Dinuclear Phosphine-Amido $\left[\mathbf{R h}_{2}(\right.$ diene $)\{\mu-\mathbf{N H}$ $\left.\left(\mathbf{C H}_{2}\right)_{3} \mathbf{P P h}_{2}\right\}_{2}$] Complexes as Efficient Catalysts Precursors for Phenylacetylene Polymerization.

Marta Angoy, M. Victoria Jiménez, ${ }^{*}$ Pilar García-Orduña, Luis A. Oro, Eugenio Vispe and Jesús J. Pé-rez-Torrente*.
Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zara-goza-CSIC, Facultad de Ciencias, C/ Pedro Cerbuna, 12, 50009 Zaragoza, Spain.

Supporting Information Placeholder

Abstract

Dinuclear phosphine-amido, $\left[\mathrm{Rh}_{2}(\right.$ diene $\left.)\left\{\mu-\mathrm{NH}_{(}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}\right\}_{2}\right]$, and cationic phosphine-amino complexes, $\left[\mathrm{Rh}(\text { diene })\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHR}\right\}\right]^{+}$(diene $=\mathrm{cod}$, nbd, tfb) and $\left[\mathrm{Rh}\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHR}\right\}_{2}\right]^{+}$, have been prepared from the corresponding amino-functionalized phoshines $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHR}(\mathrm{R}=\mathrm{H}, \mathrm{Me})$ and suitable rhodium(I) precursors. The dinuclear $\left[\mathrm{Rh}_{2}(\right.$ diene $)\{\mu$ $\left.\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}\right\}_{2}$] complexes bearing π-acceptors diene ligands such as nbd or tfb exhibit a remarkable catalytic activity in phenylacetylene (PA) polymerization affording stereoregular polyphenylacetylenes with, unlike the cod precursor, unimodal molar mass distributions of very high molecular weights, M_{w} up to $\approx 1.2 \times 10^{6}$, and moderate polydispersity indexes. These complexes are more active than the mononuclear phosphino-anilido $\left[\mathrm{Rh}(\right.$ diene $\left.)\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{NMe}\right\}\right]$ complexes and these in turn more active than the cationic complexes $\left[\mathrm{Rh}(\text { diene })\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHR}\right\}\right]^{+} \quad(\mathrm{R}=\mathrm{H}, \quad \mathrm{Me}), \quad\left[\mathrm{Rh}(\mathrm{nbd})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2}\right\}\right]^{+} \quad$ and $\left[\mathrm{Rh}(\mathrm{nbd})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{NHMe}\right\}\right]^{+}$bearing the same diene ligand. In contrast, complexes $\left[\mathrm{Rh}\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHR}\right\}_{2}\right]^{+}(\mathrm{R}=\mathrm{H}, \mathrm{Me})$ without a diene ligand have been found to be inactive in PA polymerization. The excellent catalytic performance of $\left[\mathrm{Rh}_{2}(\right.$ diene $)\{\mu$ $\left.\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}\right\}_{2}$] (diene $=\mathrm{nbd}$, tfb) complexes is a consequence of the mode of activation of PA that likely results in the formation of unsaturated alkynyl species $[\mathrm{Rh}($ diene $)(\mathrm{C}=\mathrm{C}-\mathrm{Ph}) \mathrm{L}](\mathrm{L}=\mathrm{PA}, \mathrm{THF})$ which may be competent for PA polymerization.

INTRODUCTION

Polyphenylacetylene (PPA) and its derivatives are among the most widely studied polyene materials because of their stability in air, solubility in a range of organic solvents and semiconductor properties. The rational selection of substituted acetylenes has directed the preparation of functional polymers with applications in electronics, photoelectronics, optics and membrane separation. ${ }^{1,2}$ PPAs are produced mainly by chain growth polymerization of substituted phenylacetylene (PA) monomers with a suitable transition metal catalyst. The oxophilic character of most early transition metal based catalysts results in a limited tolerance to functional groups in the monomers. ${ }^{3}$ In contrast, late transition metal catalysts have drawn considerable attention because of their high activity, stability towards air and moisture, and the relatively wide range of applicable monomers due to the high tolerance to many of the heteroatoms in functional groups. ${ }^{4,5}$ In particular, rhodium catalysts efficiently catalyze the polymerization of monosubstituted acetylenes with formation of highly stereoregular PPAs, in some cases in a living manner. ${ }^{6,7,8}$
We have shown that cationic rhodium(I) complexes $\left[\mathrm{Rh}(\text { diene })\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{Z}\right\}\right]^{+}$containing functionalized phosphine ligands of hemilabile character of the type $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{Z}$ ($\mathrm{n}=2$ or $3 ; \mathrm{Z}=\mathrm{OMe}, \mathrm{NMe}_{2}$) efficiently catalyze the polymerization of PA affording very high molecular weight stereoregular PPA with a cis-transoidal configuration and moderate
polydispersity indexes. ${ }^{9}$ In addition, characterization of the polymers by size exclusion chromatography, multi-angle light scattering (SEC-MALS) or asymmetric flow field flow fractionation (A4F-MALS), has shown that some of these PPA samples contain a mixture of linear and branched polymer. ${ }^{10}$ Spectroscopic studies on the PA polymerization mechanism by the catalyst precursor $\left[\mathrm{Rh}(\operatorname{cod})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NMe}_{2}\right\}\right]^{+}$led us to observe the alkynyl species $[\mathrm{Rh}(\mathrm{C} \equiv \mathrm{C}$ $\left.\left.\mathrm{Ph})(\mathrm{cod})\left\{\mathrm{Ph}_{2} \mathrm{P}^{(} \mathrm{CH}_{2}\right)_{3} \mathrm{NHMe}_{2}\right\}\right]^{+}$formed by the intramolecular proton transfer from a η^{2}-alkyne ligand to the uncoordinated NMe_{2} group which acts as an internal base. 9 This cationic alkynyl intermediate is the initiating species likely involved in the generation of stable rhodium-vinyl species responsible for the propagation step. In addition, mechanistic studies on PA polymerization by 2-diphenylphosphinopyridine-based rhodium(I) catalysts have allowed us to disclose the key role of rhodium-alkynyl species such as $\left[\mathrm{Rh}(\mathrm{C} \equiv \mathrm{CPh})(\operatorname{cod})\left(\mathrm{Ph}_{2} \mathrm{PPy}\right)\right]$ in the polymerization reaction. ${ }^{11}$
Based on these results, we anticipate that the introduction of anionic ligands derived from weak Brønsted acids in the coordination sphere of the metal center could be a fruitful strategy for the design of efficient polymerization catalysts as they could promote the formation of active alkynyl species by PA deprotonation. However, only a few rhodium(I) PA polymerization catalysts featuring functionalized anionic ligands have been reported to date. The neutral mononuclear complexes
$[\operatorname{Rh}(\mathrm{acac})($ diene $)],{ }^{12,13} \quad[\mathrm{Rh}(\mathrm{AAEMA})(\text { diene })]^{13}$ and $\quad[\mathrm{Rh}(\mathrm{L}-$ alalinate $)($ diene $)]^{14}($ acac $=$ acetylacetonate; AAEMA $=$ deprotonated form of 2-(acetoacetoxy)ethylmethacrylate) efficiently polymerize PA in the absence of any co-catalyst. In contrast, the catalytic system based on $[\mathrm{Rh}$ (quinol)(diene)] (quinol $=8$ quinolinolate), generated in situ by reaction of $[\operatorname{Rh}(\mu-$ $\mathrm{OMe})($ diene $)]_{2}$ with 8 -hydroxyquinoline, requires an external base as co-catalyst (piperidine) to activate the system. ${ }^{15}$ In this context, rhodium(I) amido complexes have great potential as polymerization initiators due to the presence of very basic amido ligands that can behave as strong internal base for the deprotonation of PA.
Late transition-metal amido complexes have attracted a great deal of attention in part because of their potential participation in catalytic processes and important organic transformations. ${ }^{16,17,18}$ In contrast to early transition-metal amido complexes in which the π-bonding is significant, repulsive filled $\mathrm{p} \pi-\mathrm{d} \pi$ electronic repulsions in late transition-metals amido complexes prevent charge delocalization which confers the N atom a high basicity and nucleophilicity. The design of PNP pincer ligands has allowed the development of the late-metal amido organometallic chemistry. The pioneering work by Fryzuk et al. demonstrated the ability of rhodium and iridium complexes with a PNP pincer ligand with a disililamido scaffold to heterolitically activate molecular H_{2} by transferring a proton to the amido group. ${ }^{19}$ In fact, this contribution was later recognized as the key in the design of bifunctional catalysts exhibiting metal-ligand cooperativity. ${ }^{20}$

To best of our knowledge, the only rhodium(I) amido compound reported as catalyst for PA polymerization is the phosphinosulfonamido $\quad\left[\mathrm{Rh}(\operatorname{cod})\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{NTs}\right)\right] \quad$ (Ts $=$ $\left.\mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{Me}\right)$ complex. This catalyst polymerizes PA in organic solvents such as $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, benzene and THF to afford polymers of M_{w} in the range $6.32 \times 10^{4}-2.86 \times 10^{4}$ without the need for co-catalyst. ${ }^{21}$ We report herein on the synthesis, characterization and application in PA polymerization of a range of neutral mono- and dinuclear phosphino-amido complexes, $\left[\mathrm{Rh}(\right.$ diene $\left.)\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{NMe}\right\}\right]$ and $\left[\mathrm{Rh}_{2}\right.$ (diene) $\{\mu$ $\left.\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}\right\}_{2}$], respectively. In addition, the catalytic activity of a series of cationic complexes, $\left[\mathrm{Rh}(\text { diene })\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHR}\right\}\right]^{+}(\mathrm{R}=\mathrm{H}, \mathrm{Me})$, based on new phosphino-amino ligands has been also studied for comparative purposes.

RESULTS AND DISCUSSION

Synthesis of amino-functionalized phosphines. The functionalized phosphines $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Z}\left(\mathrm{Z}=\mathrm{NHMe}, \mathrm{NH}_{2}\right)$ have been prepared by the photochemical hydrophosphination method using suitable functionalized allyl derivatives. ${ }^{22}$ Reaction of HPPh_{2} with an excess of the corresponding allylamine $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{Z}\left(\mathrm{Z}=\mathrm{NHMe}, \mathrm{NH}_{2}\right)$ under visible light for 5 days at room temperature without any solvent, directly afforded the amino-functionalized phosphines which were isolated as colorless oils after removing the remaining allylamine under vacuum. The reactions proceed in an efficient and regioselective way to exclusively give the anti-Markonikov addition products (Scheme 1). The new phosphines 3-(diphenylphosphino)-N-methylpropan-1-amine,
$\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHMe}$, and 3-(diphenylphosphino)propan-1amine, $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2}$, were isolated in 82 and 77% yield, respectively, and have been characterized by elemental analysis, mass spectrometry (ESI-MS) and NMR spectroscopy.

Scheme 1. Synthesis of Amino-functionalized Phosphines.
The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of both compounds in CDCl_{3} showed a singlet resonance at $\delta-15.6$ and -16.0 ppm , respectively. A set of three resonances for the $>\mathrm{CH}_{2}$ of the alkylamino chain was observed between $\delta 2.8-1.6 \mathrm{ppm}$ in the ${ }^{1} \mathrm{H}$ NMR spectra, with the most deshielded resonance that of the methylene group attached to the nitrogen heteroatom. The resonances of the amine protons of the $-\mathrm{NH}_{2}$ and -NHMe groups were observed as broad resonances around $\delta \approx 1.25$ ppm. Finally, the N -methyl group of the aminophosphine $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHMe}$ was observed at $\delta 2.41$ and 36.40 ppm in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra, respectively.
Synthesis of mono- and dinuclear phosphine-amido rhodium(I) complexes. The acidic proton of 2-(diphenylphosphino)- N-methylaniline can be easily deprotonated by the basic methoxo bridged ligands of the dinuclear compounds $[\mathrm{Rh}(\mu-\mathrm{OMe}) \text { (diene) }]_{2}$ to give square-planar mononuclear phosphine-anilido $\quad\left[\mathrm{Rh}(\right.$ diene $\left.)\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{NMe}\right\}\right]$ complexes (Scheme 2). We have applied this methodology, established by Cowie et al. for the synthesis of $\left[\mathrm{Rh}(\operatorname{cod})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{NMe}\right\}\right](\mathbf{1}),{ }^{23}$ to the preparation of the related compound $\left[\mathrm{Rh}(\mathrm{nbd})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{NMe}\right\}\right]$ (2) which was obtained as an orange solid in 73% yield.

diene $=\operatorname{cod}(\mathbf{1}), \operatorname{nbd}(\mathbf{2})$
Scheme 2. Synthesis of Phosphine-anilido Mononuclear Complexes.

The MALDI-Tof mass spectrum of 2 featured a peak at m / z ratio of 486.0 for the protonated molecular ion. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum in $\mathrm{C}_{6} \mathrm{D}_{6}$ showed a doublet at $\delta 38.4 \mathrm{ppm}$ with a $J_{\mathrm{P} \text {-Rh }}$ of 183 Hz , significantly larger than that found in $\mathbf{1}$ (163 Hz), in agreement with the higher π-acceptor character of the nbd diene ligand. The ${ }^{1} \mathrm{H}$ NMR spectrum does not show the characteristic NH signal of the aminophosphine ligand which supports the formation of an amido complex. The number of resonances observed in the spectrum is in accordance with the formation of a mononuclear compound of C_{s} symmetry derived from the bidentate $\kappa^{2} P, N$ coordination of amidophosphine ligand. In particular, the olefinic protons of the 2,5norbonadiene ligand were observed as two broad resonances at $\delta 4.85$ and 3.25 ppm due to the different coordination atom in trans position. This fact is also reflected in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum with two resonances at $\delta 86.57$ (dd) and 49.78 (d) ppm corresponding to the $=\mathrm{CH}$ trans to phosphorus and nitrogen, respectively.
The mononuclear formulation of $\mathbf{2}$ has been confirmed by an X-ray diffraction study. A view of the molecular structure is shown in Figure 1 along with selected bond lengths and angles.

Figure 1. Molecular structure of compound $\left[\mathrm{Rh}(\mathrm{nbd})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{NMe}\right\}\right]$ (2). Hydrogen atoms are omitted for clarity. Selected bond lengths (\AA) and angles (${ }^{\circ}$) are Rh-P 2.2462(8), Rh-N 2.032(2), $\mathrm{Rh}-\mathrm{Ct}(1)$ 1.992(4), $\mathrm{Rh}-\mathrm{Ct}(2)$ 2.130(3), P-Rh-N 82.48(8), P-Rh-Ct(1) 103.79(10), P-Rh-Ct(2) 174.03(9), $\mathrm{N}-\mathrm{Rh}-\mathrm{Ct}(1) 172.94(13)$, $\mathrm{N}-\mathrm{Rh}-\mathrm{Ct}$ (2) 103.35(12), $\mathrm{Ct}(1)-\mathrm{Rh}-\mathrm{Ct}$ (2) 70.46 (14). $\mathrm{Ct}(1)$ and $\mathrm{Ct}(2)$ are the centroids of the $\mathrm{C}(1)=\mathrm{C}(2)$ and $C(6)=C(7)$ olefinic bonds, respectively.

The molecular structure of 2 exhibits a slightly distorted squareplanar metal geometry with the rhodium atom coordinated to the diolefin and to the phosphorus and nitrogen atoms of the chelating phophino-amido ligand in a $\kappa^{2}-\mathrm{P}, \mathrm{N}$ mode. Distortions from the ideal square-planar geometry (characterized by 90° dihedral angles) are due to the small bite angle of the nbd ligand. The observed value in $2\left(70.46(14)^{\circ}\right)$ nicely agree with the mean value reported in mononuclear rhodium compounds with tetracoordinated metal atom containing a $\mathrm{Rh}(\mathrm{nbd})$ fragment $\left(70.2(10)^{\circ}\right) .{ }^{24}$

A planar trigonal geometry is observed in nitrogen atom of the amido group, whose planarity is evidenced by the sum of the bond angles at this atom $\left(359.7(4)^{\circ}\right)$. The rhodium-nitrogen bond length deserves special interest. The measured value (2.032(2) \AA) is slightly shorter than that reported for the related $\left[\mathrm{Rh}(\operatorname{cod})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{NMe}\right\}\right]$ compound $(2.063(1) \AA)^{23}$ and both are significantly not so long than those in $\left[\mathrm{RhCl}(\mathrm{CO})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{NMeH}\right\}\right](2.129(2)$ and 2.140(2) \AA for the two independent molecules). ${ }^{25}$ This feature has been related with the favorable π-interaction of the amido group to the metal atom. ${ }^{23}$ The π-donor character of the amido group is also evidenced by the structural differences in the olefin-metal bond. Not only the met-al-olefin bond length trans to amido ligand (1.992(4) \AA) is shorter than the distance to the olefin trans to the phosphorus atom (2.130(3) \AA), but the dissimilarity is also observed in the $\mathrm{C}=\mathrm{C}$ bon lengths (1.398(5) A and 1.364(5) \AA for $\mathrm{C}(1)=\mathrm{C}(2)$ and $\mathrm{C}(6)=\mathrm{C}(7)$, respectively). The π-donor character of amido group favors the retrodonation of the double bond trans-located, inducing the lengthening of this $\mathrm{C}=\mathrm{C}$ bond and the contraction of the olefinmetal distance compared with the olefinic bond trans to P atom.

Reaction of the aminophosphine $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2}$ with complexes $[\mathrm{Rh}(\mu-\mathrm{OMe})(\text { diene })]_{2}$ afforded red solutions of the dinuclear complexes $\left[\mathrm{Rh}_{2}(\right.$ diene $)\left\{\mu-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}\right\}_{2}$]. However, this procedure does not afford pure compounds and thus, an alternative synthetic approach entailing the efficient deprotonation of the aminophosphine with a strong non-nucleophilic base, such as potassium bis(trimethylsilyl)amide (KHDMS), was explored. The addition of a solution of the salt $\mathrm{K}\left[\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}\right]$, prepared in
situ by reaction of $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2}$ with KHMDS in tetrahydrofuran, to suspensions of the corresponding compounds $[\mathrm{Rh}(\mu-$ $\mathrm{Cl})($ diene $)]_{2}$ in the same solvent gave rise to intensely red colored solutions from which the dinuclear complexes $\left[\mathrm{Rh}_{2}\right.$ (diene) $\{\mu$ $\left.\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}\right\}_{2}$] (diene $=$ cod, 3 , nbd, 4 and tfb, 5) were obtained as red solids in yields around 70% (Scheme 3). Unfortunately, we were unable to prepare the related dinuclear complexes [Rh_{2} (diene) $\left.\left\{\mu-\mathrm{NMe}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}\right\}_{2}\right] \quad$ featuring bridging 3(diphenylphosphino)propylmethylamido ligands in pure form following either of the two procedures.

diene $=\operatorname{cod}\left({ }^{3}\right), \operatorname{nbd}(4)$, tfb (5)
Scheme 3. Synthesis of Dinuclear Rhodium Phosphine-amido Complexes.

The dinuclear formulation of these compounds has been confirmed with a structural analysis by X-ray diffraction of compound $\left[\mathrm{Rh}_{2}(\mathrm{nbd})\left\{\mu-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}\right\}_{2}\right]$ (4). Complex 4 crystallizes with two crystallographically independent but chemically identical molecules in the unit cell. One of them is depicted in Figure 2 along with selected bond lengths and angles. Although some small differences can be observed between geometrical parameters of the metal coordination sphere of both molecules (see Supporting Information) discussion will be centered in one of them.
The dinuclear framework is supported by two 3(diphenylphosphino)propylamido ligands exhibiting a $1 \kappa^{1} P, 1: 2 \kappa^{2} N$ coordination mode, that is, they are coordinated in a chelating fashion to $\mathrm{Rh}(1)$ atom and bridging both metal atoms by means of the coordination to the $\mathrm{Rh}(2)(\mathrm{nbd})$ fragment through the amido donor functions. Correspondingly, two phosphino-amido ligands are coordinated to $\mathrm{Rh}(1)$ atom with a cis arrangement, with phosphorus-rhodium bond lengths shorter than those reported in complex $\mathbf{2}$, reflecting the different trans influence of olefin and amido fragments. Both rhodium atoms exhibit a square planar coordination. Maximal deviation from an ideal square planar geometry are found in $\mathrm{Rh}(2)$ atom, probably due to the small bite angle of the nbd ligand, as commented in complex 2.
According to the relative disposition of the substituents of the amido groups and the deviation from planarity of the "RhNRhN" ring, a syn,endo conformation and configuration can described this four-membered ring. The central core is folded around the $\mathrm{N}-\mathrm{N}$ vector, with a dihedral angle of $63.36(8)^{\circ}$ between the two metal coordination planes. This disposition leads to a $2.8315(5) \AA$ intermetallic distance, which may suggest the existence of a Rh-Rh bond. This value lies in the upper value of the range of distances observed for other amido-bridged rhodium dimers where a single bond is thought to exist between metal atoms: intermetallic distance in 2 is longer than those found in $\left[\left\{\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)(\mathrm{CO}) \mathrm{I}\right\}_{2}\{\mu\right.$ $\left.\left.(\mathrm{NH})_{2} \mathrm{C}_{10} \mathrm{H}_{6}\right\}\right],{ }^{26}(2.540(1) \AA),\left[\mathrm{RhCl}(\mathrm{CO})\left(\mu-\mathrm{NHC}_{6} \mathrm{H}_{4} \mathrm{PPh}_{2}\right)\right]_{2}$ (2.549(1), ${ }^{27}[\mathrm{Cp} * \mathrm{Rh}(\mu-\mathrm{NHPh})]_{2}(2.6097(9) \AA),{ }^{28}\left[\mathrm{Cp}^{*} \mathrm{Rh}_{2}(\mu-\right.$ $\left.\left.\mathrm{NHSO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)\right]_{2} \quad(2.6004(12) \AA)^{29}$ and $\left[\left\{\mathrm{Rh}(\mathrm{CO})_{2}\right\}_{2}(\mu-\right.$ $\left.\left.(\mathrm{NH})_{2} \mathrm{C}_{10} \mathrm{H}_{6}\right)\right](2.810(4) \AA)^{30}$-dinuclear complexes where the existence of the intermetallic bond has been evoked-, comparable to those found in $\left[\mathrm{Rh}(\operatorname{cod})\left(\mu-\mathrm{NH}_{2}\right)\right]_{2}(2.7785(3)$ and
$2.8603(3) \AA),{ }^{31}\left[\mathrm{Rh}(\mathrm{CN} t \mathrm{Bu})_{2}\left(\mu-\mathrm{NPh}_{2}\right)\right]_{2}(2.9728(10) \AA)$ and $\left[\mathrm{Rh}(\mathrm{CN} t \mathrm{Bu})_{2}\left(\mu-\mathrm{NHC}_{6} \mathrm{H}_{4} \mathrm{Me}\right)\right]_{2}(2.9899(6) \AA$) and shorter than that found in $\left[\mathrm{Rh}(\operatorname{cod})\left\{\mu-\mathrm{N}\left(\mathrm{MeC}_{6} \mathrm{H}_{4}\right)_{2}\right\}\right]_{2}(3.2965(11) \AA)^{32}$ Intermetallic distance and folding of "RhNRhN" central core depends on steric requierements of both substituents of amido groups and of the other ligands coordinated to the metal atoms, and therefore its rationalization is not a trivial statement.

Figure 2. Molecular structure of compound $\left[\mathrm{Rh}_{2}(\mathrm{nbd})\{\boldsymbol{\mu}\right.$ $\left.\left.\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}\right\}_{2}\right]$ (4). For clarity hydrogen atoms (except those of $\mathrm{N}-\mathrm{H}$ fragments) are omitted and only ipso-carbon atoms of phenyl groups are depicted. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ are $\mathrm{Rh}(1)-\mathrm{P}(1) 2.2076(10), \mathrm{Rh}(1)-\mathrm{P}(2) 2.2098(10), \mathrm{Rh}(1)-\mathrm{N}(1)$ 2.135(3), $\mathrm{Rh}(1)-\mathrm{N}(2)$ 2.103(3), $\mathrm{Rh}(2)-\mathrm{N}(1)$ 2.058(3), $\mathrm{Rh}(2)-\mathrm{N}(2)$ 2.068(3), $\mathrm{Rh}(2)-\mathrm{Ct}(1) 2.008(4), \mathrm{Rh}(2)-\mathrm{Ct}(2) 2.003(4), \mathrm{P}(1)-\mathrm{Rh}(1)-$ $\mathrm{P}(2) \quad 97.50(4), \quad \mathrm{P}(1)-\mathrm{Rh}(1)-\mathrm{N}(1) \quad 94.44(9), \quad \mathrm{P}(1)-\mathrm{Rh}(1)-\mathrm{N}(2)$ $166.99(8), \mathrm{P}(2)-\mathrm{Rh}(1)-\mathrm{N}(1) 166.39(8), \mathrm{P}(2)-\mathrm{Rh}(1)-\mathrm{N}(2) 93.60(9)$, $\mathrm{N}(1)-\operatorname{Rh}(1)-\mathrm{N}(2) 75.42(12), \mathrm{N}(1)-\mathrm{Rh}(2)-\mathrm{N}(2) 77.85(12), \mathrm{N}(1)-$ $\operatorname{Rh}(2)-\mathrm{Ct}(1) \quad 106.7(1), \mathrm{N}(1)-\mathrm{Rh}(2)-\mathrm{Ct}(2) \quad 171.2(1), \mathrm{N}(2)-\mathrm{Rh}(2)-$ $\mathrm{Ct}(1) \quad 173.7(1), \quad \mathrm{N}(2)-\mathrm{Rh}(2)-\mathrm{Ct}(2) \quad 104.8(1), \quad \mathrm{Ct}(1)-\mathrm{Rh}(2)-\mathrm{Ct}(2)$ $71.4(2) . \mathrm{Ct}(1)$ and $\mathrm{Ct}(2)$ are the centroids of the olefinic $\mathrm{C}(31)$ $\mathrm{C}(32)$ and $\mathrm{C}(36)-\mathrm{C}(37)$ bonds, respectively.

Amido-metal bond lengths are found to be dissimilar, with smaller values found in $\mathrm{Rh}-\mathrm{N}$ bond trans to olefinic bonds (2.058(3) and 2.068(3) A) compared to those trans to phosphane (2.135(3) and 2.103(3) $\AA)$. This result may point to the π-aceptor character of the olefinic bond, reinforcing both π and σ components of Rh-N bond. This characteristic may also be supported by the good agreement in the geometrical parameters of the coordination of the nbd fragment in compounds 2 and 4: closed values are found in bond length of olefinic bonds (1.398(5) \AA in $2 ; 1.401(6)$ and $1.392(6) ~ \AA$ in 4) and metalolefin distances (1.992(4) \AA in $2 ; 2.008(4)$ and $2.003(4) \AA$ in 4)

The spectroscopic data for compounds 3-5 are in agreement with the solid state structure of ideal C_{s} symmetry found for compound 4. As an example, the ${ }^{1} \mathrm{H}$ NMR spectrum of 4 showed two resonances for the olefinic protons $=\mathrm{CH}$ of the nbd ligand at similar chemical shifts, $\delta 3.49$ and 3.44 ppm , corresponding to the non equivalent exo and endo protons as a consequence of the bent molecular framework. These resonances correlate with two doublet signals at $\delta 52.94$ and 52.48 $\mathrm{ppm}\left(J_{\mathrm{C}-\mathrm{Rh}} \approx 10 \mathrm{~Hz}\right)$ in the ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC NMR spectrum (see Supporting Information). The non equivalent CH protons of the nbd ligand gave rise to two signals at $\delta 3.90$ and 3.49 ppm whereas the equivalent NH protons of the amido groups appeared as a broad signal at $\delta-0.09 \mathrm{ppm}$ in the ${ }^{1} \mathrm{H}$ NMR spectrum. In addition, the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the compounds showed a doublet resonance at $\delta \approx 37-38 \mathrm{ppm}$ with identical
coupling constant $\left(\mathrm{J}_{\mathrm{P}-\mathrm{Rh}}=172-173 \mathrm{~Hz}\right)$. The little influence of the electronic character of the diene ligand in the $J_{\mathrm{P}-\mathrm{Rh}}$ is in agreement with the structure of the compounds since the $\mathrm{Rh}(\text { diene })^{+}$fragment is coordinated to the cis-amido groups of the structural unit $\left[\mathrm{Rh}\left\{\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}\right\}_{2}\right]^{-}$which is common for the three compounds and is observed as the doubly protonated fragment, $\left[\mathrm{Rh}\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2}\right\}_{2}\right]^{+}$, in the ESI+ spectra.
Synthesis of mononuclear phosphine-amino/diene rhodi$\mathbf{u m}(\mathbf{I})$ complexes. The functionalized phosphine $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NMeH}$ reacts with the solvato $\left[\mathrm{Rh}(\text { diene })(\mathrm{THF})_{2}\right]^{+}$ species, formed in situ by reaction of $[\mathrm{Rh}(\mu-\mathrm{Cl})(\text { diene })]_{2}$ with AgBF_{4} in tetrahydrofurane, to afford yellow suspensions of the cationic complexes $\left[\mathrm{Rh}(\right.$ diene $)\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHMe}^{2}\right]\left[\mathrm{BF}_{4}\right]$ (diene $=\operatorname{cod}, \mathbf{6} ; \mathrm{nbd}, 7 ; \mathrm{tfb}, \mathbf{8}$) which were isolated as yellow solids in $60-70 \%$ yields. The related compound [$\left.\mathrm{Rh}(\mathrm{nbd})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2}\right\}\right]\left[\mathrm{BF}_{4}\right]$ (9) has been prepared in 65% yield following the same methodology using the 3-(diphenylphosphino)propan-1-amine ligand (Scheme 4, a). The cationic complex $\left[\mathrm{Rh}(\mathrm{nbd})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{NHMe}\right\}\right]\left[\mathrm{BF}_{4}\right]$ (10) has been prepared following a different methodology. The protonation of the mononuclear phoshine-amido complex [Rh(nbd) $\left.\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{NMe}\right\}\right]$ (12) with HBF_{4} in dichloromethane at $0^{\circ} \mathrm{C}$ gave a yellow solution of compound $\mathbf{2 0}$ which was isolated as a yellow solid in 60% yield (Scheme 4, b).

Scheme 4. Synthesis of Cationic Rhodium Phosphino-amino Complexes.

The MALDI-Tof mass spectra of compounds 6-10 showed the molecular ion at the expected m / z and a broad absorption centered at $1055 \mathrm{~cm}^{-1}$ was observed in the FT-IR spectra for the tetrafluoroborate anion, confirming the ionic character of the complexes. The structure of the compounds is derived from the chelate coordination $\kappa^{2} P, N$ of the amino-phosphine ligand to the fragments $[\mathrm{Rh}(\text { diene })]^{+}$that result in the formation of square-planar complexes, which was confirmed by the determination of the molecular structure of compound [Rh(diene) $\left.\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHMe}\right\}\right]\left[\mathrm{BF}_{4}\right]$ (7) by X-ray diffraction. The molecular structure of complex $\mathbf{7}$ is depicted in Figure 3 along with selected bond lengths and angles.
Geometrical parameters describing the metal coordination sphere of compound $\mathbf{7}$ are closely related to those of mononuclear compound 2 (Figure 1). Similar trends are observed in both complexes. Accordingly, differences in trans influence exerted by phosphine and amino fragments in 7, lead to dissimilarities in bond lengths between the metal atom and the olefinic bonds trans to these groups, as commented for compound 2. No statistical differences are found between Rholefinic, Rh-P and olefinic bond lengths in both compounds.

Figure 3. Molecular structure of compound $\left[\mathrm{Rh}(\mathrm{nbd})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHMe}^{2}\right\}\left[\mathrm{BF}_{4}\right]\right.$ (7). Hydrogen atoms (except that of N-H fragment) have been omitted. Primed atoms are related to unprimed ones through $2-x, 1-y, 1-z$ symmetry operation. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ are Rh-P 2.2517(16), Rh-N 2.143(4), $\operatorname{Rh}-\mathrm{Ct}(1)$ 1.997(5), $\operatorname{Rh}-\mathrm{Ct}(2)$ 2.138(6), P-Rh-N 92.00(14), P-Rh-Ct(1) 97.88(17), P-Rh-Ct(2) 167.10(17), N-Rh$\mathrm{Ct}(1)$ 170.0(2), $\mathrm{N}-\mathrm{Rh}-\mathrm{Ct}(2) 100.0(2), \mathrm{Ct}(1)-\mathrm{Rh}-\mathrm{Ct}(2) 70.0(2)$. $\mathrm{Ct}(1)$ and $\mathrm{Ct}(2)$ are the centroids of the $\mathrm{C}(1)=\mathrm{C}(2)$ and $\mathrm{C}(6)=\mathrm{C}(7)$ olefinic bonds.
In fact, main differences between 2 and 7 compounds concern nitrogen atom, which is not longer planar in compound 7, but exhibit a tetrahedral geometry. The existence of foursubstituents at the nitrogen atom in compound 7 induces a longer Rh-N bond length (2.143(4) \AA in 7, 2.032(2) \AA complex 2). This difference between amino and amido groups, also reported for $\left[\mathrm{Rh}(\operatorname{cod})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{NMeH}\right\}\right]^{+}$(2.148(2) and 2.161(4) \AA for the two crystallographically independent molecules) and $\left[\mathrm{Rh}(\operatorname{cod})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{NMe}\right\}\right]$ compounds (2.063(1) \AA), has been correlated to the lack of π interaction with the metal atom in the former.
Hydrogen atom of amino fragment in 7 is establishing a hydrogen bond with the BF_{4} anion, as shown in Figure 3, characterized by a $2.37(9)$ and $3.172(7) \AA \mathrm{H} \cdots \mathrm{F}$ and $\mathrm{N} \cdots \mathrm{F}$ distances, respectively, and a $173(8)^{\circ} \mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ angle. As expected, compounds 6-10 are conductors in acetone solutions with molar conductivities Λ_{M} in the range $42-57 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. These values are somewhat lower than that expected for 1:1 electrolytes in this solvent ($80-100 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$) which suggest the possible formation of ionic-pairs by interaction of the $\mathrm{BF}_{4}{ }^{-}$with the NH function on the coordinated functionalized phosphine ligand, in agreement with the $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ interaction observed in solid state structure.
The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the complexes showed a doublet resonance centered $\delta \approx 17-22 \mathrm{ppm}$ for $\mathbf{6 - 9}$ and at 37 ppm for 10 , with $J_{P-R h}$ in the range $155-175 \mathrm{~Hz}$. The π-acceptor character of the diene ligand in compounds $\left[\mathrm{Rh}(\text { diene })\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHMe}\right\}\right]^{+}$(6-8) influences both the chemical shift and in the $J_{\text {P-Rh }}$ coupling constant. The increase
of the π-acceptor character results in a deshielding of the resonance and an increase of the coupling constant. Unlike compound $\left[\mathrm{Rh}(\mathrm{nbd})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2}\right\}\right]\left[\mathrm{BF}_{4}\right]$ (9) of C_{s} symmetry, the rest of the compounds, 6-8 and 10, are asymmetric as a consequence of the presence of the methyl substituent on the nitrogen heteroatom. The lack of symmetry is detected both in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra. For example, the ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{Rh}(\operatorname{cod})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHMe}\right\}\right]\left[\mathrm{BF}_{4}\right]$ (6) showed four resonances in the range $\delta 5.4-2.9 \mathrm{ppm}$ for the non equivalent $=\mathrm{CH}$ protons of the cod ligand. Similarly, the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum showed two doublet of doublets at $\delta 108.48$ and 104.98 ppm , and two doublets at $\delta 79.05$ and 76.10 ppm , corresponding to the $=\mathrm{CH}$ trans to the phosphine and amino fragments, respectively.
The amine proton of the $-\mathrm{N} H \mathrm{Me}$ fragment in compounds 6-8 was observed as a broad resonance in the range $\delta 4.3-3.8 \mathrm{ppm}$. This resonance appears sometimes overlapped and has been identified with the help of the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum due to the small coupling with the methyl group which was observed as a doublet in the range $\delta 2.2-2.7 \mathrm{ppm}\left(J_{\mathrm{H}-\mathrm{H}} \approx 6 \mathrm{~Hz}\right)$. The resonance of the $-\mathrm{NH}_{2}$ group in compound $\mathbf{9}$ is more shielded ($\delta 2.86 \mathrm{ppm}$) while that of the amine proton of the -NHMe fragment in $\mathbf{1 0}$ is more deshielded and is observed at $\delta 6.15$ $\operatorname{ppm}\left(J_{\mathrm{H}-\mathrm{H}}=6 \mathrm{~Hz}\right)$.
Synthesis of mononuclear phosphine-amino rhodium(I) complexes. The lability of the cyclooctene (coe) ligand ${ }^{33}$ in the solvato species $\left[\mathrm{Rh}(\mathrm{coe})_{2}(\mathrm{thf})_{2}\right]^{+}$with respect to diene ligands has allowed the preparation of cationic compounds containing exclusively functionalized phosphine ligands. The species $\left[\mathrm{Rh}(\operatorname{coe})_{2}(\mathrm{thf})_{2}\right]^{+}$has been prepared in situ by reaction of $\left[\mathrm{Rh}(\mu-\mathrm{Cl})(\mathrm{coe})_{2}\right]_{2}$ with two equiv of AgBF_{4} in tetrahydrofuran followed by elimination of the formed $\mathrm{AgCl}{ }^{34}$ This species reacts with two equiv of the corresponding aminophosphine, $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NMeH}$ or $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2}$, to give orange solutions of compounds $\left[\mathrm{Rh}\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHMe}_{2}\right]\left[\mathrm{BF}_{4}\right]\right.$ (11) y $\left[\mathrm{Rh}\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2}\right\}_{2}\right]\left[\mathrm{BF}_{4}\right]$ (12) which were isolated as orange solids in 55 and 62% yield, respectively (Scheme 5). These compounds are very sensitive to both oxygen and moisture and therefore, their synthesis has been carried out in a dry box. Unfortunately, compound $\left[\mathrm{Rh}\left\{\mathrm{Ph}_{2} \mathrm{P}_{\left.\left.\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NMe}_{2}\right\}_{2}\right]^{+}}\right.\right.$ bearing the ligand (3-dimethylamino-propyl)diphenyl phosphine could not be prepared following this methodology.

Scheme 5. Synthesis of Cationic Rhodium bis-Phosphinoamino Complexes.
Compounds $\mathbf{1 1}$ and $\mathbf{1 2}$ have been characterized by elemental analysis, mass spectrometry and multinuclear NMR spectroscopy. The mass spectra (MALDI-Tof) of both compounds showed the molecular ion at $\mathrm{m} / \mathrm{z} 617.2$ and 589.1 , respectively, which supports their mononuclear formulation. The most noticeable feature in the ${ }^{1} \mathrm{H}$ NMR spectra of both compounds is the absence of coordinated cyclooctene and the resonance corresponding to the amine protons of the fragments -NHMe and $-\mathrm{NH}_{2}$, which were observed as broad signals at $\delta 3.82$ and 3.57 ppm , respectively. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra showed a
doublet at $\delta 36.24$ and $38.99 \mathrm{ppm}\left(\mathrm{J}_{\mathrm{P}-\mathrm{Rh}}=172-174 \mathrm{~Hz}\right)$ indicating that both amino-phosphine ligands are equivalent. Assuming a square-planar structure and a chelate coordination $\kappa^{2} P, N$ of the amino-phosphine ligands, two isomers having cis or trans disposition of both ligands are possible. The structural analysis of compound $\left[\mathrm{Rh}\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHMe}_{2}\right]\left[\mathrm{BF}_{4}\right]\right.$ (11) has been carried out by X-ray diffraction. The molecular structure, shown in Figure 4, confirms the cis-arrangement of both 3-(diphenylphosphino)-N-methylpropan-1-amine ligands. This mutual placement may be related to the existence of an intramolecular $\pi \cdots \pi$ interactions between two phenyl groups of different phosphines (G-G 3.680(3) \AA, $\mathrm{Ph}-\mathrm{Ph}$ dihedral angle $\left.10.11(6)^{\circ}\right)$, shorter than that found in the analogous $\left[\mathrm{Rh}\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OEt}\right\}_{2}\right]^{+}$compound. ${ }^{35}$

Figure 4. Molecular structure of compound $\left[\mathrm{Rh}\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHMe}_{2}\right]\left[\mathrm{BF}_{4}\right]\right.$ (11). Hydrogen atoms (except those of N-H fragments) are omitted, and only ipso-carbon atoms of non-interacting phenyl groups have been depicted. Primed atom are related to unprimed ones through $x, y, z-1$ symmetry operation. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ are Rh-P(1) 2.2093(6), Rh-P(2) 2.2099(6), Rh-N(1) 2.177(2), Rh-N(2) 2.1794(18), P(1)-Rh-P(2) 98.03(2), P(1)-Rh-N(1) 89.35(5), P(1)-Rh-N(2) 172.40(6), $\quad \mathrm{P}(2)-\mathrm{Rh}-\mathrm{N}(1) \quad 172.62(5), \quad \mathrm{P}(2)-\mathrm{Rh}-\mathrm{N}(2)$ 89.51(6), N(1)-Rh-N(2) 83.11(7).

Geometrical parameters of $\mathbf{1 1}$ evidence similar features to previously characterized phosphine-amido and phosphineamino complexes compounds. On one hand, Rh-P bond lengths in $\mathbf{1 1}$ are found to be close to those found in complex 4, where phosphorus atoms are also trans to nitrogen ones. On the other hand, amino fragments characteristics in $\mathbf{1 1}$ are similar to those of compound 7. Moreover, hydrogen bond interactions are also found between both amino groups of compound 11 and BF_{4} anion. These intermolecular interactions (characterized by 2.18(3), 2.951(3), 156(2) and 2.19(3), 2.983(2) and 152(2); $\mathrm{H} \cdots \mathrm{F}, \mathrm{N} \cdots \mathrm{F}$ distances and $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ angles, respectively) lead to the formation of a ring $R_{2}^{2}(8)$ graph set (Figure 4). ${ }^{36}$
Polymerization of PA by phosphine-amido and phosphineamino rhodium(I) catalysts. Phosphine-amido complexes, $\left[\mathrm{Rh}(\right.$ diene $\left.)\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{NMe}\right\}\right] \quad$ and $\quad\left[\mathrm{Rh}_{2}(\right.$ diene $)\{\mu$ $\left.\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}\right\}_{2}$], and cationic phosphine-amino complexes, $\left[\mathrm{Rh}(\text { diene })\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHR}\right\}\right]^{+} \quad(\mathrm{R}=\mathrm{H}$, Me) and $\left[\mathrm{Rh}(\mathrm{nbd})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{NHMe}\right\}\right]^{+}$, are efficient catalyst precursors for phenylacetylene polymerization. In contrast, complexes $\left[\mathrm{Rh}\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHR}\right\}_{2}\right]^{+}(\mathrm{R}=\mathrm{H}, \mathrm{Me})$ were found to be inactive which reflects the crucial role of a diene ligand for efficient polymerization catalysts design.
PA polymerization reactions by these rhodium(I) catalyst precursors were carried out preferentially in THF at 293 K using a $[\mathrm{PA}]_{o} /[\mathrm{Rh}]$ ratio of $100,1 \mathrm{~mol} \%$ or $0.5 \mathrm{~mol} \%$ catalyst
loading for mononuclear and dinuclear precursors, respectively. The PPAs polymers were obtained as soluble yelloworange solids with a plastic-like appearance. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the samples have shown a stereoregular structure with a cis-transoidal configuration and a ciscontent superior to $99 \% .^{37,38}$ The PPAs have been characterized by size exclusion chromatography (SEC) using lightscattering (MALS) and refractive index (DRI) detectors.
The neutral catalysts based on amido-phosphine ligands showed an excellent activity affording PPA of very high molar mass (MM) at high conversion in very short reaction times (15-120 min, Table 1). Among the phosphine-anilido complexes, $\left[\mathrm{Rh}(\right.$ diene $\left.)\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{NMe}\right\}\right]$, compound 2 (diene $=$ nbd) is considerably more active than $\mathbf{1}$ (diene = cod) in THF affording a PPA with an outstandingly high weight-average molecular weight, M_{w}, of 2.96×10^{6} with a moderate polydispersity index (PDI), $M_{\mathrm{w}} / M_{\mathrm{n}}$, of 1.52 , as consequence of a very low initiation efficiency, $\mathrm{IE}=0.52$. Under the same conditions catalyst 1 gave a 44% of a PPA that showed a bimodal molar mass distribution (MMD) profile with a M_{w} of 2.61×10^{5} (entries 1 and 4). As can be seen in the chromatograms of Figure 5, the MALS detector (molar mass-sensitive) shows a shoulder corresponding to a polymer of high molar mass, but in small concentration (approximately 1% in weight) as indicated by the DRI detector (concentration-sensitive). The influence of the solvent on the catalyst performance and polymer properties has been studied with catalyst $\mathbf{1}$. The polymerization in dichloromethane is much faster (100% conversion in 75 min) also giving a polymer with a bimodal MMD profile and a M_{w} of 2.92×10^{5} (entry 3). In contrast, a polymer with a unimodal distribution and a higher M_{w} of 3.72×10^{5} was obtained in toluene although only a slight improvement in the activity was attained (entry 2). Interestingly, the related rhodium(I) complex $\left[\mathrm{Rh}(\operatorname{cod})\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{NTs}\right)\right]\left(\mathrm{Ts}=\mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}-\right.$ $p-\mathrm{Me})$ featuring a phosphinosulfonamido ligand polymerized PA ($1 \mathrm{~mol} \%$ catalyst loading, $40-74 \%$ in 2 h) in a range of solvents of different polarity $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, benzene and THF) affording PPAs with unimodal GPC profiles with much lower molecular weights, M_{w} in the range $2.86-6.32 \times 10^{4}$, and wider molecular weight distribution (PDI>2.2). ${ }^{21}$

The dinuclear amido-phosphine $\quad\left[\mathrm{Rh}_{2}(\mathrm{nbd})\{\mu\right.$ $\left.\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}\right\}_{2}$] precursors showed a remarkable catalytic activity in PA polymerization. Catalysts 4 (diene $=$ nbd) and 5 (diene $=\mathrm{tfb}$) afforded complete PA conversion in only 15 min . However, catalyst 3 (diene $=\operatorname{cod}$) required 120 min to reach a 90% conversion (entries 5, 7 and 9). The MM of the PPAs obtained with catalysts 4 and 5 are very high, M_{w} of 1.04×10^{6} and 1.19×10^{6}, with initiation efficiencies of 1.3 and 1.4%, respectively, and moderate PDIs of 1.31 and 1.68 , respectively. On the other hand, the PPA produced by 3 showed a lower $\mathrm{MM}, M_{\mathrm{w}}$ of 2.11×10^{5}, a bimodal MMD and greater polydispersity ($\mathrm{PDI}=1.80$) (Figure 6). The described results evidence that catalysts having nbd or tfb as diene ligand are much more active than the cod counterpart which is in agreement with the results reported by Masuda et al. ${ }^{39,40}$ Likely, the high π-acidity of nbd and tfb results in the reduction of the electronic density at the rhodium center enhancing its electrophilic character thereby facilitating the coordination of the monomer. Interestingly, the log-log plot of the radius of gyration $\left(r_{\mathrm{g}}\right)$ vs the molar mass (MM) for the polymers obtained with catalysts 1-5 in THF showed a linear trend which is characteristic of a linear polymer (see Supporting Information).

Figure 5. Light scattering (blue) and refractive index (red) chromatograms. MM vs elution volume plots for PPA samples prepared using catalysts: a) $\left[\mathrm{Rh}(\operatorname{cod})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{NMe}\right\}\right](\mathbf{1})$ and b) $\left[\mathrm{Rh}(\mathrm{nbd})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{NMe}\right\}\right]$ (2) in THF.

Table 1. Polymerization of PA by Phosphine-amido Rhodium(I) Catalysts 1-5. ${ }^{\text {a }}$

Entry	Cat.	Solv.	time (min)	conv. $(\%)^{\mathrm{b}}$	M_{w} $\left(\mathrm{g} \mathrm{mol}^{-1}\right)^{\mathrm{c}}$	$\mathrm{M}_{\mathrm{w}} /$ M_{n}	IE^{d} $(\%)$
1	$\mathbf{1}$	THF	180	44	$2.61 \times 10^{5 *}$	1.69	2.9
2	$\mathbf{1}$	toluene	150	70	3.72×10^{5}	2.03	3.9
3	$\mathbf{1}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	75	100	$2.92 \times 10^{5 *}$	1.62	5.7
4	$\mathbf{2}$	THF	105	100	2.96×10^{6}	1.52	0.5
5	$\mathbf{3}$	THF	120	90	$2.11 \times 10^{5 *}$	1.80	7.8
6^{f}	$\mathbf{3}$	THF	120	70	$2.20 \times 10^{5 *}$	1.73	5.6
7	$\mathbf{4}$	THF	15	100	1.04×10^{6}	1.31	1.3
8^{f}	$\mathbf{4}$	THF	15	100	9.49×10^{5}	1.36	1.5
9	$\mathbf{5}$	THF	15	100	1.19×10^{6}	1.68	1.4

${ }^{\text {a }}$ Reaction conditions: $293 \mathrm{~K},[\mathrm{PA}]_{o}=0.25 \mathrm{M},[\mathrm{PA}]_{\mathrm{o}} /[\mathrm{Rh}]=100 .{ }^{\mathrm{b}}$ Determined by GC (octane as internal standard). ${ }^{\text {c }}$ Determined by SEC-MALS. ${ }^{d}$ Initiation efficiency, $\mathrm{IE}=\mathrm{M}_{\mathrm{th}} / \mathrm{M}_{\mathrm{n}} \times 100$; where $\mathrm{M}_{\text {theor }}=[\mathrm{PA}]_{0} /[\mathrm{Rh}]_{\mathrm{n}} \times$ MWPA \times polymer yield. ${ }^{\mathrm{f}}[\mathrm{DMAP}] /[\mathrm{Rh}]=$ 1. * Bimodal MMD: data for the lower molar mass polymer.

PA polymerization studies by rhodium(I) catalysts have shown that the addition of a base as co-catalyst, as for example 4(dimethylamino)pyridine (DMPA) or $i-\mathrm{PrNH}_{2}$, usually leads in an improvement of the catalyst performance as a result of an increase of the initiation efficiency ${ }^{41,42,43}$ or the inhibition of catalyst deactivation pathways. ${ }^{44}$ With the aim to increase the initiation efficiency and to reduce the polydispersity of the PPA, the influence of the co-catalyst DMAP (4dimethylaminopyridine) in the polymerization of PA by catalysts 3 (diene = cod) and 4 (diene = nbd) has been studied using a $[\mathrm{DMAP}] /[\mathrm{Rh}]$ ratio of 1 . The presence of an external base such as DMAP does not influence the catalytic activity in the case of catalyst 4 , although it is slightly reduced with 3 . Regarding the polymer properties both catalysts exhibited opposite tendencies. While in the case of 4 the addition of DMAP produces a slight increase of the polydipersity and the initiation efficiency, a decrease of both parameters was observed with catalyst 3 (entries 6 and 8). Additionally, the catalytic system 3/DMAP produces a PPA with a more pronounced bimodal character. Therefore, the addition of an external base does not have the expected positive effect on the polymerization reaction.

Figure 6. Light scattering chromatograms (MALS) for PPA samples prepared with catalysts 3 (red), 4 (green) and 5 (blue) in THF

Figure 6. Refractive index chromatograms (DRI) for PPA samples prepared with catalysts 3 (red), 4 (green) and 5 (blue) in THF

The cationic complexes $\left[\mathrm{Rh}(\text { diene })\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHR}\right\}\right]^{+}(\mathrm{R}=$ $\mathrm{H}, \mathrm{Me})$ and $\left[\mathrm{Rh}(\mathrm{nbd})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{NHMe}\right\}\right]^{+}$efficiently catalyzed the polymerization of PA although, in general, they are less active than the corresponding amido-complexes (Table 2). The most active catalysts are those containing strong π acceptor diene ligands such as nbd or tfb. In the series of complexes $\left[\mathrm{Rh}(\right.$ diene $\left.)\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHMe}^{2}\right\}\right] \mathrm{BF}_{4}(6-8)$ a conversion of $\geq 75 \%$ was reached in 90 min with catalysts 7 (nbd) and $\mathbf{8}$ (tfb), while a 55% conversion was attained with 6 (cod) after 120 min . In addition, a high molecular weight stereoregular polymer was obtained with catalysts $7(\mathrm{nbd})$ and $\mathbf{8}(\mathrm{tfb}), M_{\mathrm{w}}$ of
$1.86 \times 10^{6}(\mathrm{IE}=0.62)$ and $1.08 \times 10^{6}(\mathrm{IE}=1.32)$, respectively, with moderate polydispersities (PDI ≈ 1.7). In contrast, the PPA produced by 6 (cod) has a much lower MM, M_{w} of 2.93 x $10^{5}(\mathrm{IE}=3.60)$ and a wider $\mathrm{MMD}(\mathrm{PDI}=1.85)($ Figure 7).
The nature of the bidentate phosphine ligand also exerts a significant influence on the catalyst performance. The cationic complexes $\left[\mathrm{Rh}(\mathrm{nbd})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2}\right\}\right]\left[\mathrm{BF}_{4}\right] \quad$ (9) and $\left[\mathrm{Rh}(\mathrm{nbd})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{NHMe}\right\}\right]\left[\mathrm{BF}_{4}\right](\mathbf{1 0})$ are more active than 7 (nbd), reaching full PA conversion in 90 min . On the other

Figure 7. Light scattering chromatograms (MALS) for PPA samples prepared with catalysts 6 (red), 7 (green) and 8 (blue) in THF.

Table 2. Polymerization of PA by Phosphine-amino $\mathrm{Rh}(\mathrm{I})$ complexes 6-10 and $[\mathrm{Rh}(\text { diene }) \mathrm{L}]^{+}, \mathrm{L}=\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NMe}_{2}\right\}$. ${ }^{\text {a }}$

entry	catalyst	time (min)	conv. $(\%)^{\mathrm{c}}$	$M_{\mathrm{w}}\left(\mathrm{g} \mathrm{mol}^{-1}\right)^{\mathrm{d}}$	$M_{\mathrm{w}} / M_{\mathrm{n}}$	IE $(\%)^{\mathrm{e}}$
1	$\mathbf{6}$	120	55	2.93×10^{5}	1.85	3.6
2	$\mathbf{7}$	90	75	1.89×10^{6}	1.67	0.6
3	$\mathbf{8}$	90	80	1.08×10^{6}	1.74	1.3
4	$\mathbf{9}$	90	100	2.39×10^{6}	1.59	0.7
5	$\mathbf{1 0}$	90	100	2.81×10^{6}	1.86	0.7
6^{e}	$[\mathrm{Rh}(\mathrm{cod}) \mathrm{L}]^{+}$	120	100	2.38×10^{5}	1.79	7.7
7^{e}	$[\mathrm{Rh}(\mathrm{nbd}) \mathrm{L}]^{+}$	60	100	2.18×10^{6}	2.00	0.9
8^{e}	$[\mathrm{Rh}(\mathrm{tfb}) \mathrm{L}]^{+}$	60	100	3.25×10^{6}	2.08	0.7

${ }^{\text {a }}$ Reaction conditions: THF, $293 \mathrm{~K},[\mathrm{PA}]_{\mathrm{o}}=0.25 \mathrm{M},[\mathrm{PA}]_{\mathrm{o}} /[\mathrm{Rh}]=$ 100. ${ }^{\text {c }}$ Determined by GC (octane as internal standard). ${ }^{\text {d }}$ Determined by SEC-MALS. ${ }^{\mathrm{e}}$ Initiation efficiency, $\mathrm{IE}=\mathrm{M}_{\mathrm{th}} \mathrm{or} / \mathrm{M}_{\mathrm{n}} \times 100$; where $\mathrm{M}_{\text {theor }}=[\mathrm{PA}]_{0} /[\mathrm{Rh}] \times \mathrm{MW}_{\mathrm{PA}} \times$ polymer yield. ${ }^{\mathrm{e}}$ Reference 9.

The cationic catalysts $\left[\mathrm{Rh}(\right.$ diene $)\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NMe}_{2}\right]^{+}$having the functionalized phoshine ligand 3-(diphenylphosphine)- N, N -dimethylpropan-1-amine are more active than the corresponding complexes $\left[\mathrm{Rh}(\text { diene })\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHMe}\right\}\right]^{+}$(6-8) with the same diene ligand (cod, nbd or tfb) (Table 2). 9 In general, the catalysts featuring the $-\mathrm{NMe}_{2}$ hemilabile fragment provided PPAs of higher MM than the corresponding complexes with the -NHMe functional group, except for catalyst 6 (cod). Interestingly, catalyst $\left[\mathrm{Rh}(\mathrm{tfb})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NMe}_{2}\right]^{+}\right.$affords a PPA with a M_{w} of 3.25×10^{6}, three times greater than that obtained with $\mathbf{8}$ (tfb).

The influence of the substitution on the amino fragment can be studied in the series of compounds
hand, the MM of the PPAs obtained with both catalysts, $M_{\text {w }}$ of 2.39×10^{6} and 2.81×10^{6} respectively, are higher than that obtained with $7\left(M_{\mathrm{w}}\right.$ of $\left.1.89 \times 10^{6}\right)$, all of them with moderate polydispersities (PDI in the range 1.6-1.9) and initiation efficiencies around 0.6-0.7 \%.
$\left[\mathrm{Rh}(\mathrm{nbd})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NMe}_{2}\right\}\right]^{+}, \quad\left[\mathrm{Rh}(\mathrm{nbd})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHMe}\right\}\right]^{+}$ (7) and $\left[\mathrm{Rh}(\mathrm{nbd})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2}\right\}\right]^{+}(9)$, which possess nbd as diene ligand, and $-\mathrm{NMe}_{2},-\mathrm{NHMe}$ and $-\mathrm{NH}_{2}$ hemilabile fragments, respectively. If the following $\mathrm{p} K_{\mathrm{a}}$ values are taken as a reference: NMe_{3} (9.76), NHMe_{2} (10.64) and $\mathrm{NH}_{2} \mathrm{Me}$ (10.62), ${ }^{45}$ the basicity of the fragments -NHMe and - NH_{2} should be comparable and greater than that of $-\mathrm{NMe}_{2}$. However, the initiation efficiency of $\left[\mathrm{Rh}(\mathrm{nbd})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NMe}_{2}\right\}\right]^{+}(\mathrm{EI}=0.9)$ is higher than those of $7(E I=0.6)$ and $9(E I=0.7)$. The slightly higher initiation efficiency of the catalysts having a functionalized phosphine ligand with a $-\mathrm{NMe}_{2}$ fragment (except for diene $=$ cod, Table 2) does not show a direct correlation with the basicity. In principle, the greater basicity of the hemilabil fragment should facilitate the deprotonation of coordinated PA and the formation of the corresponding alkynyl species likely responsible of the initiation process. However, for this to happen the uncoordination of the hemilabile fragment is required which should be easier for the catalysts with the $-\mathrm{NMe}_{2}$ fragment due to the steric influence of both methyl groups. In fact, the Rh-N bond distances found in compounds $\left[\mathrm{Rh}(\right.$ diene $\left.)\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NMe}_{2}\right\}\right] \mathrm{BF}_{4}, 2.262(3) \AA$ (cod) and 2.190 (4) $\AA(\mathrm{tfb})$, are longer than the distance of $2.143(4) \AA$ found in $\left[\mathrm{Rh}(\mathrm{nbd})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHMe}^{2}\right] \mathrm{BF}_{4}(7)\right.$.
The analysis of the PPAs produced using complexes [Rh(diene) $\left\{\mathrm{Ph}_{2} \mathrm{P}_{\left.\left.\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NMe}_{2}\right\}\right] \mathrm{BF}_{4} \text { by SEC-MALS or A4F- }}\right.$ MALS (A4F, asymmetric flow field flow fractionation) showed that the samples contain a mixture of linear and branched polymer. ${ }^{10}$ The levels of branching are consistent with either terminal branching through copolymerization of unsaturated macromonomer or chain transfer to polymer, where the branched species are less reactive than the linear chains toward further polymerization. The analysis by SEC-MALS of the PPAs obtained with catalysts $\left[\mathrm{Rh}(\text { diene })\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHMe}\right\}\right]^{+}$(6-8) evidenced the presence of branched PPA only in the sample obtained with catalyst 6 (cod). ${ }^{10}$

The light-scattering and refractive index chromatograms of a PPA sample produced with catalyst 6 (cod) are shown in Figure 8a. The light-scattering detector revealed a detectable increase in MM on the high-MM region of the main peak which is consistent with the presence of branched material. The log-log plot of $r_{\mathrm{g}} v s$ MM revealed significant deviations from linear behavior in the high MM region also consistent with branching (Figure 8b). Interaction of the conjugated PPA material with the column packing is reflected both in the tailing intensity on the light-scattering detector beyond the low-MM exclusion limit of the column set and the quirky shape of the conformation plot in the low MM region.

In contrast, the PPA sample produced with catalyst 7 (nbd) exhibited a very different behavior as it appeared to be lineal over the elution volume ranges where both MALS and DRI detectors have detectable intensity (Figure 9a). This fact was further confirmed in the $\log -\log$ plot of $r_{g} v s$ MM exhibiting a linear relationship in the high molar mass region (Figure 9b).

The slope of the linear part of the conformation plots are 0.52 (6) and 0.58 (7) in THF. The deviation of the expected value of ca. 0.58 for a linear polymer reflects the complex behavior of PPA in diluted solutions due to solvent-polymer and polymerpolymer interactions changes as well as σ-trans to σ-cis isomerization process. ${ }^{46}$ Catalyst precursors $\left[\mathrm{Rh}(\mathrm{tfb})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHMe}\right\}\right]\left[\mathrm{BF}_{4}\right]$ (8) and $\left[\mathrm{Rh}(\mathrm{nbd})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2}\right\}\right]\left[\mathrm{BF}_{4}\right]$ (9) also afforded linear PPAs
as evidenced the lineal conformation plots. However, the conformation plot of the PPA obtained with catalyst $\left[\mathrm{Rh}(\mathrm{nbd})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{NHMe}\right\}\right]\left[\mathrm{BF}_{4}\right]$ (10) showed a deviation from linearity in the high molar mass region consistent with the presence of branched material (see Supporting Information). ${ }^{10}$

Figure 8. a) Light scattering (blue) and refractive index (red) chromatograms, MM vs elution volume plot for a PPA sample prepared using catalyst $\left[\mathrm{Rh}(\operatorname{cod})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHMe}\right\}\right]\left[\mathrm{BF}_{4}\right]$ (6) in THF. b) Log-log plot of the radius of gyration (r_{g}) vs MM.

Mechanistic considerations. Mechanistic investigations on PA polymerization by catalyst precursor $\left[\mathrm{Rh}(\mathrm{cod})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NMe}_{2}\right\}\right]^{+}$allowed us to identify key Rhalkynyl species formed by intramolecular proton transfer from a η^{2}-alkyne ligand to the uncoordinated- NMe_{2} group. ${ }^{9}$ Based on this finding, PA activation by the related mononuclear phos-phino-amino $\left[\mathrm{Rh}(\text { diene })\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHR}\right\}\right]^{+}$complexes should afford a cationic species like $\left[\mathrm{Rh}(\text { diene })\left\{\mathrm{Ph}_{2} \mathrm{P}_{(}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2} \mathrm{R}\right\}(\mathrm{C} \equiv \mathrm{C}-\mathrm{Ph})\right]^{+}$. In the same way, a neutral alkynyl speceies $\left[\mathrm{Rh}(\right.$ diene $)\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{NHMe}\right\}(\mathrm{C} \equiv \mathrm{C}$ $\mathrm{Ph})$] should be formed in the case of the mononuclear phos-phino-amido complexes $\quad\left[\mathrm{Rh}(\right.$ diene $\left.)\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{NMe}\right\}\right]$ (Scheme 6). These alkynyl inermediates could be involved in the initiation step that likely entails the PA insertion into the Rh-alkynyl bond to afford a stable rhodium-vinyl species responsible for the propagation step by successive PA coordina-tion-insertion reactions.

Scheme 6. PA Activation by Mononuclear Phosphino-amido and Phoshino-amino Rhodium(I) complexes.

However, compound $\left[\mathrm{Rh}(\mathrm{nbd})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{NMe}\right\}\right]$ (2) is slightly less active than $\left[\mathrm{Rh}(\mathrm{nbd})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{NHMe}\right\}\right]\left[\mathrm{BF}_{4}\right]$ (10) both showing comparable initiation efficiencies of 0.52 and 0.68 $\%$, respectively, which suggest that the charge of the intermediate propagating Rh-vinyl species does not have an impact on the catalytic performance.
The formation of alkynyl species from the dinuclear phosphinoamido complexes $\left[\mathrm{Rh}_{2}\right.$ (diene) $\left.\left\{\mu-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}\right\}_{2}\right]$ with ability to initiate the polymerization process can take place through different pathways (Scheme 7). Protonation of the nitrogen atom of one of the bridging amido ligands by $\mathrm{PhC} \equiv \mathrm{CH}$ should result in the formation of a Rh-alkynyl bond and an aminophosphine ligand $\kappa^{1} \mathrm{P}$ coordinated. Most probably, the alkynyl ligand facilitates the stabilization of the dinuclear unsaturated species through a η^{2} interaction. This intermediate species could react further with $\mathrm{PhC} \equiv \mathrm{CH}$ by protonation of the remaining bridgind amido ligand resulting in the fragmentation of the dinuclear structure. At this point the reaction can evolve in two different ways. The new alkynyl ligand can coordinated to the rhodium center bearing the alkynyl ligand which would give rise to an anionic bis-alkynyl rhodium complex $\left[\mathrm{Rh}(\text { diene })(\mathrm{C} \equiv \mathrm{C}-\mathrm{Ph})_{2}\right]^{-}$and the cationic compound $\left[\mathrm{Rh}\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}\right\}_{2}\right]^{+}$(12) by coordination of the amino fragment of both parent amido ligands (pathway i). Although several bis-alkynyl rhodium(III) complexes have been reported, ${ }^{47,48,49}$ related rhodium(I) anionic complexes similar to that formed through the activation of PA by pathway i have not been yet described. On the other hand, we have shown that compound $\mathbf{1 2}$ is not active in PA polymerization which practically rules out pathway i as a possible activation mode.

Figure 9. a) Light scattering (blue) and refractive index (red) chromatograms, MM vs elution volume plot for a PPA sample prepared using catalyst $\left[\mathrm{Rh}(\mathrm{nbd})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHMe}\right\}\right]\left[\mathrm{BF}_{4}\right]$ (7) in THF. b) Log-log plot of the radius of gyration $\left(r_{\mathrm{g}}\right)$ vs MM.

Scheme 7. Possible Modes of PA Activation by Dinuclear Amido-phosphine Complexes $\left[\mathrm{Rh}_{2}(\right.$ diene $\left.)\left\{\mu-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}\right\}_{2}\right]$.

However, if the new alkynyl ligand coordinates to the second rhodium center, two different mononuclear neutral alkynyl species could be formed (pathway ii). The first one is a $14 \mathrm{e}^{-}$ unsaturated species that can be stabilized by a molecule of solvent or a π-alkyne ligand which may be competent for PA polymerization. The second species is a square-planar alkynyl complex having two amino-phosphine ligands $\kappa^{1}-\mathrm{P}$ and $\kappa^{2}-\mathrm{P}, \mathrm{N}$ coordinated which, in principle, should not have the capacity to polymerize PA since it lacks a diene ligand. It is worth noting that the presence of a diene ligand in the catalysts induces a significant back-donation from filled 4d orbitals of rhodium to the LUMO of the diene ligand thereby facilitating the PA coordination to the rhodium center. ${ }^{40,50}$

We suggest that the labile species $[\mathrm{Rh}($ diene $)(\mathrm{C} \equiv \mathrm{C}-\mathrm{Ph}) \mathrm{L}](\mathrm{L}=$ PA, THF) could be responsible for the outstanding PA polymerization catalytic activity exhibited by the dinuclear phosphino-amido complexes $\left[\mathrm{Rh}_{2}(\right.$ diene $\left.)\left\{\mu-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}\right\}_{2}\right]$. Insertion of the coordinated PA into the Rh-alkynyl bond of $[\mathrm{Rh}($ diene $)(\mathrm{C} \equiv \mathrm{C}-\mathrm{Ph})(\mathrm{PA})]$ gives a $14 \mathrm{e}^{-}$vinyl species in which the facile coordination of a second PA molecule at the vacant site followed by cis-insertion into the Rh-vinyl bond with 2,1-
regioselectivity initiates the progation step. After that, successive PA coordination-insertion reactions give PPA having $\mathrm{C} \equiv \mathrm{C}-\mathrm{Ph}$ and a Rh residue at the chain ends (Scheme 8). Theoretical studies by Morokuma et al. ${ }^{51}$ with catalyst $[\mathrm{Rh}(\mathrm{nbd})(\mathrm{C} \equiv \mathrm{C}-\mathrm{Ph})(\mathrm{PA})]$ have shown that the energy barrier for the PA insertion into the Rh-alkynyl bond (initiation step) is almost $4 \mathrm{kcal} \mathrm{mol}^{-1}$ higher than the barrier for the insertion into the Rh-vinyl bond (propagation step) which is in agreement with the low initiation efficiency observed for 4, 2.6\% considering that only one of the rhodium atoms of the dinuclear precursor becomes an active species. On the hand, related active species could also be involved in the PA polymerization by the widely used catalyst precursor $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{5}-\right.\right.$ $\left.\mathrm{BPh}_{3}\right) \mathrm{Rh}(\mathrm{nbd})$] which show a catalytic performace comparable to $4 .{ }^{52}$

Further support for this proposal comes from the studies by Shiotsuki, Sanda et al. on the PA polymerization by catalyst [$\left.\left\{\mathrm{nbd}-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{PPh}_{2}\right\} \mathrm{RhR}\right](\mathrm{R}=$ triphenylvinyl) which possesses a diene-phosphine ligand coordinated in a $\eta^{4}, \kappa-\mathrm{P}$ fashion and a triphenylvinyl ligand. ${ }^{53}$ Theoretical studies have shown
that the initiation of the polymerization process requires the uncoordination of the phosphine fragment to generate a center of 14 e - with a coordinating vacancy that initiates the polymer-
ization process by PA coordination and subsequent insertion in the Rh-vinyl bond.

Scheme 8. Plausible Mechanism for the Polymerization of PA by $[\mathrm{Rh}($ diene $)(\mathrm{C} \equiv \mathrm{C}-\mathrm{Ph})(\mathrm{PA})]$.

Conclusions

The new amino-functionalized phosphines $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NMeH}$ and $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2}$ have been prepared by photochemical hydrophosphination of the corresponding functionalized allyl derivatives. Reaction of the rigid amino-phosphine $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{NMeH}$ with complexes $[\mathrm{Rh}(\mu \text {-OMe })(\text { diene })]_{2}$ affords square-planar mononuclear phosphine-anilido [Rh(diene) $\left.\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{NMe}\right\}\right]$ (diene $=$ cod, nbd) complexes. In sharp contrast, the flexible amino-phosphine $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2}$ gives unusual dinuclear complexes $\quad\left[\mathrm{Rh}_{2}\right.$ (diene) $\{\mu$ $\left.\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}\right\}_{2}$] (diene $=$ cod, nbd, tfb) featuring bridging 3(diphenylphosphino)propylmethylamido ligands. These complexes have obtained in good yield by in situ deprotonation of the amino-phosphine followed by reaction with the corresponding $\left.[\{\mathrm{Rh}(\mu-\mathrm{Cl})(\text { diene })]\}_{2}\right]$ dinuclear complexes. The cationic mononuclear $\left[\mathrm{Rh}(\text { diene })\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHR}\right\}\right]^{+}(\mathrm{R}=\mathrm{H}, \mathrm{Me})$ complexes have been prepared by reaction of the solvato $\left[\mathrm{Rh}(\text { diene })(\mathrm{THF})_{2}\right]^{+}$species with the corresponding aminophosphine. However, reaction with the cyclooctene solvato $\left[\mathrm{Rh}(\mathrm{coe})_{2}(\mathrm{thf})_{2}\right]^{+}$species affords $\left[\mathrm{Rh}\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHR}\right\}_{2}\right]^{+}(\mathrm{R}=$ H, Me) complexes featuring a cis-arrangement of both aminophosphine ligands.
The dinuclear phosphino-amido $\left[\mathrm{Rh}_{2}\right.$ (diene) $\{\mu$ $\left.\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}\right\}_{2}$] complexes show a remarkable catalytic activity in PA polymerization. The most active catalysts are those containing strong π-acceptor diene ligands such as nbd or tfb affording stereoregular PPAs of very high molecular weights, M_{w} up to $\approx 1.2 \times 10^{6}$, and moderate PDIs. The mononuclear phosphino-anilido $\left[\mathrm{Rh}(\right.$ diene $\left.)\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{NMe}\right\}\right]$ complexes are in general less active than the dinuclear complexes bearing the same diene ligand. Noteworthy, a PPA with a M_{w} of about $3.0 \mathrm{x} \quad 10^{6}$ has been obtained with catalyst $\left[\mathrm{Rh}(\mathrm{nbd})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{NMe}\right\}\right]$ as a consequence of a very low initiation efficiency. The cationic complexes $\left[\mathrm{Rh}(\text { diene })\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHR}\right\}\right]^{+} \quad(\mathrm{R}=\mathrm{H}$, Me$)$ and $\left[\mathrm{Rh}(\mathrm{nbd})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{NHMe}\right\}\right]^{+}$are also efficient PA polymerization catalysts although, in general, they are less active than the corresponding amido-complexes. The nature of the bidentate phosphine ligand also influences on the catalyst performance of cationic complexes. Catalyst precursors $\left[\mathrm{Rh}(\mathrm{nbd})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2}\right\}\right]^{+}$
and
$\left[\mathrm{Rh}(\mathrm{nbd})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{NHMe}\right\}\right]^{+}$exhibit a comparable catalytic activity and are more active than $\left[\mathrm{Rh}(\mathrm{nbd})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHMe}\right\}\right]^{+}$affording PPAs of M_{w} in the range $2.4-2.8 \times 10^{6}$ with moderate polydispersities. However, complexes $\left[\mathrm{Rh}\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHR}\right\}_{2}\right]^{+}(\mathrm{R}=\mathrm{H}$, Me) without a diene ligand are inactive which reflects the decisive role of a diene ligand in the catalysts. The analysis by SEC-MALS of the PPAs produced by the phoshino-amido and phosphino- amino rhodium(I) catalyst precursors evidences the formation of linear PPAs. However, the conformation plots for the PPAs obtained with
$\left[\mathrm{Rh}(\mathrm{cod})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHMe}\right\}\right]^{+}$
$\left[\mathrm{Rh}(\mathrm{nbd})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{NHMe}\right\}\right]^{+}$are consistent with the presence of branched material.
The outstanding catalytic activity of dinuclear phosphino-amido $\left[\mathrm{Rh}_{2}(\right.$ diene $\left.)\left\{\mu-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}\right\}_{2}\right]$ (diene $=\mathrm{nbd}$, tfb) complexes is a consequence of the mode of activation of PA that likely results in the formation of an unsaturated alkynyl species $[\mathrm{Rh}($ diene $)(\mathrm{C} \equiv \mathrm{C}-\mathrm{Ph}) \mathrm{L}](\mathrm{L}=\mathrm{PA}, \mathrm{THF})$ stabilized by a molecule of solvent or a π-alkyne ligand which may be competent for PA polymerization.

EXPERIMENTAL SECTION

Synthesis. All experiments were carried out under an atmosphere of argon using Schlenk techniques or glovebox. Solvents were distilled immediately prior to use from the appropriate drying agents or obtained from a Solvent Purification System (Innovative Technologies). $\mathrm{CDCl}_{3}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{D}_{6} \mathrm{D}_{6}$ and THF- d_{8} (Euriso-top) were dried using activated molecular sieves. The starting materials $[\mathrm{Rh}(\mu-\mathrm{Cl})(\text { diene })]_{2}$ (diene $=\operatorname{cod},{ }^{54} \mathrm{nbd},{ }^{55}$ $\left.\mathrm{tfbb}^{56}\right)$ and $[\mathrm{Rh}(\mu-\mathrm{OMe})(\mathrm{nbd})]_{2}^{57}$ were prepared as described in the literature. The functionalized phosphine $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{NHMe}^{25}$ and compound $\left[\mathrm{Rh}(\operatorname{cod})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{NMe}\right\}\right](\mathbf{1})^{23}$ were prepared following the reported methods. Diphenylphosphine and phenylacetylene were purchased from Aldrich. Phenylacetylene was purified by vacuum distillation from CaH_{2} and stored over molecular sieves.
Scientific Equipment. C, H and N analyses were carried out in a Perkin-Elmer 2400 Series II CHNS/O analyzer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded on a Bruker Avance 300
(300.1276 MHz and 75.4792 MHz) or Bruker Avance 400 (400.1625 MHz and 100.6127 MHz) spectrometers. NMR chemical shifts are reported in ppm relative to tetramethylsilane and referenced to partially deuterated solvent resonances. Coupling constants (J) are given in Hertz. Spectral assignments were achieved by combination of ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-APT and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC experiments. Electrospray mass spectra (ESIMS) were recorded on a Bruker MicroTof-Q using sodium formiate as the reference. MALDI-TOF mass spectra were obtained on a Bruker MICROFLEX spectrometer using DCTB, trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-
propenylidene]malononitrile, as matrix. ${ }^{58}$ Infrared spectra were recorded on a 100 FTIR- PerkinElmer spectrophotometer equipped with a universal attenuated total reflectance (UATR) accessory. Conductivities were measured in $c a .5 \cdot 10^{-4} \mathrm{M}$ acetone solutions of the complexes using a Philips PW 9501/01 conductimeter.
The absolute molecular weight averages (M_{n} and M_{w}), polydispersity index (PDI, $M_{\mathrm{w}} / M_{\mathrm{n}}$) and molar mass distribution were determined by SEC-MALS at the Chromatography and Spectroscopy Service of the ISQCH. SEC-MALS analyses were carried out using a Waters 2695 instrument, equipped with three PL-Gel Mixed B LS columns fitted to a MALS detector (MiniDawn Treos, Wyatt) and a differential refractive index detector (Optilab Rex, Wyatt). The polymer solutions in THF (≈ 2.0 $\mathrm{mg} / \mathrm{mL}$) were filtered through a $0.45 \mu \mathrm{~m}$ PTFE membrane filter before being injected in the GPC systems. To minimize sample degradation the analyses were carried out immediately after the dissolution of the polymer sample in THF. ${ }^{59,60}$ Data analysis was performed with ASTRA Software from Wyatt. The samples were eluted at $25{ }^{\circ} \mathrm{C}$ with THF at a flow rate of 1.0 $\mathrm{mL} / \mathrm{min}$. The reported $\mathrm{dn} / \mathrm{dc}$ value of $0.2864 \mathrm{~mL} \mathrm{~g}^{-1}$ determined at 633 nm for atactic PPA 59 was used which resulted in calculated mass recoveries that were in reasonable agreement with the theoretical values. ${ }^{61}$

Synthesis of amino-functionalized phosphine ligands. General Method. A glass reaction tube fitted with a greaseless highvacuum stopcock was charged with the corresponding allylamine (10 mmol) and diphenylphosphine (2 mmol). The mixture was placed between 2 white lamps of 400 W and stirred for 5 days at room temperature. The obtained viscous oil was dissolved in n-hexane (2 mL) and transferred to a Schlenck tube under argon. The volatiles were removed under vacuum to give the compounds as colorless oily products.
$\mathbf{P h}_{2} \mathbf{P}\left(\mathbf{C H}_{2}\right)_{3} \mathbf{N H M e}$. $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{NHMe}(1 \mathrm{~mL}, \rho=0.741$ $\left.\mathrm{g} \cdot \mathrm{ml}^{-1}, 96 \%, 10 \mathrm{mmol}\right), \mathrm{HPPh}_{2}\left(355 \mu \mathrm{~L}, \rho=1.07 \mathrm{~g} \cdot \mathrm{ml}^{-1}, 98 \%, 2\right.$ mmol). Yield: 82%. Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NP}$: C, 74.69 ; H, 7.83; N, 5.44. Found: C, 74.45; H, 7.81; N, 5.44. MS (ESI+, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~m} / \mathrm{z}, \%$): 258.4 ($[\mathrm{M}+\mathrm{H}]^{+}, 100$). ${ }^{1} \mathrm{H}$ NMR (298 K , $\left.\mathrm{CDCl}_{3}\right): \delta 7.46-7.31(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ph}), 2.63\left(\mathrm{t}, J_{\mathrm{H}-\mathrm{H}}=7.0,2 \mathrm{H}\right.$, $\mathrm{CH}_{2} \mathrm{~N}$), $2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 1.64(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), 1.29 (br, $\left.1 \mathrm{H}, \mathrm{NH}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($298 \mathrm{~K}, \mathrm{CDCl}_{3}$): $\delta-15.6$ (s). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($298 \mathrm{~K}, \mathrm{CDCl}_{3}$): $\delta 139.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.1, \mathrm{C}_{\mathrm{i}}\right.$), 132.7 (d, $J_{\mathrm{C}-\mathrm{P}}=18.4, \mathrm{C}_{\mathrm{o}}$), $128.5\left(\mathrm{C}_{\mathrm{p}}\right), 128.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=6.6, \mathrm{C}_{\mathrm{m}}\right)$, $53.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=13.5, \mathrm{CH}_{2} \mathrm{~N}\right), 36.4\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 26.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=16.3\right.$, $\mathrm{CH}_{2} \mathrm{P}$), $25.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11.5, \mathrm{CH}_{2}\right)$.
$\mathbf{P h}_{2} \mathbf{P}\left(\mathbf{C H}_{2}\right)_{3} \mathbf{N H}_{2} . \mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{NH}_{2}\left(0.77 \mathrm{~mL}, \rho=0.761 \mathrm{~g} \cdot \mathrm{ml}^{-1}\right.$, $98 \%, 10 \mathrm{mmol}$), $\mathrm{HPPh}_{2}\left(355 \mu \mathrm{~L}, \rho=1.07 \mathrm{~g} \cdot \mathrm{ml}^{-1}, 98 \%, 2\right.$ mmol). Yield: 77%. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NP}: \mathrm{C}, 74.05$; H , 7.46; N, 5.76. Found: C, 74.19; H, 7.43; N, 5.75. MS (ESI+, $\left.\mathrm{CHCl}_{3}, m / z, \%\right): 244.1\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) .{ }^{1} \mathrm{H}$ NMR (298 K , $\left.\mathrm{CDCl}_{3}\right): \delta 7.46-7.33(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ph}), 2.78\left(\mathrm{t}, J_{\mathrm{H}-\mathrm{H}}=7.0,2 \mathrm{H}\right.$,
$\mathrm{CH}_{2} \mathrm{~N}$), 2.06 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 1.57 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 1.25 (br, 2 H , NH_{2}). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($298 \mathrm{~K}, \mathrm{CDCl}_{3}$): $\delta-16.0$ (s). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($298 \mathrm{~K}, \mathrm{CDCl}_{3}$): $\delta 138.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=13.0, \mathrm{C}_{\mathrm{i}}\right.$), $132.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}\right.$ $\left.=18.4, \mathrm{C}_{\mathrm{o}}\right), 128.5\left(\mathrm{C}_{\mathrm{p}}\right), 128.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=6.6, \mathrm{C}_{\mathrm{m}}\right), 43.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ 13.7, $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 30.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=15.5, \mathrm{CH}_{2} \mathrm{P}\right), 25.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11.7\right.$, CH_{2}).

Synthesis of $\left[\mathbf{R h}(\mathbf{n b d})\left\{\mathbf{P h}_{2} \mathbf{P}\left(\mathbf{C}_{6} \mathbf{H}_{4}\right) \mathbf{N M e}\right\}\right]$ (2). A yellow solution of $[\mathrm{Rh}(\mu-\mathrm{OMe})(\mathrm{nbd})]_{2}(100 \mathrm{mg}, 0.221 \mathrm{mmol}$ in benzene (5 ml) was slowly added to a solution of $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{NHMe}$ (129 $\mathrm{mg}, 0.442 \mathrm{mmol}$) in benzene (2 mL) to give immediately an orange solution. The solution was stirred for 15 min and then concentrated under vacuum to $c a .1 \mathrm{~mL}$. Addition of n-hexane (3 mL) while stirring gave an orange solid which was filtered, washed with con n-hexane ($3 \times 2 \mathrm{~mL}$) and dried under vacuum. Yield: 73%. Anal. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NPRh}: \mathrm{C}, 64.34$; H, 5.19; N, 2.89. Found: C, 64.40; H, 5.18; N, 2.88. MS (MALDI-Tof, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~m} / \mathrm{z}, \%\right): 486.0\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) .{ }^{1} \mathrm{H}$ NMR (298 K, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.58(\mathrm{~s}, 4 \mathrm{H}, \mathrm{Ph}), 7.28\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.00\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ph}\right.$ and $\left.\mathrm{H}_{\mathrm{Ar}}\right)$, $6.67\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 6.45\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 4.85(\mathrm{br}, 2 \mathrm{H},=\mathrm{CH} \mathrm{nbd})$, 3.50 (br, 2H, CH nbd), 3.25 (br, $2 \mathrm{H},=\mathrm{CH} \mathrm{nbd}$), 2.89 ($\mathrm{s}, 3 \mathrm{H}$, CH_{3}), 1.29 (m, 2H, CH2 nbd). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$): δ 38.4 (d, $J_{\text {P-Rh }}=183.1$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 170.0$ $\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{P}}=28.3, J_{\mathrm{C}-\mathrm{Rh}}=3.5, \mathrm{C}_{\mathrm{i}-\mathrm{N}-\mathrm{Ar}}\right), 133.8\left(\mathrm{C}_{\mathrm{Ar}}\right), 133.8\left(\mathrm{C}_{\mathrm{Ar}}\right)$, $133.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.3, \mathrm{C}_{\mathrm{o}}, \mathrm{Ph}\right), 132.6\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{P}}=44.2, J_{\mathrm{C}-\mathrm{Rh}}=1.9\right.$, $\left.\mathrm{C}_{\mathrm{i}}, \mathrm{Ph}\right), 129.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.2, \mathrm{C}_{\mathrm{p}}, \mathrm{Ph}\right), 128.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.0, \mathrm{C}_{\mathrm{m}}\right.$, $\mathrm{Ph}), 117.2\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{P}}=48.3, J_{\mathrm{C}-\mathrm{Rh}}=1.1, \mathrm{C}_{\mathrm{i}-\mathrm{P}-\mathrm{Ar}}\right), 113.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ $\left.7.1, \mathrm{C}_{\mathrm{Ar}}\right), 109.9\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{P}}=14.0, J_{\mathrm{C}-\mathrm{Rh}}=1.7, \mathrm{C}_{\mathrm{Ar}}\right), 86.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=\right.$ $6.0,=\mathrm{CH} \mathrm{nbd}), 86.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=5.7,=\mathrm{CH} \mathrm{nbd}\right), 64.4\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{Rh}}=\right.$ $\left.4.4, J_{C-P}=1.9, \mathrm{CH}_{2} \mathrm{nbd}\right), 52.2(\mathrm{CH} \mathrm{nbd}), 49.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=9.8\right.$, $=\mathrm{CH}$ nbd), $39.1\left(\mathrm{CH}_{3}\right)$.
Synthesis of $\left[\mathbf{R h}_{2}(\right.$ diene $\left.)\left\{\boldsymbol{\mu}-\mathbf{N H}\left(\mathbf{C H}_{2}\right)_{3} \mathbf{P P h}_{2}\right\}_{2}\right]$. General Method. In a dry box, potassium bis(trimethylsilyl)amide (KHDMS) was added to a solution of $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2}$ in THF (2 mL). The solution was transferred to a suspension of the corresponding dinuclear compound $[\mathrm{Rh}(\mu-\mathrm{Cl})(\text { diene })]_{2}$ in THF $(8 \mathrm{~mL})$ to give red solutions which were stirred for 1 h at room temperature. The solutions were filtered to eliminate the KCl formed and then brought to dryness under vacuum to give red-orange solids which were washed with n-hexane ($3 \times 2 \mathrm{~mL}$) and dried under vacuum. Recrystallization from THF/n-hexane was necessary to obtain pure compounds.
$\left[\mathbf{R h}_{2}(\mathbf{c o d})\left\{\boldsymbol{\mu}-\mathbf{N H}\left(\mathbf{C H}_{2}\right)_{3} \mathbf{P P h}_{2}\right\}_{2}\right](\mathbf{3}) .[\mathrm{Rh}(\mu-\mathrm{Cl})(\mathrm{cod})]_{2}(100 \mathrm{mg}$, $0.203 \mathrm{mmol}), \mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2}(98.8 \mathrm{mg}, 0.406 \mathrm{mmol})$, KHDMS $(82 \mathrm{mg}, \quad 0.411 \mathrm{mmol})$. Yield: 76%. Anal. Calcd. for $\mathrm{C}_{38} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Rh}_{2}$: C, $57.16 ; \mathrm{H}, 5.81$; N, 3.51. Found: C, 57.32 ; H, 5.82; N, 3.50. MS (ESI+, THF, m/z, \%): 589.1 $\left(\left[\mathrm{Rh}\left(\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2}\right)_{2}\right]^{+}, 100\right), 454.2\left(\left[\mathrm{Rh}(\operatorname{cod})\left(\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3}{ }^{-}\right.\right.\right.$ $\left.\left.\mathrm{NH}_{2}\right)\right]^{+}, 20$). ${ }^{1} \mathrm{H}$ NMR ($298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.93(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 7.46$ (m, 4H, Ph), 7.07-6.88 (m, 12H, Ph), 3.88 (br, 2H, $=\mathrm{CH} \operatorname{cod}$), $3.66(\mathrm{br}, 2 \mathrm{H},=\mathrm{CH} \operatorname{cod}), 2.82\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}+\mathrm{CH}_{2}\right), 2.60(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 2.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.09\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}+\mathrm{CH}_{2}\right)$, $1.91\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ cod), $1.79\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ cod), $1.54(\mathrm{~m}, 2 \mathrm{H}$, CH_{2} cod), 1.37 (m, 2H, CH2 cod), -0.17 (m, 2H, NH). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (298 K, C ${ }_{6} \mathrm{D}_{6}$): $\delta 38.0\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{Rh}}=172.0\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 138.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.3, \mathrm{C}_{\mathrm{i}}\right), 138.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.0\right.$, $\left.\mathrm{C}_{\mathrm{i}}\right), 134.0\left(\mathrm{~m}, \mathrm{C}_{\mathrm{o}}\right), 133.7\left(\mathrm{~m}, \mathrm{C}_{\mathrm{o}}\right), 130.9\left(\mathrm{~m}, \mathrm{C}_{\mathrm{m}}\right), 128.4(\mathrm{~m}$, $\left.\mathrm{C}_{\mathrm{m}}\right), 127.0\left(\mathrm{C}_{\mathrm{p}}\right), 126.9\left(\mathrm{C}_{\mathrm{p}}\right), 75.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=12.4,=\mathrm{CH} \operatorname{cod}\right), 75.4$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{Rh}}=12.6,=\mathrm{CH} \operatorname{cod}\right), 47.3\left(\mathrm{CH}_{2} \mathrm{~N}\right), 32.1\left(\mathrm{CH}_{2} \mathrm{P}\right), 31.4$ $\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{br}, \mathrm{CH}_{2} \mathrm{cod}\right), 29.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=17.2, \mathrm{CH}_{2} \operatorname{cod}\right), 29.2$ (d, $J_{\mathrm{C}-\mathrm{Rh}}=11.8, \mathrm{CH}_{2} \mathrm{cod}$).
$\left[\mathbf{R h}_{2}(\mathbf{n b d})\left\{\boldsymbol{\mu}-\mathrm{NH}\left(\mathbf{C H}_{2}\right)_{3} \mathbf{P P h}_{2}\right\}_{2}\right]$ (4). $[\mathrm{Rh}(\mu-\mathrm{Cl})(\mathrm{nbd})]_{2}(100 \mathrm{mg}$, $0.217 \mathrm{mmol}), \mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2}(106 \mathrm{mg}, 0.434 \mathrm{mmol})$, KHDMS
(88 mg, 0.441 mmol). Yield: 68\%. Anal. Calcd. for $\mathrm{C}_{37} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Rh}_{2}$: C, 56.79; H, 5.41; N, 3.58. Found: C, 56.77; H, 5.41; N, 3.57. MS (ESI+, THF, m/z, \%): 589.1 $\left(\left[\mathrm{Rh}\left(\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2}\right)_{2}\right]^{+}\right.$, 30), 438 $\left(\left[\mathrm{Rh}(\mathrm{nbd})\left(\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2}\right)\right]^{+}, 100\right) .{ }^{1} \mathrm{H}$ NMR $\left(298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta$ 7.97 (m, 4H, Ph), $7.51(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 7.07-6.95(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ph})$, 4.08 (br, $1 \mathrm{H}, \mathrm{CH}$ nbd), 3.50 (br, $2 \mathrm{H}, \mathrm{CH} \mathrm{nbd}$), 2.82 (m, 2 H , $\mathrm{CH}_{2} \mathrm{~N}$), $2.19\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.12\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 1.90(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), 1.78 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 1.45 (br, $2 \mathrm{H},=\mathrm{CH} \operatorname{nbd}$), 1.42 (br, 2 H $=\mathrm{CH} \mathrm{nbd}), 1.60\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{nbd}\right), 1.28\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{nbd}+2 \mathrm{H}\right.$, NH), 0.01 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 36.8$ (d, $J_{\text {P-Rh }}=173.21$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 138.3$ (dd, $\left.J_{\mathrm{C}-\mathrm{P}}=36.5, J_{\mathrm{C}-\mathrm{Rh}}=5.6, \mathrm{C}_{\mathrm{i}}\right), 133.8\left(\mathrm{dt}, J_{\mathrm{C}-\mathrm{P}}=17.1, J_{\mathrm{C}-\mathrm{Rh}}=5.9\right.$, $\left.\mathrm{C}_{\mathrm{o}}\right), 128.3\left(\mathrm{C}_{\mathrm{p}}\right), 126.9\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{P}}=8.5, J_{\mathrm{C}-\mathrm{Rh}}=4.0, \mathrm{C}_{\mathrm{m}}\right), 60.5(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{Rh}}=5.5, \mathrm{CH}_{2} \mathrm{nbd}\right), 52.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=9.8,=\mathrm{CH} \mathrm{nbd}\right), 52.3\left(\mathrm{~d}, J_{\mathrm{C}}-\right.$ $\mathrm{Rh}^{2}=10.3$, $\left.=\mathrm{CH} \mathrm{nbd}\right)$, 51.1 (br, CH nbd), $49.1\left(\mathrm{CH}_{2} \mathrm{~N}\right), 29.5$ $\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=23.7, \mathrm{CH}_{2} \mathrm{P}\right)$.
$\left[\mathbf{R h}_{2}(\mathbf{t f b})\left\{\boldsymbol{\mu}-\mathbf{N H}\left(\mathbf{C H}_{2}\right)_{3} \mathbf{P P h}_{2}\right\}_{2}\right]$ (5). $[\mathrm{Rh}(\mu-\mathrm{Cl})(\mathrm{tfb})]_{2}(100 \mathrm{mg}$, $0.137 \mathrm{mmol}), \mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2}(66.7 \mathrm{mg}, 0.274 \mathrm{mmol})$, KHDMS $(56 \mathrm{mg}, \quad 0.281 \mathrm{mmol})$. Yield: 70%. Anal. Calcd. for $\mathrm{C}_{42} \mathrm{H}_{40} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Rh}_{2}$: C, 55.04 ; H, 4.40; N, 3.06. Found: C, 55.36; H, 4.18; N, 2.95. MS (ESI+, THF, m/z, \%): 589.1 $\left(\left[\operatorname{Rh}\left(\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2}\right)_{2}\right]^{+}, 100\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 7.91$ $(\mathrm{m}, 4 \mathrm{H}, \mathrm{Ph}), 7.51(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 7.11-6.97(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ph}), 5.93$ (br, $1 \mathrm{H}, \mathrm{CH} \mathrm{tfb}), 5.66$ (br, 1H, CH tfb), 3.18 (m, 2H, =CH tfb), 3.14 $(\mathrm{m}, 2 \mathrm{H},=\mathrm{CH} \mathrm{tfb}), 2.94\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.19\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.01$ (m, 2H, CH ${ }_{2} \mathrm{~N}$), $1.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.43\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 1,09$ (br, 2H, NH), 0.28 (m, 2H, CH $\mathrm{C}_{2} \mathrm{P}$). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (298 K, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 37.0$ (d, $J_{\mathrm{P}-\mathrm{Rh}}=173.2$). ${ }^{19} \mathrm{~F}$ NMR ($298 \mathrm{~K}, \mathrm{CDCl}_{3}$): $\delta-$ 148.73 (m, 2F, tfb), -149.58 ($\mathrm{s}, 4 \mathrm{~F}, \mathrm{BF}_{4}$), -161.81 (m, 2F, tfb). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($298 \mathrm{~K}, \mathrm{CDCl}_{3}$): $\delta 139.4$ (d, $J_{\mathrm{C}-\mathrm{F}}=230.9$, C-F $\mathrm{tfb}), 138.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=18.8, \mathrm{C}_{\mathrm{i}}\right), 138.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=19.5, \mathrm{C}_{\mathrm{i}}\right), 138.6$ (d, $\left.J_{\mathrm{C}-\mathrm{F}}=255.5, \mathrm{C}-\mathrm{F} \mathrm{tfb}\right), 134.1\left(\mathrm{~m}, \mathrm{C}_{\mathrm{o}}\right), 128.5\left(\mathrm{C}_{\mathrm{p}}\right), 127.41(\mathrm{~m}$, $\left.\mathrm{C}_{\mathrm{m}}\right), 51.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=10.6,=\mathrm{CH} \mathrm{tfb}\right), 50.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=10.0,=\mathrm{CH}\right.$ $\mathrm{tfb}), 50.1\left(\mathrm{CH}_{2} \mathrm{~N}\right), 40.8(\mathrm{CH} \mathrm{tfb}), 40.6(\mathrm{CH} \mathrm{tfb}), 29.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ 24.2, $\left.\mathrm{CH}_{2} \mathrm{P}\right), 29.4\left(\mathrm{CH}_{2}\right)$.

Synthesis of $\left[\mathbf{R h}(\right.$ diene $\left.)\left\{\mathbf{P h}_{2} \mathbf{P}\left(\mathbf{C H}_{2}\right)_{3} \mathbf{N H R}\right\}\right]\left[\mathrm{BF}_{4}(\mathbf{R}=\mathbf{M e}, \mathbf{H})\right.$ General Method. AgBF_{4} was added to a suspension of the corresponding dinuclear compound $[\mathrm{Rh}(\mu-\mathrm{Cl})(\text { diene })]_{2}$ in THF (10 mL) and the reaction mixture stirred for 30 min in the dark. The suspension was filtered and washed with THF ($3 \times 1 \mathrm{~mL}$). The resulting solution was concentrated under vacuum to ca. 5 mL and then added slowly to a solution of the functionalized phosphine, $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHMe}$ or $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2}$, in THF (5 mL) at 273 K giving immediately yellow suspensions of the compounds. The solvent was removed under vacuum and the yellow residue washed with diethyl ether ($3 \times 2 \mathrm{~mL}$) and dried under vacuum.
$\left[\mathbf{R h}(\operatorname{cod})\left\{\mathbf{P h}_{2} \mathbf{P}\left(\mathbf{C H}_{2}\right)_{3} \mathbf{N H M e}\right\}\right]\left[\mathbf{B F}_{4}\right](\mathbf{6}) .[\mathrm{Rh}(\mu-\mathrm{Cl})(\operatorname{cod})]_{2}(100$ $\mathrm{mg}, \quad 0.203 \mathrm{mmol}), \mathrm{AgBF}_{4}(79.0 \mathrm{mg}, 0.406 \mathrm{mmol})$, $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHMe}(104 \mathrm{mg}, 0.406 \mathrm{mmol})$. Yield: 72%. Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{BF}_{4} \mathrm{NPRh}: \mathrm{C}, 51.92 ; \mathrm{H}, 5.81$; N, 2.52. Found: C, $51.64 ; \mathrm{H}, 5.74 ; \mathrm{N}, 2.48$. MS (MALDI-Tof, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, m / z, \%$): $468.1\left([\mathrm{M}]^{+}, 100\right) . \Lambda_{\mathrm{M}}\left(\right.$ acetone, $\left.5.0 \cdot 10^{-4} \mathrm{M}\right)=42 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 8.01(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.65(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph})$, 7.37 (m, 3H, Ph), 7.09 (m, 2H, Ph), 5.39 (br, 1H, = CH cod), 5.05 (br, 1H, =CH cod), 4.10 (br, $1 \mathrm{H}, \mathrm{NH}$), 3.73 (br, $1 \mathrm{H},=\mathrm{CH}$ cod), $3.16\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.03-2.88(\mathrm{~m}, 2 \mathrm{H} ; 1 \mathrm{H}=\mathrm{CH} \operatorname{cod}, 1 \mathrm{H}$ CH_{2}), 2.68-1.97 (m, 8H; $6 \mathrm{H} \mathrm{CH}_{2} \operatorname{cod}, 2 \mathrm{H} \mathrm{CH}_{2}$), $2.23\left(\mathrm{~d}, J_{\mathrm{H}-\mathrm{H}}=\right.$ $6.1,3 \mathrm{H}, \mathrm{CH}_{3}$), 2.12-1.86 (m, 3H; $1 \mathrm{H} \mathrm{CH}_{2}, 2 \mathrm{H} \mathrm{CH}_{2}$ cod), 1.68 (m, 1H, CH 2). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 17.0\left(\mathrm{~d}, J_{\mathrm{P} \text {-Rh }}=\right.$ 155.2). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 135.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.6\right.$, $\left.\mathrm{C}_{\mathrm{o}}\right), 133.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.2, \mathrm{C}_{\mathrm{p}}\right), 131.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.0, \mathrm{C}_{\mathrm{o}}\right), 131.0(\mathrm{~d}$,
$\left.J_{\mathrm{C}-\mathrm{P}}=9.3, \mathrm{C}_{\mathrm{i}}\right), 130.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.3, \mathrm{C}_{\mathrm{p}}\right), 130.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.2\right.$, $\left.\mathrm{C}_{\mathrm{m}}\right), 129.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.7, \mathrm{C}_{\mathrm{i}}\right), 129.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.6, \mathrm{C}_{\mathrm{m}}\right), 108.5$ $\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{Rh}}=9.7, J_{\mathrm{C}-\mathrm{P}}=6.8,=\mathrm{CH} \operatorname{cod}\right), 105.0\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{Rh}}=10.8, J_{\mathrm{C}}\right.$ p $=6.8,=\mathrm{CH} \operatorname{cod}), 79.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=12.1,=\mathrm{CH} \operatorname{cod}\right), 76.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}\right.$ $=11.6,=\mathrm{CH} \operatorname{cod}), 53.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.1, \mathrm{CH}_{2} \mathrm{~N}\right), 39.5\left(\mathrm{CH}_{3}\right), 33.8$, 31.0, 30.7, $28.3\left(\mathrm{CH}_{2}\right.$ cod $), 24.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=25.2, \mathrm{CH}_{2} \mathrm{P}\right), 19.2$ $\left(\mathrm{CH}_{2}\right)$.
$\left[\mathbf{R h}(\mathbf{n b d})\left\{\mathbf{P h}_{2} \mathbf{P}\left(\mathbf{C H}_{2}\right)_{3} \mathbf{N H M e}\right\}\right]\left[\mathrm{BF}_{4}\right] \quad$ (7). $\quad[\mathrm{Rh}(\mu-\mathrm{Cl})(\mathrm{nbd})]_{2}$ ($100 \mathrm{mg}, 0.217 \mathrm{mmol}$), AgBF_{4} ($84.5 \mathrm{mg}, 0.434 \mathrm{mmol}$), $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHMe}(112 \mathrm{mg}, 0.434 \mathrm{mmol})$. Yield: 58%. Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{BF}_{4} \mathrm{NPRh}: \mathrm{C}, 51.24 ; \mathrm{H}, 5.24$; N, 2.60. Found: C, $51.20 ; \mathrm{H}, 5.21 ; \mathrm{N}, 2.59$. MS (MALDI-Tof, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, m / z, \%$): $452.1\left([\mathrm{M}]^{+}, 100\right) . \Lambda_{\mathrm{M}}$ (acetone, $\left.5.0 \cdot 10^{-4} \mathrm{M}\right)=46 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 7.77(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.57(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{Ph}), 7.44(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}), 7.24(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 5.65(\mathrm{br}, 1 \mathrm{H},=\mathrm{CH}$ nbd), 5.53 (br, 1H, =CH nbd), 3.95 (br, 1H, CH nbd), 3.87 (m, $2 \mathrm{H}, \mathrm{CH}$ nbd y NH), 3.56 (br, $1 \mathrm{H},=\mathrm{CH} \mathrm{nbd}$), 3.24 (br, $1 \mathrm{H},=\mathrm{CH}$ $\mathrm{nbd}), 3.06\left(\mathrm{t}, J_{\mathrm{H}-\mathrm{H}}=11.9,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.44$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 2.35\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 2.29\left(\mathrm{~d}, J_{\mathrm{H}-\mathrm{H}}=6.1,3 \mathrm{H}\right.$, $\left.\mathrm{CH}_{3}\right), 1.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.65\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.48\left(\mathrm{~d}, J_{\mathrm{H}-\mathrm{H}}=\right.$ $\left.11.5,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{nbd}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (298K, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 20.9$ (d, $\left.J_{\mathrm{P}-\mathrm{Rh}}=171.8\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 134.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}\right.$ $\left.=12.4, \mathrm{C}_{\mathrm{o}}\right), 132.3\left(\mathrm{C}_{\mathrm{p}}\right), 132.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.5, \mathrm{C}_{\mathrm{o}}\right), 131.1\left(\mathrm{C}_{\mathrm{p}}\right)$, $131.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.6, \mathrm{C}_{\mathrm{i}}\right), 130.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=14.1, \mathrm{C}_{\mathrm{i}}\right), 130.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}\right.$ $\left.=10.2, \mathrm{C}_{\mathrm{m}}\right), 129.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=10.0, \mathrm{C}_{\mathrm{m}}\right), 92.0(\mathrm{br},=\mathrm{CH} \mathrm{nbd})$, 90.8 (br, $=\mathrm{CH} \mathrm{nbd}), 66.6\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{Rh}}=4.9, J_{\mathrm{C}-\mathrm{P}}=1.6, \mathrm{CH}_{2} \mathrm{nbd}\right)$, 63.0 (d, $\left.J_{\mathrm{C}-\mathrm{P}}=12.0,=\mathrm{CH} \mathrm{nbd}\right), 59.7$ (d, $\left.J_{\mathrm{C}-\mathrm{P}}=9.5,=\mathrm{CH} \mathrm{nbd}\right)$, $54.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.9, \mathrm{CH}_{2} \mathrm{~N}\right), 53.3(\mathrm{CH} \mathrm{nbd}), 53.1(\mathrm{CH} \mathrm{nbd}), 38.7$ $\left(\mathrm{CH}_{3}\right), 24.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=24.8, \mathrm{CH}_{2} \mathrm{P}\right), 20.7\left(\mathrm{CH}_{2}\right)$.
$\left[\mathbf{R h}(\mathbf{t f b})\left\{\mathbf{P h}_{2} \mathbf{P}\left(\mathbf{C H}_{\mathbf{2}}\right)_{3} \mathbf{N H M e}\right\}\right]\left[\mathbf{B F}_{4}\right] \mathbf{(8)} .[\mathrm{Rh}(\mu-\mathrm{Cl})(\mathrm{tfb})]_{2}(100$ $\mathrm{mg}, \quad 0.137 \mathrm{mmol}), \mathrm{AgBF}_{4}(53.4 \mathrm{mg}, 0.274 \mathrm{mmol})$, $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHMe}(70.6 \mathrm{mg}, 0.274 \mathrm{mmol})$. Yield: 62%. Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{BF}_{8} \mathrm{NPRh}: \mathrm{C}, 49.96$; H, 3.89; N, 2.08. Found: C, $50.08 ; \mathrm{H}, 3.85 ; \mathrm{N}, 2.08$. MS (MALDI-Tof, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, m / z, \%$): $586.1\left([\mathrm{M}]^{+}, 100\right) . \Lambda_{\mathrm{M}}\left(\right.$ acetone, $\left.5.0 \cdot 10^{-4} \mathrm{M}\right)=44 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($298 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 7.90(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.70-762(\mathrm{~m}, 3 \mathrm{H}$, Ph), 7.51-7.42 (m, 3H, Ph), 7.27 (m, 2H, Ph), 5.71 (br, 3H, CH tfb and $=\mathrm{CH} \mathrm{tfb}), 5.41(\mathrm{br}, 1 \mathrm{H},=\mathrm{CH} \mathrm{tfb}), 4.32(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH})$, $3.30(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH} \mathrm{tfb}), 3.13\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.87(\mathrm{~m}, 2 \mathrm{H},=\mathrm{CH}$ tfb and $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 2.55-2.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 2.38\left(\mathrm{~d}, J_{\mathrm{H}-\mathrm{H}}=6.0\right.$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.99\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.79\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{31} \mathrm{P}$ NMR (298 K, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 21.4\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{Rh}}=172.0\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (298 $\left.\mathrm{K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 140.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=242.6, \mathrm{C}-\mathrm{F} \mathrm{tfb}\right), 138.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $152.4, \mathrm{C}-\mathrm{F} \mathrm{tfb}), 134.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.5, \mathrm{C}_{\mathrm{o}}\right), 132.7\left(\mathrm{C}_{\mathrm{p}}\right), 131.9(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=10.3, \mathrm{C}_{\mathrm{o}}\right), 131.3\left(\mathrm{C}_{\mathrm{p}}\right), 130.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.4, \mathrm{C}_{\mathrm{m}}\right), 129.7(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=9.9, \mathrm{C}_{\mathrm{m}}\right), 129.3\left(\mathrm{br}, \mathrm{C}_{\mathrm{i}}\right), 127.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=16.3, \mathrm{C}_{\mathrm{i}}\right), 92.5(\mathrm{br}$, $=\mathrm{CH} \mathrm{tfb}), 91.7(\mathrm{br},=\mathrm{CH} \mathrm{tfb}), 62.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=12.7,=\mathrm{CH} \mathrm{tfb}\right)$, $58.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=9.3,=\mathrm{CH} \mathrm{tfb}\right), 54.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=5.1, \mathrm{CH}_{2} \mathrm{~N}\right), 42.5$ (br, CH tfb), $39.1\left(\mathrm{CH}_{3}\right), 23.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=25.6, \mathrm{CH}_{2} \mathrm{P}\right), 20.6$ $\left(\mathrm{CH}_{2}\right)$.
Synthesis of $\left[\mathbf{R h}(\mathbf{n b d})\left\{\mathbf{P h}_{2} \mathbf{P}\left(\mathbf{C H}_{2}\right)_{3} \mathbf{N H}_{2}\right\}\right]\left[\mathrm{BF}_{4}\right]$ (9). $[\mathrm{Rh}(\mu-$ $\mathrm{Cl})(\mathrm{nbd})]_{2}(100 \mathrm{mg}, 0.217 \mathrm{mmol}), \mathrm{AgBF}_{4}(84.5 \mathrm{mg}, 0.434$ $\mathrm{mmol}), \mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2}(105 \mathrm{mg}, 0.434 \mathrm{mmol})$. Yield: 65%. Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{BF}_{4}$ NPRh: C, 50.32; H, 4.99; N, 2.67. Found: C, 50.19 ; H, 5.05; N, 2.47. MS (MALDI-Tof, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $m / z, \%): 438.0\left([\mathrm{M}]^{+}, 100\right) . \Lambda_{M}\left(\right.$ acetone, $\left.5.0 \cdot 10^{-4} \mathrm{M}\right)=57 \Omega^{-}$ ${ }^{1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1} .{ }^{1} \mathrm{H}$ NMR ($243 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 7.52(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ph}), 5.49$ (br, 2H, =CH nbd), 3.89 (br, 2H, CH nbd), 3.37 (m, 2H, $=\mathrm{CH}$ nbd), $2.93\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.86\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 2.33(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{P}\right), 1.68\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.49\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{nbd}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (243K, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 20.1$ (d, $J_{\mathrm{P}-\mathrm{Rh}}=169.3$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(243 \mathrm{~K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 133.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11.6, \mathrm{C}_{\mathrm{o}}\right), 131.2\left(\mathrm{C}_{\mathrm{p}}\right), 130.1$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=44.6, \mathrm{C}_{\mathrm{i}}\right), 129.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.0, \mathrm{C}_{\mathrm{m}}\right), 90.3\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{Rh}}=\right.$
$\left.9.4, J_{\mathrm{C}-\mathrm{P}}=5.4,=\mathrm{CH} \mathrm{nbd}\right), 66.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=7.5, \mathrm{CH}_{2} \mathrm{nbd}\right), 60.9(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{Rh}}=10.8,=\mathrm{CH} \mathrm{nbd}\right), 52.9(\mathrm{~m}, \mathrm{CH} \mathrm{nbd}), 43.4$ (d, $J_{\mathrm{C}-\mathrm{P}}=6.3$, $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 23.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=30.9, \mathrm{CH}_{2} \mathrm{P}\right), 23.8\left(\mathrm{CH}_{2}\right)$.

Synthesis of $\quad\left[\mathbf{R h}(\mathbf{n b d})\left\{\mathbf{P h}_{2} \mathbf{P}\left(\mathbf{C}_{6} \mathbf{H}_{4}\right) \mathrm{NHMe}^{2}\right\}\right]\left[\mathrm{BF}_{4}\right] \quad(10)$. $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}\left(20.3 \mu \mathrm{~L}, \rho=1.19 \mathrm{~g} \cdot \mathrm{~mL}^{-1}, 0.150 \mathrm{mmol}\right)$ was added to a solution of $\left[\mathrm{Rh}(\mathrm{nbd})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{NMe}\right\}\right]$ (2) $(50 \mathrm{mg}, 0.103$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at 273 K . The solution was stirred for 30 min to give a yellow solution which was brought to dryness under vaccum. The oily residue was triturated with cold diethyl ether to give a yellow solid which was filtered, washed with diethyl ether ($3 \times 3 \mathrm{~mL}$) and dried under vacuum. Yield: 60%. Anal. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{BF}_{4} \mathrm{NPRh}: \mathrm{C}, 54.48 ; \mathrm{H}, 4.57$; N, 2.44 . Found: C, 54.48 ; H, 4.52; N, 2.44. MS (MALDI-Tof, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $m / z, \%): 486.0\left([\mathrm{M}]^{+}, 100\right) . \Lambda_{\mathrm{M}}\left(\right.$ acetone, $\left.5.0 \cdot 10^{-4} \mathrm{M}\right)=45 \Omega^{-}$ ${ }^{1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (298K, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 7.66-7.32(\mathrm{~m}, 14 \mathrm{H}, \mathrm{Ph}$ y $\left.\mathrm{H}_{\mathrm{Ar}}\right), 6.15\left(\mathrm{~d}, J_{\mathrm{H}-\mathrm{H}}=5.9,1 \mathrm{H}, \mathrm{NH}\right), 6.03(\mathrm{br}, 1 \mathrm{H},=\mathrm{CH} \mathrm{nbd}), 5.56$ (br, $1 \mathrm{H},=\mathrm{CH} \mathrm{nbd}$), 4.27 (br, 1H, $=\mathrm{CH}$ nbd), 4.11 (br, $1 \mathrm{H}, \mathrm{CH}$ nbd), 4.02 (br, 1H, CH nbd), 3.95 (br, 1H, $=\mathrm{CH} \mathrm{nbd}$), 2.74 (d, $\left.J_{\mathrm{H}-\mathrm{H}}=5.9,3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ nbd $) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (298 K, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 37.0\left(\mathrm{~d}, J_{\mathrm{Rh}-\mathrm{P}}=174.2\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (298 $\mathrm{K}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 156.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=21.0, \mathrm{C}_{\mathrm{i}-\mathrm{N}-\mathrm{Ar}}\right), 134.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.0\right.$, $\left.\mathrm{C}_{\mathrm{Ar}}\right), 133.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.5, \mathrm{C}_{0} \mathrm{Ph}\right), 133.6\left(\mathrm{C}_{\mathrm{Ar}}\right), 132.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=\right.$ 12.1, $\left.\mathrm{C}_{\mathrm{o}} \mathrm{Ph}\right), 132.0\left(\mathrm{C}_{\mathrm{p}} \mathrm{Ph}\right), 131.5\left(\mathrm{C}_{\mathrm{p}} \mathrm{Ph}\right), 130.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=42.7\right.$, $\left.\mathrm{C}_{\mathrm{i}-\mathrm{P}-\mathrm{Ar}}\right), 130.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.3, \mathrm{C}_{\mathrm{i}}\right), 131.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.4, \mathrm{C}_{\mathrm{m}} \mathrm{Ph}\right)$, $129.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.9, \mathrm{C}_{\mathrm{m}} \mathrm{Ph}\right), 129.1\left(\mathrm{~d}, J=5.8, \mathrm{C}_{\mathrm{Ar}}\right), 128.5(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=45.3, \mathrm{C}_{\mathrm{i}}\right), 126.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=10.0, \mathrm{C}_{\mathrm{Ar}}\right), 93.9(\mathrm{~m},=\mathrm{CH} \mathrm{nbd})$, $92.0(\mathrm{~m},=\mathrm{CH} \mathrm{nbd}), 67.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=3.5, \mathrm{CH}_{2} \mathrm{nbd}\right), 66.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}\right.$ $=10.2,=\mathrm{CH} \mathrm{nbd}), 60.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{Rh}}=10.3,=\mathrm{CH} \mathrm{nbd}\right), 54.3,54.1$ (CH nbd), $43.9\left(\mathrm{CH}_{3}\right)$.

Synthesis of $\left[\mathbf{R h}\left\{\mathrm{Ph}_{2} \mathbf{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Z}\right\}_{2}\right]\left[\mathrm{BF}_{4}\right]\left(\mathrm{Z}=\mathbf{N H M e}(\mathbf{1 1}), \mathbf{N H}_{2}\right.$ (12). General Method: In a dry box, AgBF_{4} was added to a suspension of $\left[\mathrm{Rh}(\mu-\mathrm{Cl})(\mathrm{coe})_{2}\right]_{2}$ in THF $(10 \mathrm{~mL})$ and the reaction mixture stirred for 30 min in the dark. The suspension was filtered and washed with THF ($3 \times 1 \mathrm{~mL}$). The resulting yellow solution was concentrated under vacuum to ca. 5 mL and added slowly to a solution of the corresponding amino-phosphine, $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHMe}$ or $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2}$ in THF (2 mL) to give immediately an orange-red solution. The solution was stirred for 30 min and the solvent removed under vacuum to give an orange residue which was washed with diethyl ether ($3 \times 2 \mathrm{~mL}$) and dried under vacuum.
$\left[\mathbf{R h}\left\{\mathbf{P h}_{2} \mathbf{P}\left(\mathbf{C H}_{2}\right)_{3} \mathbf{N H M e}\right\}_{2}\right]\left[\mathbf{B F}_{4}\right] \quad$ (11). $\quad\left[\mathrm{Rh}(\mu-\mathrm{Cl})(\mathrm{coe})_{2}\right]_{2} \quad(100$ $\mathrm{mg}, \quad 0.139 \mathrm{mmol}), \mathrm{AgBF}_{4}(54.3 \mathrm{mg}, 0.278 \mathrm{mmol})$, $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHMe}(71.7 \mathrm{mg}, 0.279 \mathrm{mmol})$ in THF. Yield: 55%. Anal. Calcd. for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{BF}_{4} \mathrm{~N}_{2} \mathrm{P}_{2}$ Rh: C, 54.57; H, 5.72; N, 3.98. Found: C, 54.27; H, 5.92; N, 4.01. MS (MALDI-Tof, THF, m / z, \%): 617.2 ($\left[\mathrm{M}^{+}\right], 100$). ${ }^{1} \mathrm{H}$ NMR (298K, THF- d_{8}): $\delta 8.24$ (m, $2 \mathrm{H}, \mathrm{Ph}), 7.81(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.50(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ph}), 6.88(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph})$, 6.67 (m, 2H, Ph), 6.61 (m, 2H, Ph), 3.82 (br, 2H, NH), 3.25 (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.78\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.43\left(\mathrm{~d}, J_{\mathrm{H}-\mathrm{H}}=6.0,6 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.25\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 1.79\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.47\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (298K, THF- $\left.d_{8}\right): \delta 36.2$ (d, $\mathrm{J}_{\mathrm{P}-\mathrm{Rh}}=174.3$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (298K, THF- d_{8}): $\delta 138.38\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=25.7, \mathrm{C}_{\mathrm{i}}\right)$, $138.12\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=26.3, \mathrm{C}_{\mathrm{i}}\right), 136,30\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{Rh}} \approx J_{\mathrm{C}-\mathrm{P}}=6.2, \mathrm{C}_{\mathrm{o}}\right)$, $130.69\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{P}}=30.7, J_{\mathrm{C}-\mathrm{Rh}}=9.8, \mathrm{C}_{\mathrm{o}}\right), 130.57\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.1\right.$, $\left.\mathrm{C}_{\mathrm{m}}\right), 128.69\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=11.7, \mathrm{C}_{\mathrm{m}}\right), 128.91\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{P}} \approx J_{\mathrm{C}-\mathrm{Rh}}=4.7\right.$, $\left.\mathrm{C}_{\mathrm{m}}\right), 127.74\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{P}} \approx J_{\mathrm{C}-\mathrm{Rh}}=4.8, \mathrm{C}_{\mathrm{p}}\right), 127.13\left(\mathrm{ft}, J_{\mathrm{C}-\mathrm{P}} \approx J_{\mathrm{C}-\mathrm{Rh}}=\right.$ $\left.4.5, \mathrm{C}_{\mathrm{p}}\right), 54.58\left(\mathrm{CH}_{2} \mathrm{~N}\right), 40.33\left(\mathrm{CH}_{3}\right), 30.76\left(\mathrm{CH}_{2} \mathrm{P}\right), 20.95$ $\left(\mathrm{CH}_{2}\right)$.
$\left[\mathbf{R h}\left\{\mathbf{P h}_{2} \mathbf{P}\left(\mathbf{C H}_{2}\right)_{3} \mathbf{N H}_{2}\right\}_{2}\right][\mathbf{B F} 4](\mathbf{1 2}) .\left[\mathrm{Rh}(\mu-\mathrm{Cl})(\text { coe })_{2}\right]_{2}(100 \mathrm{mg}$, $\left.0.139 \mathrm{mmol}), \mathrm{AgBF}_{4}(54.3 \mathrm{mg}, 0.278 \mathrm{mmol}), \mathrm{Ph}_{2} \mathrm{P}^{(} \mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2}$ $(67.8 \mathrm{mg}, 0.279 \mathrm{mmol})$ in THF. Yield: 62%. Anal. Calcd. for
$\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{BF}_{4} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Rh}: \mathrm{C}, 53.28 ; \mathrm{H}, 5.37$; N, 4.14. Found: C, 53.72; H, 5.44; N, 4.07. MS (MALDI-Tof, THF, m / z, \%): 589.1 ([M $\left.{ }^{+}\right]$, 100). ${ }^{1} \mathrm{H}$ NMR ($298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.45-6.92(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph}), 3.57$ (br, $4 \mathrm{H}, \mathrm{NH}_{2}$), 2.94 (br, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 1.88 (br, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), 1.06 (br, 4H, CH2). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($298 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 39.0\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{Rh}}=\right.$ 172.5). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (298K, $\mathrm{C}_{6} \mathrm{D}_{6}$): 135.44 (m, C_{i}), 133.74 (br, C_{o}), 131.43 (br, C_{p}), 128.81 (br, C_{m}), 43,40 (br, $\mathrm{CH}_{2} \mathrm{~N}$) $29.53\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{P}\right), 24.01\left(\mathrm{CH}_{2}\right)$.

Polymerization Reactions. The polymerization reactions were carried out in round bottom flasks with efficient stirring. A typical polymerization procedure is as follows: phenylacetylene ($70 \mu \mathrm{~L}, 0.64 \mathrm{mmol}$) was added to a THF solution $(2.5 \mathrm{~mL})$ of the catalysts $(6.4 \mu \mathrm{~mol})$ and the mixture stirred at 293 K in the absence of light. The consumption of monomer was monitored by GC using n-octane as internal standard. The polymer solutions were transferred into vigorously stirred cold methanol (25 $\mathrm{mL}, 273 \mathrm{~K}$) using a cannula under argon. The polymers were filtered and washed with methanol and dried under vacuum to constant weight. The polymers were obtained as yellow-orange solids in good yields.

Crystal structure determinations. Suitable crystals for X-ray diffraction were obtained by slow evaporation of a solution of the compounds in benzene (2), n-hexane (4) or THF (11), and by slow diffusion of diethyl ether into a solution of the compound in tetrahydrofurane (7).
X-ray diffraction data were collected on a Bruker DUO (2, 4 and 7 complexes) or a Bruker Smart APEX (compound 11) diffractometers with graphite-monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation $(\lambda=0.71073 \AA)$ using narrow ω rotations $\left(0.3^{\circ}\right)$ at $100(2)$ K. Data reduction was performed with APEX 2 package, intensities were intregrated with SAINT,$+{ }^{62}$ and corrected for absorption effects with SADABS program. ${ }^{63}$ Structures were solved with direct methods with SHELXS ${ }^{64,65}$ and refined by full-matrix least-squares refinement on F^{2} with SHELXL2014, ${ }^{66}$ included in WingX package. ${ }^{67}$ Hydrogen atoms of N-H fragments in 4, $\mathbf{7}$ and $\mathbf{1 1}$ complexes have been included in the model in observed positions and freely refined. Particular refinement details are listed below.
Crystal data and structure refinement for 2. $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NPRh} ; M$ $=485.35$; red plate, $0.053 \times 0.100 \times 0.219 \mathrm{~mm}^{3}$; orthorhombic, $P 2_{1} 2_{1} 2_{1} ; a=8.9345(10) \AA, b=11.5260(13) \AA, c=20.337(2) \AA$; $Z=4 ; V=2094.3(4) \AA^{3} ; D_{c}=1.539 \mathrm{~g} / \mathrm{cm}^{3} ; \mu=0.904 \mathrm{~mm}^{-1}$; min . and max. absorption correction factors 0.795 and 0.920 ; $2 \theta_{\max }=59.072^{\circ} ; 22882$ collected reflections, 5503 unique reflections; $R_{\text {int }}=0.0339$; number of data/restraint/parameters 5503/8/362; final GoF 1.054; $R_{l}=0.0245$ [5186 reflections, I $>2 \sigma(I)] ; w R 2=0.0548$ all data; Flack parameter: -0.028(11), largest difference peak $0.971 \mathrm{e} \cdot \AA^{-3}$. Hydrogen atoms have been included in the model in observed positions and refined with some contraints concerning C-H bond lengths.
Crystal data and structure refinement for 4. $\mathrm{C}_{37} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Rh}_{2} ; M=782.48$; yellow block, $0.080 \times 0.080 \times$ $0.168 \mathrm{~mm}^{3}$; triclinic; $P \overline{1}, \quad a=9.7240(9) \AA, \quad b=$ 14.8703(13) $\AA, c=23.400(2) \AA ; \alpha=90.3980(10), \beta=$ 98.1640(10), $\gamma=91.7970(10)^{\circ} ; Z=4 ; V=3347.4(5) \AA^{3} ; D_{c}=$ $1.553 \mathrm{~g} / \mathrm{cm}^{3} ; \mu=1.110 \mathrm{~mm}^{-1} ;$ min. and max. absorption correction factors 0.744 and $0.913 ; 2 \theta_{\max }=59.142^{\circ} ; 481310$ collected reflections, 16923 unique reflections; $R_{\text {int }}=0.0350$; number of data/restraint/parameters 16923/2/1100; final GoF 1.044; $R_{l}=0.0411$ [12462 reflections, $\left.I>2 \sigma(I)\right] ; w R 2=$ 0.0915 all data;, largest difference peak $0.997 \mathrm{e} \cdot \AA^{-3}$. Hydrogen atoms have been included in the model in observed positions
and refined with some constraints concerning C-H bond lengths.
Crystal data and structure refinement for 7. $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{BF}_{4} \mathrm{NPRh} ; M=539.15$; brown needle, $0.052 \times 0.072 \times$ $0.293 \mathrm{~mm}^{3} ;$ monoclinic, $P 2_{l} / n ; a=14.1153(17) \AA, b=$ 10.6325(13) $\AA, c=16.002(2) \AA ; \beta=108.131(2)^{\circ} ; Z=4 ; V=$ $2282.4(5) \AA^{3} ; D_{c}=1.569 \mathrm{~g} / \mathrm{cm}^{3} ; \mu=0.861 \mathrm{~mm}^{-1} ;$ min. and max. absorption correction factors 0.714 and $0.915 ; 2 \theta_{\max }=52.574^{\circ}$; 16648 collected reflections, 4608 unique reflections; $R_{\text {int }}=$ 0.0758 ; number of data/restraint/parameters 4608/0/305; final GoF 1.020; $R_{I}=0.0504$ [4608 reflections, $\left.I>2 \sigma(I)\right] ; w R 2=$ 0.1066 all data;, largest difference peak $1.131 \mathrm{e} \cdot \AA^{-3}$. Carbon atoms of phenyl groups and two fluorine atoms of the counterion have been found to be disordered. They have been included in the model in two sets of positions and isotropically refined with complementary occupancy factors.

Crystal data and structure refinement for 11. $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{BF}_{4} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Rh} ; M=704.32$; yellow prism, $0.142 \times 0.208 \times$ $0.307 \mathrm{~mm}^{3}$; monoclinic, $P 2_{l} / n ; a=11.7793(6) \AA, b=$ $15.4800(8) \AA, c=17.6167(9) \AA ; \beta=100.9310(10)^{\circ} ; Z=4 ; V=$ $3154.0(3) \AA^{3} ; D_{c}=1.483 \mathrm{~g} / \mathrm{cm}^{3} ; \mu=0.692 \mathrm{~mm}^{-1} ; \min$. and max. absorption correction factors 0.800 and $0.894 ; 2 \theta_{\max }=57.276^{\circ}$; 26590 collected reflections, 7453 unique reflections; $R_{\text {int }}=$ 0.0326; number of data/restraint/parameters 7453/0/389; final GoF 1.084; $R_{I}=0.0329$ [6426 reflections, $\left.I>2 \sigma(I)\right] ; w R 2=$ 0.0659 all data;, largest difference peak $0.523 \mathrm{e} \cdot \AA^{-3}$. Hydrogen atoms oh amine groups have been included in the model in observed positions and freely refined.

Acknowledgements.

This article is dedicated to Prof. Pablo Espinet on the occasion of his 70th birthday
Financial support from the Spanish Ministry of Economy and Competitiveness (MINECO/FEDER) under the Projects CTQ2013-42532-P and CTQ2016-75884-P and the Diputación General de Aragón (DGA/E42_17R) is gratefully acknowledged.

ASSOCIATE CONTENT

Supporting Information.

The Supporting Information is available free of charge on the ACS Publications website at DOI: \#\#\#\#. NMR spectra for selected compounds and selected chromatograms and conformational plots for PPA samples (PDF). Accession Codes. CCDC 1894549-1894552 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223336033.

AUTHOR INFOR MATION

Corresponding Authors.

*E-mail: perez@unizar.es.
*E-mail: vjimenez@unizar.es.

ORCID

M. Victoria Jiménez: 0000-0002-0545-9107

Pilar García-Orduña: 0000-0002-7063-1292

Jesús J. Pérez-Torrente: 0000-0002-3327-0918

REFERENCES

(1) Masuda, T. Substituted Polyacetylenes: Synthesis, Properties, and Functions. Polym. Rev. 2017, 57, 1-14.
(2) Xu, A.; Masuda, T.; Zhang, A. Stimuli-Responsive Polyacetylenes and Dendronized Poly(phenylacetylene)s. Polym. Rev. 2017, 57, 138-158.
(3) Masuda, T.; Sanda, F.; Shiotsuki, M. Polymerization of Acetylenes In Comprehensive Organometallic Chemistry III, 1st ed.; Michael, D., Mingos, P., Crabtree, R. H., Eds.; Elsevier: Amsterdam, Holanda, 2007; Vol. 11, pp 557-593.
(4) Shiotsuki, M.; Sanda, F.; Masuda. T. Polymerization of Substituted Acetylenes and Features of the Formed Polymers. Polym. Chem. 2011, 2, 1044-1058.
(5) Nikishkin, N. I.; Huskens, J.; Verboom W. Highly active and robust rhodium(I) catalyst for the polymerization of arylacetylenes in polar and aqueous medium under air atmosphere. Polymer, 2013, 54, 3175-3181.
(6) Casado, M. A.; Fazal, A.; Oro, L. A. Rhodium-Catalyzed Polymerization of Phenylacetylene and its Derivatives. Arab. J. Eng. 2013, 38, 1631-1646.
(7) Sedláček, J.; Vohlídal, J. Controlled and Living Polymerizations Induced with Rhodium Catalysts. A Review. Collect. Czech. Chem. Commun. 2003, 68, 1745-1790.
(8) Sedláček, J.; Balcar, H. Substituted Polyacetylenes Prepared with Rh Catalysts: From Linear to Network-Type Conjugated Polymers. Polym. Rev. 2017, 57, 31-54.
(9) Jiménez, M. V.; Pérez-Torrente, J. J.; Bartolomé, M. I.; Vispe, E.; Lahoz, F. J.; Oro, L. A. Cationic Rhodium Complexes with Hemilabile Phosphine Ligands as Polymerization Catalyst for High Molecular Weight Stereoregular Poly(phenylacetylene). Macromolecules 2009, 42, 8146-8156.
(10) Angoy, M.; Bartolomé, M. I.; Vispe, E.; Lebeda, P.; Jiménez, M. V.; Pérez-Torrente, J. J.; Collins, S.; Podzimek, S. Branched Poly(phenylacetylene). Macromolecules 2010, 43, 6278-6283.
(11) Angoy, M.; Jiménez, M. V.; Modrego, F. J.; Oro, L. A.; Passarelli, V.; Pérez-Torrente, J. J. Mechanistic Investigation on the Polymerization of Phenylacetylene by 2-Diphenylphosphinopyridine Rhodium(I) Catalysts: Understanding the Role of the Cocatalyst and Alkynyl Intermediates. Organometallics 2018, 37, 2778-2794.
(12) Trhlíková, O.; Zedník, J.; Balcar, H.; Brus, J.; Sedláčeka, J. [Rh(cycloolefin)(acac)] Complexes as Catalysts of Polymerization of Aryl- and Alkylacetylenes: Influence of Cycloolefin Ligand and Reaction Conditions. J. Mol. Catal. A: Chem. 2013, 378, 57-66.
(13) Mastrorilli, P.; Nobile, C. F.; Rizzuti, A.; Suranna, G. P.; Acierno, D.; Amendola, E. Polymerization of phenylacetylene and of ptolylacetylene catalyzed by β-dioxygenato rhodium(I) complexes in homogeneous and heterogeneous phase. J. Mol. Catal. A: Chem. 2002, 178, 35-42.
(14) Wang, Q.; Jia, H.; Shi, Y.; Ma, L.; Yang, G.; Wang, Y.; Xu, S.; Wang, J.; Zang, Y.; Aoki, T. [Rh(L-alaninate)(1,5Cyclooctadiene)] Catalyzed Helix-Sense-Selective Polymerizations of Achiral Phenylacetylenes. Polymers 2018, 10, 1223.
(15) Jaseer, E. A.; Casado, M. A.; Al-Saadi, A. A.; Oro, L. A. Intermolecular Hydroamination versus Stereoregular Polymerization of Phenylacetylene by Rhodium Catalysts Based on N-O Bidentate Ligands. Inorg. Chem. Commun. 2014, 40, 78-81.
(16) Yim, J. C. H.; Schafer, L. Efficient Anti-MarkovnikovSelective Catalysts for Intermolecular Alkyne Hydroamination: Recent Advances and Synthetic Applications. Eur. J. Inorg. Chem. 2014, 6825-6840.
(17) Müller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Hydroamination: Direct Addition of Amines to Alkenes and Alkynes. Chem. Rev. 2008, 108, 3795-3892.
(18) Desnoyer, A. N.; Love, J. A. Recent Advances in WellDefined, Late Transition Metal Complexes that Make and/or Break C-N, C-O and C-S Bonds. Chem. Soc. Rev. 2017, 46, 197-238.
(19) Fryzuk, M. D.; McNeil, P. A. Stereoselective formation of iridium(III) amides and ligand-assisted heterolytic splitting of dihydrogen. Organometallics 1983, 2, 682-684.
(20) Schneider, S.; Meiners, J.; Askevold, B. Cooperative Aliphatic PNP Amido Pincer Ligands-Versatile Building Blocks for Coordination Chemistry and Catalysis. Eur. J. Inorg. Chem. 2012, 412-429.
(21) Xue, P.; Sung, H. S. Y.; Williams, I. D.; Jia, G. Alkyne Oligomerization Mediated by Rhodium Complexes with a Phosphinosulfonamido Ligand and Isolation and Characterization of a Rhodacyclopentadiene Complex. J. Organomet. Chem. 2006, 691, 1945-1953.
(22) Jiménez, M. V.; Pérez-Torrente, J. J.; Bartolomé, M. I.; Oro, L. A. Convenient Methods for the Synthesis of a Library of Hemilabile Phosphines. Synthesis 2009, 1916-1922.
(23) Hounjet, L. J.; McDonal, R.; Ferguson M. J.; Cowie, M. Comparison of Structure and Reactivity of Phosphine-Amido and Hemilabile Phosphine-Amine Chelates of Rhodium. Inorg. Chem. 2011, 50, 5361-5378.
(24) G Groom, C. R.; Brun, I. J.; Lightfoot, M. P.; Ward, S. C. The Cambridge Structural Database. Acta Crystallogr. 2016, B72, 171179.
(25) Hounjet, L. J.; Bierenstiel, M.; Ferguson, M. J.; McDonal, R.; Cowie, M. Mono- and Binuclear Complexes of Rhodium Involving a New Series of Hemilabile O-Phosphinoaniline Ligands. Dalton Trans. 2009, 4213-4226.
(26) Oro, L. A.; Fernández, M. J.; Modrego, F. J.; Foces-Foces, C.; Cano, F. H. Di-(μ-amido)dirhodium Complexes: Structure of $\left[\mathrm{Rh}_{2}\left(\mu-(\mathrm{NH})_{2}\right.\right.$ naphth $\left.) \mathrm{I}_{2}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$. Angew. Chem. Int. Ed. 1984, 23, 913-914.
(27) Cooper, M. K.; Organ, G. J.; Duckworth, P. A.; Henrick, K.; McPartlin, M. Synthesis and Oxidation Reactions of Mono- and Dinuclear Rhodium Carbonyl Complexes of (oDiphenylphosphinophenyl)amine, $\mathrm{H}_{2} \mathrm{~L}$; X-ray Structure Analysis of a Rhodium(II) Amido-bridged Dimer, $\left[\{\mathrm{Rh}(\mu-\mathrm{HL})(\mathrm{CO}) \mathrm{Cl}\}_{2}\right] \cdot \mathrm{EtOH} . J$. Chem. Soc. Dalton Trans. 1988, 2287-2292.
(28) Takemoto, S.; Otsuki, S.; Hashimoto, Y.; Kamikawa, k.; Matsezaka, H. Divalent Dirhodium Imido Complexes: Formation, Structure, and Alkyne Cycloaddition Reactivity. J. Am. Chem. Soc. 2008, 130, 8904-8905.
(29) Ishiwata, K.; Kuwata, S.; Ikariya T. Hydrogen- and OxygenDriven Interconversion between Imido-Bridged Dirhodium(III) and Amido-Bridged Dirhodium(II) Complexes. J. Am. Chem. Soc. 2009, 131, 5001-5009.
(30) Fernández, M. J.; Modrego, F. J.; Oro, L. A.; Apreda, M. C.; Cano, F. H.; Foces-Foces, C. Amides of Rhodium and Iridium Derived from 2-Aminothiophenol and Diaminonaphthalene: X-Ray Crystal Structure of $\mathrm{Rh}_{2}\left(\mu-1,8-(\mathrm{NH})_{2} \mathrm{C}_{10} \mathrm{H}_{6}\right)(\mathrm{CO})_{4}$. Inorg. Chim. Acta. 1989, 157, 61-64.
(31) Mena, I.; Casado, M. A.; García-Orduña, P., Polo, V.; Lahoz, F. J.; Fazal, A., Oro, L. A. Direct Access to Parent Amido Complexes of Rhodium and Iridium through $\mathrm{N}-\mathrm{H}$ Activation of Ammonia. Angew. Chem. Int. Ed. 2011, 50, 11735-11738.
(32) Tejel, C.; Ciriano, M. A.; Bordonaba, M.; López, J. A.; Lahoz, F. J.; Oro, L. A. Structural and Dynamic Studies on Amido-Bridged Rhodium and Iridium Complexes. Chem. Eur. J. 2002, 8, 3128-3138.
(33) Palacios, L.; DiGiuseppe, A.; Opalinska, A.; Castarlenas, R., Pérez-Torrente, J. J.; Lahoz, F. J.; Oro, L. A. Labile Rhodium(I)-NHeterocyclic Carbene Complexes. Organometallics 2013, 32, 2768-2774.
(34) Jiménez, M. V.; Bartolomé, M. I.; Pérez-Torrente, J. J.; Lahoz, F. J.; Oro, L. A. Rhodium(I) Complexes with Hemilabile Phosphines: Rational Design for Efficient Oxidative Amination Catalysts. ChemCatChem 2012, 4, 1298-1310.
(35) Jiménez, M. V.; Pérez-Torrente, J. J.; Bartolomé, M. I.; Lahoz, F. J., Oro, L. A. Rational Design of Efficient Rhodium Catalysts for the Anti-markovnikov Oxidative Amination of Styrene. Chem. Commun. 2010, 46, 5322-5324.
(36) Berstein, J.; Davis, R. E.; Shimoni, L.; Chang, N.-L. Patterns in Hydrogen Bonding: Functionality and Graph Set Analysis in Crystals. Angew. Chem. Int. Ed. 1995, 34, 1555-1573.
(37) Furlani, A.; Napoletano, C.; Russo, M. V.; Camus, A.; Marsich, N. J. The Influence of the Ligands on the Catalytic Activity of a Series of Rh^{I} Complexes in Reactions with Phenylacetylene: Synthesis of Stereoregular Poly(phenyl)acetylene. Polym. Sci., Part A: Polym. Chem. 1989, 27, 75-86.
(38) Furlani, A.; Napoletano, C.; Russo, M. V.; Feast, W. J. Stereoregular Polyphenylacetylene. Polym. Bull. 1986, 16, 311-317.
(39) Saeed, I.; Shiotsuki, M.; Masuda, T. Effect of Diene Ligands in the Rhodium-catalyzed Polymerization of Phenylacetylene. Macromolecules 2006, 39, 8977-8981.
(40) Onishi, N.; Shiotsuki, M.; Sanda, F.; Masuda, T. Polymerization of Phenylacetylenes with Rhodium Zwitterionic Complexes: Enhanced Catalytic Activity by π-acidic Diene Ligands. Macromolecules 2009, 42, 4071-4076.
(41) Kishimoto, Y.; Miyatake, T.; Ikariya, T.; Noyori, R. An Efficient Rhodium(I) Initiator for Stereospecific Living Polymerization of Phenylacetylenes. Macromolecules 1996, 29, 5054-5055.
(42) Kishimoto, Y.; Eckerle, P.; Miyatake, T.; Kainosho, M.; Ono, A.; Ikariya, T.; Noyori, R. Well-Controlled Polymerization of Phenylacetylenes with Organorhodium(I) Complexes: Mechanism and Structure of the Polyenes. J. Am. Chem. Soc. 1999, 121, 1203512044.
(43) Shiotsuki, M.; Onishi, N.; Sanda, F.; Masuda, T. Living Polymerization of Phenylacetylenes Catalyzed by Cationic Rhodium Complexes Bearing Tetrafluorobenzobarrelene. Polym. J. 2011, 43, 51-57.
(44) Komatsu, H.; Suzuki, Y.; Yamazaki, H. Unprecedented Rho-dium-Mediated Tetramerization of Bulky Terminal Alkynes Leading to Hydropentalenylrhodium Complexes. Chem. Lett. 2001, 30, 998999.
(45) Hall, H. K. Jr. Correlation of the Base Strengths of Amines. J. Am. Chem. Soc. 1957, 79, 5441-5444.
(46) Cametti, C.; Codastefano, P.; D'Amato, R.; Furlani, A.; Russo, M. Static and Dynamic Light Scattering Measurements of Polyphenylacetylene (PPA) in Different Organic Solvents (Tetrahydrofuran, Toluene and Chloroform). Synth. Met. 2000, 114, 173-179.
(47) Ara, I.; Berenguer, J. R.; Eguizábal, E.; Forniés, J.; Lalinde, E.; Martín A.; Martínez, F. Synthesis, Characterization, and Reactivity of New Alkynyl Complexes of Rhodium and Iridium: Preparation of Neutral $\left(M-M^{\prime}: M=R h, I r ; M^{\prime}=P t, P d\right)$ Hetero-Alkynyl-Bridged Dinuclear Complexes. Organometallics 1998, 17, 4578-4596.
(48) Schäfer, M.; Wolf, J.; Werner, H. Binding Two C ${ }_{2}$ Units to an Electron-Rich Transition-Metal Center: The Interplay of Alkyne(alkynyl), Bisalkynyl(hydrido), Alkynyl(vinylidene), Alkynyl(allene), Alkynyl(olefin), and Alkynyl(enyne) Rhodium Complexes. Organometallics 2004, 23, 5713-5728.
(49) Zhu. X.; Ward, R. M.; Albesa-Jové, D.; Howard, J. A. K.; Porrés, L.; Beeby, A.; Low, P. J.; Wong, W.-K.; Marder, T. B. Synthesis of new mer,trans-Rhodium(III) Hydrido-bis(acetylide) Complexes: Structure of mer, trans-[(PMe $\left.\left.3_{3}\right)_{3} \mathrm{Rh}\left(\mathrm{C} \equiv \mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{NMe}\right)_{2} \mathrm{H}\right]$. Inorg. Chim. Acta 2006, 359, 2859-2863.
(50) Zhang, P.; Wang, H.; Shi, X.; Yan, X.; Wu, X.; Zhang, S.; Yao, B.; Feng, X.; Zhi, J.; Li, X.; Tong, B.; Shi, J.; Wang, L.; Dong, Y. On-Water Polymerization of Phenylacetylene Catalyzed by Rh Complexes Bearing Strong π-Acidic Dibenzo[a,e]cyclooctatetraene Ligand. J. Pol. Sci. Part A: Pol. Chem. 2017, 55, 716-725.
(51) Ke, Z.; Abe, S.; Ueno, T.; Morokuma, K. Rh-catalyzed Polymerization of Phenylacetylene: Theoretical Studies of the Reaction Mechanism, Regioselectivity, and Stereoregularity. J. Am. Chem. Soc. 2011, 133, 7926-7941.
(52) Kishimoto, Y.; Itou, M.; Miyatake, T.; Ikariya, T.; Noyori, R. Polymerization of Monosubstituted Acetylenes with a Zwitterionic Rhodium(I) Complex, $\mathrm{Rh}^{+}\left(2,5\right.$-norbornadiene) $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{B}^{-}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]$ Macromolecules 1995, 28, 6662-6666.
(53) Onishi, N.; Shiotsuki, M.; Masuda, T.; Sano, N.; Sanda, F. Polymerization of Phenylacetylenes Using Rhodium Catalysts Coordinated by Norbornadiene Linked to a Phosphino or Amino Group Organometallics 2013, 32, 846-853.
(54) Giordano, G.; Crabtree, R. H.; Heintz, R. M.; Forster, D.; Morris, D. E. Di- μ-Chloro-Bis($\eta^{4}-1,5-$ Cyclooctadiene) Dirhodium(I).

In Inorganic Syntheses; John Wiley \& Sons, Inc, 1979; Vol. 19, pp 218-220.
(55) Abel, E. W.; Benett, M. A.; Wilkinson, G. Norbornadienemetal Complexes and Some Related Compounds. J. Chem. Soc. 1959, 3178-3182.
(56) Roe, D. M.; Massey, A. G. Perfluorophenyl Derivatives of the Elements XXVI. Tetrafluorobenzobarrelene Complexes of Mn, Co, Rh, Pd and Pt. J. Organomet. Chem. 1971, 28, 273-279.
(57) Falcon, M.; Farnetti, E.; Marsich, N. Stereoselective Living Polymerization of Phenylacetylene Promoted by Rhodium Catalysts with Bidentate Phosphines. J. Organomet. Chem. 2001, 629, 187193.
(58) Ulmer, L.; Mattay, J.; Torres-García, H. G.; Luftmann, H. The Use of 2-[(2E)-3-(4-Tert-Butylphenyl)-2-Methylprop-2-Enylidene]Malononitrile (DCTB) as a Matrix for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Eur. J. Mass Spectrom. 2000, 6, 49-52.
(59) Sedlacek, J.; Vohlidal, J.; Grubisic-Gallot, Z. Molecu-lar-weight Determination of Poly(phenylacetylene) by Size-exclusion Chromatography/low-angle Laser Light Scattering. Influence of Polymer Degradation. Makromol. Chem., Rapid. Commun. 1993, 14, 51-53.
(60) Percec, V.; Rudick, J. G. G. Independent Electrocyclization and Oxidative Chain Cleavage along the Backbone of cisPoly(phenylacetylene). Macromolecules 2005, 38, 7241-7250.
(61) Podzimek, S. Light Scattering, Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation, John Wiley and Sons, Hoboken, New Jersey, 2011, pp 65-72.
(62) SAINT+, version 6.01: Area-Detector Integration Software, Bruker AXS, Madison, WI, 2001.
(63) SADABS, Area Detector Absorption Correction Program, Bruker AXS, Madison, WI, 1996.
(64) Sheldrick, G. M. Phase Annealing in SHELX-90: Direct Methods for Larger Structures. Acta Crystallogr. 1990, A46, 467473.
(65) Sheldrick, G. M. A Short History of SHELX. Acta Crystallogr. 2008, A64, 112-122.
(66) Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3-8.
(67) Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Cryst. 2012, 45, 849-854.

Table of Contents artwork

