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Abstract 
 

A Micromonospora strain, designated 5R2A7T, isolated from a high altitude Atacama Desert 
 

soil was examined using a polyphasic approach. The isolate was found to have morphological, 
 

chemotaxonomic and cultural characteristics typical of members of the genus 
 

Micromonospora. The cell wall contains meso- and hydroxy-diaminopimelic acid, the major 
 

whole-cell sugars are glucose, ribose and xylose, the predominant menaquinones MK-10(H4), 
 

MK-10(H6), MK-10(H8) and MK-9(H6), the major polar lipids diphosphatidylglycerol, 
 

phosphatidylethanolamine,  phosphatidylinositol   and   an   unknown   glycolipid,   and   the 
 

predominant cellular fatty acids iso-C16:0, iso-C15:0 and 10-methyl C17:0. The digital genomic 
 

DNA G+C content is 72.3 mol%. Phylogenetic analysis of the 16S rRNA gene sequence 
 

indicated that strain 5R2A7T was closely related to Micromonospora coriariae DSM 44875T 

(99.8%) and Micromonospora cremea CR30T (99.7%), and was separated readily from the 
 

latter, its closest phylogenetic neighbour, based on gyrB and multilocus sequence data, by low 
 

average nucleotide identity (92.59%) and in silico DNA-DNA relatedness (51.7%) values 
 

calculated from draft genome assemblies, and by a range of chemotaxonomic and phenotypic 
 

properties.   Consequently, the   strain   is   considered   to   represent   a   novel   species   of 
 

Micromonospora for which the name Micromonospora acroterricola sp. nov. is proposed. 
 

The type strain is 5R2A7T (=LMG 30755T =CECT 9656T). 
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The actinobacterial genus Micromonospora [1,2], the type genus of the family 
 

Micromonosporaceae [3,4] of the order Micromonosporales [5], currently encompasses 83 
 

validly published species (www.bacterio.net/micromonospora.html), including the type 
 

species, Micromonospora chalcea [6,7]. Members of the genus typically form non-motile 
 

single spores on well developed, branched substrate mycelia, lack aerial hyphae, have whole- 
 

cell hydrolysates rich in meso- and/or hydroxy-diaminopimelic acid, arabinose and xylose; 
 

phosphatidylethanolamine as the diagnostic phospholipid in the cell membrane and produce 
 

complex mixtures of menaquinones and saturated and branched-chain fatty acids [7]. 
 

Comparative analyses of whole-genome sequences show that representative 
 

micromonosporae form a monophyletic group composed of four well supported lineages, two 
 

of which were recovered in their entirety in corresponding phylogenetic trees based on single 
 

gene sequences [8]. Carro and her colleagues [8] considered that Micromonospora strains 
 

should be given more prominence in the search for new classes of bioactive compounds as 
 

their genomes showed a much greater potential to synthesize specialized metabolites than 
 

previously realized. Micromonosporae are generally associated with aquatic and terrestrial 
 

habitats, notably soil, are being increasingly found in plant tissues, including nitrogen-fixing 
 

root nodules [7-9] and are a rich source of novel specialized (secondary) metabolites [10,11]. 
 

Culture-dependent and culture-independent surveys show that small numbers of novel, 
 

taxonomically diverse, filamentous actinobacteria, including micromonosporae, are a feature 
 

in Atacama Desert soils [12-14]. The presence of novel micromonosporal propagules in the 
 

Atacama Desert landscape provides a unique opportunity for bioprospecting, not least because 
 

it is now evident that genomes of micromonosporae contain taxon/taxa specific biosynthetic 
 

gene clusters thereby providing a way of prioritising gifted strains for genome mining and 
 

natural product discovery [13,14]. These developments also underline the merit of selecting 
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representatives of novel actinobacterial taxa in the search for new specialized metabolites 
 

 [14,15]. 
 

The present study was designed to establish the taxonomic status of a putatively novel 
 

Atacama Desert isolate [13], strain 5R2A7T, which had been shown to have a unique BOX- 
 

PCR fingerprint and which formed a well supported clade in a Micromonospora 16S rRNA 
 

gene tree together with the type strains   of   Micromonospora coriariae [16] and 
 

Micromonospora cremea [17]. The results of a comprehensive polyphasic taxomonic study 
 

show that strain 5R2A7T represents a novel species within the genus Micromonospora for 
 

which we propose the name Micromonospora acroterricola sp. nov. 
 

Isolate 5R2A7T was recovered from a surface soil sample (2 cm) collected at 5041 meters on 
 

Cerro Chajnantor (23°00′49′′S/67°45′31′′W), adjacent to the Atacama Large Millimeter Array 
 

(ALMA) east of San Pedro de Atacama, Chile in November 2012 [18]. The strain was 
 

isolated on R2A agar [19] supplemented with cycloheximide and nalidixic acid (each at 50 µg 
 

ml-1), using a standard dilution plate procedure [20] and incubation at 28 °C for 4 weeks. The 
 

isolate  was  transferred  to  R2A  agar  lacking  antibiotics  and  found  to  produce  typical 
 

micromonosporal-like  colonies,  that  is,  filamentous,  orange  coloured  colonies  that turned 
 

bluish-black upon spore formation. Strain 5R2A7T and the type strains of M. cremea [17] and 
 

M. coriariae [16] and were maintained on modified Bennett’s agar [23] and as hyphal 
 

fragments and spores in 20% v/v glycerol at − 80 °C for prolonged preservation. Biomass for 
 

the chemotaxonomic, 16S rRNA gene and whole-genome sequencing studies on isolate 
 

5R2A7T was prepared in shake flasks (180 revolutions per minute [rpm]) of yeast extract-malt 
 

extract broth (International Streptomyces Project medium 2 [ISP2]) [24] following incubation 
 

at 28 °C for 14 days and washed three times in sterile distilled water. Cells for the 
 

chemotaxonomic analyses were freeze-dried and those for the sequencing studies stored at 
 

room temperature. 



5  

Cell morphology, Gram staining and motility were observed on a phase-contrast 
 

microscope (Leica; CTR MIC) using 7-day-old cultures grown on ISP 2 agar. Strain 5R2A7T 
 

was Gram-stain-positive, non-motile and showed extensively branched, non-fragmented 
 

substrate hyphae, but lacked aerial hyphae. Single, non-motile spores (0.7- 1.2 µm) were 
 

detected after 2 weeks of incubation (Fig. S1). 
 

The cultural characteristics of the isolate were determined on modified Bennett’s [22], 
 

Gauze’s No. 1 [25] and SA1 agar [26] plates, as well as on ISP2 and oatmeal agar (ISP3) [24] 
 

following incubation at 28 °C for 14 days. The strain was also examined for its ability to grow 
 

in the presence of various concentrations of sodium chloride (1, 2, 5, 7 and 9% w/v) and over 
 

a range of pH (4.0-9.0 at one unit intervals) and temperature regimes (4, 10, 20, 28 37 and 40 
 

°C) using GYM Streptomyces agar (DSMZ medium 65) [27] as the basal medium; pH values 
 

were established using phosphate buffers, as described previously [16]. The temperature tests 
 

were recorded after 7 (40 °C), 14 (20, 28 and 37 °C) and 21 (4, 10°C) days and the  remaining 
 

ones following growth at 28 °C for 14 days. The isolate grew well on all media producing 
 

characteristic colonies; aerial hyphae were not formed. Growth was observed at 20-37 °C, 
 

optimally at 28 °C, but not at 4, 10 or 40 °C; from pH 6-9, optimally at pH 8, but not at pH 4- 
 

5 or 10, and in the presence of maximum 1% w/v sodium chloride, optimally without NaCl. 
 

Strain 5R2A7T was examined for chemotaxonomic markers considered to be 
 

characteristic of strains assigned to the genus Micromonospora [7]. Standard procedures were 
 

used to detect isomers of diaminopimelic acid (A2pm) [28], menaquinones [29], polar lipids 
 

[30] and whole cell sugar composition [31], using appropriate controls. The acyl type of the 
 

cell-wall muramic acid was determined according to method of Uchida et al. [32]. Cellular 
 

fatty  acids  were  extracted,  methylated,  determined  using  gas  chromatography  (Agilent 
 

Technologies, mod. 7890A GC System), and analyzed using the protocol of the Sherlock 
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Microbial Identification (MIDI) system, version 5 [33]; the resultant peaks were named using 
 

the RTSBA6 database. 
 

The chemotaxonomic properties of the isolate were consistent with its assignment to the 
 

genus Micromonospora [7,8].  The  peptidoglycan contains a  mixture of meso-  and hydroxy- 
 

A2pm, the diagnostic whole-organism sugars are ribose and xylose, the cell wall muramic 
 

type is glycolyl, and the predominant menaquinones MK-10(H4), MK-10(H6), MK-10(H8) 
 

and MK-9(H6) in the ratio of 19, 26, 28, and 10%, respectively, and the major polar lipids 
 

diphosphatidylglycerol, phosphatidylethanolamine (diagnostic phospholipid), 
 

 phosphatidylinositol and an unknown glycolipid (Fig. S2). The isolate contained major 
 

 proportions of iso-C15:0 (20% of total), iso-C16:0 (19.3%), C17:0 (8.4%) and 10-methyl C17:0 
 

 (10.0%), lesser  proportions  of  iso-C16:1 (2.2%),  C16:0 (2.0%),  iso-C17:0 (4.0%), anteiso-C17:0 
 

 (7.7%),  iso-C17:1  ω9c  (2.9%),  C17:1 ω8c (4.2%),  C18:1  ω9c (2.3%),  C18:0 (1.7%)  and   trace 
 

 amounts (<1.0) of iso-C13:0, C13:0, C14:0, iso-G C15:1, C15:1 ω8c, anteiso-C16:0, anteiso-C17:1 ω9c, 
 

 iso-C18:0, C19:0, C18:1 2OH and C20:1 ω9c. 
 

Extraction of genomic DNA, PCR-mediated amplification of the 16S rRNA gene of the 
 

isolate and direct sequencing of the purified PCR product were performed, as described by 
 

Golinska et al. [34,35], resulting in an almost complete 16S rRNA gene sequence (1413 
 

nucleotides [nt]) (GenBank accession number: MG725918). Corresponding sequences of the 
 

type strains of closely related Micromonospora species were found using the EzBioCloud 
 

server [36] then aligned using Clustal W [37]. Phylogenetic trees were constructed using the 
 

neighbour-joining  [38]  and  maximum-likelihood  [39]  algorithms  drawn  from the MEGA7 
 

program  [40];  the  resultant  trees  were  evaluated  in  bootstrap  analyses  based  on  1000 
 

replicates [41]. Evolutionary distances were calculated using the two-parameter model of 
 

Kimura [42]. In addition, a multilocus sequence analysis (MLSA) based on 16S rRNA, atpD, 
 

gyrB, recA and rpoB gene sequences was carried out using established procedures [43] and a 
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MLSA tree generated from the 10320 nucleotides using the neighbour-joining and maximum- 
 

likelihood algorithms. Similarly, a gyrB tree based on 1967 nucleotides was generated 
 

following the procedure described by Garcia et al. [44]. 
 

It can be seen from the phylogenetic trees (Fig. 1 and Fig. S3) that isolate 5R2A7T forms a 

well supported 16S rRNA clade together with M. coriariae DSM 44875T and M. cremea 

DSM  45599T;  the  type  strains  of  M.  chersina  [45]  and  M.  endolithica  [46]  are loosely 
 

associated with this taxon. The isolate shares 16S rRNA gene sequence similarities with the 
 

M. coriariae and M. cremea strains of 99.8 and 99.7% respectively, values that correspond to 
 

3 and 5 nt differences at 1407 locations; the corresponding sequence similarities with the M. 
 

chersina and M. endolithica strains were 99.3 and 99.2%. Strain 5R2A7T also shared quite 
 

high 16S rRNA gene sequence similarities with the type strains of M. inositola [47] and M. 
 

terminaliae [48], namely 99.0 and 99.1%, respectively; corresponding similarity scores with 
 

the remaining Micromonospora type strains were below the 98.5% threshold used to 
 

distinguish between closely related prokaryotic species [49]. 
 

The results of the present study provide further evidence that micromonosporal phylogenies 
 

generated  from  gyrB  and  concatenated  sequences  of  housekeeping  genes  show  greater 
 

resolution between constituent strains than corresponding trees derived from analyses of 16S 
 

rRNA gene sequences [13,17,43,50]. It can be seen from the gyrB tree that isolate 5R2A7T 

forms a well supported clade together with M. cremea DSM 45599T, while the type strains of 
 

M. chersina, M. coriariae, M. endolithica and M. inositola form distinct branches in other 
 

parts of the tree (Fig. 2). Even better resolution was found between the strains in the MLSA 
 

tree based on the four housekeeping genes (Fig. 3). It is evident from this tree that isolate 
 

5R2A7T forms a well supported clade together with the type strains of M. cremea and M. 
 

coriariae, appearing also related to the type strains of M. chokoriensis [21], M. lupini [22], M. 
 

saelicesensis [22] and M. zamorensis [17]; all of these strains formed well delineated clades in 
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the  MLSA  and  phylogenomic  trees  generated  by  Carro  et  al  [8];  with  the  exception of 
 

Micromonospora chokoriensis DSM 45160T all of the type strains of these species were 
 

isolated from ecto- and endo-rhizospheres. It is clear from both the gyrB and MLSA trees that 
 

isolate 5R2A7T is most closely related to M. cremea DSM 45599T. 

A single colony of strain 5R2A7T was used to inoculate 50 ml of GYM broth which was then 
 

incubated in a shake flask (180 rpm) for 72 hours at 28 °C. Genomic DNA was extracted from 
 

spun-down biomass and sequenced at MicrobesNG on a MiSeq instrument (Illumina). The 
 

various reads were assembled into contigs using Spades 3.6.2 software [51] and contigs under 
 

500bp discarded. The draft assembly of this publically available genome (GenBank 
 

QGKR00000000) is composed of 369 contigs giving a total size of 6510137 bp with a digital 
 

DNA G+C content of 72.3 mol%. Digital DNA-DNA hybridization (dDDH) similarities were 
 

determined between the genome of strain 5R2A7T and the genomes of the type strains of its 
 

closest phylogenetic neighbours (Fig.3) using the GGDC server [52]. Similarly, the average 
 

nucleotide identity (ANI) between the genome of the isolate and the genomes of the type 
 

strains of its nearest phylogenetic neighbours were calculated according to Rodriguez and 
 

Konstantinidis [53]. The resultant in silico DNA:DNA pairing values between isolate 5R2A7T 
 

and the type strains of M. cremea, M. coriariae, M. chokoriensis, M. lupini, M. saelicesensis 
 

and M. zamorensis were 51.7, 49.6, 37.8, 40.9, 43.3 and 42.1% respectively, values well 
 

below the 70% cut-off point widely used for the delineation of prokaryotic species [54]. The 
 

corresponding ANI similarities between strain 5R2A7T and the six species mentioned above 
 

 were 92.59, 92.11, 88.52, 89.53, 89.36 and 89.48%, values considerably below the 95-96% 
 

threshold used to distinguish between closely related species [49,55]. 
 

The genome of strain 5R2A7T was examined for gene clusters encoding for natural products 
 

using anti-SMASH 4.0 [56] while nif genes were sought using the SEED viewer [57] 
 

following RAST annotation of the genome [58,59]. As expected the organism did not contain 
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nif genes, a result in line with previous studies on micromonosporae [8]. In contrast the 
 

genome of strain 5R2A7T contained 12 biosynthetic gene clusters (BGC’s) including ones 
 

associated with the production of desferrioxamine B, sioxanthin, sap B, as well as ones 
 

encoding   for   bacteriocins,   lantipeptides,   nonribosomal   peptide   synthetase,   polyketide 
 

synthases, siderophores and terpenes. The number of bioclusters found in strain 5R2A7T is 
 

within the range (9-16) found in other members of the group IVa [8] but is well below the 
 

average number associated with Micromonospora strains (20). It is also interesting that all but 
 

one of the 12 BGC’s are associated with compounds detected in closely related 
 

Micromonospora strains, the exception encodes for a product related to fengyacin, antifungal 
 

lipopeptide  originally  described  in  Bacillus  subtilis  [60].  This  compound  has  also   been 
 

detected in three Micromonospora strains isolated from Atacama Desert soil, 
 

Micromonospora ureilytica LB 19, Micromonospora arida LB 32T and Micromonospora 

inaquosa LB 39T [61] but not in micromonosporae isolated from other habitats [8]. 

Strain 5R2A7T was examined for a range of standard biochemical, degradative and 
 

physiological tests [62] which had been used previously to acquire data on its nearest 
 

phylogenetic neighbours, namely and M. cremea DSM 45599T [17] and M. coriariae DSM 

44875T [16]. The enzyme properties of strain 5R2A7T were determined using API ZYM kits, 
 

according to the manufacturer’s instructions; the latter had previously been followed to 
 

acquire corresponding data on the two strains mentioned above. A standard inoculum 
 

corresponding to 5 on the McFarland scale [63] was used to inoculate the tests carried out on 
 

strain 5R2A7T. In addition, the ability of strain 5R2A7T and the type strains of M. cremea and 
 

M. coriariae M. to oxidise diverse carbon and nitrogen sources and to show resistance to 
 

inhibitory compounds were determined using GEN III microplates in an Omnilog device 
 

(BIOLOG Inc., Haywood, USA) using the opm package R version 1.06 [64,65], these tests 
 

were carried out in duplicate. 
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The isolate can be distinguished from the type strains of all its closest phylogenetic 
 

neighbours using a combination of chemotaxonomic and other phenotypic properties (Table 
 

1).  In  particular,  it  can  be  separated  from  M.  cremea  DSM  45599T,  its  overall  closest 
 

phylogenetic relative, as unlike the latter, it gave positive results for α- and β-galactosidase 
 

and α-mannosidase. The corresponding BIOLOG data based on duplicated data showed that 
 

the isolate, but not the M. cremea strain, grew at pH 6.0 and metabolized D-fructose, D- 
 

galactose, β-gentiobiose, myo-inositol, D-mannose, glycyl-L-proline, D-sucrose, D-trehalose, 
 

D-turanose, bromo-succinic acid and α-keto-glutaric acid. In contrast, only M. cremea DSM 
 

45599T utilized N-acetyl-D-galactosamine, D-glucose, glycerol, D-mannitol, inosine, butyric 
 

acid, N-acetyl-neuraminic acid, p-hydroxy-phenylacetic acid, L-pyroglutamic acid and quinic 
 

acid, and was not inhibited by potassium tellurite, tetrazolium blue or tetrazolium violet. It is 
 

also clear from Table 1 that a broad range of phenotypic features can be used to distinguish 
 

strain 5R2A7T from the type strain of M. cremea and M. coriariae. 

In short, strain 5R2A7T can be distinguished from all members of Micromonospora 
 

phylogenomic group IVa [8], based on gyrB and MLSA gene sequences, low ANI and dDDH 
 

scores. A corresponding wealth of taxonomic data separate strain 5R2A7T from M. cremea 

DSM 45599T, its closest phylogenetic neighbour. It is clear from these datasets that strain 

5R2A7T represents a new centre of taxonomic variation within the genus Micromonospora, 
 

the name chosen for thus species is Micromonospora acroterricola sp. nov. The Digital 
 

Protologue database Taxonumber for the strain is CA00035. 
 

 

 

Description of Micromonospora acroterricola sp. nov. 
 

Micromonospora acroterricola (a.cro.ter.ri'co.la. Gr. adj. akros, high, at the top end; L. n. 
 

terra, soil; L. suff.-cola (from L. n. incola, dweller, inhabitant; N.L. n. acroterricola, an 
 

inhabitant of high lands). 
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Aerobic, Gram-stain-positive, chemoorganotrophic actinobacterium which forms non-motile 
 

single spores (0.7 – 1.2 µm) on well developed, extensively branched substrate hyphae 
 

(diameter 0.5 – 1.0 µm), but does not produce aerial hyphae. Colonies are orange on ISP2 
 

agar eventually turning bluish-black on sporulation. Growth occurs between 20-37 oC, 

optimally at 28 oC, from pH 6 to 9, optimally around pH 8 and in presence up to 1% w/v 
 

NaCl. Degrades casein, gelatin and Tween 40, but not pectin, and is catalase and oxidase 
 

positive, produces α-chymotrypsin, cystine arylamidase, esterase (C4), esterase lipase (C8), α- 
 

and β-galactosidase, β-gentiobiose, N-acetyl-β-glucosaminidase, α- and β-glucosidase, β- 
 

glucuronidase, leucine arylamidase, lipase (C14), α-mannosidase acid and alkaline 
 

phosphatase, naphthol-AS-BI-phosphohydrolase, trypsin and valine arylamidase, but not α- 
 

fucosidase. Oxidizes L-alanine, L-arginine, L-aspartic acid, L-glutamic acid and glycyl-L- 
 

proline, but not D-aspartic acid, L-histidine, pyro-glutamic acid or D- and L-serine (amino 
 

acids), and D-cellobiose, D-fructose, D- and L-fucose, L-galactonic acid-γ-lactone, D- 
 

galactose, N-acetyl-D-glucosamine, β-methyl-D-glucoside, D-glucuronamide, myo-inositol, 
 

α-D-lactose, D-maltose, N-acetyl-β-D-mannosamine, D-mannose, D-melibiose, D-fructose-6- 
 

phosphate, D-glucose-6-phosphate, D-raffinose, L-rhamnose, D-salicin, D-sorbitol, sucrose, 
 

stachyose, D-trehalose, D-turanose, but not D-arabitol, dextrin, N-acetyl-D-galactosamine, D- 
 

glucose, 3-O-methyl-D-glucose, glycerol or D-mannitol (sugars) and acetic acid, acetoacetic 
 

acid, γ-amino-n-butyric acid, α- and β-hydroxy-D,L-butyric acid, D-galacturonic acid, D- 
 

glucuronic acid and D-gluconic acid, α-keto-glutaric acid, D- and L-lactic acid, D- and L- 
 

malic acid, propionic acid, methyl-pyruvate and bromo-succinic acid, but not butyric acid, α- 
 

keto-butyric acid, citric acid, mucic acid, N-acetyl-neuraminic acid, p-hydroxy-phenylacetic 
 

acid, quinic acid and D-saccharic acid (organic acids). Sensitive to fusidic acid, guanidine 
 

hydrochloride, lincomycin, minocycline, troleandomycin and vancomycin, but resistant to 
 

aztreonam, nalidixic acid and rifamicin SV. It is inhibited by lithium chloride, niaproof, 
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sodium bromate, sodium formate, sodium lactate (1% w/v), potassium tellurite, tetrazolium 
 

blue and tetrazolium violet. Additional phenotypic data are given in the text and Table 1. The 
 

cell wall contains meso- and hydroxy-A2pm, the whole-cell sugars are glucose, ribose and 
 

xylose, the major fatty acids iso-C16:0, iso-C15:0 and 10-methyl C17:0, the predominant 
 

menaquinones MK-10(H4), MK-10(H6), MK-10(H8) and MK9(H6) and 
 

phosphatidylethanolamine is the diagnostic phospholipid. The dDNA G+C content of the type 
 

strain is 72.3 mol% and its genome size around 6.5 Mbp. 
 

The type strain, 5R2A7T (=LMG 30755T, =CECT 9656T) was isolated from a surface sample 
 

of a high altitude soil collected from Cerro Chajnantor, near San Pedro de Atacama, Chile. 
 

The GenBank accession numbers for the 16S rRNA gene and the whole genome sequence of 
 

the strain 5R2A7T are MG725918 and QGKR00000000, respectively. 
 

To date, two Micromonospora species, Micromonospora arida and Micromonospora 
 

inaquosa, have been isolated from Atacama Desert soils [61]. However, it is unlikely that M. 
 

acroterricola will be the last such species as putatively novel micromonosporae isolated from 
 

this extreme biome have been highlighted based on comparative 16S rRNA gene sequence 
 

data [13] and in metagenomics surveys [18]. These results square with those from culture- 
 

independent studies where small numbers of micromonosporae were found to be a feature of 
 

several Atacama Desert habitats [12,66]. 
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 Table 1. Phenotypic properties that distinguish strain 5R2A7T from its closest phylogenetic 

 relatives. Strains: 1, 5R2A7T; 2, M. coriariae DSM 44875T and 3, M. cremea DSM 45599T. 
 

 +, positive; -, negative. All data are from this study. 
 

 

Characteristic 1 2 3 

Colour of substrate mycelium 
on ISP2 

intense 
orange 

intense 
orange 

cream to 
orange 

Temperature range 20-37 12-37 10-37 
pH range 6-9 6-9 7-8 
Maximum NaCl tolerance (%, 
w/v) 

1 8 1 

API ZYM tests    

α-Chymotrypsin + - + 
α -Galactosidase + + - 
β -Galactosidase + + - 
α -Mannosidase + - - 
Naphthol-AS-BI- 
phosphohydrolase 

+ - + 

GENIII BIOLOG microplate 
tests 

   

(a) Oxidation of amino acids    

Glycyl-L-proline + - - 
L-Pyroglutamic acid - + + 

(b) Oxidation of nucleoside    

Inosine - - + 

(c) Oxidation of sugars    

Dextrin - + - 
D-Fructose + + - 
D-Fucose + - + 
L-Fucose + - + 
D-Galactose + + - 
N-acetyl-β-D-Galactosamine - - + 
β-Gentiobiose + + - 
D-Glucose - + + 
Glucuronamide + - + 
Glycerol - + + 
myo-Inositol + + - 
α-D-Lactose + - + 
D-Mannitol - + + 
N-acetyl-D-Mannosamine + - + 
D-Mannose + + - 
D-Melibiose + - + 
D-fructose-6-phosphate + - + 
D-Fructose-6-Phosphate + - + 
L-Rhamnose + - + 
D-Sucrose + + - 
D-Trehalose + + - 
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Turanose + + - 

(c) Oxidation of organic acids 
   

Acetoacetic acid + - + 
Butyric acid - + + 
α-hydroxy-D,L-Butyric acid + - + 
β-hydroxy-D,L-Butyric acid + - + 
Citric acid - + - 
α-keto-Glutaric acid + - - 
D-Lactic acid methyl ester + - + 
N-acetyl-Neuraminic acid - - + 
p-hydroxy-Phenylacetic acid - - + 
Quinic acid - - + 
D-saccharic acid - + - 
Bromo-Succinic acid 

 

Resistance of inhibitory 
compounds: 

+ - - 

Lithium chloride - + - 
Potassium tellurite - + + 
Sodium bromate - + - 
Sodium chloride (1%) - + + 
Sodium chloride (4%) - + - 
Sodium chloride (8%) - + - 
Sodium lactate (1%) - + - 
Tetrazolium blue - - + 
Tetrazolium violet - + + 
Rifamicin SV + - + 

Growth in presence of NaCl:    

1% w/v - + + 
4% w/v - + - 
8% w/v - + - 
Growth at pH 6 + + - 

 

All strains oxidize L-alanine, L-aspartic acid, L-glutamic acid, but not D-aspartic acid, L- 
 

histidine or D-serine (amino acids), D-cellobiose, N-acetyl-D-glucosamine, β-methyl-D- 
 

glucoside, D-maltose, D-raffinose, salicin, stachyose, but not D-arabitol (sugars), acetic acid, 
 

D-gluconic acid, malic acid, propionic acid and methyl-pyruvate, but not α-keto-butyric acid, 
 

fusidic acid or mucic acid (oranic acids). All strains were resistant to aztreonam and nalidixic 
 

acid, but sensitive guanidine hydrochloride, lincomycin, minocycline, troleandomycin or 
 

vancomycin, and do not grow in pH 5 and presence of niaproof. 
 

 

 

 

 



23  

Legends for Figures 
 

Fig. 1. Neighbour-joining phylogenetic tree based on almost complete 16S rRNA gene 
 

sequences   showing   relationships   between   isolate   5R2A7T   and closely related 
 

Micromonospora type strains. The numbers at the nodes are bootstrap support values 
 

when > 50%. Asterisks indicate branches of the tree that were also recovered in the 
 

maximum-likelihood tree. Catellatospora citrea DSM 44097T was used as the outgroup. 
 

Bar, 0.005 substitutions per nucleotide position. 
 

Fig. 2. Neighbour-joining phylogenetic tree based on almost complete gyrB gene sequences 
 

showing relationships between isolate 5R2A7T and Micromonospora type strains. The 
 

numbers at the nodes are bootstrap support values when > 50%. Asterisks indicate 
 

branches of the tree that were also recovered in the maximum-likelihood tree. 
 

Catellatospora citrea DSM 44097T was used as the outgroup. Bar, 0.02 substitutions 
 

per nucleotide position. 
 

Fig. 3. Neighbour-joining phylogenetic tree based on multilocus sequence aligment of 
 

16rRNA, gyrB, rpoB, atpD, and recA gene sequences showing relationships between 
 

isolate 5R2A7T and Micromonospora type strains. The numbers at the nodes are 
 

bootstrap support values when > 50%. Asterisks indicate branches of the tree that were 
 

also recovered in the maximum-likelihood tree. Catellatospora citrea DSM 44097T was 
 

used as the outgroup. Bar, 0.005 substitutions per nucleotide position. 
 

Fig. S1. Phase contrast image of strain 5R2A7T grown on M65 agar at 28 oC for 3 weeks 
 

showing spores at the top of hyphae. Stained with methylene blue. Bar 5 µm. 
 

Fig. S2. Two dimensional thin layer chromatograph of polar lipids of strain 5R2A7T stained 
 

with molybdenum blue (Sigma). Chloroform:methanol:water (32.5:12.5:2.0 v/v) was 
 

used in the first direction and chloroform:glacial acetic acid:methanol:water (40:7.5:6:2 
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v/v) in the second direction. DPG, diphosphatidylglycerol; GL, glycolipid; PE, 
 

phosphatidylethanolamine; PI, phosphatidylinositol. 
 

Fig. S3. Maximum-likelihood phylogenetic tree based on 16S rRNA gene sequence 
 

comparisons showing the position of strain 5R2A7T relative to the type strains of 
 

Micromonospora species. The numbers at the nodes indicate bootstrap values > 50%. 
 

 Bar, 0.005 substitutions per nucleotide position. 
 
 


