td>
</tr>
<tr>
<td>T'</td>
<td>T'</td>
<td>.216</td>
<td>.355</td>
<td>38</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>.784</td>
<td>.645</td>
<td>61</td>
<td>29</td>
</tr>
<tr>
<td>A</td>
<td>Z'</td>
<td>.005</td>
<td>.010</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>.995</td>
<td>.990</td>
<td>98</td>
<td>47</td>
</tr>
</tbody>
</table>

* P < 0.05
** P < 0.01
*** P < 0.10

Exceptuando el sistema Z y el antígeno Z' del sistema A, para los que no se han encontrado diferencias significativas, y aun en este último sistema la comparación pierde valor al no haberse identificado más que un animal en cada una de las razas estudiadas, en los restantes 6 sistemas sanguíneos investigados se han encontrado diferencias significativas (P < .05) o muy significativas (P < .01), ya que la diferencia hallada en el sistema M, debe considerarse igualmente significativa.
Estos resultados deben destacarse porque el "parecido zootécnico" evidente no es paralelo al genético en este contexto. Efectivamente, puede afirmarse a nivel de los sistemas sanguíneos que estas dos razas, semejantes o parecidas morfológicamente, son diferentes desde la óptica de la estructura genética que ha podido establecerse mediante la identificación de los grupos sanguíneos. El grado de divergencia genética que puede calcularse mediante las técnicas de "distancias genéticas", alcanzarán su validez cuando existan los suficientes datos de otras razas, en la bibliografía española, para abordar conjuntamente el problema y poder elaborar asimismo los "árboles filogenéticos".

RESUMEN

Una población de 99 animales de la raza vacuna Rubia Gallega y 48 novillos de la Pirenaica, es tipificada frente a 56 reactivos pertenecientes a 11 sistemas de grupo sanguíneos (A, B, C, FV, J, L, M, SU, Z, R'S' y T'). Una vez verificada la situación de equilibrio genético a partir de los sistemas FV y R'S', se calculan las frecuencias génicas de los alelos F, J, L, M, Z, R', T' y Z'. Del mismo modo y a partir de 4 familias con 25 descendientes se han establecido 35 fenogrupos distribuidos en 4 A-alelos, 18 B-alelos, 6 C-alelos y 7 SU-alelos.

Finalmente se analizan las relaciones filogenéticas entre las razas Rubia Gallega y Pirenaica fundamentándose las diferencias genéticas existentes entre las mismas a partir de los tests de homogeneidad. También se hacen algunas anotaciones sobre las relaciones genéticas que pueden existir entre las razas Rubia Gallega y Criolla de Cuba.

AGRADECIMIENTOS

Queremos expresar nuestro más sincero agradecimiento a las señoritas María Victoria Ramiro y María Pilar Isac, por su fundamental colaboración en la fabricación de reactivos y tipificación sanguínea y a los doctores Luciano Sánchez y Teófilo Echeverría,
por la ayuda que nos han prestado en el acceso y recogida de las muestras sanguíneas de los animales utilizados en el presente trabajo.

REFERENCIAS

AMORELLE, R.

Anónimo
1972 Cattle blood and milk polymorphisms. Mimography of Stone, W. H. y Hines, H. C.

BRAEND, M.

DOLA, L., PAVLOWSKI, K. y KIROWSKA-PIERZYK, T.

EBERTUS, R.

ECHEVERRÍA, T.

ERBARD, L. y SCHMID, D. O.

FERGUSON, L. C.

GROSCLAUDRE, F.

HESSELHOLT, M., LARSEN, B., NIELSEN, P. B. y PALLUDAN, B.

LAZAR, P., BÖHM, O. y GLIMA, A.

LAZAR, P., BÖHM, O., SENEGCNK, J., GLIMA, A.

MAKAVEYEV, T.B.
MILLOT, P.

MILLOT, P.

MITAT, J.

OSTERBROFT, D. R.

RAPACZ, J., DORA, L. y JAKOBIEC, J.

REINDEL, J.

REUSEL, J.

SANCHEZ, L.
1976 Comunicación personal.

SKOTA, E., RAPACZ, J. y BARNOW, A.

SOKOLOV, P.

SOTILLO, J. L., RICO, A., SARAZA, R. y HERNÁNDEZ, P.

STORMONT, C.

STORMONT, C., MILLER, W. J. y SUZUKI, Y.