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Polarization of τ in quasielastic (anti)neutrino scattering: The role of spectral functions
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We present a study of the τ polarization in charged-current quasielastic (anti)neutrino-nucleus scattering. The
spectral function formalism is used to compute the differential cross section and the polarization components for
several kinematical setups, relevant for neutrino-oscillation experiments. The effects of the nuclear corrections
in these observables are investigated by comparing the results obtained using two different realistic spectral
functions, with those deduced from the relativistic global Fermi gas model, where only statistical correlations
are accounted for. We show that the spectral functions, although they play an important role when predicting the
differential cross sections, produce much less visible effects on the polarization components of the outgoing τ .
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I. INTRODUCTION

In the neutrino studies, the ντ is experimentally the least
explored one among the three neutrino flavors. Its measure-
ment is demanding since the τ lepton, being the product of
the ντ charge-current (CC) interaction with matter, decays
rapidly making its clear identification very challenging. There
are very few ντ (high energetic) events recorded. They were
detected via CC interaction in OPERA [1] and DONuT [2]
experiments. In the near future the SHiP facility [3] will start
operating, with the ability of measuring the cross sections of
ντ and ν̄τ with statistics 100 times larger than the DONuT
experiment.

One of the advantages of exploring ντ and ν̄τ CC interac-
tions is the fact that for a wide range of energies, the outgoing
τ is not fully polarized. Each of the τ− and τ+ polarization
components (longitudinal and transverse ones) is sensitive
to different combinations of the nuclear structure functions,
making them interesting observables to further explore the
differences between various nuclear models. They convey
richer information, which is complementary to the knowledge
obtained by means of the cross section predictions. In the limit
of high energies Eν � mτ , though, the outgoing τ leptons
are produced in totally polarized states. Thus, the interesting
energy region to be explored is limited to the values of
Eν � 10 GeV. This relatively moderate energy range can be
studied by oscillation experiments, although the measurement
is demanding because of the low statistics. From this per-
spective, the information about the final τ lepton polarization
could be helpful because its spin direction affects the angular
distribution of the decay products.

We will focus on the quasielastic (QE) region in which
the single nucleon knock-out is the dominant reaction mecha-
nism. Previous works on ντ and ν̄τ scattering have considered
the nucleus as an ensemble of free nucleons [4], or used the
random phase approximation (RPA), and an effective nucleon
mass to describe the initial nuclear state [5]. The use of

an effective mass for the nucleon is a simplified method to
account for the effects due to the change of its dispersion
relation inside of a nuclear medium. A proper description,
however, is achieved by dressing the nucleon propagators
and constructing realistic particle and hole spectral functions
(SFs), which incorporate dynamical effects that depend on
both the energy and momentum of the nucleons [6]. There
was an attempt to include the SF formalism in the study
of the polarization of the outgoing lepton produced in CC
(anti)neutrino-nucleus reactions [7]. However, because of the
nonrelativistic nature of the nuclear calculations carried out
in that study, the predictions were restricted to a very nar-
row region of the available phase space. In this work we
perform an analysis which does not suffer from the above-
mentioned problem, and we use realistic hole SFs to ob-
tain the τ -polarization vector in the whole available phase
space for neutrino energies below 10 GeV. Moreover, to
gauge the model dependence of the predictions, we perform
the calculation using spectral functions obtained within two
theoretically different frameworks: a semiphenomenological
one based on the findings of Ref. [8], and a second one
[9,10] obtained within the correlated basis function (CBF)
theory [11]. Both sets of SFs provide a realistic description
of the dynamics including nucleon-nucleon correlations in the
initial target and in the nuclear remnant. Moreover, combined
with a factorization scheme, they have been successfully used
for modeling inclusive electro- and (anti)neutrino-nuclear QE
responses [6,12–22].

The lepton polarization results presented here, and the
comparison for these observables of the SF models of
Refs. [8–10], are a natural continuation of the works of
Refs. [23,24], where the electroweak scaling properties and
the strange hyperon production in nuclei, respectively, were
studied.

Finally, we would also like to mention that the inclusion
of RPA correlations do not change appreciably the gross
features of the polarization of the τ ’s. The reason is that
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the polarization components are obtained as a ratio between
linear combinations of nuclear structure functions and the
RPA changes similarly the numerator and denominator. In
addition, one should bear in mind that RPA corrections take
into account the absorption of the gauge boson, mediator
of the interaction, by the nucleus as a whole instead of by
an individual nucleon, and their importance decreases as the
gauge boson wavelength becomes much shorter than the nu-
clear size. Thus, RPA effects on the polarization observables
become little relevant, even for the total or partially integrated
cross sections [6,25], for a great part of the phase-space
accessible in the CC reaction [5,7].

This work is organized as follows. In Sec. II we introduce
the formalism and the basic concepts. In Sec. II B we focus
our attention on the hadron tensor, using the spectral function
formalism to rewrite it. In Sec. III, in the first place, we
define the phase space to be explored in our analysis, and
then perform a comparison of the results obtained using two
realistic SF models and the more approximate relativistic
global Fermi gas (RGFG) approach. Finally, in Sec. IV we
draw our conclusions, while some details on the definition of
the lepton polarized CC cross section and some kinematical
relations for weak charged lepton production off nucleons are
given in Appendixes A and B, respectively.

II. FORMALISM

We will investigate CC (anti)neutrino-nucleus reactions,

ν�/ν̄�(k) + A → �∓(k′) + X, � = e, μ, τ, (1)

where kμ, k′μ are the incoming- and outgoing-lepton four-
momenta, respectively.

A. Charged lepton polarization

The (anti)neutrino inclusive-differential cross section for
a (s; h)-polarized outgoing lepton can be written using
Eqs. (A4) and (A5) of Appendix A as

d2σ (ν�,ν̄� )

d�(k̂′)dEk′

∣∣∣∣
s;h

= 1

2
�

(ν�,ν̄� )
0

(
1 + h sαPα

(�−, �+ )

)
(2)

�
(ν�,ν̄� )
0 = |�k′| G2

F Mi

2π2
F (ν�,ν̄� ), (3)

where �0 is the double differential cross section in the labo-
ratory frame corresponding to unpolarized leptons and Pμ is
the polarization vector. The term F depends on the lepton and
hadron kinematics as discussed more in detail in Appendix
A. In the hadronic tensor, only five out of the six structure
functions, Wi, contribute to F [13]:

W μν
(ν�,ν̄� )

2Mi
= −gμνW (ν�,ν̄� )

1 +PμPν

M2
i

W (ν�,ν̄� )
2 +i

εμναβPαqβ

2M2
i

W (ν�,ν̄� )
3

+ qμqν

M2
i

W (ν�,ν̄� )
4 + Pμqν + qμPν

2M2
i

W (ν�,ν̄� )
5

+i
Pμqν − qμPν

2M2
i

W (ν�,ν̄� )
6 . (4)

The structure functions Wi, are real Lorentz scalars that de-
pend on q2. They encode the nuclear response to the elec-

troweak probe, which is determined by a variety of mecha-
nisms, e.g., QE scattering, two-nucleon knockout, pion pro-
duction, and deep inelastic scattering. The term proportional
to W6 does not contribute to the double differential cross
section, and thus it does not appear in the full expression for
F that can be found in Eq. (2) of Ref. [7].1 When contracting
the leptonic and hadronic tensor, W3 contributes to F with
an opposite sign for the antineutrino and neutrino scattering.
Moreover, the value of the nuclear structure functions will also
be different for the two reactions. In the former case, the scat-
tering takes place on a bound proton, e.g., the Wi will depend
on the proton mass and removal energy, in the latter the struck
nucleon is a neutron. The differences between the antineutrino
and neutrino results are expected to be particularly significant
in asymmetric nuclei, such as 40Ar.

The polarization vector Pα of the outgoing �∓ lepton is
determined by the nuclear response,

P (�−, �+ )
α =∓m�

(kμgνα+kνgμα−kαgμν ±iεμναβkβ )W μν
(ν�,ν̄� )

[LμνW μν](ν�,ν̄� )
,

(5)

which can be decomposed as follows:

Pα
(�−, �+ ) = −(

PLnα
l + PT nα

t + PT T nα
tt

)∣∣
(�−, �+ ), (6)

where the three four-vectors nl , nt , and ntt are given by

nα
l =

(
|�k′|
m�

,
Ek′ �k′

m�|�k′|

)
,

nα
t =

(
0,

(�k × �k′) × �k′

|(�k × �k′) × �k′|

)
, (7)

nα
tt =

(
0,

�k × �k′

|�k × �k′|

)
.

We have ignored the projection of Pα onto the direction of the
four-vector k′α , because it is irrelevant for the (s; h)-polarized
differential cross section since sk′ = 0. In addition, Pntt = 0
and therefore PT T = 0, which means that the polarization
three-vector lies in the lepton-scattering plane (see Fig. 1 of
Ref. [7]). Note that under parity, Pα transforms as

Pα → Pα, (8)

which automatically requires PT T = 0, since nα
tt stays invari-

ant under a parity transformation. (Time reversal invariance
can be also used to show that PT T = 0.) In addition, it is
obvious that P2, called the degree of polarization [4],

−P2
(�−, �+ ) = (

P2
L + P2

T

)∣∣
(�−, �+ ), (9)

is a Lorentz scalar, as PL,T also are, since they can be
computed taking scalar products, i.e., PL,T = −(Pnl,t ). From

1Actually, the term F can be also read off from Eq. (10) of
Ref. [13]. We should mention that there is a typographical error in
this latter equation that affects the W4 term, where sin2 θ should be
sin2 θ/2, with θ the angle between �k and �k′ in the LAB system.
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the polarized double differential cross section of Eq. (2), we
obtain these longitudinal and perpendicular components of the
outgoing lepton polarization vector as follows:

P(�−, �+ )
L,T =

d2σ (ν�,ν̄� )

d�(k̂′ )dEk′

∣∣h=+
nl,t

− d2σ (ν�,ν̄� )

d�(k̂′ )dEk′

∣∣h=−
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d�(k̂′ )dEk′

∣∣h=+
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+ d2σ (ν�,ν̄� )

d�(k̂′ )dEk′

∣∣h=−
nl,t

= 1

�
(ν�,ν̄� )
0

{
d2σ (ν�,ν̄� )

d�(k̂′)dEk′

∣∣∣∣h=+

nl,t

− d2σ (ν�,ν̄� )

d�(k̂′)dEk′

∣∣∣∣h=−

nl,t

}
.

(10)

By construction, it follows that |PL,T | � 1. Furthermore,
(P2

L + P2
T ) � 1, because |P2 | � 1. This can be easily de-

duced in the outgoing lepton rest frame, considering that
in this system, | �P · n̂| � 1 for any unit vector n̂, since for
both polarizations h = ±, the double differential cross section

d2σ (ν�,ν̄� )

d�(k̂′ )dEk′
|
n̂;h

� 0.

The PL,T components depend on the lepton kinematics and
on the structure functions, Wi, introduced in Eq. (4). Explicit
expressions for these observables in the LAB system are given
in Eqs. (5) and (6) of Ref. [7], which were obtained from the
findings of [4]. Besides masses, they depend on the scalars
(kP), (k′P), and q2, which define the neutrino and outgoing
lepton energies and the angle θ between �k and �k′ in the LAB
system.

It can be seen that for W3 = 0, �+ and �− have opposite
polarizations, up to some effects due to the asymmetry of the
role played by protons and neutrons in the nuclear system.

The operators (1 ± γ5 /nl )/2, with nα
l obtained from sα in

Eq. (A2) using �k′/|�k′| as unit vector, are helicity projectors
[26], and thus, the asymmetry proposed in Eq. (10) for the
case of PL turns out to be the outgoing lepton helicity asym-
metry. Moreover, since at high energies helicity and chirality
coincide, and the latter is conserved in CC reactions, we
conclude that

lim
(m�/|�k′|)→0

P�−
L = −1, lim

(m�/|�k′|)→0
P�+

L = 1, (11)

which follows from the negative (positive) chirality of the
neutrino (antineutrino) that is inherited by the outgoing
�−(�+) produced in the CC transition. In addition, in the
(m�/|�k′|) → 0 limit, the transverse polarization PT vanishes,
for both neutrino and antineutrino processes. Indeed, it is
proportional to the outgoing lepton mass and to sin θ [4,7].
[Note that for PL, m� in the definition of Pα in Eq. (5) cancels
out with the 1/m� common factor that contains nα

l in Eq. (7)].
In this ultrarelativistic energy regime the whole nontrivial
behavior of the polarization components, coming from the
hadron tensor, cancels out in the ratio taken in Eq. (5).

In the case of electron and muon CC production the cross
section depends mostly on W1, W2, and W3, while the contri-
bution of the other structure functions are suppressed by the
small lepton mass. Therefore, PT takes small values close to
zero, while PL is expected to differ little from the asymptotic
∓1 values for neutrino or antineutrino reactions, respectively,
in most of the available phase space.

B. QE Hadron tensor

1. Vacuum

When considering the interaction of a (anti)neutrino with a
single free nucleon of momentum p and mass M,

ν� + n → p + �−, ν̄� + p → n + �+, (12)

the hadron dynamics is determined by the nucleon tensor Aμσ

(we use the same conventions as in Ref. [24]):

Aμσ (p, q)

=
∑

〈p + q| jμcc±(0)|p〉〈p + q| jσcc±(0)|p〉∗

=
∑

[ū(p + q)(V μ−Aμ)u(p)][ū(p + q)(V σ−Aσ )u(p)]∗

=1

2
Tr

[
(/p+/q+M )

2M
(V μ−Aμ)

(/p+M )

2M
γ 0(V σ−Aσ )†γ 0

]
(13)

with M and u, ū, the nucleon mass and the dimensionless
Dirac nucleon spinors, respectively, and we have summed and
averaged over initial and final nucleon spins. In addition,

V μ = 2 cos θC ×
(

FV
1 (q2)γ μ + iμV

FV
2 (q2)

2M
σμνqν

)
,

Aμ = cos θCGA(q2) ×
(

γ μγ5 + 2M

m2
π − q2

qμγ5

)
(14)

with mπ = 139 MeV the pion mass.2 Partial conservation of
the axial current and invariance under G parity have been
assumed to relate the pseudoscalar form factor to the axial
one and to discard a term of the form (pμ + p′μ)γ5 in the axial
sector, respectively. While the pseudoscalar form factor can be
safely neglected when considering νe, νμ-induced processes,
its contribution, proportional to m2

� , becomes more relevant for
τ production. Invariance under time reversal guarantees that
all form factors are real, and besides, due to isospin symmetry,
the vector form factors are related to the electromagnetic ones.

We use in this work the parametrizations of the form
factors given in Ref. [13], which were also employed in
Ref. [7] (Galster et al. [27] in the vector sector and a dipole
form for the axial one).

2. Nuclear medium

For sufficiently large values of the momentum transfer
(| �q | � 500 MeV) the lepton-nucleus scattering can be safely
treated within the impulse approximation (IA). In this frame-
work the hadron tensor of Eq. (A7) is obtained as a convo-
lution of the spin averaged squared amplitude of the hadron

2Note that the CC nucleon tensor Ãμν , defined in Eq. (27) of
Ref. [13], is related to that given here in Eq. (13) by Ãμσ (p, q) =
8M2Aσμ(p, q)/ cos2 θC . In addition, Ãμν is explicitly given in Ap-
pendix A of that reference for on-shell nucleons. There is a typo-
graphical error there that affects the overall sign of the xy component
[Eq. (A8)].
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matrix element of Eq. (13) and the hole SF:

W μν (q) = �(q0)
∫

d3 p

(2π )3

∫ μ

μ−q0
dESh(E , �p )

× M2

Ep Ep+q
Aμν (p, q)δ(q0 + M + E − Ep+q).

(15)

where μ is the chemical potential and the initial nucleon is
considered off-shell. The factors M/Ep and M/Ep+q, with
Ep =

√
M2 + �p 2 are included to account for the implicit

covariant normalization of the Dirac spinors of the initial and
final nucleons in the matrix elements of the relativistic current
in Eq. (13). The hole SF, Sh(E , �p), encompasses information
on the internal nuclear structure, giving the probability dis-
tribution of removing a nucleon with momentum �p from the
target nucleus, leaving the residual (A − 1)-nucleon system
with an excitation energy −E � 0. For simplicity, we consider
a symmetric nucleus with equal proton and nucleon density
distributions ρn = ρp = ρ/2.

In this work we use three different nuclear models to obtain
the hole SF:

(i) In the RGFG model [28] only statistical (Pauli) corre-
lations among the nucleons are accounted for,3 yield-
ing a very simple expression,

SRGFG
h (E , �p ) = 2A

ρ̄
δ[E + M − (Ep − ε)]θ ( p̄F − | �p |),∫

d3 p

(2π )3
dE SRGFG

h (E , �p ) = 1, (16)

where ρ̄ = 2 p̄3
F /(3π2) is the averaged total nucleon

(both proton and neutron) density, A is the total num-

ber of nucleons, and
√

M2 + p̄2
F − M is the chemical

potential in this model. Let us notice that Eq. (16)
is the same as Eq. (2.13) of Ref. [29] when we
put ε = 0, and considering the normalization of the
hole SF without the (2π )3 factor. We approximate
the shift energy ε > 0 by the difference between the
experimental masses of the ground states of the initial
and final nuclear systems. To account for it, we use a
shifted value of q0 → (q0 − ε) (see Ref. [13] for more
details, where for isospin symmetric nuclear matter,
ε is identified with the Q value of the reaction). The
effective Fermi momenta p̄F are determined from the
analysis of electron-scattering data of Ref. [30] for
different nuclear species. In this work, we will show
results for 16O, for which we take p̄F = 225 MeV and
ε ≈ 15(11) MeV for ν� (ν̄�) induced reactions.

It has long been known that the RGFG method
is oversimplified and that a realistic description of

3Our approach differs slightly from the original model of Ref. [28]
since we include nucleon binding effects by modifying the energy
transfer q0, instead of changing the energies of the initial and final
nucleons, ε = ε1 − ε2.

nuclear dynamics, including correlations among the
nucleons, is needed to provide an accurate description
of electroweak scattering off nuclei. We consider two
nuclear SFs, derived within the framework of nuclear
many-body theory using the CBF approach [9,10]
and the semiphenomenological one of Ref. [8], that
starts from the experimental elastic nucleon-nucleon
cross section, with certain medium corrections. Both
approaches use the local density approximation (LDA)
to obtain finite nuclei results from those calculated
in nuclear matter, and despite being based on differ-
ent models of nuclear dynamics, provide compatible
nucleon-density scaling functions [23].

(ii) In the formalism of Ref. [8], used for neutrino QE
scattering in Refs. [6,13], one first performs a calcu-
lation for the nuclear medium at a certain density, and
then integrates it over the density profile ρ(r) of a
given nucleus. Hence, it fully relies on the LDA and,
in what follows, we will denote by LDA the physical
properties and the results obtained within this scheme.

The energy-momentum distribution of nucleons in
the symmetric nuclear matter of density ρ can be
described by means of hole and particle SFs deter-
mined by the nucleon self-energy in the medium (see
Refs. [6,13] and in particular Sec. III of [23]),

SLDA
p,h (E , �p)

= ∓ 1

π

Im�(Ê , �p)

[E− �p2/2M−Re�(Ê , �p)−Cρ]2+[Im�(Ê , �p)]2
,

Ĉ = Re�
(
p2

F /2M, pF

) + Cρ (17)

with the chemical potential given by μ = p2
F /2M + Ĉ,

Ê = E − Ĉ, E � μ, or E > μ for Sh or Sp, respec-
tively, and pF = (3π2ρ/2)1/3. Since Im�(E , �p ) � 0
for E � μ, and Im�(E , �p ) � 0 for E > μ, the chem-
ical potential can be defined as the point in which
Im�(E , �p ) changes sign. In addition, the dependence
of the nucleon self-energy, �(Ê , �p ), on ρ is implicit.

Both real and imaginary parts of � are obtained
from the semiphenomenological model derived in
Ref. [8], which, starting from the experimental elastic
NN scattering cross section, incorporates, consistently
with the low density theorems, some medium polariza-
tion (RPA) corrections. The approach is nonrelativistic
and it is derived for isospin symmetric nuclear mat-
ter. The resulting nucleon self-energies stay in good
agreement with microscopic calculations [31–35], and
provide effective masses, nucleon momentum distri-
butions, etc., which are also in good agreement with
sophisticated many-body results [33,35].

The real part of the self-energy calculated in
Ref. [8] should not be treated as an absolute value,
since momentum independent terms are not consid-
ered there, and it should be understood as an en-
ergy difference from Re�(p2

F /2M, pF ). This, in prin-
ciple, does not prevent the approach to be used to
compute particle-hole (QE) response functions, where
only differences between two nucleon self-energies
appear, and the constant terms of the hole and particle
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self-energies cancel [6]. However, the use of nonrela-
tivistic kinematics is sufficiently accurate for the hole,
but its applicability to the ejected nucleon limits the
range of energy and momentum transferred to the
nucleus. For high energetic ejected nucleons and in-
clusive cross sections, the IA is a good approximation,
as mentioned in the beginning of this section.4 Such
approximation considers a fully dressed nucleon hole,
but uses a free particle SF, i.e., it employs a plane wave
for the outgoing nucleon, satisfying a free relativistic
energy-momentum dispersion relation. To obtain re-
sults using a dressed hole and an undressed particle,
an absolute value for the real part of the nucleon-hole
self-energy is needed. This is achieved by including
the phenomenological constant term Cρ in the nucleon
self-energy, with C = 0.8 fm2 for carbon, fixed to a
binding energy per nucleon |εA| = 7.8 MeV. Some
more details can be found in Refs. [23,36]. We will use
this value for the C parameter here also for oxygen.

In this context, assuming a free outgoing on-shell
nucleon, the hadron tensor for finite nuclei is obtained
as

W μν

LDA(q)

= 2�(q0)
∫

d3r
∫

d3 p

(2π )3

∫ μ

μ−q0
dE SLDA

h (E , �p )

× M2

Ep Ep+q
δ(q0+E+M−Ep+q )Aμν (p, q)

∣∣∣∣
p0=E+M

,

(18)

where we have used SLDA
h (E , �p ) as a function of

the nuclear density at each point of the nucleus and
integrate over the whole nuclear volume. Hence, we
assume the LDA, which is an excellent approximation
for volume processes [37], like the one studied here.
Let us notice that by setting p0 = E + M, we calculate
Aμν (p, q) for an off-shell nucleon, i.e., we take the
energy and momentum distributions from the hole
spectral function SLDA

h (E , �p ), changing the dispersion
relation of the initial nucleon. However, there exists
a little inconsistency here, since the sums over nu-
cleons’ spins in Eq. (13) were carried out assuming
free dispersion relations for the nucleons. As we will
see below, this procedure is more accurate than setting
p0 = Ep in Eq. (18), as was done in previous works
[6,7,13]. Nevertheless, the differences are relatively
small and visible only for forward scattering.

(iii) The CBF spectral function for finite nuclei is given by
the sum of two different terms [10],

SCBF
h (E , �p ) = SMF

h (−E , �p ) + Scorr
h (−E , �p ). (19)

The first one is derived from a modified mean field
(MF) calculation, where experimental information,

4For instance, see the discussion in Ref. [6] of the results for the
CCQE cross section σ (νμ + 12C → μ− + X ) obtained in Ref. [22]
within the IA.

obtained from (e, e′ p) scattering data, are used to
account for residual effects of nucleon interactions
neglected in a MF picture [38–40]. The second term
determines the behavior of the hole SF in the high
momentum and removal energy region. It has been
obtained by folding CBF calculations of the SF in
uniform and isospin symmetric nuclear matter with
the nuclear density distribution profile [9,10]. We
remind here that −E � 0 is the excitation energy
of the residual (A − 1)-nucleon system. Within the
IA the scattering off a bound nucleon can be ac-
counted for using different approximations. The CBF
results which we present in this work have been
obtained replacing in the one-body current operator
jμcc± of Eq. (13) the four-momentum qμ = (q0, �q ) by
q̃ μ = (q̃ 0, �q ), such that q̃ 0 = q0 − (Ep − M − E ), in
analogy with the prescription adopted in the RGFG
case. The quadrispinors entering the evaluation of the
hadron tensor are those of free nucleon states. Note
that this approximation leads to a violation of current
conservation for the electromagnetic case. Different
procedures aimed at restoring the gauge invariance
have been discussed in Refs. [41,42]. In particular, the
authors of Ref. [42] argue that the violation of gauge
invariance in the IA scheme is expected to become less
and less important in inclusive electron scattering at
large momentum transfers.

III. RESULTS

The analysis carried out in Ref. [4] clearly shows that for
LAB energies of the ντ /ν̄τ beam comprised between 3.5 and
10 GeV, the QE cross section is sizable. This study was done
for a scattering on a single nucleon and neglecting multinu-
cleon emission; their contribution, albeit nonvanishing, would
be smaller than the former one. The breakdown of the total
neutrino cross section into the QE, pion production, and deep
inelastic scattering contributions is shown in Fig. 5 of Ref. [4].
The QE mechanism is found to be dominant up to Eν ≈ 6 GeV
and the same observation holds true for ν̄τ reactions.

A. QE mechanism phase space

The large mass of the τ lepton (mτ ≈ 1776.8 MeV) greatly
limits the phase space available for the single-nucleon knock-
out processes, being prohibited the large LAB dispersion
angles, as discussed in Appendix B. In Fig. 1, we analyze
the phase space for different values of the incoming neutrino
energy Eν and of the lepton scattering angle in the LAB
system (θ ). We show

| �q |[Eν ,q0,θ] = [
E2

ν + (Eν − q0)2 − m2
τ

− 2Eν

√
(Eν − q0)2 − m2

τ cos θ
]1/2

(20)

as a function of the energy transfer q0, together with the
QE-peak curve | �q |QE =

√
2Mq0 + (q0)2 (black solid line).
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FIG. 1. Some regions of the available phase space for CC τ production for Eν = 4, 6, 8, and 10 GeV (panels from left to right). We
display | �q |[Eν ,q0,θ] [Eq. (20)] and also the approximated position of the QE peak (| �q |QE = √

2Mq0 + q02), labeled as QE (black solid line).
For each neutrino energy, the shaded area spans between τ -scattering angle 0◦ (lower boundary) up to 16◦, 24◦, 28◦, and 24◦ (upper
boundary), respectively. In each panel, the yellow curve shows | �q |[Eν ,q0,θ] for an intermediate angle among those accounted for in the
band.

The shaded areas in Fig. 1 have been obtained by varying the
outgoing lepton scattering angle from 0◦ to 16◦, 24◦, 28◦,
and 30◦ for Eν = 4, 6, 8, and 10 GeV, respectively. All
the angles chosen to evaluate the upper bands are greater
than θmax(Eν ), introduced in Appendix B. It corresponds to
the maximum allowed LAB τ -scattering angle for the weak
production off a free nucleon, and its dependence on the
incoming neutrino energy is given in Eq. (B6). This limiting
angle takes the approximate values of 11.4◦, 20.3◦, 23.6◦,
and 25.5◦ for Eν = 4, 6, 8, and 10 GeV, respectively (see
also the right panel of Fig. 8 for further details). The range
of q0 values, [q0

min, q0
max], for which there exist solutions (θ )

of the QE condition | �q |QE = | �q |[Eν ,q0,θ], grows rapidly with
Eν . Actually at threshold, Eν = mτ + m2

τ /2M ≈ 3.46 GeV,
q0

min = q0
max ≈ 0.58 GeV, and when the neutrino energy gets

bigger, q0
min and q0

max quickly decrease and increase, tending to
zero and to Eν − (m2

τ + M2)/2M, respectively. The q0 range
is shown in the left panel of Fig. 8 of Appendix B, up to
Eν = 10 GeV.

Additionally in each panel of Fig. 1, the yellow curve
shows | �q |[Eν ,q0,θ] for an intermediate angle among those ac-
counted for in the band. We see that this curve, as well as the
(θ = 0◦) one, intercepts twice the | �q |QE line. This is because
for any LAB τ -scattering angle θ � θmax(Eν ), there exist two
different values of the LAB τ energy that satisfies the QE
condition | �q |QE = | �q |[Eν ,q0,θ]. Thus, we might expect the exis-
tence of two QE peaks in the nuclear differential cross section,
located at different values of q0 for fixed Eν and θ LAB
variables. This never occurs for charged muon or electron
production, except for an extremely narrow range of neutrino
energies. A detailed discussion can be found in Appendix B,
and in particular this nonbiunivocal correspondence between
the τ -lepton LAB scattering angle and energy is shown in the
right panel of Fig. 8.

One should bear in mind that the nuclear QE cross section
is strongly suppressed when −q2 is above 1 GeV2, and thus
its size notably decreases with q0, since at the QE peak,
−q2 ≈ 2Mq0. We see that one could only expect to obtain
sizable cross sections for forward scattering angles. For in-
stance, at Eν = 10 GeV, the energy transfer at the QE peak
ranges from very low q0 ≈ 15 MeV for θ = 0◦, up to 7
GeV for θ = θmax(Eν = 10 GeV) ≈ 25.5◦. Coming back to
the existence of two QE peaks, the higher one will be much

more suppressed, and it might not be visible in the differential
distribution. For example, at Eν = 4 GeV and in the forward
direction, the two peaks occur for q2 = −0.36 GeV2 (q0 =
0.19 GeV) and −2.88 GeV2 (q0 = 1.53 GeV), respectively.
For larger neutrino energies the |q2 | value of the second
QE peak grows rapidly, and its impact in the cross sections
should become less important. Moreover, the results should
be more sensitive to nuclear effects for small values of the
scattering angle where the QE cross section is high and peaks
in the low q0 region. Hence, we have studied the impact of
using the different nuclear SFs to compute the ντ /ν̄τ differ-
ential cross section and the τ polarizations in the region of
small θ .

B. Differential cross sections and polarization observables

In Fig. 2, we analyze the double-differential cross section
(panels in the first row), PL and PT (panels in the second and
third row, respectively) for the ντ + 16O → τ− + X process
at Eν = 4 GeV, and θ = 0◦, 2◦, 4◦, and 16◦. The dotted
(blue) and the dashed (red) and dot-dashed (black) curves
have been obtained using the RGFG model and the LDA and
the CBF hole SFs, respectively. Predictions for Eν = 6 GeV
are shown in Fig. 3. The comparison of the three-different
sets of results for the differential cross sections clearly reveals
that the inclusion of nucleon-nucleon correlations in the hole
SF leads to a significant quenching of the QE peak and a
shift of its position towards higher energy transfers in the
dashed (LDA) and dot-dashed (CBF) curves with respect to
the dotted one (RGFG). The distinctive SF tail at high-energy
transfers, that arises when short-range correlated pairs are
included in the description of the ground state, is only visible
for Eν = 6 GeV. Unexpectedly for Eν = 4 GeV, the RGFG
model seems to provide a q0 tail similar to those found in
the LDA and CBF SF calculations. However, its origin in
the former model should not be attributed to short range
correlations, but rather it is produced by the kinematics of the
QE CC τ production. If we come back to Fig. 1, we discussed
that the | �q |[Eν=4 GeV,q0,θ=0◦] curve intersects the QE one for
two different values of q0 = 0.19 and 1.53 GeV. These values
correspond to forward and backward ντ N → τN scattering in
the neutrino-nucleon CM system, respectively. The boost to
the LAB system converts both CM kinematics into forward
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FIG. 2. Double-differential cross section dσ/(dq0d cos θ ) and polarization components PL , PT for ντ scattering off 16O for Eν = 4 GeV
and scattering angles 0◦, 2◦, 4◦, and 16◦.

scattering in the LAB frame5 (see Appendix B). In Fig. 4,
we show the dependence of the imaginary part of Lindhard
function, ImU (q0, | �q |[Eν ,q0,θ] ), on q0 and q2 for charged τ

production for two different kinematics (dashed red curves).
As discussed in Ref. [13], ImU (q) essentially gives the single-
nucleon knockout RGFG nuclear response for a unit ampli-
tude, at the nucleon level. For both kinematics, we clearly see
two peaks, induced by the forward and backward ντ N → τN
scattering in the neutrino-nucleon CM system, which lead to
shapes different from those found for QE processes involving
massless leptons. These distributions should be affected by
the nucleon form factors that produce sizable q2 suppression
in the differential cross sections. As an example, in Fig. 4
we also display the results modulated by the square of a
dipole nucleon form factor, with a cutoff of 1 GeV2 (dotted
blue curves). In these latter cases the second peak disappears,
though its existence provides a longer high q0 tail, which
is qualitatively observed in the RGFG predictions shown in
Figs. 2 and 3.

Coming back to the discussion of these latter figures, we
observe a very nice agreement between the CBF and LDA

5For massless charged leptons, however, the CM backward kine-
matics does not lead to forward scattering in the LAB frame, while
the QE condition for θ = 0◦ occurs for q0

QE(m� = 0) = 0. As the
dispersion angle grows, q0

QE(m� = 0) increases, but there is still
a single value where the condition of the QE peak is satisfied
[Eq. (B5)].

cross sections for both Eν = 4, and 6 GeV and θ = 16◦ as
opposed to θ = 0◦, 2◦, and 4◦ cases, where some discrep-
ancies appear. They are likely to be ascribed to the different
approximations made to account for the off-shellness of the
struck nucleon, as discussed in Sec. II B. These approxima-
tions play a more important role in the limit of low momentum
transfer and very forward angles. Let us notice that both
SF approaches converge when we move to higher scattering
angles, and for 16◦ the differences practically disappear. For
the LDA model, the four-momentum p of the initial nucleon
is taken from the SF energy-momentum distribution, thus
within this scheme, the hole state is treated as an off-shell
nucleon. However in the CBF approach, the energy transfer
is modified to include the SF effects q̃0 ↔ q0, leaving the
hole state on-shell (with the momentum taken from the SF
and setting Ep =

√
M2 + �p2).

The production of the massive τ lepton is particularly
interesting since it might present different polarization com-
ponents. This fact has a direct implication on the angular
distribution of the particles which are subsequently produced
in the τ decay. In the second and third rows on Figs. 2
and 3 we show the impact of nuclear effects on PL and
PT for different kinematical setups. For increasing values
of the scattering angle the transverse polarization PT of the
τ becomes more visible. This is not surprising because it
is proportional to m� sin θ [7]. On the other hand, as the
incoming neutrino energy grows, PL takes values closer to
−1 for low energy transfers, as expected for the conservation
of chirality in CC processes. One can also observe that PL
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FIG. 3. Same as Fig. 2 but for Eν = 6 GeV.

and PT obtained within the CBA and LDA approaches, in
most of the cases, do not differ so much from the simplistic
RGFG predictions, in spite of leading to significantly distinct
double differential cross sections. This should be ascribed to
the cancellations that take place when the ratios of Eq. (10) are
calculated.

Figures 5 and 6 are the analogous of Figs. 2 and 3 but for
the ν̄τ + 16O → τ+ + X process. The results obtained for the
double differential cross sections are qualitatively consistent
with the observations we made for the ντ case. Nuclear effects

are clearly visible in all the kinematical setups analyzed and
the discrepancies between the CBF and LDA predictions are
sizable also in this case up to θ = 4◦, while for θ = 16◦ the
two set of results are almost coincident. It is worth noticing
that the τ+’s produced in the ν̄τ -nucleus scattering are more
strongly longitudinally polarized (PL ≈ 1 and PT ≈ 0) than
the τ−’s. For Eν̄ = 6 GeV and scattering angles 0◦ − 4◦, PL

is rather constant through the whole range of available q0 and
very close to 1; it departs significantly from 1 only at θ = 16◦,
when PT takes larger values (in modulus). For strictly forward

FIG. 4. Imaginary part of the Linhard particle-hole propagator as a function of q0 and q2, with | �q | = | �q |[Eν ,q0,θ] defined in Eq. (20). To
evaluate ImU (q0, | �q |) we have used Eq. (B2) of Ref. [13], with p̄F = 0.225 GeV for both neutron and proton Fermi momenta. The left
and right panels correspond to (Eν = 4 GeV, θ = 0◦) and to (Eν = 6 GeV, θ = 16◦), respectively. In addition, we also show the expected
q2 reduction in the cross section provided by dipole weak nucleon form factors, with a mass scale of 1 GeV.
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FIG. 5. Double-differential cross section dσ/(dq0d cos θ ) and polarization components PL , PT for ν̄τ scattering off 16O for Eν = 4 GeV
and scattering angles 0◦, 2◦, 4◦, and 16◦.

FIG. 6. Same as Fig. 5 but for Eν = 6 GeV.
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FIG. 7. Mean value of the degree of polarization of τ− (left) and τ+ (right), defined in Eq. (22), as a function of the incoming neutrino
energy. We show results for the RGFG model (blue–dotted) and the LDA (red-dashed) and CBF (black dash-dotted) SF approaches.

scattering,

P(τ−,τ+ )
L = ∓

(
1−2

Ek′ − |�k |
F ντ ,ν̄τ (θ = 0◦)

[
2W1 ± |W3|

Mi
(Ek′−|�k |)

])

= ∓
(

1−2
Ek′ − |�k |

Mi F (ντ ,ν̄τ )(θ = 0◦)
[Wxx ± |Wxy|]

)
, (21)

where the factor F ν,ν̄ can be found in Eq. (2) of Ref. [7],
both for neutrino and antineutrino reactions, and �q is taken
in the positive Z direction. There exists a large cancellation
between the xx and xy spatial components of the hadron
tensor that is responsible for the much smaller values of
the antineutrino cross sections than the neutrino ones. This
cancellation also leads to values of PL closer to 1 in the
case of τ+ production, and because of the factor (Ek′ − |�k |),
deviations from chirality should increase with the transferred
energy q0. Moreover, differences between nuclear corrections
stemming from different approaches should be more visible
for antineutrino distributions. Thus for instance within the
LDA SF approach, if p0 is fixed to Ep instead of to E + M in
Eq. (18), values of Pτ+

L > 1 are found in the case of forward
antineutrino reactions, while |Pτ−

L | still keeps smaller than
1 for neutrino processes. The consistent use of the energy
and momentum distributions obtained from the hole spec-
tral function SLDA

h (E , �p ), changing the dispersion relation of
the initial nucleon, leads to reasonable predictions for Pτ+

L
below 1.

We observe that the inclusion of the CBF and LDA nuclear
SFs significantly modifies also the ν̄τ -16O differential cross
section with respect to the RGFG results, and lead to a
significant quenching of the QE peak and a shift of its position
towards higher energy transfers. The role played by nuclear
effects in the determination of PL and PT is less systematic.
The curves corresponding to the different SFs are found to
differ for most of the kinematics considered in Figs. 2, 3, 5,
and 6. In particular, we find that the RGFG predictions for
Pτ−

L and Eν = 6 GeV lie in between the CBF and LDA ones.
We interpret this behavior as a manifestation of the strong de-

pendence of the polarization variables on the approximations
made in the hadron tensor to treat the off-shell struck nucleon.

The mean value of the degree of polarization of the τ∓
lepton is defined as

〈P (τ−,τ+ )〉 = 1

σ (ντ ,ν̄τ )(Eν )

∫
dEτ d�(k̂′)�(ντ ,ν̄τ )

0 (Eτ , θ )

×P (τ−,τ+ )(Eτ , θ ) (22)

with �0 the LAB unpolarized double differential cross section
of Eq. (3) and the Lorentz scalar degree of polarization for a
given outgoing τ -lepton kinematics given by

P (Eτ , θ ) =
√

P2
L (Eτ , θ ) + P2

T (Eτ , θ ). (23)

The dependence of the mean value of the degree of po-
larization on the neutrino (antineutrino) energy is shown in
Fig. 7. The small discrepancies between the curves are likely
to originate from the different treatment of the nucleon off-
shellness in the LDA and CBF results. However, a clear-cut
identification of their source cannot be easily achieved in
this case. For the antineutrino, the degree of polarization
reaches the asymptotic chiral value more rapidly than for the
neutrino case, saturating already at about 5 GeV. Results are
in qualitative agreement with those obtained with the simple
models considered in Ref. [5].

IV. CONCLUSIONS

We have performed an analysis of the cross sections and
polarization components for the CC reaction in which a ντ /ν̄τ

scatters off 16O, focusing on the QE region where the sin-
gle nucleon knock-out is the dominant reaction mechanism.
From the theoretical perspective, the ντ CC scattering gives
a unique opportunity to further investigate the role played by
the nuclear correlations of the ground state in the description
of neutrino-nucleus interaction. The large mass of the τ±
lepton, with respect to μ± and e±, enables a deeper insight
into the nuclear structure of the nucleus when interacting
with an electroweak probe. From the total number of five
structure functions which are in general needed to describe the
hadron tensor of neutrino-nucleus scattering [Eq. (4)], νe and
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νμ reactions give access only to three of them, W1,2,3, being
the contribution of the others suppressed by the low e− and
μ− masses.

The polarization components PL and PT of the outgoing τ

are interesting observables, both from the experimental and
theoretical points of view. They offer deeper insight into the
hadron tensor properties, since they are sensitive to different
combinations of the structure functions. In order to provide
a realistic description of the nuclear dynamics accounting
for nucleon-nucleon correlations, we have used the LDA and
CBF hole SFs derived in Refs. [8–10], successful in modeling
inclusive electro- and (anti)neutrino-nuclear QE responses.
The SF approaches are substantially more realistic than those
based on the use of an effective nucleon mass to describe the
initial nuclear state, as done in the previous study of Ref. [5].
The implementation of a constant effective mass is just a crude
approximation to account for effects due to the change of the
dispersion relation of a nucleon inside a nuclear medium.

For each of the considered models, CBF and LDA, we
used slightly different prescriptions of how the single nucleon
matrix element is calculated in the nuclear medium. The
ambiguity stems from the fact that the nucleon is off-shell,
with its energy-momentum distribution determined by the
SF. In the CBF approach the initial nucleon is taken to be
on-shell with the momentum distribution taken from the SF.
The energy distribution of the SF is taken into account as
the modification of the energy transfer. The LDA treats the
initial nucleon as an off-shell particle, however, the master
equation for the matrix element (where the sum over spins has
been performed) is obtained assuming on-shell nucleons. The
results for very forward scattering angles turned out to be very
sensitive to this choice, affecting both the cross sections and
the polarization components. Nevertheless, the discrepancies
become very small already for angles ≈4◦. We have shown
that the effect of SFs is sizable when the differential cross
section is considered, producing a quenching of the QE peak
and a shift of its position towards higher energy transfers.
However, nuclear effects are less pronounced for the polariza-
tion components, because they are obtained as ratios of terms
proportional to the hadron tensor, where some cancellations
occur.

To finish this summary, we would like to recall that RPA
correlations do not change appreciably the gross features of
the polarization of the outgoing τ charged leptons [5,7]. The
reason is that the polarization components are obtained, as we
have just mentioned, from ratios constructed out of some lin-
ear combinations of nuclear structure functions, and the RPA
correlations change similarly the numerator and denominator.
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APPENDIX A: LEPTON POLARIZED CC CROSS SECTION

With the axis of quantization in the rest frame [k′μ =
(m�, �0 )] of the outgoing �∓ specified by the unit vector n̂, we
define in this frame a unit spacelike four-vector sμ as

sμ = (0, n̂). (A1)

From the invariance of scalar products, it follows that in any
other frame,

sμ =
( �k′ · n̂

m�

, n̂ + �k′

m�

(�k′ · n̂)

Ek′ + m�

)
, s2 = −1, sk′ = 0.

(A2)
The spin-projection operators are then given by [26]

�(s; h) = 1
2 (1 + hγ5/s), h = ±1, (A3)

and commute with the energy projection operators (±/k′ +
m�)/2m�.

The (anti)neutrino inclusive-differential cross section for
a (s; h)-polarized outgoing lepton is given by (we follow the
conventions of Ref. [13])

d2σ (ν�,ν̄� )

d�(k̂′)dEk′

∣∣∣∣
s;h

=
(

GF

2π

)2 |�k′|
|�k| L(ν�,ν̄� )

μν (s; h)W μν
(ν�,ν̄� ) (A4)

in the laboratory (LAB) frame (nucleus at rest). In addition,
GF = 1.1664 × 10−5 GeV−2 is the Fermi constant, while
W μν and Lμν (s; h) are the hadronic and polarized lepton
tensors, respectively. The latter tensor reads (ε0123 = +1)

L(ν�,ν̄� )
μν (s; h) = 1

8
Tr[/k′

γ μ/k(1 + ηγ5)γ ν]

− ηh
m�

8
Tr[γ μ/k(1 + ηγ5)γ ν/s]

= L(ν�,ν̄� )
μν

2
− ηh

m�

2
sα (kμgνα + kνgμα

− kαgμν + iηεμναβkβ ), (A5)

where η = ± for the neutrino and antineutrino induced reac-
tions, respectively, m� is the mass of the outgoing lepton, and
Lμν is the unpolarized lepton tensor [13],

L(ν�,ν̄� )
μν = k′

μkν + kμk′
ν − gμνkk′ + iηεμναβk′αkβ. (A6)

The hadronic tensor includes all sort of nonleptonic vertices
and corresponds to the charged electroweak transitions of the
target nucleus, i, to all possible final states. It is thus given by
[13]

W μν
(ν�,ν̄� ) = 1

2Mi

∑
f

(2π )3δ4(Pf − P − q)

×〈 f | jμcc±(0)|i〉〈 f | jνcc±(0)|i〉∗ (A7)
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FIG. 8. Left: Maximum and minimum LAB lepton transferred energies (q0
max,min = Eν − Emin,max

k′ ) as a function of the incoming neutrino
energy for weak τ production off nucleons. Right: LAB τ -lepton scattering angle (deg) as a function of μCM, or equivalently of the LAB
outgoing tau energy, for several incoming neutrino LAB energies: Eν = 4 GeV (solid red), 6 GeV (long-dashed blue), 8 GeV (dotted green),
10 GeV (dot-dashed black), and 50 GeV (short-dashed cyan). In addition, the horizontal black solid line stands for the upper bound, θmax =
arcsin (M/mτ ), that is reached in the Eν � M, mτ limit.

with Pμ the four-momentum of the initial nucleus, Mi =
P2 the target nucleus mass, Pf the total four-momentum of
the hadronic state f , and q = k − k′ the four-momentum
transferred to the nucleus. The bar over the sum denotes the
average over initial spins, and finally for the CC we take

jμcc+ = �uγ
μ(1 − γ5)(cos θC�d + sin θC�s), (A8)

jμcc− = (cos θC�d + sin θC�s)γ μ(1 − γ5)�u (A9)

with �u, �d , and �s quark fields, and θC the Cabibbo angle
(cos θC = 0.974), and cc± stand for the neutrino and antineu-
trino currents.

APPENDIX B: KINEMATICS FOR τ PRODUCTION
OFF NUCLEONS

We will collect here some kinematical relations for the two
body reaction,

ν�(Eν )N → �(k′)N ′, � = e, μ, τ, (B1)

paying special attention to the differences induced by the large
mass of the τ , with respect to the μ- and e-lepton cases.
The LAB threshold neutrino energy, E th

ν�
= m� + m2

�/2M, is
around 3.5 GeV (≈ 2mτ ) for τ production, while the correc-
tion (m2

�/2M) to m� is negligible for muons and electrons.
Taking the incoming neutrino in the positive Z axis, the lepton
scattering angle θCM in the neutrino-nucleon center of mass
(CM) frame is not limited and thus μCM = cos θCM can take
any value between −1 and 1. The lepton energy (Ek′ ) and
scattering angle (θ ) in the LAB system are obtained through

Ek′ = (Eν + M )ECM
k′ + μCMEν |�k′|CM

√
s

,

s = 2MEν + M2, (B2)

ECM
k′ = s + m2

� − M2

2
√

s
,

tan θ =
√

s

Eν + M

√
1 − μ2

CM

μCM + a
,

a = Eν

Eν + M

ECM
k′

|�k′|CM
(B3)

with |�k′|CM =
√

(ECM
k′ )2 − m2

� . The maximum and minimum
LAB energies of the outgoing lepton correspond to μCM =
+1 and −1, respectively, and they read

Emax
k′ = (Eν + M )ECM

k′ + Eν |�k′|CM

√
s

,

Emin
k′ = (Eν + M )ECM

k′ − Eν |�k′|CM

√
s

. (B4)

The range of transferred energies to the nucleon in the LAB
system, and for τ -lepton production, is shown in the left panel
of Fig. 8 as a function of Eν , up to 10 GeV.

The parameter a > 0, introduced in Eq. (B3), plays an
important role to determine the LAB angular distribution. It
diverges at threshold and it becomes 1 when Eν � M, m�. For
muon production a < 1, except for a very narrow region (≈
1 MeV) comprised between threshold and Ea=1

ν = mμ(M −
mμ/2)/(M − mμ), with mμ the muon mass.6 The situation,
conveniently rescaled, is similar for electron production. For
τ production, however, a is a decreasing monotone function,
being always greater than 1 and reaching this latter value only
in the Eν → ∞ limit. Thus, we have

(i) a < 1 (muon and electron production): The LAB lep-
ton scattering angle θ can take any value between
0 and π , with θ > π/2 (θ � π/2) for μCM < −a
(μCM � −a). Furthermore, there is a biunivocal corre-
spondence between μCM and cos θ , and hence between

6The parameter a takes the value of 1 for Eν = Ea=1
ν , reaches a

minimum above this energy, and after, it begins to grow approaching
the asymptotic value of 1 for large neutrino energies.
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the LAB variables Ek′ and cos θ . Namely, neglecting
the muon or electron masses with respect to that of the
nucleon or the neutrino energy, one finds

Ek′ = MEν

M + Eν − Eν cos θ
. (B5)

(ii) a > 1 (tau production): We see that tan θ is always
greater than zero, and therefore θ < π/2. Actually,
tan θ , seen as a function of μCM or equivalently of
the LAB outgoing tau energy, has a maximum for
μCM = −1/a < 0. We find that the maximum lepton
scattering angle in the LAB frame, θmax, is

θmax = arcsin

(√
s|�k′|CM

Eνmτ

)
< arcsin

(
M

mτ

)
≈ 31.9◦,

(B6)

where the upper bound is reached for Eν � M, mτ .
The dependence of θ on μCM is shown in the right
panel of Fig. 8 for different incoming neutrino LAB
energies. We observe that any LAB τ -scattering angle
is obtained for two different values of μCM [two differ-
ent values of the LAB τ energy Ek′ , as inferred from

Eq. (B2)], and hence the (θ, μCM) correspondence
is not biunivocal in this case. One of the solutions
(A) always corresponds to the τ lepton coming out
backwards in the CM frame (μCM < −1/a ↔ θCM >

π/2). For the second one (B) μCM > −1/a, which,
depending on the neutrino energy and on θ , might
also correspond to μCM < 0. The CM to LAB boost
transforms both CM configurations into quite for-
ward scattering in the LAB system (θ < 32o). The
B solution gives rise to a larger (smaller) outgoing
LAB τ energy (transferred energy q0 = Eν − Ek′ ) than
the A one. The details of the θ (μCM) distribution
depends on the incoming neutrino energy, as can be
seen in Fig. 8, and its asymmetry becomes more pro-
nounced as Eν grows, with the the maximum position
approaching to μCM = −1 and θ at the maximum
to θmax.

This is the kinematics that always applies for
τ production, while, as mentioned for muon or elec-
tron weak production, the parameter a is greater than
zero only for a very narrow range of LAB neutrino en-
ergies comprised between m� + m2

�/2M and m�(M −
m�/2)/(M − m�), with � = e, μ.
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