Graphene for terahertz technologies

Klaas-Jan Tirolooij1
Sebastián Castilla2, Bernat Terrés2, Marta Autore3, Leonardo Viti4, Alexey Nikitin3, Miriam Vitiello4, Rainer Hillenbrand3, Frank Koppens2

1Catalan Institute of Nanoscience and Nanotechnology (ICN2), Barcelona Institute of Science and Technology, Bellaterra (Barcelona), Spain
2ICFO – the Institute of Photonic Sciences, Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
3CIC NanoGUNE, Donostia-San Sebastian, Spain
4NEST, CNR – Istituto Nanoscienze and Scuola Normale Superiore, Pisa, Italy

klaas.tirolooij@icn2.cat

The material graphene and the terahertz (THz) region of the electromagnetic spectrum appear to be a happy marriage. There are a number of reasons for this. First of all, graphene absorbs a significant fraction of incident THz light – easily 10% or more – which is significantly more than the absorption of visible light – a few %. This happens through intraband (Drude) absorption, rather than interband absorption. Furthermore, the absorbed energy from incident THz light is efficiently transduced to the electronic system of graphene, whose temperature increases [1]. This electronic temperature is substantial due to the small electronic heat capacity of graphene and its strong electron-electron interactions. The efficient THz-induced carrier heating has several interesting consequences, which will likely become technology relevant. One very recent example is the extremely efficient generation of THz harmonics [2], which is related to the modified THz conductivity of graphene carriers in the heated state [3].

Another very promising application of THz-induced heating of graphene carriers is THz photodetection: through the photothermoelectric (PTE) effect, the THz-induced electron heat is converted into an electronic response. Through an in-depth understanding and optimization of the PTE effect in graphene, and by integration with a narrow-gap (~100 nm) antenna, we have developed a graphene-based THz photodetector [4].

Our THz photodetector operates at room temperature and has a linear response over 3 orders of magnitude in power. Crucially, it outcompetes current room temperature THz detectors on the market, as it is simultaneously

i) highly sensitive, with a noise-equivalent power <100 pW/Hz1/2;

ii) extremely fast, with a response time <30 ns (setup-limited) or 10 ps (RC-time-limited);

iii) broadband, with an antenna-limited spectral sensitivity in the range 2-4 THz.

Importantly, we clearly identify that the PTE effect is responsible for the photoresponse, and show that the experimental results are consistent with a simple analytical model of the PTE photoresponse, and a numerical model of the absorption enhancement due to the narrow-gap antenna structure. This understanding will lead to further performance improvements.

We expect that this graphene-enabled THz detection technology can have applications in fields such as industrial quality control.

References