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ABSTRACT: Lignin is conventionally defined as being formed by the
oxidative polymerization of three main monolignols, p-coumaryl alcohol,
coniferyl alcohol, and sinapyl alcohol, that are derived from the general
phenylpropanoid biosynthetic pathway. Many other phenolic compounds
that are also derived from the phenylpropanoid pathway are also known to
perform as genuine lignin monomers in many plants, as is the case of the
monolignol ester conjugates, phenolic compounds arising from the
truncated biosynthesis of monolignols, or ferulate esters. Recent
investigations, however, have indicated that phenolic compounds arising
from beyond the canonical phenylpropanoid pathway, namely flavonoids,
hydroxystilbenes, and hydroxycinnamic amides, may also behave as
authentic lignin monomers and are incorporated into the lignin in some
plants, further challenging the traditional definition of lignin. This is the
case of the flavone tricin that is incorporated into the lignin of grasses and other monocots, the hydroxystilbene piceatannol
(together with resveratrol and isorhapontigenin, at lower levels) that has been found in the lignins of palm fruit shells, their
respective O-glucosides (astringin, piceid, and isorhapontin) that are present in the lignin of Norway spruce bark, or the ferulic
amides feruloyltyramine, incorporated into the lignin of tobacco and potato tubers, and diferuloylputrescine, which appears to be
incorporated into maize kernel lignin. These valuable compounds are potentially available in high amounts and at low cost and may
be obtained from the waste products from the processing of agricultural or forest biomass.
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■ INTRODUCTION

Lignin is an aromatic polymer characteristic of the cell walls of
terrestrial plants, where it provides rigidity and mechanical
support to the plant, helps the transport of water and solutes, and
plays a role in protecting the plant against pathogens. Lignin
comprises around 15−40% of the plant biomass and is typically
underutilized in selective conversion processes aimed at
obtaining carbohydrates, mostly for the production of cellulose
during pulping for pulp and paper or via pretreatments to
subsequently saccharify and ferment its derived sugar monomers
to various biofuels; lignin is a low-value waste product that is
mostly burned for co-generation of heat and power. However,
the lignin polymer has an aromatic/phenolic skeleton that
makes it an attractive raw material for producing chemicals,
materials, and fuels that are currently obtained from fossil
resources.1−3 Lignin is available in high amounts from
lignocellulosic residues from the processing of agricultural or
forest biomass, and represents a sustainable source to obtain
valuable products. The conversion of low-value lignin side
streams into high-value products will provide additional revenue
streams for both papermaking and biofuel industries. The
valorization of the lignin polymer from different lignocellulosic

substrates is therefore crucial for adding value to these
lignocellulosic materials.
Applications for lignin have been widely addressed and

include the production of power, biofuels, and syngas products,
the formation of macromolecules such as plastics, polymeric
foams, membranes, and carbon fibers, and the formation of low-
molecular-weight phenolic compounds.2−10 However, the
structural complexity, heterogeneity, and variability of the lignin
polymer hinder the development of efficient conversion
technologies for these lignocellulosic materials. Indeed, and
despite decades of study on lignin structure, new structural
features are still being revealed, and several phenolic
compounds, including also phenolics from biosynthetic path-
ways other than the general phenylpropanoid pathway, are
continually being revealed in the lignin of several plants, thus
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expanding the traditional definition of lignin. Enhanced
understanding of the biosynthesis, composition, and structure
of lignins is essential for the full valorization of the lignocellulosic

biomass. In this paper, we review the recent discoveries of
phenolic compounds arising from beyond the general phenyl-
propanoid pathway, namely flavonoids, hydroxystilbenes, and

Figure 1. (A) Structures of the three canonical monolignols, p-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol. (B) “Non-conventional” lignin
monomers also derived from themonolignol biosynthetic pathway. Ligninmonomers acylated at the γ-OHwith acetate, benzoate, p-hydroxybenzoate,
p-coumarate, and ferulate; caffeyl alcohol; 5-hydroxyconiferyl alcohol; hydroxycinnamaldehydes; dihydroconiferyl alcohol; ferulate esters. (C)
Phenolic compounds derived from flavonoids (tricin), (D) hydroxystilbenes (resveratrol, isorhapontigenin, and piceatannol, and their respective O-
glucosides piceid, isorhapontin, and astringin), and (E) hydroxycinnamamides (feruloyltyramine and diferuloylputrescine) biosynthetic pathways, that
have been found to act as true lignin monomers in several plants.
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hydroxycinnamic amides, that have been found to behave as
authentic lignin monomers in some plants and that appear to be
integrally incorporated into the lignin polymer. To the extent
that they can be released by viable processes, these novel lignin
monomers increase the range of valuable products that may be
obtained from the lignin polymer, thus greatly enhancing the
value of certain lignocellulosic materials.

■ LIGNIN BIOSYNTHESIS AND STRUCTURE

Lignin is produced by the oxidative radical polymerization of
three major p-hydroxycinnamyl alcohols (the so-called mono-
lignols, Figure 1A), p-coumaryl alcohol, coniferyl alcohol, and
sinapyl alcohol, that are at the origin of the p-hydroxyphenyl
(H), guaiacyl (G), and syringyl (S) units following incorpo-
ration into the lignin polymer.11,12 The monolignols derive from
the general phenylpropanoid biosynthetic pathway. Their
biosynthesis starts with the deamination of phenylalanine (or
tyrosine) and, briefly, involves sequential hydroxylation
reactions of the aromatic ring, followed by phenolic O-
methylation and the reduction of the carboxylic acid group in
the side chain to an aldehyde and finally to an alcohol, by various
enzymes.11−19 The enzymes implicated in biosynthesis of
monolignols have been widely studied during the past decades
and include phenylalanine/tyrosine ammonia lyase (PTAL),
cinnamate 4-hydroxylase (C4H), 4-coumarate:coenzyme A
ligase (4CL), ferulate 5-hydroxylase (F5H), p-coumarate 3-
hydroxylase (C3H), p-hydroxycinnamoyl-CoA:quinate/shiki-
mate hydroxycinnamoyltransferase (HCT), caffeoyl shikimate
esterase (CSE), caffeoyl-CoA O-methyltransferase
(CCoAOMT), caffeoyl-CoA reductase (CCR), caffeic acid O-
methyltransferase (COMT), and cinnamyl alcohol dehydrogen-
ase (CAD); in some cases the primary substrate is no longer
represented in the classical name, but the names and
abbreviations have been customarily retained. Once synthesized,
the monolignols are delivered to the cell wall, where they are
oxidized to form radicals in a reaction mediated by peroxidases
and/or laccases and then polymerized in a combinatorial fashion
by free-radical coupling mechanisms in an end-wise manner,
generating a series of substructures with a small variety of
interunit linkages within the polymer.11,12 No protein
involvement is found during the polymerization process,
which is a purely chemically controlled process, as evidenced
by the lack of optical activity of the lignin and its degradation
products.20 The most predominant interunit linkages in the
lignin polymer are β-O-4 alkyl aryl ethers that comprise around
50−80% of total linkages in native lignins; other linkages/
substructures are β-5/phenylcoumarans, β-β/resinols, 5-5/
dibenzodioxocins, 5-O-4/biphenyl ethers, and β-1/spiro-
dienones. This mechanism of lignin biosynthesis results in a
lignin polymer that, in contrast to most other biopolymers, lacks
any regular and ordered repeating units, making it particularly
recalcitrant and difficult to depolymerize. The composition and
structure of the lignin significantly vary among taxa and cell type,
as well as the environmental conditions and maturity stage.21−26

In general terms, hardwoods are composed of S and G units,
softwoods are made up of G units and small amounts of H units,
and grasses include all three units, although H units have often
been overascribed due to limitations in analytical techniques and
their interpretation.27 However, besides the three canonical
monolignols, several other phenolic compounds are also known
to behave as true lignin monomers in manylikely allplants,
thus increasing the complexity of the lignin polymer.

■ “NON-CONVENTIONAL” LIGNIN MONOMERS
DERIVED FROM THE PHENYLPROPANOID
PATHWAY

It is now increasingly recognized that many other phenolic
compounds (Figure 1B), also originating from the general
phenylpropanoid biosynthetic pathway, also behave as true
lignin monomers in many plants, participating in radical
coupling reactions and being incorporated into the lignin
polymer. This is the case of monolignol ester conjugates (with
acetates, p-coumarates, p-hydroxybenzoates, or the newly found
ferulate and benzoate analogs) that are found in a variety of
plants.28−35 Monolignol acetates are ubiquitous in angiosperms
and are found in high amounts (sometimes reaching up to 80%
acetylation degree) in the lignins of several plants, such as kenaf
(Hibiscus cannabinus), sisal (Agave sisalana), and abaca (Musa
textilis), as well as in some hardwoods, such as hornbeam
(Carpinus betulus) that has a degree of monolignol acetylation of
up to 45%.28,29,36−38 Monolignol p-hydroxybenzoates are widely
found in palms, poplar, willow, and aspen;32,39−43 they have also
recently been found at particularly high levels in the lignin of the
seagrass Posidonia oceanica, which has p-hydroxybenzoylation in
both G (73%) and S (61%) lignin units.44 Monolignol p-
coumarates are typical components of grass lignins and have also
been found in significant amounts in other monocots, such as
curaua (Ananas erectifolius) and abaca.29−31,45,46 Monolignol
ferulates have been recently described, although at low levels, in
different plants.33 Monolignol benzoates have also been recently
reported in the lignins of some palms, such as date (Phoenix
dactylifera) and macaub́a (Acrocomia aculeata) palms,34,42 and
were recently found in trace levels in aspen in a study revealing
that co-downregulation of C3H and C4H genes elevated the
level markedly.35 The incorporation of these monolignol ester
conjugates into the lignin polymer generates characteristic and
diagnostic structures, as is the case of the tetrahydrofuran
structures produced from the β-β coupling of γ-acylated
monolignols, which demonstrates that they behave as true
lignin monomers.28−32,37,43,47

Besides the above monolignol ester conjugates that may be
regarded as monomers from extensions of the monolignol
biosynthetic pathway, products resulting from pathway
truncation, or from incomplete conversion during some pathway
steps, may also enter lignification and therefore behave as lignin
monomers. As an example of pathway truncation, hydroxy-
cinnamaldehydes, the immediate precursors of monolignols,
have been found in the lignins of various mutant and transgenic
plants deficient in CAD,48−53 but are also present at low levels in
most lignins. Phenolic compounds derived from the incomplete
methylation of aromatic 3- and 5-hydroxy intermediates on the
pathway that nevertheless continue full side-chain trans-
formation to the alcohol, such as the caffeyl and 5-hydroxy-
coniferyl alcohols, have been found incorporated into the lignins
of OMT-downregulated transgenics,54−57 and in some plant
seed coats.58−60 Lignins derived exclusively from caffeyl alcohol
(so-called C-lignin) were discovered in seed coats of vanilla
orchid (Vanilla planifolia) and in some members of the
Cactaceae, Euphorbiaceae, and Cleomaceae families; this C-
lignin has an unusual structure, being essentially a homopolymer
of caffeyl alcohol linked through β-O-4-coupling and producing
chains of benzodioxane structures.58−60 Lignins composed of 5-
hydroxyguaiacyl units derived from 5-hydroxyconiferyl alcohol,
and also forming benzodioxane chains, were found in the seeds
of three species of Escobaria.59 The benzodioxane structures
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produced from the incorporation of caffeyl and 5-hydroxy-
coniferyl alcohols provided evidence for their participation in
radical coupling reactions during lignification.58−60

Monomers that derive from the phenylpropanoid pathway in
some way but do not fit into the above categories are also
common. Dihydroconiferyl alcohol has been described in
gymnosperm lignins and is an abundant component in a
CAD-deficient pine mutant.61−63 Guaiacylpropane-1,3-diol is
also found in gymnosperm lignins and has been shown to derive
from dihydroconiferyl alcohol.62 Polysaccharide hydroxy-
cinnamate esters (particularly ferulates) are incorporated into
the lignin of grasses.64,65 Ferulates mostly acylate the arabinosyl
residues of (glucurono)arabinoxylans and participate in
oxidative coupling reactions forming ferulate dehydrodimers,
and higher dehydro-oligomers, through different linkages (i.e.,
8-O-4, 4-O-5, 8-8, 5-5, and 8-5 linkages); in addition, ferulates
and dehydrodiferulates can also cross-couple with monolignols
or the growing lignin chain, producing a lignin−hydroxy-
cinnamate−carbohydrate complex.31 On the other hand, ferulic
acid itself also appears to behave as an authentic lignin
monomer, incorporated at low levels into the lignin structure
in CCR-deficient plants; incorporation of ferulic acid into the
lignin polymer causes the formation of acetals that reveal its
incorporation through radical coupling reactions.66,67

Overall, it is therefore evident that all the phenolic
compounds mentioned above, which are still derived in some
way from the general phenylpropanoid biosynthetic pathway,
are integrally incorporated into lignins by radical coupling
reactions that typify lignification, and logically they need to be
considered authentic lignin monomers.

■ LIGNIN MONOMERS FROM BEYOND THE
MONOLIGNOL BIOSYNTHETIC PATHWAY

Recent investigations from our groups have demonstrated that
other phenolic compounds arising from outside the classical
monolignol biosynthetic pathway, namely the flavonoid,
hydroxystilbene, or hydroxycinnamamide biosynthetic path-
ways (Figure 1C−E), also behave as authentic lignin monomers,
participating in radical coupling reactions with monolignols
and/or lignin oligomers to become incorporated into the lignin
in several plants.68−75 The characteristic that all these “novel”
lignin monomers have in common is that they are metabolic
hybrids, as they are derived from a combination of the
phenylpropanoid biosynthetic pathway and other biosynthetic
pathways, such as the acetate/malonate-derived polyketide
biosynthetic pathway (in the case of flavonoids and hydroxy-
stilbenes) or the amino acid biosynthetic pathway (in the case of
the hydroxycinnamamides).
Lignin Monomers from the Flavonoid and Hydroxy

stilbene Biosynthetic Pathways. Flavonoids and hydroxy-
stilbenes share a common biosynthetic origin, as they are
produced from a p-coumaroyl-CoA unit and three malonyl-CoA
units, added sequentially by a polyketide synthase and
producing a tetraketide intermediate. Depending on the activity
of the polyketide synthase, chalcone synthase (CHS) or stilbene
synthase (STS), subsequent folding and cyclization of the
generated tetraketide intermediate result in the production of
either a chalcone or a stilbene.76 Flavonoids include different
classes of compounds, such as flavones, flavanones, flavonols,
isoflavones, anthocyanins, chalcones, aurones, xanthones, and
flavanols.77,78 Simple hydroxystilbenes, however, have a more
restricted number of compounds that, by definition, consist of
two phenolic moieties linked by an ethylene bridge and, similarly

to monolignols, are particularly prone to participating in
oxidative coupling reactions to produce dimers and higher
oligomers.78−81 Flavonoids and hydroxystilbenes are known to
participate in oxidative radical coupling reactions with mono-
lignols to produce the so-called flavonolignans and stilbeno-
lignans that occur in many plants,82−84 which reveals their
compatibility with lignification. Recent investigations have
demonstrated that some members of the flavonoids (such as
the flavone tricin) and hydroxystilbenes (such as resveratrol,
isorhapontigenin, and piceatannol), and including their
respective O-glucosides (piceid, isorhapontin, and astringin),
behave as authentic lignin monomers in some plants and
become incorporated into the lignin by radical coupling
reactions with monolignols and the growing lignin poly-
mer.42,68,69,71,75

Tricin. The flavone tricin (Figure 1C) was the first phenolic
compound derived from outside the canonical monolignol
biosynthetic pathway that was recognized as a true lignin
monomer participating in cross-coupling reactions with mono-
lignols and being integrally incorporated into the lignin
polymer.68 Tricin is a secondary metabolite widely present in
many plants, principally grasses, where it can occur in extractable
form as free tricin, or forming tricin-O-glycosides, flavono-
lignans, and flavonolignan glycosides.85 But more importantly, a
significant fraction of tricin was also discovered to be
incorporated into the lignin polymer in many plants. Tricin
was first discovered in the lignin from wheat straw, and its
structure was fully established by detailed NMR analyses that
also revealed that the 4′-OH of ring-B was not free but linked to
the lignin polymer through 4′-O-β ether bonds (as shown in
Figure 2).68 Biomimetic radical coupling reactions of tricin with
the three canonical monolignols confirmed that tricin can cross-

Figure 2. Mode of incorporation of tricin into the lignin polymer
through 4′-O-β-linkages.
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couple with monolignols (or the growing lignin chain)
exclusively through 4′-O-β-ether linkages following the
mechanism illustrated in Figure 2; no other types of cross-
coupled products were formed, nor were homodimeric coupling
products seen.71 These results confirmed those already observed
in native lignins, and corroborated the contention that tricin can
only cross-couple with monolignols through its phenyl-
propanoid moiety by 4′-O-β linkages. As tricin cannot undergo

radical dehydrodimerization and its only possible mode of
incorporation into the lignin is via 4′-O-β-coupling, tricin can
thus only appear at the starting end of the lignin chain, and this
suggests a potential role as a nucleation site for lignification in
grasses (and in other monocots).71

The analysis of the phenolic metabolites present in the
lignifying zone of maize revealed the occurrence of a wide array
of tricin-containing flavonolignans resulting from the coupling

Figure 3. Lignin biosynthetic pathway in grasses showing the interconnections of the monolignol and the flavonoid biosynthetic pathways. PAL,
phenylalanine ammonia lyase; TAL, tyrosine ammonia lyase; C4H, cinnamate 4-hydroxylase; 4CL, 4-coumarate:CoA ligase; HCT, p-
hydroxycinnamoyl-CoA:quinate/shikimate p-hydroxycinnamoyltransferase; C3H, p-coumaroyl ester 3-hydroxylase; CSE, caffeoyl shikimate esterase;
CCoAOMT, caffeoyl-CoA O-methyltransferase; CCR, cinnamoyl-CoA reductase; Cald5H (= F5H, ferulate 5-hydroxylase), coniferaldehyde 5-
hydroxylase; CaldOMT (= COMT, caffeate O-methyltransferase), 5-hydroxyconiferaldehyde O-methyltransferase; CAD, cinnamyl alcohol
dehydrogenase; PMT, p-coumaroyl-CoA:monolignol transferase; CHS, chalcone synthase; CHI, chalcone isomerase; FNSII, flavone synthase II;
F3′H, flavonoid 3′-hydroxylase; FOMT, flavonoid O-methyltransferase; C5′H, crysoeriol 5′-hydroxylase.
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of all threemonolignols with tricin, forming the respective tricin-
4′-O-(β-arylglyceryl) ethers, along with the products arising
from the cross-coupling of tricin with the different γ-acylated
monolignols (the coniferyl and sinapyl acetate and p-coumarate
conjugates).72 These dimers are similar to the flavonolignans
threo/erythro tricin-4′-O-β-guaiacylglycerol ethers, also known
as salcolins A and B, that have been described in several
plants.86−88 Trimeric compounds arising from the coupling of
tricin-(4′-O-β)-monolignols with a further 4-O-β or 5-β linkage
to another monolignol (including acylated monolignols) were
also identified among the maize metabolites. In all cases, these
tricin-containing metabolites were found to be fully racemic,72

further evidencing the combinatorial nature of the cross-
coupling reactions between tricin and monolignols. It was,
therefore, evident that the dimeric compounds resulting from
the coupling of tricin with monolignols (and with their acetate
and p-coumarate conjugates) should not be termed flavono-
lignans (which should be optically active); hence, these
compounds should be considered to be oligomers that are
intended for the lignin polymer, and the more appropriate term
“flavonolignols”, or specifically “tricin-oligolignols”, was coined
for them.72

Following the discovery of tricin in the lignin from wheat
straw, several other studies started to report the presence of
tricin in the lignins of other grasses, including giant reed (Arundo
donax),89 bamboo (Phyllostachys pubescens),90 carex (Carex
meyeriana),91 barley (Hordeum vulgare),92 rice (Oryza sativa),93

maize (Zea mays),71 and sugar cane (Saccharum sp.),94

suggesting that tricin is a ubiquitous component in the lignin
of grasses. Moreover, tricin was also found in the lignin of
coconut (Cocos nucifera) coir,41 the first report of tricin in the
lignin of a plant out of the Poaceae family, expanding the range
of plants with tricin incorporated into their lignins to other
monocots. All these studies revealed that tricin occurs widely
among monocot lignins, being particularly widespread and
abundant in the lignin from grasses. A further survey of more
than 50 plants from different origins (including angiosperm
monocots and eudicots, and gymnosperms) expanded the range
of species that have tricin incorporated into their lignins and
indicated that it was widely distributed in all lignins from species
of the Poaceae family, being particularly abundant in oat (Avena
sativa) and wheat (Triticum durum) straws, as well as in
Brachypodium (Brachypodium distachyon).73 The survey
indicated that tricin also occurred in the lignins of other
monocots, and that besides coconut, tricin was present in the
lignins of the vanilla plant (Vanilla planifolia andV. phalaenopsis)
and in boat orchid (Cymbidium nonna) from the Orchidaceae;73

minor amounts of tricin were also found in the lignin from
curaua (Ananas erectifolius) from the Bromeliaceae. In general
terms, tricin was absent in the lignins from eudicotyledons,
although minor amounts were detected in the lignin of alfalfa
(Medicago sativa) from the Fabaceae.73,95 No traces of tricin
were observed in the lignins from gymnosperms. In addition, all
these studies revealed that tricin was only present in the lignins
of the aerial parts of the plants, suggesting a possible role as a UV

Figure 4. (A) Oxidative radicalization resulting from one-electron oxidation of piceatannol stabilized by delocalization at the 4-O-, 5-, 1-, 8-, 10-, and
12-positions. (B) Modes of incorporation of piceatannol into the lignin polymer of palm fruit endocarps: Pb, benzodioxane structure formed via 8-O-
4′-type radical coupling of two piceatannol units followed by internal trapping of the quinone methide intermediate by the 3′-hydroxyl group; Pc,
phenylcoumaran structure formed by the radical coupling of two piceatannol units followed by a subsequent 11′-O-7 bonding during re-aromatization
of the quinone methide intermediate; V, benzodioxane structure formed by cross-coupling of a monolignol (at its β-position) and the catechol moiety
of piceatannol (at its O-4′-position), followed by internal trapping of the quinone methide intermediate by the 3′-hydroxyl group in the piceatannol
unit.
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protection agent; in addition, tricin can confer antimicrobial and
antioxidant properties to the plant.96,97

All these reports demonstrated that tricin is an important
component in the lignins of all grasses, and several studies have
addressed the biosynthetic pathways of tricin and its inter-
connection with the monolignol biosynthetic pathway, leading
to its incorporation into the lignin polymer, which is
summarized in Figure 3. The biosynthesis of flavones is
controlled by CHS that converts p-coumaroyl-CoA into
naringenin chalcone. The resulting naringenin chalcone is
then isomerized by chalcone isomerase (CHI) to the flavanone
naringenin, which is the common precursor for the biosynthesis
of all major classes of flavonoids. The biosynthetic pathway
leading from naringenin to tricin in grasses has only been
recently elucidated.98,99 These investigations indicated that
naringenin is converted into apigenin by a flavone synthase II
(FNSII), and subsequent sequential hydroxylations and O-
methylations at the B-ring produce the respective luteolin,
chrysoeriol, selgin, and finally the flavone tricin. It has also been
recently demonstrated in several grasses (maize, rice, and
sorghum) that the COMT involved in the synthesis of
sinapaldehyde and sinapyl alcohol in the monolignol bio-
synthetic pathway also participates in the biosynthesis of tricin in
planta.99−102 The interconnection of the monolignol and the
flavonoid biosynthetic pathways in the biosynthesis of grass
lignins was fully evidenced in a CHS-deficient mutant in maize,
that prevented the formation of naringenin chalcone, and tricin
in the last step, and therefore, the subsequent incorporation of
tricin into the lignin polymer.103

Although tricin is the only flavonoid that has been found, to
date, incorporated into the lignin in some wild plants, it is likely
that other flavonoids may also occur in other lignins. The
occurrence of several other flavonoids from different families,
such as taxifolin, quercetin, eriodictyol, dihydrotricin, apigenin,
luteolin, and selgin, which are known to cross-couple with
monolignols, forming different flavonolignans,82,83 is an
indication that these phenolic compounds might also be
compatible with lignification. It is then probable that, in the
coming years, we may see the discovery of other flavonoids
incorporated into the lignin in some plants.
Piceatannol, Resveratrol, and Isorhapontigenin. Hydroxy-

stilbenes are in another class of polyphenolic compounds that
have been recently reported to behave as authentic lignin
monomers in some plants. The hydroxystilbenes piceatannol,
resveratrol, and isorhapontigenin have been found incorporated
into the lignin of palm fruit endocarps.42,69 The first evidence for
the occurrence of hydroxystilbenes incorporated into the lignin
polymer came from the release of significant amounts of
piceatannol from lignin preparations isolated from several palm
fruit (macaub́a, carnauba, and coconut) endocarps by the so-
called “derivatization followed by reductive cleavage” (DFRC)
degradation method.69 DFRC selectively cleaves β-O-4 bonds in
lignins, releasing the corresponding lignin monomers involved
in those linkages.104,105 This indicates that piceatannol (and to a
lower extent resveratrol and isorhapontigenin) is an important
component in the lignins of palm fruit endocarps, and that at
least a part of them are present in the lignin polymer as β-ether-
linked structures, the ones cleaved by DFRC. However, and
unlike the flavone tricin, which has only one possible mode of
coupling with monolignols through 4′-O-β linkages, piceatannol
can couple and cross-couple with other piceatannols as well as
with monolignols (and oligolignols) by a variety of pathways,
generating condensed structures that are not amenable to

DFRC. It is therefore likely that the real amounts of piceatannol
and other hydroxystilbenes incorporated into these lignins could
be significantly higher than those released by DFRC
degradation. Similarly to monolignols, hydroxystilbenes can be
oxidized by peroxidases to form radicals that are stabilized by
resonance, as shown for piceatannol in Figure 4. These radicals
can participate in radical coupling reactions with other
piceatannols, as well as with monolignols and the growing
lignin chain, to become incorporated into the lignin polymer
through different linkages and producing different structures in
the polymer. Important information regarding the different
forms of incorporation of piceatannol into the lignin was
provided by NMR analyses and in vitro biomimetic synthesis
that identified the different linkages and structures involving
piceatannol in the lignin polymer, as depicted in Figure 4. These
structures included a dehydrodimerization product of the
coupling of two piceatannol units involving 8-O-4′/3′-O-7
linkages and producing a benzodioxane structure (Pb) similar to
the stilbene dimer cassigarol E,106−108 another dehydro-
dimerization product of two piceatannol units involving 8-10′/
11′-O-7 linkages and producing a phenylcoumaran structure
(Pc) similar to the stilbene dimer scirpusin B,109−111 and a cross-
coupling product of a piceatannol unit and a monolignol
involving β-O-4′/3′-O-α linkages and producing a benzodioxane
structure (V) similar to the stilbenolignan aiphanol.112 In vitro
biomimetic dehydrodimerization/oligomerization of piceatan-
nol produced the same types of structures (Pb, Pc, and V)
observed in the lignins of palm fruit endocarps. Likewise,
biomimetic cross-coupling reactions between piceatannol and
monolignols (coniferyl and sinapyl alcohols) corroborated that
the benzodioxane structures V can be easily formed during the
radical reaction.69 The occurrence of all of these homo- and
cross-coupled structures in the lignins of palm fruit endocarps
conclusively demonstrates that the hydroxystilbene piceatannol
performs as an authentic lignin monomer, participating in
radical coupling reactions during lignification and being
incorporated into the lignin. A further study of the
thermodynamics of these reactions using density functional
theory (DFT) calculations confirmed that the energetics of the
coupling and cross-coupling reactions are comparable with
those of the monolignol coupling, proving again the
compatibility of piceatannol with the lignification process.113

The incorporation of hydroxystilbenes into the lignins of palm
fruit endocarps was suggested to have a potential role in seed
protection. The incorporation of piceatannol (and other
hydroxystilbenes) augments the lignin by including other
phenolic compounds present in the cell wall into the lignin
polymer, which indeed may form more condensed structures,
such as the phenylcoumarans and benzodioxanes shown above,
likely contributing to endocarp hardening. Hydroxystilbenes can
also provide additional antioxidant, antifungal, and antiviral
properties,114−116 thus further contributing to seed protection.

Isorhapontin, Astringin, and Piceid. The hydroxystilbene
glucosides, isorhapontin (isorhapontigenin-O-glucoside), as-
tringin (piceatannol-O-glucoside), and piceid (resveratrol-O-
glucoside), have been recently found incorporated into the
lignin in Norway spruce (Picea abies) bark.75 Interestingly, a
previous paper had also reported the occurrence of hydroxy-
stilbene glucosides in a “milled bark tannin-lignin” fraction
isolated from Norway spruce bark, although the authors
suggested that they were linked to the condensed tannin moiety
instead of the lignin polymer.117 The incorporation of
hydroxystilbene glucosides into the lignin was evidenced by
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the release of the corresponding aglycones (mostly isorhaponti-
genin and piceatannol, together with lower amounts of
resveratrol), along with glucose, by DFRC degradation of a
lignin preparation from Norway spruce bark, indicating that at
least a fraction of the hydroxystilbene glucosides (particularly
isorhapontin and astringin) is incorporated into the lignin
through β-ether linkages. Additional NMR studies confirmed
that hydroxystilbene glucosides were present in the lignin of
Norway spruce bark and provided information on their modes of
incorporation.75 Several structures involving hydroxystilbene
glucosides, similar to those formed for the incorporation of
piceatannol into the lignins of palm fruit endocarps (Figure 4),
were found in the lignin of Norway spruce bark, including
benzodioxane (Pb) and phenylcoumaran (Pc) structures
involving coupling of two hydroxystilbene glucosides (mostly
isorhapontin and astringin), as well as a minor amounts of a
benzodioxane structure (V) formed by cross-coupling of
astringin and coniferyl alcohol. The occurrence of these
structures involving hydroxystilbene glucosides indicates that
these phenolic compounds, particularly isorhapontin and
astringin, can also be considered as authentic lignin monomers
in Norway spruce bark. The hydroxystilbene glucosides
isorhapontin and astringin, as occurs with their respective
aglycones isorhapontigenin and piceatannol, can also be
oxidized by laccases or peroxidases to form radicals that are
stabilized by resonance, similarly to those shown for piceatannol
in Figure 4; these radicals can then undergo radical coupling
reactions with other hydroxystilbene glucoside radicals, with
monolignols, or with the growing lignin chain to be incorporated
into the lignin polymer, forming the structures shown above.
The hydroxystilbene glucoside isorhapontin contains a guaiacyl
ring, and therefore it can also easily cross-couple with coniferyl
alcohol or lignin oligomers in different ways, forming β-O-4′-
alkyl aryl ethers, β-5′-phenylcoumarans, or 5-5′/4-O-β″-
dibenzodioxocins.75

Lignin Monomers from Hydroxycinnamamides.
Hydroxycinnamic amides (hydroxycinnamamides) are present
in numerous plants in which they contribute to many
developmental processes as well as plant responses against
biotic and abiotic stress.118,119 Among them, several ferulamides
have been shown to be incorporated into the lignin structure in
some plants, where they appear to behave as true lignin
monomers.

Feruloyltyramine. Feruloyltyramine was the first hydroxy-
cinnamamide described to behave as a true lignin monomer in
several plants from the Solanaceae. Feruloyltyramine was found
in the lignin of tobacco (Nicotiana tabacum) plants,48,120,121 and
was also shown to be covalently linked to the cell wall in potato
(Solanum tuberosum) tubers.122 Identification of feruloyl-
tyramine was accomplished by detailed thioacidolysis and
NMR analyses that indicated that it was mainly incorporated
into the lignin through the ferulate moiety. The ferulate moiety
of feruloyltyramine, as in other ferulate conjugates, can be
oxidized by peroxidases and/or laccases, forming radicals that
are stabilized by resonance (Figure 5A) and that can participate
in radical coupling reactions (with other ferulates, monolignols,
or the growing lignin polymer), to become incorporated into the
polymer.31 However, feruloyltyramine has two phenolic ends,
and the phenolic group of the tyramine moiety may also be
oxidized in parallel, forming another radical that is delocalized
over the tyramine aromatic ring system (Figure 5B), providing
additional sites for radical coupling. As with other non-
methoxylated rings, the phenol might be expected to undergo
radical transfer rather than radical coupling, but its coupling with
other ferulates, monolignols, or the growing lignin polymer has
already been shown with lignin model substrates.123,124 Thus,
the major part of feruloyltyramine is attached to the cell wall of
potato tuber through 8-O-4′- ether and 8-5′-phenylcoumaran
linkages involving the ferulate moiety; however, a significant part
(∼20%) of the feruloyltyramine is apparently attached to the cell

Figure 5. (A) Oxidative radicalization of feruloyltyramine, and resonance forms at 4-O-, 5-, and 8-positions of the ferulate moiety. (B) The tyramine
moiety may also be oxidized in the same manner, producing a radical that is stabilized by resonance and can couple at its 4′-O- and 3′-positions.
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wall through the phenolic group of the tyramine moiety.122 The
synthesis of feruloyltyramine is catalyzed by the hydroxy-
cinnamoyl-CoA:tyramine N-(hydroxycinnamoyl)transferase,
which has been found in tobacco and potato.125 It has been
observed that the abundance of feruloyltyramine in these plants
increases in response to plant wounding and pathogenic attack;
it is therefore possible that under these circumstances the
biosynthetic pathway leading to the production of this
metabolite is up-regulated to produce a functional lignin
polymer used for wound healing.
Diferuloylputrescine. More recently, the ferulamide

diferuloylputrescine has also been found to be incorporated
into the lignin polymer of maize kernels.70 The identification
was accomplished by detailed NMR analysis that established the
structure of diferuloylputrescine and indicated that it was
incorporated into the lignin through the ferulate moiety. As
occurs with feruloyltyramine and other ferulate conjugates, each
ferulate moiety in the diferuloylputrescine molecule can be
oxidized by peroxidases and/or laccases forming radicals that are
stabilized by resonance (Figure 6). These radicals can couple

and cross-couple with another ferulate moiety, or with
monolignols and the growing lignin polymer via radical coupling
reactions, to become incorporated into the lignin polymer. The
modes of incorporation of diferuloylputrescine into the lignin of
maize kernels were elucidated by NMR analyses, and different
types of linkages and structures involving diferuloylputrescine
were found (Figure 6). Diferuloylputrescine is mostly
incorporated into the lignin through 8-5′ linkages involving
one of the ferulate moieties and producing a phenylcoumaran
structure; the unambiguous identification of this structure in the
lignin of maize kernel by NMR provided compelling evidence
for the participation of diferuloylputrescine in radical coupling
reactions, and its incorporation into the cell wall by covalent
linkages.70 Other coupled structures involving incorporation of
diferuloylputrescine through 5-5′, 8-O-4′, and other linkages
were also evidenced by the presence of characteristic signals for
feruloyl amides in the HMBC spectrum of maize kernels.70 The
occurrence of all these linkages demonstrates that diferuloyl-
putrescine behaves as a true lignin monomer, participating in

Figure 6. (A) Oxidative radicalization resulting from one-electron oxidation of diferuloylputrescine stabilized by delocalization; resonance forms are
displayed in which the single-electron density is shown to localize at the 4-O-, 5-, and 8-positions of one ferulate moiety. The other ferulate moiety can
also be oxidized in the samemanner, allowing it also to undergo independent radical coupling. (B)Modes of incorporation of diferuloylputrescine into
the lignin polymer through cross-coupling at the 4-O-, 5-, and 8-positions with other ferulates, monolignols, or the growing lignin chain.
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radical coupling reactions during lignification and being
incorporated into the lignin in maize kernels.

■ EXTENSION OF THE LIGNIN PARADIGM

Lignin has long been considered as derived from the oxidative
polymerization of the three canonical monolignols, as well as of
other related compounds also derived from the classical
monolignol biosynthetic pathway. However, as shown above,
different polyphenolic compounds from beyond the canonical
monolignol biosynthetic pathway (flavonoids, hydroxystilbenes,
hydroxystilbene glucosides, ferulamides) have been found to
behave as authentic lignin monomers in several plants
participating in radical coupling reactions during lignification
and being incorporated into the lignin polymer, thus expanding
and challenging the traditional definition of lignin. All these
discoveries indicate that the plant is capable of using a wide
variety of phenolic compounds, other than the canonical
monolignols, for the formation of the lignin polymer. As was
noted in a casual article some time ago,126 the best alternative
monomers are those capable of radical coupling in the
(unsaturated) side chain to form β-ether analogs, not just on
the aromatic ring whereby the monomer can only become a
polymer starting unit, or being coupled with the growing
polymer into 4-O-5 or 5-5 units that do not constitute true
branching. The discovery of “non-conventional” phenolic
precursors beyond the established phenylpropanoid biosyn-
thetic pathway demonstrates that the mechanism of lignification
is particularly flexible and demonstrates that any phenolic
compound that is transported to the cell wall may be oxidized
and incorporated into the lignin polymer via radical coupling
reactions, subject exclusively to simple chemical compatibility,
as is increasingly being recognized.11,12,14,16,31,127 In short, the
plant can accommodate all these phenolic compounds, each of
which is simply another brick in the wall, for copolymerization
with monolignols to produce a functional lignin polymer.
Whether or not the properties of such copolymers, particularly
those that are created by our engineering efforts, provide
advantages to the plant/tissue can be debated. Those
copolymers that evolved early on and remain as distinct features
in various “natural” plants surely attest that they either do
provide advantages or at least do not have significant
disadvantages to the plant’s viability.

■ SOURCES OF VALUABLE BIOACTIVE COMPOUNDS

The aromatic structure of lignin makes it an interesting
renewable raw material for producing useful chemicals, fuels,
and other commodities, in the context of a lignocellulosic
biorefinery. Conversion of lignins to low-molecular-weight
aromatic compounds offers a promising route for the valor-
ization of lignins. The discovery of valuable phenolic
compounds incorporated into the lignin of several plants
provides new knowledge of the chemical structure and
variability of the lignins from different lignocellulosic residues
and will promote additional interest in deriving value from
lignins from lignocellulosic materials, particularly from agricul-
tural waste products. As shown above, the lignins from several
agricultural and forest residues contain significant amounts of
valuable compounds, such as the flavone tricin in cereal straws,
the hydroxystilbenes piceatannol, resveratrol, and isorhaponti-
genin in palm fruit shell residues, hydroxystilbene glucosides in
Norway spruce barks, or diferuloylputrescine in maize fibers, a
byproduct of the wet-milling of maize grain, that will allow the

development of optimized and sustainable uses of agroforestry
residues, improving the competitiveness of agricultural and
forest-based sectors. We have shown that these compounds can
be (partially) released using analytical methods. Although it
remains to be determined how efficiently and at what cost some
of these potentially valuable compounds can be recovered
industrially, many of the wastes generated in agricultural
processes may be considered as renewable feedstocks for the
production of value-added chemicals and other products from
lignin. Among the non-classical phenolic compounds incorpo-
rated into the lignin structure, tricin has been the most studied.
Tricin can be found in plants in extractable form, as free tricin,
forming glycosides, or in low-molecular-weight flavonolignans
(or flavonolignols). A quantitative study found that the content
of tricin incorporated into the lignin polymer was much higher
than the content of extractable tricin, reaching up to 4841, 1304,
5250, and 980 mg/kg in wheat, maize, oat, and rice straws (in
comparison to only 1014, 274, 1377, and 195 mg/kg of
extractable tricin),73 which indicates that grass straw lignins, an
abundant material that is usually regarded as waste, may be an
attractive and potential source for the extraction of this valuable
compound. On the other hand, the palm oil industry also
generates high amounts of palm fruit shell residues, and
similarly, large amounts of bark from Norway spruce are
generated by the timber and pulp and paper industries. These
wastes, which are mostly burned to co-generate power, or are
basically left in the ground, can also be considered as an
important source for obtaining high-value hydroxystilbenes. The
particularly high levels of simple p-hydroxybenzoate esters in oil
palm empty fruit bunches can provide a source of the acid for
parabens and even pharmaceuticals production; a popularized
example is the production of the commercial pain reliever and
fever reducer Tylenol (paracetamol, acetaminophen) by a much
shorter and more efficient pathway than it is produced from
fossil-derived benzene today.128

■ LIGNIN ENGINEERING TO ENHANCE THE
PRODUCTION OF HIGH-VALUE PRODUCTS

Metabolic engineering is a useful tool that can be used to
increase the amounts of valuable compounds that can be
extracted from the aforementioned agroforestry residues;
theoretically, the content of flavonoids/hydroxystilbenes in the
lignins that contain them could be enhanced by overexpression
of CHS and other enzymes. As is now becoming appreciated,
other valuable polyphenolic compounds could also be produced
through metabolic engineering. This could be the case of the
flavonoids naringenin and apigenin that, although not (yet)
found naturally in the lignins of wild plants, can be readily
incorporated into the lignin polymer in some mutant and
transgenic plants. A recent study in rice showed that disruption
of FNSII, the enzyme that catalyzes the direct conversion of the
flavanone naringenin to the flavone apigenin (see Figure 3),
resulted in an altered cell wall lignin incorporating the
intermediate naringenin, instead of tricin, into the lignin
polymer.99 Interestingly, the fnsII mutant plants presented
normal growth performances, similar to the wild-type plants,
suggesting that incorporating naringenin instead of tricin into
the lignin structure did not affect normal growth and
development. More recently, the flavone apigenin was also
incorporated into the lignin of culm tissues in a rice mutant
lacking F3′H, the enzyme that hydroxylates the B-ring of
apigenin to produce luteolin (see Figure 3), an intermediate in
the biosynthesis of tricin.129 These two examples illustrate how
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metabolic engineering of plant lignins could be used to
introduce high-value products that may then be isolated from
their lignins, thus enhancing their value. On the other hand,
incorporation of non-conventional lignin monomers not usually
present in plant lignins, as is the case of the phenolic compounds
derived from the flavonoid, hydroxystilbene, or the ferulamide
pathways described above, can open new ways to design and
engineer the structure of the lignin to produce polymers with
new or improved properties, as already considered with other
phenolic compounds.14,16,127,130,131 Metabolic engineering to
introduce tricin (or other flavonoids) into the lignin of plants
could provide lignins with special properties, such as a
conferring higher UV protection as well as antioxidant,
antifungal, and antimicrobial properties. Incorporation of
piceatannol could confer hardness and rigidity to the polymer,
besides antioxidant and antimicrobial properties; incorporation
of hydroxystilbene glucosides could also confer hardness and
rigidity as well as antioxidant, antifungal, and antimicrobial
properties and, in addition, could provide hydrophilic properties
to the lignin polymer, due to the glucose moiety, that have been
shown to be beneficial for wall saccharification.131 Introduction
of diferuloylputrescine into the lignin of plants could provide a
higher degree of plasticity and flexibility to the lignin polymer, as
well as hydrophobicity due to the butane bridge; it could also
provide antifungal and antimicrobial properties and may offer a
way of adding a stabilized source of N to soils. In conclusion, all
the phenolic compounds described above that have already been
proven to participate in lignification, and presumably many
more that may be considered or that Nature has yet to reveal, can
be used to engineer and modify plants to produce tailor-made
polymers with desired properties or lignins containing valuable
compounds that could be produced at scale if the means to
extract them from the polymer can be devised.
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Ana Gutieŕrez obtained her B.S. and M.S. degrees in Pharmacy and
Biotechnology from University Complutense of Madrid (Spain) in
1988 and 1990, respectively, and her Ph.D. in Pharmacy from the
University of Seville (Spain) in 1995. She has a CSIC permanent
position at the Institute of Natural Resources and Agrobiology of Seville
(IRNAS) as a Research Professor, where she is Vice-Director. Her CV
includes about 160 JCR articles and 10 patents. She is am Elected
Member of the International Academy of Wood Science (IAWS) since
January 2015, and of the Academy Board of IAWS since January 2016.
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Santos, J. I.; Jimeńez-Barbero, J.; Zhang, L. M.; Martínez, A. T. Highly
acylated (acetylated and/or p-coumaroylated) native lignins from
diverse herbaceous plants. J. Agric. Food Chem. 2008, 56, 9525−9534.
(30) Martínez, A. T.; Rencoret, J.; Marques, G.; Gutieŕrez, A.; Ibarra,
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