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Nucleon axial form factor from a Bayesian neural-network analysis of neutrino-scattering data

Luis Alvarez-Ruso,1 Krzysztof M. Graczyk,2 and Eduardo Saul-Sala1

1Departamento de Física Teórica and Instituto de Física Corpuscular (IFIC), Centro Mixto UVEG-CSIC, Valencia, Spain
2Institute of Theoretical Physics, University of Wrocław, plac M. Borna 9, 50-204, Wrocław, Poland

(Received 8 May 2018; revised manuscript received 6 September 2018; published 19 February 2019)

The Bayesian approach for feedforward neural networks has been applied to the extraction of the nucleon
axial form factor from the neutrino-deuteron-scattering data measured by the Argonne National Laboratory
bubble-chamber experiment. This framework allows to perform a model-independent determination of the axial
form factor from data. When the low 0.05 < Q2 < 0.10-GeV2 data are included in the analysis, the resulting
axial radius disagrees with available determinations. Furthermore, a large sensitivity to the corrections from
the deuteron structure is obtained. In turn, when the low-Q2 region is not taken into account with or without
deuteron corrections, no significant deviations from previous determinations have been observed. A more
accurate determination of the nucleon axial form factor requires new precise measurements of neutrino-induced
quasielastic scattering on hydrogen and deuterium.

DOI: 10.1103/PhysRevC.99.025204

I. INTRODUCTION

A good understanding of neutrino interactions with mat-
ter are crucial to achieve the precision goals of oscillation
experiments that aim at a precise determination of neutrino
properties [1]. In current (T2K, NOvA) and future (DUNE,
HyperK) oscillation experiments with few-GeV neutrinos, a
realistic modeling of neutrino interactions with nuclei and
their uncertainties in a broad kinematic range is required to
distinguish signal from background and minimize systematic
errors. A key ingredient of such models are the amplitudes and
cross sections at the nucleon level.

In particular, a source of uncertainty arises from the nu-
cleon axial form factor FA. This fundamental nucleon property
is a function of Q2, defined as minus the four-momentum
transferred to the nucleon squared. The axial coupling gA =
FA(Q2 = 0) is known rather precisely from the neutron β-
decay asymmetry [2],

gA = 1.2723 ± 0.0023, (1)

although a more precise value can be obtained using recent
measurements of the nucleon lifetime [3]. For the Q2 depen-
dence, the most common parametrization is the dipole ansatz,

F dipole
A (Q2) = gA

(
1 + Q2

M2
A

)−2

, (2)

in terms of a single parameter, the so-called axial mass MA.
The dipole parametrization has been utilized to describe also
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the electric and magnetic form factors of the nucleon. In
the Breit frame and for small momenta, this Q2 dependence
implies that the charge distribution is an exponentially de-
creasing function of the radial coordinate. Both the electric
and the magnetic form factors of the nucleon deviate from the
dipole parametrization, for a review see Ref. [4]. It seems then
natural to expect similar deviations for the axial one.

Empirical information about FA can be obtained from neu-
trino charged-current quasielastic (CCQE) scattering νl n →
l− p. Modern neutrino cross-section measurements have been
performed on heavy nuclear targets (mostly 12C) where the
determination of FA becomes unreliable due to the presence
of not well-constrained nuclear corrections and the difficul-
ties in isolating the CCQE channel in a model-independent
way. A detailed discussion of this problem can be found,
for instance, in Sec. III of Ref. [5]. A more direct and, in
principle, less model-dependent determination of FA relies
on bubble-chamber data on deuterium. Global analyses of
the Argonne National Laboratory (ANL) [6–8], Brookhaven
National Laboratory [9,10], Fermilab [11] and CERN [12]
data with updated vector from factors based on modern
electron-scattering data have been performed by Bodek and
collaborators. A reference value of MA = 1.016 ± 0.026 GeV
with a small (2.5%) error has been obtained [13].

On the other hand, as pointed out in Refs. [14,15], anzatz
(2) is not theoretically well founded. A new extraction of FA

has been recently undertaken using a functional representation
of the form factor based on conformal mapping (z expansion)
[16]. The function is only constrained by the analytic structure
and asymptotic behavior dictated by QCD. The resulting form
factor is consistent with the dipole one but with a much larger
error, Fig. 7 of Ref. [16]. In particular, the axial radius,

r2
A ≡ − 6

gA

dFA

dQ2

∣∣∣∣
Q2=0

(3)
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obtained is r2
A = 0.46 ± 0.22 fm2, which agrees with the

dipole one r2
A = 12/M2

A but with an ∼20 times larger error.
This result might have implications for oscillation studies and
calls for a new measurement of neutrino-nucleon cross sec-
tions, which is in any case desirable. The axial radius can also
be extracted from muon capture by protons. A recent analysis
[17] using the z expansion obtains r2

A = 0.43 ± 0.24 fm2, in
agreement with the neutrino-scattering result.

A promising source of information about FA(Q2) is lattice
QCD. Although the experimental value of gA has been re-
currently underpredicted in lattice QCD studies, the use of
improved algorithms has recently lead to consistent results
[18–21]. A global analysis of the low-Q2 and light-quark mass
dependence of the results of Refs. [19–21] using baryon chiral
perturbation theory has found gA = 1.237 ± 0.074 and r2

A =
0.263 ± 0.038 [22]. The central value of r2

A is considerably
lower than those from empirical determinations but within the
(large) error bars of the z-expansion results.

The choice of a specific functional form of FA may bias the
results of the analysis. Moreover, the choice of the number
of parameters within a given parametrization is a delicate
question. Too few parameters may not give enough versatility.
As the number of parameters increase, the χ2 value of the fits
can be reduced, but, at some point, the fit tends to reproduce
statistical fluctuations of the experimental data [23]. A reduc-
tion of the model dependence of the results can be obtained
within the methods of neural networks. This approach has
been used to obtain nucleon parton distribution functions from
deep-inelastic scattering data by the neural network parton
distribution function (NNPDF) collaboration [24].

In this paper, we demonstrate that model-independent in-
formation about FA can be obtained from a semiparametric
analysis of ν-deuteron scattering data.1 In contrast to the
parametric approach in which a particular parametrization of
FA is adopted based on physics assumptions, semiparametric
ones are not motivated by physics; they allow to construct a
statistical model in terms of an ensemble of probability densi-
ties that are used to do statistical inference, i.e., to determine
the quantities of interest and their uncertainties (see Chap. 2
of Ref. [25]). The lack of physics motivation may prevent the
results from being extrapolated outside the fit region (positive
Q2 in our case). On the other hand, given the generality of
the approach, the results may contain new physics beyond the
underlying assumptions of a given model or be affected by
theoretical mismodeling and/or deficiencies in a data set.

To perform this semiparametric analysis, we make use
of feedforward neural networks,2 a class of functions with
unlimited adaptive abilities [26]. With this choice, we can
eliminate any bias in the result introduced by the functional
form of the fit function. Depending on the number of adaptive
parameters, one can get different variants of the statistical
model (fit). In this context, Bayesian statistics has proved

1See Sec. II A for more detailed descriptions of parametric and
semiparametric techniques.

2Semiparametric analyses of experimental data can also rely on
other families of functions, such as polynomials or radial-basis
functions [25].

to be a very effective tool [27]. Its methods allow to make
comparisons between different models and control the number
of parameters in the fit. Bayesian methods are successfully
used in different branches of physics, For instance, in hadron
and nuclear physics, they have been applied to the study
of the resonance content of the p(γ , K+)� reaction [28]
and to constrain the nuclear energy-density functional from
nuclear-mass measurements [29]. We consider the Bayesian
framework for neural networks formulated by MacKay [30]. It
has been adapted to model electric and magnetic form factors
[31]. It was also used in the investigation of the two-photon
exchange phenomenon in elastic electron-proton scattering
[32–34]. Furthermore, this approach has proved valuable to
gain insight into the proton radius puzzle and, in particular,
to study the model dependence in the extraction of the proton
radius from the electron-scattering data [23,35].

In the present paper, we employ the Bayesian framework
for neural networks to find the most favorable FA(Q2) based
on the neutrino-deuteron CCQE scattering data measured by
the ANL experiment.3 In Sec. II, the Bayesian approach for
the feedforward neural networks is introduced. Section III
introduces the ANL data and theoretical framework which
describes the neutrino-deuteron scattering. In Sec. IV, the
numerical results are presented and discussed. In Sec. V, the
summary of the study is given. Appendix A contains some
details about the prior distributions in the Bayesian approach,
whereas Appendix B contains the analytic form of some of the
fits.

II. BAYESIAN FRAMEWORK FOR NEURAL NETWORKS

This section reviews the Bayesian approach formulated
for the feedforward neural networks and its adaptation to the
problem of the extraction of the nucleon axial form factor that
best represents a given set of data. The proposed framework
is quite general: It does not rely on physics assumptions
about the functional form of FA(Q2) and is independent of the
experimental conditions from which the data originate. In this
way, the present approach not only complements those based
on physically motivated parametrizations, but also has the
potential to disclose new physics effects as well as deficiencies
in the theoretical modeling or in the data.

The general idea is the following: Given a data set, a
statistical model is built. The model is characterized by a
number of probability densities, which are obtained using
feedforward neural networks. A detailed account of the dif-
ferent ingredients of the approach is given in this section.
The specific application to ANL CCQE neutrino-deuteron
scattering data is left for the subsequent sections.

A. Neural networks

Our aim is to obtain a statistical model which has the
ability to generate FA(Q2) values together with uncertainties.
In practice, to construct such a model, a number of probability

3A global analysis including data from other experiments will be
addressed in a subsequent study.
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densities must be estimated. This can be achieved within three
general methods [25]: (i) nonparametric, (ii) parametric, and
(iii) semiparametric. In the first approach, no particular func-
tional model is assumed, and the probabilities are determined
only by the data. However, if the size of the data is large,
the method requires introduction of many internal parameters.
Additionally, this approach is computationally expensive. In
the parametric method, a specific functional form of the model
is assumed. In this case, it is relatively easy to find the optimal
configuration of the model parameters. However, a particular
choice of the parametrization limits the ability of the model
for an accurate description of the data.4 In this case, the
uncertainties for the model prediction are either overestimated
or underestimated. The semiparametric method takes the best
features from both (i) and (ii) approaches. In this method,
instead of a single specific functional model, a broad class of
functions is considered. The optimal model is chosen among
them. The neural-network approach is a realization of the
semiparametric method. In particular, the feedforward neutral
networks form a class of functions with unlimited adaptive
abilities.

B. Multilayer perceptron

In order to model the nucleon axial form factor, a feed-
forward neural network in a multilayer perceptron (MLP)
configuration is considered. The concept of MLP comes from
neuroscience [36]. A given MLP is a nonlinear map from the
input space of dimension ni to the output space of dimension
no,

N : Rni �→ Rno. (4)

The MLP map can be represented by a graph which consists
of several layers of units: the input layer with ni units, one
or more hidden layers with hidden units, and the output layer
which has no units. In the input and in every hidden layer,
there is an additional bias unit. The units from the consecutive
layers are all connected, but the bias unit is connected only to
the following layer. As an example, the graphical representa-
tion of the MLP: N : R �→ R is given in Fig. 1. Every edge
(connection line) in the graph represents one parameter of the
function, called latter a weight.

To every unit (blue circles in Fig. 1), a real single-valued
function called the activation function f is associated; its
argument is the weighted sum of the activation function values
received from the connected units. In the feedforward case, the
ith unit in the kth layer is given in terms of the input from the
(k − 1)th layer by

yi,k = f i,k

⎛
⎝ ∑

u∈previous layer

wi,k
u yu,k−1

⎞
⎠. (5)

A graphical representation of the above function is given in
Fig. 2. The weights wi,k

u are real parameters. Their optimal

4Fitting the axial form factor with the dipole parametrization is an
example of the parametric approach.

Q2

N

Hidden
layerInput layer Output

layer

FIG. 1. Feedforward neural network in an MLP configuration
N : R �→ R. It consists of: (i) an input layer with one input unit Q2

(open square); (ii) one hidden layer with three hidden M = 3 units
(filled blue circles); (iii) an output layer consisting of one output
unit (black square). Each line denotes a weight parameter w j . The
bias weights are denoted by dashed lines, whereas the bias units are
represented by open blue circles.

values are established by the network training for which we
adopt the Bayesian framework explained below.

Note that for the bias unit f i,k (x) = 1. Furthermore, it
is assumed that in the output layer the activation functions
are linear f (x) = x. In order to simplify and speed up the
performance of the numerical analyses, MLPs with only one
hidden layer of units are considered. In Fig. 1, there is an
example of such an MLP with M = 3 hidden units.

Let us introduce the MLP NM : R �→ R with a single
hidden layer and M units, which has the following functional
form:

NM (Q2; {w j}) =
M∑

n=1

w2M+n f

(
wn

Q2

Q2
0

+ wM+n

)
+ w3M+1,

(6)
where Q2

0 ≡ 1 GeV2. This function depends on W = 3M + 1
weights and Q2.

fi,k

n
u=0

...
...

wi,k
n

yn,k−1

wi,k
01

wi,k
2

y2,k−1

wi,k
1

y1,k−1

inputs weights

FIG. 2. The ith unit in the kth layer [Eq. (5)].
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It has been proved and demonstrated (Cybenko theorem)
[26,37–42] that, if M is sufficiently large, feedforward neural
networks with sigmoidal and linear activation functions in the
(single) hidden and output layers, respectively, form a dense
subset in the set of continuous functions. This implies that
a map of the form (6) can approximate arbitrarily well any
continuous function and its derivative. As required by the
theorem, in our numerical analysis, the activation functions
in the hidden layer are given by sigmoids,

f (x) = 1

1 + exp(−x)
. (7)

C. Axial form factor

We seek for a model-independent parametrization of FA

that best represents the available data without any input from
theory. It should be quite general but, nonetheless, constrained
by the following general properties:

(I) FA(Q2) is assumed to be a continuous function of Q2

in its validity domain;
(II) the domain of FA is restricted to the Q2 ∈ (0, 3) GeV2

where the ANL data are present;
(III) FA(Q2 = 0) is constrained by the gA experimental

value Eq. (1);
(IV) as FA(Q2) is bounded, there must be a C >

1: FA(Q2) < CF dipole
A (Q2) in the whole Q2 interval of

(0, 3) GeV2.

The feedforward neural network of Eq. (6) can fulfill these
properties; for a more detailed discussion see Appendix A. In
order to speed up the numerical computations, we rescale the
output of the MLP (6) by normalizing it to the dipole ansatz.
As the result, the axial form factor is represented by

FA(Q2) = F dipole
A (Q2) × NM (Q2; {wi}), (8)

where F dipole
A is given in Eq. (2) with MA = 1 GeV. In this

way, the neural-network response gives the deviation of the
axial form factor from the dipole parametrization. The value
of gA is allowed to change within the Particle Data Group’s
(PDG) uncertainty Eq. (1).

D. Bayesian approach and Occam’s razor

As described above, a MLP is a nonlinear map defined by
some number of the adaptive parameters. The increase in the
number of hidden units improves MLP’s ability to reproduce
the data. However, when the number of units (weights) is too
large, the model tends to overfit the data, and it reproduces the
statistical noise. As a result, its predictive power is lost. On
the other hand, if the network is too small, then the data are
underfitted. This competition between two extreme cases is
know in statistics as the bias-variance trade-off [43]. Certainly,
the optimal model is a compromise between both extreme
situations.

Bayesian statistics provides methods to face the bias-
variance trade-off dilemma. Indeed, the Bayesian approach
naturally embodies Occam’s razor [27,30,44,45], i.e., com-
plex models, defined by a large number of parameters, are
naturally penalized, whereas simple fits with a small number

of parameters are preferred. Moreover, the Bayesian approach
allows one to make comparisons between different statistical
descriptions of the data and to indicate the model which is
favored by the measurements. An example of such analysis
can be found in Ref. [23] where a large number of different fits
of the electric and magnetic form factors were obtained from
electron-proton scattering data. For each model, the value of
the proton radius rE

p has been calculated. It turned out that,
depending on the model, rE

p ranges from 0.8 to 1.0 fm. A con-
siderable fraction of the results agreed with the muonic-atom
measurement rE

p = 0.84 184(67) fm [46], but the Bayesian
algorithm preferred a model with rE

p = 0.899 ± 0.003 fm,
which is in contradiction with the muonic-atom result but in
agreement with some other non-Bayesian ep scattering data
analysis. A critical review of various approaches to proton
radius extraction can be found in Ref. [47] and references
therein.

E. Bayesian framework for MLP

1. General idea

We adopt the Bayesian framework for the feedforward
neural network formulated by MacKay [48,49]. The main
concepts of the approach are briefly reviewed below.

Let us consider the set of neural networks,

N1,N2, . . . ,NM , (9)

where M denotes the number of units in the hidden layer.
To each of the models N , one associates a prior probability
denoted P (N ). Our task is to obtain two posterior conditional
probabilities: P (N |D)—the probability of the model N given
a data set D and P (ρ|D,N )—probability distribution of the
model parameters given D and model assumptions; ρ denotes
the set of model parameters, which encompasses the neural
network weights ρ = {{w j}, . . . }. The first probability density
allows us to choose among many network types the one which
is favorable by the data, whereas the second one is necessary
to make model predictions.

If one assumes, at the beginning of the analysis, that all
MLP configurations are equally suited for describing the data,
then the following relations between prior probabilities hold

P (N1) = P (N2) = · · · = P (NM ). (10)

Then, in order to classify the models, it is sufficient to com-
pute the so-called evidence P (D|N ). Indeed, from Bayes’
theorem, one gets

P (N |D) = P (D|N )P (N )

P (D)
∼ P (D|N ), (11)

where P (D) is the normalization constant.
On the other hand, the posterior probability for the weights

of a given MLP reads

P (ρ|D,N ) = P (D|ρ,N )P (ρ|N )

P (D|N )
, (12)

where P (D|ρ,N ) is the likelihood whereas the density
P (ρ|N ) is the prior describing the initial assumptions about
the parameters. By integrating both sides of Eq. (12), one gets
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the evidence for the model,

P (D|N ) =
∫

dρ P (D|ρ,N )P (ρ|N ). (13)

2. Likelihood, prior, and posterior densities

In order to calculate the posterior (12), we assume that the
likelihood is given in terms of the χ2 function,

P (D|{w j},N ) = 1

NL
exp(−χ2), (14)

where NL is the normalization constant. The χ2 function for
the present paper is defined in Sec. III B [see Eq. (25)].

It is also assumed that the initial values of the weights are
Gaussian distributed (the arguments supporting this choice are
collected in Appendix A)

P ({w j},N ) =
(

α

2π

)W/2

exp[−α Ew({w j})], (15)

where α is a hyperparameter (regularizer) introduced to deal
with the overfitting problem and

Ew({w j}) = 1

2

W∑
i=1

w2
i . (16)

The regularizer α plays a crucial role in model optimization
and should be properly determined. Indeed, if α is large, then
the term (16) dominates in the posterior Eq. (12), so it is very
likely that the model underfits the data. On the contrary, if α

is too small, the likelihood dominates, and the model tends to
overfit the data. Note that α is another parameter of the model,
hence, ρ = {{w j}, α}.

In principle, to get the evidence P (D|N ) on which model
discrimination is based, the integration in Eq. (13) over the
whole space of parameters ρ should be performed. This is,
however, numerically difficult to perform. Therefore, in our
analysis, we consider another method, the so-called evidence
approximation [48,49].

3. Evidence approximation

In the adopted approach, it is assumed that the poste-
rior distributions have a Gaussian shape. Hence, to get the
necessary information about (12), it is enough to obtain the
configuration of the parameters ρMP at which the posterior
distribution is at its maximum and the covariance matrix for
the model. The latter is necessary to provide the uncertainties
for the model predictions.

In this approach, which corresponds to the type-II max-
imum likelihood method of conventional statistics [50], the
optimal value ρMP is established during the training of the
network. In this process, the a priori unknown α parameter is
iteratively changed {see Eqs. (3.18) and (3.19) of Ref. [31]},
starting from small value α0 = 0.001, which leads to a pos-
terior covering a large region in the parameter space. The
iteration procedure is convergent, and the result has a negli-
gible dependence on the initial α value. More details about
the algorithm implementation can be found in Sec. 3.1 of
Ref. [31] and in Sec. III. C of Ref. [33]. Note that the optimal

 10

 20
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 90

 30  40  50  60  70  80  90

E
rr

or

-log of evidence

FIG. 3. The error Eq. (21) as a function of the logarithm of the
evidence Eqs. (17) and (18). Each point denotes the result obtained
for one MLP fit to the BIN1 data, including deuteron corrections (see
Sec. III for details). The fits with a logarithm of the evidence smaller
than −100 are not shown in the figure.

configuration of the model parameters ρMP = {{w j}MP, αMP}
is close to the configuration for which χ2 is at the minimum.

Within the present approximation, the evidence for a given
model is cast in an analytical form. Namely,

ln P (D|N ) ≈ −χ2 − αMPEw({w j}MP) (17)

− ln |A|
2

+ W

2
ln αMP − 1

2
ln

γ (αMP)

2
+ M ln(2) + ln(M!). (18)

In the above expression, normalization factors common to
all models are omitted; |A| denotes the determinant of the
Hessian matrix,

Ai j = ∇i∇ jχ
2|{wk}={wk}MP + δi jαMP. (19)

The parameter γ is given by

γ (α) =
W∑

i=1

λi

α + λi
; (20)

γ (αMP) measures the effective number of weights, whose
values are controlled by the data [25]. The λi’s are eigenvalues
of the matrix ∇i∇ jχ

2.
The evidence contains two contributions: Occam’s factor

[(18) plus the αMPEw term of (17)] which is large for models
with many parameters and the misfit [χ2 term in Eq. (17)],
which could be large if the model is too simple. Therefore, the
model which maximizes the evidence is the one which solves
the bias-variance dilemma. As an illustration from the present
paper (details can be found in the following section), in Fig. 3
we plot the values of the error,

E = χ2 + αEw, (21)

and the evidence for MLP fits. The best model with the
highest evidence is not the one which has the smallest value
of the error function E , in variance with more conventional
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approaches based on the minimization of the χ2 per degree of
freedom.

III. ANALYSIS OF ANL
NEUTRINO-DEUTERON-SCATTERING DATA

A. Theoretical framework

The neutrino-induced CCQE,

νμ(k) + n(p) → μ−(k′) + p(p′), (22)

differential cross section, in terms of the standard Mandelstam
variables s = (k + p)2, u = (p − k′)2, and t = (k − k′)2 =
−Q2, can be cast as [51]

dσ

dQ2
= G2

F m2
N

8πE2
ν

[
A(Q2) + B(Q2)

(s − u)

m2
N

+ C(Q2)
(s − u)2

m4
N

]
,

(23)

where A, B, and C are quadratic functions of the vector
[FV

1,2(Q2)] and axial [FA,P(Q2)] form factors {see Eqs. (3.18)
of Ref. [51]}; GF is the Fermi constant, mN is the nucleon
mass, and Eν is the neutrino energy in the laboratory frame.
Isospin symmetry allows to relate FV

1,2 to the correspond-
ing electromagnetic proton and neutron form factors, which
are extracted from electron-scattering data. In the present
paper, we have taken these electromagnetic form factors
from Refs. [52,53]. With this simple choice, we disregard
deviations from the dipole shape because the accuracy of
the neutrino-deuteron data is insufficient to be sensitive to
them, particularly, at the rather low Q2 � 1 GeV2 probed in
the ANL experiment. Finally, the partial conservation of the
axial current (PCAC) and the pion-pole dominance of the
pseudoscalar form factor FP allow to express it in terms of FA.

Deuterium-filled bubble-chamber experiments actually
measured νμ + d → μ− + p + p. The cross section for this
process differs from the one on free neutrons due to the
momentum distribution of the neutron in the nucleus, Pauli
principle, final-state interactions, and meson-exchange cur-
rents. In the literature, it has been commonly assumed that
Eq. (23) can be corrected for these effects by a multiplicative
function of Q2 alone R(Q2) and such that R → 1 at large Q2.
For the present paper, we adopt R(Q2) from the calculation of
Ref. [54] (solid line in Fig. 4).

B. χ2 function for the ANL experiment

In the ANL experiment, the interactions of muon neutrinos
in a 12-ft bubble chamber filled with liquid deuterium were
studied [6–8,55]. The neutrino flux peaked at Eν ∼ 0.5 GeV
and has fallen by an order of magnitude at Eν = 2 GeV [7,8].
For the statistical analysis, we consider the Q2 distribution of
CCQE events. Some of the originally published bins were
combined together to have a number of events larger than
five in every bin. Therefore, the number of bins is nANL = 25
where bins from 1 to 23 have a width of 0.05 GeV2, whereas
bins 24 and 25 have widths of 0.65 GeV2. The total number of
measured two- and three-prong events adds to NANL = 1792
[8]. One-prong events were not included in the ANL selection.
To account for their loss, the region of Q2 = 0.05 GeV2 was
excluded.

100.00

1000.00

-3.00 -2.00 -1.00 0.00 1.00 2.00 3.00

-lo
g 
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the best

FIG. 4. The dependence of r2
A, defined in Eq. (3), on the log-

arithm of the evidence (17) and (18). Results for the MLP fits to
BIN1 data (without the deuteron correction). The MLPs consist of
M = 1–4 hidden units.

The predicted number of events in each bin is calculated
similarly as in Ref. [16],

N th
i = p

∫ ∞

0
dEν

dσ
dQ2

(
Eν, FA, Q2

i

)
σ (Eν, FA)

dN

dEν

, (24)

where p(dN/dEν )/σ (Eν, FA) is the neutrino energy flux,
given in terms of the experimental energy distribution of
observed events dN/dEν taken from Ref. [55].

As stated in the previous section, the likelihood [Eq. (14)]
is built using the χ2 function, which we cast as

χ2 = χ2
ANL + χ2

gA
, (25)

where χ2
gA

is introduced to constrain the value of the axial form
factor at Q2 = 0,

χ2
gA

=
(

FA(0) − gA


gA

)2

; (26)

gA and 
gA are fixed by the present PDG central value and its
uncertainty, respectively, Eq. (1). For χ2

ANL, we take

χ2
ANL =

nANL∑
i=k

(
Ni − N th

i

)2

Ni
+

(
1 − p


p

)2

, (27)

where Ni denotes the number of events in the bin. The last
term takes into account the systematic uncertainty in the total
number of events [56] inherited from the flux-normalization
uncertainty. Similarly, as in the analysis of single-pion pro-
duction data [57], it is assumed that 
p = 0.20.5 At the be-
ginning of the analysis, p = 1 is set. Then, during the training
of the network, p is iteratively updated. This algorithm is
described in Ref. [32].

It is known that the low-Q2 data are characterized by a
lower efficiency (see, for instance, Fig. 1 of Ref. [8]). More-
over, in this kinematic domain, deuteron structure corrections

5This is a more conservative value of the flux-normalization uncer-
tainty than the ANL estimate of 15% [8].
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must be carefully discussed. In order to study this problem,
we consider three variants of the ANL data:

(i) χ2
ANL → χ2

BIN0: All ANL bins included;
(ii) χ2

ANL → χ2
BINk: where k = 1 or k = 2: ANL bins with-

out the first k bins.

Additionally, for each data set, we consider the cross-
section model both with and without [R(Q2) ≡ 1] deuteron
corrections.

C. Numerical algorithm

We consider a MLP with M = 1–4 hidden units in a single
hidden layer. For M > 4, the number of parameters in the fit
starts to be comparable with number of bins. The numerical
algorithm for getting the optimal fit is summarized by the
following list of steps:

(1) Consider a MLP with a fixed number of hidden units
M = 1;

(2) using the Bayesian learning algorithm ([33]), perform
the network training and find the optimal values for the
weights and the regularizer α;
(a) set the initial value of α ≡ α0 = 0.001;
(b) initialize randomly the values of the weights;
(c) perform training until the maximum of the poste-

rior is reached; at each iteration step, update the
values of weights and α.

(3) Calculate the evidence for each of the obtained MLP
fits;

(4) repeat steps (1)–(3) for various initial configurations of
{w j};

(5) among all registered fits, choose the best one according
to the evidence;

(6) repeat steps (1)–(5) for M = 2–4;
(7) among the best fits obtained for N1–4 MLPs, choose

the model with the highest evidence.

The optimal configuration of parameters is obtained using
the Levenberg-Marquardt algorithm [58,59].

IV. NUMERICAL RESULTS

The analysis of the BIN0, BIN1, and BIN2 data sets
has been independently performed. For each set, both cross-
section models with and without deuteron corrections have
been studied. For the default analyses, 
gA has been taken
from the PDG as in Eq. (1), but the impact of a larger uncer-
tainty 
gA/gA = 10% has been investigated and is discussed
below. We have also performed analyses with normalization
uncertainties smaller (
p = 0.10) and larger (
p = 0.30)
than the default 
p = 0.20, but it turned out that decreasing
or increasing 
p does not significantly affect the final results.
All in all, about 17 000 fits have been collected. Among them,
for each type of analysis, the best model has been chosen
according to the objective Bayesian criterion described in
Sec. II.

In order to compare quantitatively different analyses, one
needs to take into account the relative data normalization
P (D). This density is not evaluated within the adopted

 0
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FIG. 5. Distribution of the ANL number of events and the best
fits obtained for MLPs with M = 1–4 hidden units. The figure
shows the results of the analysis of BIN0 data (deuteron corrections
included). For each fit, the value of the logarithm of evidence (ev) is
given.

approach. Hence, we cannot quantitatively compare the re-
sults of, e.g., BIN0 and BIN1 analyses. Nonetheless, for a
given data set, quantitative comparisons between the results
obtained within with the two versions of the cross-section
model can be made.

As described in Sec. III C for each type of analysis (data set
plus cross-section model), to find the optimal fit, MLPs with:
M = 1–4, hidden units have been trained. The best model
within each MLP type is the one with the maximal value of
the evidence Eqs. (17) and (18).

In order to illustrate the performance of the training algo-
rithm, in Fig. 4 we present the dependence of the resulting
axial-radius squared (r2

A) values on the evidence for the BIN1
data set. The best fit with the highest evidence, obtained with
M = 4, gives r2

A ≈ 0.464 fm2.
Note that all the best models within each MLP type repro-

duce well the ANL data. This is illustrated in Fig. 5, which
presents the distribution of the ANL events and the best fits.

Our main results, i.e., the best fits to BIN0, BIN1, and
BIN2 data for the model with and without the deuteron
correction, and 
gA from Eq. (1) are summarized in Table I.

TABLE I. The best MLP fits, obtained for the analysis of the
BIN0, BIN1, and BIN2 data with and without deuteron corrections;

gA is taken from Eq. (1).

Deuteron M ln P (D,N ) χ 2 p E r2
A (fm2)

BIN0
No 4 −34.72 11.97 1.1 14.14 −0.394 ± 0.278
Yes 4 −33.91 11.73 1.08 13.95 −0.161 ± 0.240

BIN1
No 4 −30.57 24.84 1.16 25.41 0.464 ± 0.014
Yes 3 −29.6 22.90 1.12 23.43 0.471 ± 0.015

BIN2
No 2 −30.15 22.62 1.18 23.16 0.476 ± 0.017
Yes 4 −27.67 21.94 1.13 22.62 0.478 ± 0.017
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FIG. 6. Best fits of the axial form factor obtained from the anal-
ysis of the BIN0, BIN1, and BIN2 data sets. The top (bottom) panel
presents the results obtained without (with) deuteron corrections.
The shaded areas denote 1σ uncertainties. Additionally, the relative
uncertainty 
FA/FA is plotted.

The corresponding FA(Q2) functions with their error bands are
shown in Fig. 6.

Both fits for the BIN0 data set, which contains all the
data from the original ANL measurement with and without
deuteron corrections show a Q2 behavior of FA with a rapid
increase followed by a decrease after a local maximum. As a
result, r2

A has a negative sign,6 which is at odds with all avail-
able determinations. We also observe that the Q2 dependence
of the form factor disagrees with the one obtained from the
same data set using the z expansion {the coefficients from the
ANL fit are given in Eq. (19) of Ref. [16]}. We have obtained

6Although the large uncertainty does not exclude positive values.

the z-expansion coefficients for the BIN0 best fit, finding that
their values grow with the expansion order to values that are
too large compared to phenomenological expectations [14].
This is an indication that the fit that best represents BIN0 data
is inconsistent with the QCD assumptions implicit in the z
expansion.

The height of the FA maximum is reduced once the
deuteron correction is included in the analysis, and it dis-
appears when the first bin is removed from the ANL data
(BIN1 data set).7 Hence, the presence of the local maximum
of FA appears to be caused by low-Q2 effects. Furthermore, the
coefficients of the z expansion for the fits to BIN1 and BIN2
data sets are fully consistent with the expectations from QCD.

There are several possible sources of this unexpected be-
havior of the fits to the BIN0 set, namely, (i) an improper
description of the nuclear corrections; (ii) a low quality of the
measurements at low-Q2 due to low and not well-understood
efficiency; (iii) constraints coming from the uncertainty of gA;
(iv) because of the lack of very low-Q2 data, the actual value
of r2

A might not be properly estimated: For instance, if FA has
first a local minimum and then a local maximum.8 In the later
scenario, the ANL data (and the available bubble-chamber
data, in general) are not precise enough to reveal this behavior.

In the low-Q2 kinematic domain, deuteron effects are
sizable and may play a crucial role. On the other hand, the
inclusion of deuteron corrections in the analysis of the BIN1
and BIN2 data sets has a minor impact on the functional
dependence of the final results, i.e., there is small difference
between FA(Q2) obtained with and without deuteron correc-
tions as can be seen in Fig. 7. It is also interesting to highlight
that the inclusion of the deuteron-structure corrections in the
cross-section model increases the value of the evidence for
each type of the analysis, see Table I.

In Fig. 8, we plot values of r2
A against the evidence. It is

clearly seen that the fits including deuteron corrections are
favored by the ANL data. The impact of the sensitivity of
the results on the deuteron structure revealed in the present
paper calls for a more accurate account of this ingredient of
the cross-section models, beyond the R(Q2) function from
Ref. [54] employed so far. Recent studies of CC νd scattering
in the QE regime (without pions in the final state) include
the nonrelativistic calculation of the inclusive cross section,
incorporating two-body amplitudes, of Ref. [60]. For the kine-
matics of the ANL and other bubble-chamber experiments, it
is important to employ a relativistic framework as in Ref. [61].
Furthermore, the consideration of the semi-inclusive rather
than the inclusive cross section will allow taking into account
the detection threshold for outgoing protons, which, in the
ANL case, is 100 MeV [7]. One should nonetheless bear in
mind that even with the best model for the deuteron there is
no guarantee that the low-Q2 region is successfully described

7It is worth mentioning that fits with a negative slope of FA at low
Q2, resembling the best result for BIN0 data, have also been obtained
in this case, but they are not preferred by the Bayesian algorithm.

8The magnetic form factors of the nucleon at very low-Q2 (about
0.01 GeV2) when normalized to a dipole have an oscillatory Q2

dependence [31].
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FIG. 7. Impact of the deuteron corrections on the axial form
factor fits. Results of the best fits to the BIN0, BIN1, and BIN2 data
sets with and without the deuteron correction together with relative
uncertainties. All curves for the BIN1 and BIN2 cases nearly overlap.

because of the difficulties in the measurement and with effi-
ciency estimates at this kinematics.

The impact of 
gA on the results can be easily investigated.
Indeed, if one increases the 
gA uncertainty from 
gA/gA ≈
0.1% as in Eq. (1) to 10%, then the local maximum of FA

disappears. However, the fit uncertainty rapidly grows from

FA/FA lower than 0.01% to 
FA/FA ≈ 7% at Q2 = 0. This
analysis is shown in Fig. 9.

In order to compare the Bayesian neural-network re-
sults with the traditional approach, we have performed a
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FIG. 8. Dependence of r2
A on the logarithm of evidence. Open

and full triangles denote (the best) fits to the BIN0 data without
and with the deuteron corrections, respectively. Analogously, the
fits to the BIN1 and BIN2 data are denoted by circles and squares,
respectively.
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FIG. 9. Impact of the 
gA uncertainty on the extraction of the
axial form factor. The best fits to BIN0, BIN1, and BIN2 data (with
deuteron correction). The thin lines denote results obtained assuming
a 10% uncertainty for gA, whereas the thick lines denote fits with the
PDG uncertainty.

conventional analysis of the ANL data assuming the dipole
parametrization for the axial form factor Eq. (2). The best
fit minimizes the χ2

ANL function [Eq. (27)].9 These results
are summarized in Table II, whereas the comparison be-
tween dipole fits and neural-network analyses are displayed
in Fig. 10.

Let us stress that the r2
A and normalization parameter p

for the fits of BIN0 data are comparable to the z-expansion

9For these analyses, the MINUIT package of ROOT has been utilized.

TABLE II. Fits of the dipole axial form factor (2) to the BIN0,
BIN1, and BIN2 data sets.

χ 2 analyses

χ 2 p MA (MeV) r2
A (fm2)

BIN0
No deuteron 33.3 1.12 ± 0.03 1110 ± 60 0.38 ± 0.04
Deuteron 28.0 1.09 ± 0.03 1050 ± 60 0.43 ± 0.05

BIN0
No deuteron 24.4 1.17 ± 0.03 1000 ± 70 1.47 ± 0.07
Deuteron 22.3 1.13 ± 0.03 950 ± 70 0.52 ± 0.08

BIN2
No deuteron 20.8 1.22 ± 0.05 890 ± 100 0.59 ± 0.13
Deuteron 19.8 1.18 ± 0.05 850 ± 110 0.65 ± 0.16
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FIG. 10. Comparison of the dipole with the neural network fits
to the BIN0 and BIN1 data, the deuteron corrections included. The
shaded areas denote 1σ uncertainties of FA.

results [16], even though in, the latter case, a different error
function was utilized. Certainly, with a dipole fit to BIN0
data one cannot obtain the local maximum of FA at low
Q2. On the other hand, the dipole fits to the BIN1 and the
BIN2 data have very similar functional Q2 dependence as the
best MLP fits. For these data sets, the evidence, which con-
tains Occam’s factor penalizing overfitting parametrizations
with large error bars, establishes the preference for a rather
structureless neural network that departs very little from the
normalization values, given by Eq. (2) with MA = 1 GeV, and
has small errors. Furthermore, the uncertainties in the neural-
network fits are systematically smaller than in the dipole χ2

ones.

V. SUMMARY

The first Bayesian neural-network analysis of the neutrino-
deuteron scattering data has been performed. The reported
study has been oriented to the extraction of the axial form fac-
tor from the ANL CCQE data, searching for deviations from
the dipole form. With the full ANL data set, the analysis leads
to an axial form factor which has a positive slope at Q2 = 0
and a local maximum at low Q2. The inclusion of the deuteron
correction reduces the peak in FA. Only after removing the
lowest available Q2 region (0.05 < Q2 < 0.10 GeV2) from
the data, a value of the axial radius consistent with available
determinations could be obtained. This suggests that correc-
tions from the deuteron structure play a crucial role at low Q2

but it could also be the case that the experimental errors in
this kinematic region were underestimated. Analyses without
the low-Q2 data do not show any significant deviation from
previous determinations. Furthermore, our neural-network fits
are characterized by smaller uncertainties than the dipole
ones.

New more precise measurements of the neutrino cross
sections on hydrogen and deuterium are needed to unravel the
axial structure of the nucleon. Techniques, such as the one
applied in the present paper, will prove valuable in such a
scenario.
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APPENDIX A: PRIOR DISTRIBUTIONS

The prior distribution of the weights, Eqs. (15) and (16),
is justified by the following properties of the adopted feed-
forward neural network in the MLP configuration and of the
problem under study

(P1) internal symmetry: The exchange of any two units in
the hidden layer does not change the functional form
of the network and its output values;

(P2) the sigmoid activation function f (x) Eq. (7) saturates
and can be effectively assumed to be constant outside
the interval −a � x � a with a ∼ 10;

(P3) f (−x) = 1 − f (x);
(P4) the ANL data are concentrated in the region Q2 ∈

(0, 3) GeV2—constraint (II) in Sec. II C;
(P5) FA(Q2)/F dipole

A (Q2) < C, where C > 1—constraint
(IV) in Sec. II C.
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Properties (P4) and (P2) constrain the weights
w1, . . . ,w2M in function (6). Indeed, from (P2), one sees
that for a full performance of the activation function f (x) in
Eq. (6) it is enough to have x ∈ (−a, a). Let us consider then
the function f (wiQ2 + wM+i ), i = 1, . . . , M, which is one of
the elements of the sum (6). To efficiently cover all possible
outputs, achieving a good performance of the network, it is
enough that the arguments of f (· · · ) belong to (−a, a) for all
values of Q2 under consideration. Then, one gets limits for
the weights, namely, |wM+i| < a10 from which one also gets
the constraint |wi| < 2/3a < a for Q2 ∈ (0, 3) GeV2.

Note that both negative and positive values of weights wi

and wM+i are equally possible according to (P3). Therefore,
without losing generality, the prior density should be symmet-
ric in weights w1 to 2M and cover the hypercube (−a, a)2M .

The limits for the weights in the linear layer are less
obvious. Property (P5) provides a constraint on the weights
in the linear output layer w2M+i, i = 1, . . . , M + 1, namely,

∣∣∣∣∣
M∑

i=1

w2M+i f (· · · ) + w3M+1

∣∣∣∣∣ < C. (A1)

The main role of the weights in the linear layer is to control
the range of the neural-network output. In our case, at any
Q2, the absolute value of the output should be smaller than C.
Hence, for a reliable performance of the network, it is enough
to assume that the weights in the linear layer are |w2M+i| <

C ∼ a, i = 1, . . . , M + 1. In analogy to the reasoning in the
paragraph above, one can argue that these weights could
equally take positive and negative values.

We, therefore, conclude that the prior density for the
weights should cover the hypercube (−a, a)3M+1 and be
symmetric in wi. This is a rough estimate of the bounds for
the model parameters, but the functional form of the prior
densities is still arbitrary. In the present analysis, we have
considered the Gaussian distribution (15). Such a density
profile maximizes the entropy of the system [63]. However,
our choice is also supported by further arguments from neural-
network computations. In particular, prior (15) modifies the
error function (21) through the contribution (16). Such a
penalty term has been considered in non-Bayesian approaches
[64] to the feedforward neural networks. Bayesian statistics
provides a probabilistic justification for (16). Moreover, the
Bayesian approach allows to consistently obtain the optimal
value of the α. We recall that, in the numerical analysis,
the initial value of α is set to α0 = 0.001. Then, the prior
Gaussian distribution has a width of

√
1/α ≈ 30, which fully

covers the region of the parameter space allowed by the
constraints.

10At Q2 = 0, we have f (wM+i ), so it is enough that |wM+i| < a.

Eventually, let us remark that the most general Gaussian
prior has the form

P({wi}|N ) = exp

(
−

3M+1∑
i=1

αi

2
w2

i

)
, (A2)

where every weight wi has its own regularizer αi. However,
the internal symmetry of the network (P1) allows to reduce the
number of regularizers to only four—each for every class of
parameters (wi, wM+i, w2M+i, and w3M+1) with i = 1 − M.
In Ref. [31], it was verified that the inclusion of more regu-
larizers has a negligible impact on the results but slows down
the numerical procedures. Hence, in the present analysis, we
consider the simplest and practically very effective scenario.

APPENDIX B: BEST-FIT RESULTS

It is worth noting that each of the sigmoids that constitute
the neural networks typically describes a particular feature of
the function. If a soft dependence is preferred by the data,
some units might be redundant and take very similar values
for the weights.

1. BIN0 with deuteron corrections

The best-fit parametrization for the BIN0 data set with the
deuteron correction included is

N (Q2, {w j}) = w9

e−(Q2/Q2
0 )w1−w2 + 1

+ w10

e−(Q2/Q2
0 )w3−w4 + 1

+ w11

e−(Q2/Q2
0 )w5−w6 + 1

+ w12

e−(Q2/Q2
0 )w7−w8 + 1

+w13. (B1)

The weights w1–13 take the following values:

{w j} = {−2.174 061, 0.1991 515, 2.140 942,−0.1947 798,

− 2.174 070, 0.1991 740,−5.481 409, 2.501 837,

−2.502 352, 2.308 397,−2.502 347,

3.120 895,−0.1638 095}, (B2)
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3)

As explained in Sec. II B Eq. (8), to obtain FA(Q2), function
N (Q2, {w j}) given above should be multiplied by the dipole
Eq. (2) with MA = 1 GeV.

2. BIN1 with deuteron corrections

In this case,

N (Q2, {w j}) = w7

e−(Q2/Q2
0 )w1−w2 + 1

+ w8

e−(Q2/Q2
0 )w3−w4 + 1

+ w9

e−(Q2/Q2
0 )w5−w6 + 1

+ w10, (B4)

with

{w j}MP = {−0.0703 401, 0.0404 197,−0.0703 404,

0.0404 186,−0.0703 372, 0.0404 192, 0.299 085,

0.299087, 0.299 086, 0.554 479}, (B5)
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and a covariance matrix,

A
−1

=

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝0.
50

1
34

7
0.

00
0

47
5

57
4

−0
.1

33
75

6
0.

00
31

2
53

8
−0

.1
33

75
6

0.
00

31
2

51
7

−0
.0

95
1

76
7

0.
05

45
46

0
0.

05
45

44
2

−0
.0

0
75

9
89

8
0.

00
0

47
5

57
4

0.
56

3
04

9
0.

00
31

2
50

6
−0

.0
0

64
1

52
1

0.
00

31
2

46
5

−0
.0

0
64

1
48

2
0.

05
38

88
4

−0
.0

23
6

92
4

−0
.0

23
6

92
3

−0
.0

44
4

41
2

−0
.1

33
75

6
0.

00
31

2
50

6
0.

50
1

34
6

0.
00

0
47

5
53

1
−0

.1
33

75
7

0.
00

31
2

47
5

0.
05

45
45

3
−0

.0
95

1
76

5
0.

05
45

44
8

−0
.0

0
75

9
89

8
0.

00
31

2
53

8
−0

.0
0

64
1

52
1

0.
00

0
47

5
53

1
0.

56
3

05
0

0.
00

31
2

45
7

−0
.0

0
64

1
49

6
−0

.0
23

6
92

8
0.

05
38

88
2

−0
.0

23
6

91
8

−0
.0

44
4

41
5

−0
.1

33
75

6
0.

00
31

2
46

5
−0

.1
33

75
7

0.
00

31
2

45
7

0.
50

1
34

7
0.

00
0

47
4

71
9

0.
05

45
45

8
0.

05
45

45
7

−0
.0

95
1

78
3

−0
.0

0
75

9
86

8
0.

00
31

2
51

7
−0

.0
0

64
1

48
2

0.
00

31
2

47
5

−0
.0

0
64

1
49

6
0.

00
0

47
4

71
9

0.
56

3
05

0
−0

.0
23

6
92

8
−0

.0
23

6
92

1
0.

05
38

88
8

−0
.0

44
4

41
5

−0
.0

95
1

76
7

0.
05

38
88

4
0.

05
45

45
3

− 0
.0

23
6

92
8

0.
05

45
45

8
−0

.0
23

6
92

8
0.

50
5

14
3

−0
.1

01
48

8
−0

.1
01

48
8

−0
.1

54
62

2
0.

05
45

46
0

−0
.0

23
6

92
4

−0
.0

95
1

76
5

0.
05

38
88

2
0.

05
45

45
7

−0
.0

23
6

92
1

−0
.1

01
48

8
0.

50
5

14
4

−0
.1

01
48

8
−0

.1
54

62
3

0.
05

45
44

2
−0

.0
23

6
92

3
0.

05
45

44
8

−0
.0

23
6

91
8

−0
.0

95
1

78
3

0.
05

38
88

8
−0

.1
01

48
8

−0
.1

01
48

8
0.

50
5

14
4

−0
.1

54
62

3
−0

.0
0

75
9

89
8

−0
.0

44
4

41
2

−0
.0

0
75

9
89

8
−0

.0
44

4
41

5
−0

.0
0

75
9

86
8

−0
.0

44
4

41
5

−0
.1

54
62

2
−0

.1
54

62
3

−0
.1

54
62

3
0.

24
6

58
7

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠.
(B

6)

[1] L. Alvarez-Ruso et al., Prog. Part. Nucl. Phys. 100, 1 (2017).
[2] C. Patrignani et al. (Particle Data Group), Chin. Phys. C 40,

100001 (2016).
[3] M. González-Alonso, O. Naviliat-Cuncic, and N. Severijns,

Prog. Part. Nucl. Phys. 104, 165 (2018).

[4] J. Arrington, C. D. Roberts, and J. M. Zanotti, J. Phys. G: Nucl.
Part. Phys. 34, S23 (2007).

[5] T. Katori and M. Martini, J. Phys. G: Nucl. Part. Phys. 45,
013001 (2018).

[6] W. A. Mann et al., Phys. Rev. Lett. 31, 844 (1973).

025204-13

https://doi.org/10.1016/j.ppnp.2018.01.006
https://doi.org/10.1016/j.ppnp.2018.01.006
https://doi.org/10.1016/j.ppnp.2018.01.006
https://doi.org/10.1016/j.ppnp.2018.01.006
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1016/j.ppnp.2018.08.002
https://doi.org/10.1016/j.ppnp.2018.08.002
https://doi.org/10.1016/j.ppnp.2018.08.002
https://doi.org/10.1016/j.ppnp.2018.08.002
https://doi.org/10.1088/0954-3899/34/7/S03
https://doi.org/10.1088/0954-3899/34/7/S03
https://doi.org/10.1088/0954-3899/34/7/S03
https://doi.org/10.1088/0954-3899/34/7/S03
https://doi.org/10.1088/1361-6471/aa8bf7
https://doi.org/10.1088/1361-6471/aa8bf7
https://doi.org/10.1088/1361-6471/aa8bf7
https://doi.org/10.1088/1361-6471/aa8bf7
https://doi.org/10.1103/PhysRevLett.31.844
https://doi.org/10.1103/PhysRevLett.31.844
https://doi.org/10.1103/PhysRevLett.31.844
https://doi.org/10.1103/PhysRevLett.31.844


ALVAREZ-RUSO, GRACZYK, AND SAUL-SALA PHYSICAL REVIEW C 99, 025204 (2019)

[7] S. J. Barish, J. Campbell, G. Charlton, Y. Cho, M. Derrick,
R. Engelmann, L. G. Hyman, D. Jankowski, A. Mann,
B. Musgrave, P. Schreiner, P. F. Schultz, R. Singer, M.
Szczekowski, T. Wangler, H. Yuta, V. E. Barnes, D. D.
Carmony, A. F. Garfinkel, and G. M. Radecky, Phys. Rev. D
16, 3103 (1977).

[8] K. L. Miller, S. J. Barish, A. Engler, R. W. Kraemer, B. J.
Stacey, M. Derrick, E. Fernandez, L. Hyman, G. Levman, D.
Koetke, B. Musgrave, P. Schreiner, R. Singer, A. Snyder, S.
Toaff, D. D. Carmony, G. M. Radecky, V. E. Barnes, A. F.
Garfinkel, R. Ammar, D. Coppage, D. Day, R. Davis, N. Kwak,
and R. Stump, Phys. Rev. D 26, 537 (1982).

[9] N. J. Baker, A. M. Cnops, P. L. Connolly, S. A. Kahn, H.
G. Kirk, M. J. Murtagh, R. B. Palmer, N. P. Samios, and M.
Tanaka, Phys. Rev. D 23, 2499 (1981).

[10] T. Kitagaki, H. Yuta, S. Tanaka, A. Yamaguchi, K. Abe, K.
Hasegawa, K. Tamai, H. Sagawa, K. Akatsuka, K. Furuno, K.
Tamae, M. Higuchi, M. Sato, S. A. Kahn, M. J. Murtagh, R. B.
Palmer, N. P. Samios, and M. Tanaka, Phys. Rev. D 42, 1331
(1990).

[11] T. Kitagaki, S. Tanaka, H. Yuta, K. Abe, K. Hasegawa, A.
Yamaguchi, K. Tamai, T. Hayashino, Y. Otani, H. Hayano,
H. Sagawa, R. A. Burnstein, J. Hanlon, H. A. Rubin, C. Y.
Chang, S. Kunori, G. A. Snow, D. Son, P. H. Steinberg, D.
Zieminska, R. Engelmann, T. Kafka, S. Sommars, C. C. Chang,
W. A. Mann, A. Napier, and J. Schneps, Phys. Rev. D 28, 436
(1983).

[12] D. Allasia et al., Nucl. Phys. B 343, 285 (1990).
[13] A. Bodek, S. Avvakumov, R. Bradford, and H. S. Budd, Eur.

Phys. J. C 53, 349 (2008).
[14] B. Bhattacharya, R. J. Hill, and G. Paz, Phys. Rev. D 84, 073006

(2011).
[15] B. Bhattacharya, G. Paz, and A. J. Tropiano, Phys. Rev. D 92,

113011 (2015).
[16] A. S. Meyer, M. Betancourt, R. Gran, and R. J. Hill, Phys. Rev.

D 93, 113015 (2016).
[17] R. J. Hill, P. Kammel, W. J. Marciano, and A. Sirlin, Rept. Prog.

Phys. 81, 096301 (2018).
[18] E. Berkowitz et al., arXiv:1704.01114.
[19] C. Alexandrou, M. Constantinou, K. Hadjiyiannakou, K.

Jansen, C. Kallidonis, G. Koutsou, and A. Vaquero Aviles-
Casco, Phys. Rev. D 96, 054507 (2017).

[20] S. Capitani, M. Della Morte, D. Djukanovic, G. M. von Hippel,
J. Hua, B. Jäger, P. M. Junnarkar, H. B. Meyer, T. D. Rae, and
H. Wittig, Int. J. Mod. Phys. A 34, 1950009 (2019).

[21] R. Gupta, Y.-C. Jang, H.-W. Lin, B. Yoon, and T. Bhattacharya,
Phys. Rev. D 96, 114503 (2017).

[22] D.-L. Yao, L. Alvarez-Ruso, and M. J. Vicente-Vacas, Phys.
Rev. D 96, 116022 (2017).

[23] K. M. Graczyk and C. Juszczak, Phys. Rev. C 90, 054334
(2014).

[24] R. D. Ball, S. Forte, A. Guffanti, E. R. Nocera, G. Ridolfi, and
J. Rojo (NNPDF Collaboration), Nucl. Phys. B 874, 36 (2013).

[25] C. M. Bishop, Neural Networks for Pattern Recognition (Oxford
University Press, Oxford, 1995).

[26] K. Hornik, M. Sinchcombe, and W. Halbert, Neural Networks
2, 359 (1989).

[27] G. D’Agostini, Bayesian Reasoning in Data Analysis (World
Scientific, Singapore, 2003).

[28] L. De Cruz, T. Vrancx, P. Vancraeyveld, and J. Ryckebusch,
Phys. Rev. Lett. 108, 182002 (2012).

[29] J. D. McDonnell, N. Schunck, D. Higdon, J. Sarich, S. M. Wild,
and W. Nazarewicz, Phys. Rev. Lett. 114, 122501 (2015).

[30] D. MacKay, Bayesian methods for adaptive models, Ph.D.
thesis, California Institute of Technology, 1991.

[31] K. M. Graczyk, P. Plonski, and R. Sulej, J. High Energy Phys.
09 (2010) 053.

[32] K. M. Graczyk, Phys. Rev. C 84, 034314 (2011).
[33] K. M. Graczyk, Phys. Rev. C 88, 065205 (2013).
[34] K. M. Graczyk and C. Juszczak, J. Phys. G: Nucl. Part. Phys.

42, 034019 (2015).
[35] K. M. Graczyk and C. Juszczak, Phys. Rev. C 91, 045205

(2015).
[36] F. Rosenblatt, Principles of Neurodynamics (Spartan, New

York, 1962).
[37] G. Cybenko, Math Control, Signal 2, 303 (1989).
[38] K.-I. Funahashi, Neural Networks 2, 183 (1989).
[39] R. Hecht-Nielsen, International 1989 Joint Conference on Neu-

ral Networks, Washington, DC, 1989 (IEEE, New York, 1989),
Vol. 1, pp. 593–605.

[40] N. E. Cotter, IEEE Trans, Neural Networks 1, 290 (1990).
[41] Y. Ito, Neural Networks 4, 385 (1991).
[42] V. Y. Kreinovich, Neural Networks 4, 381 (1991).
[43] S. Geman, E. Bienenstock, and R. Doursat, Neural Comput. 4,

1 (1992).
[44] J. O. Berger and W. H. Jefferys, J. Italian Statist. Soc. 1, 17

(1992).
[45] W. H. Jefferys and J. O. Berger, Am. Sci. 80, 64 (1992).
[46] R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben et al.,

Nature (London) 466, 213 (2010).
[47] I. Sick, Atoms 6, 2 (2018).
[48] D. J. C. MacKay, Neural Comput. 4, 415 (1992).
[49] D. J. C. MacKay, Neural Comput. 4, 448 (1992).
[50] J. O. Berger, Statistical Decision Theory and Bayesian Analysis

(Springer-Verlag, New York, 1985).
[51] C. H. Llewellyn Smith, Phys. Rep. 3, 261 (1972).
[52] S. Galster, H. Klein, J. Moritz, K. H. Schmidt, D. Wegener, and

J. Bleckwenn, Nucl. Phys. B 32, 221 (1971).
[53] J. Nieves, J. E. Amaro, and M. Valverde, Phys. Rev. C 70,

055503 (2004); 72, 019902(E) (2005).
[54] S. K. Singh and H. Arenhövel, Z. Phys. A 324, 347 (1986).
[55] S. J. Barish, M. Derrick, T. Dombeck, L. G. Hyman, K. Jaeger,

B. Musgrave, P. Schreiner, R. Singer, A. Snyder, V. E. Barnes,
D. D. Carmony, and A. F. Garfinkel, Phys. Rev. D 19, 2521
(1979).

[56] G. D’Agostini, Nucl. Instrum. Methods Phys. Res., Sect. A 346,
306 (1994).

[57] K. M. Graczyk, D. Kielczewska, P. Przewlocki, and J. T.
Sobczyk, Phys. Rev. D 80, 093001 (2009).

[58] K. Levenberg, Quart. Appl. Math. 2, 164 (1944).
[59] D. W. Marquardt, J. Soc. Indust. Appl. Math. 11, 431 (1963).
[60] G. Shen, L. E. Marcucci, J. Carlson, S. Gandolfi, and R.

Schiavilla, Phys. Rev. C 86, 035503 (2012).
[61] O. Moreno, T. W. Donnelly, J. W. Van Orden, and W. P. Ford,

Phys. Rev. D 92, 053006 (2015).
[62] http://www.wcss.wroc.pl.
[63] G. P. Lepage, B. Clark, C. T. H. Davies, K. Hornbostel, P. B.

Mackenzie, C. Morningstar, and H. Trottier, Nucl. Phys. Proc.
Suppl. 106, 12 (2002).

[64] G. E. Hinton, in PARLE Parallel Architectures and Languages
Europe, edited by J. W. de Bakker, A. J. Nijman, and P. C.
Treleaven (Springer, Berlin/Heidelberg, 1987), pp. 1–13.

025204-14

https://doi.org/10.1103/PhysRevD.16.3103
https://doi.org/10.1103/PhysRevD.16.3103
https://doi.org/10.1103/PhysRevD.16.3103
https://doi.org/10.1103/PhysRevD.16.3103
https://doi.org/10.1103/PhysRevD.26.537
https://doi.org/10.1103/PhysRevD.26.537
https://doi.org/10.1103/PhysRevD.26.537
https://doi.org/10.1103/PhysRevD.26.537
https://doi.org/10.1103/PhysRevD.23.2499
https://doi.org/10.1103/PhysRevD.23.2499
https://doi.org/10.1103/PhysRevD.23.2499
https://doi.org/10.1103/PhysRevD.23.2499
https://doi.org/10.1103/PhysRevD.42.1331
https://doi.org/10.1103/PhysRevD.42.1331
https://doi.org/10.1103/PhysRevD.42.1331
https://doi.org/10.1103/PhysRevD.42.1331
https://doi.org/10.1103/PhysRevD.28.436
https://doi.org/10.1103/PhysRevD.28.436
https://doi.org/10.1103/PhysRevD.28.436
https://doi.org/10.1103/PhysRevD.28.436
https://doi.org/10.1016/0550-3213(90)90472-P
https://doi.org/10.1016/0550-3213(90)90472-P
https://doi.org/10.1016/0550-3213(90)90472-P
https://doi.org/10.1016/0550-3213(90)90472-P
https://doi.org/10.1140/epjc/s10052-007-0491-4
https://doi.org/10.1140/epjc/s10052-007-0491-4
https://doi.org/10.1140/epjc/s10052-007-0491-4
https://doi.org/10.1140/epjc/s10052-007-0491-4
https://doi.org/10.1103/PhysRevD.84.073006
https://doi.org/10.1103/PhysRevD.84.073006
https://doi.org/10.1103/PhysRevD.84.073006
https://doi.org/10.1103/PhysRevD.84.073006
https://doi.org/10.1103/PhysRevD.92.113011
https://doi.org/10.1103/PhysRevD.92.113011
https://doi.org/10.1103/PhysRevD.92.113011
https://doi.org/10.1103/PhysRevD.92.113011
https://doi.org/10.1103/PhysRevD.93.113015
https://doi.org/10.1103/PhysRevD.93.113015
https://doi.org/10.1103/PhysRevD.93.113015
https://doi.org/10.1103/PhysRevD.93.113015
https://doi.org/10.1088/1361-6633/aac190
https://doi.org/10.1088/1361-6633/aac190
https://doi.org/10.1088/1361-6633/aac190
https://doi.org/10.1088/1361-6633/aac190
http://arxiv.org/abs/arXiv:1704.01114
https://doi.org/10.1103/PhysRevD.96.054507
https://doi.org/10.1103/PhysRevD.96.054507
https://doi.org/10.1103/PhysRevD.96.054507
https://doi.org/10.1103/PhysRevD.96.054507
https://doi.org/10.1142/S0217751X1950009X
https://doi.org/10.1142/S0217751X1950009X
https://doi.org/10.1142/S0217751X1950009X
https://doi.org/10.1142/S0217751X1950009X
https://doi.org/10.1103/PhysRevD.96.114503
https://doi.org/10.1103/PhysRevD.96.114503
https://doi.org/10.1103/PhysRevD.96.114503
https://doi.org/10.1103/PhysRevD.96.114503
https://doi.org/10.1103/PhysRevD.96.116022
https://doi.org/10.1103/PhysRevD.96.116022
https://doi.org/10.1103/PhysRevD.96.116022
https://doi.org/10.1103/PhysRevD.96.116022
https://doi.org/10.1103/PhysRevC.90.054334
https://doi.org/10.1103/PhysRevC.90.054334
https://doi.org/10.1103/PhysRevC.90.054334
https://doi.org/10.1103/PhysRevC.90.054334
https://doi.org/10.1016/j.nuclphysb.2013.05.007
https://doi.org/10.1016/j.nuclphysb.2013.05.007
https://doi.org/10.1016/j.nuclphysb.2013.05.007
https://doi.org/10.1016/j.nuclphysb.2013.05.007
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1103/PhysRevLett.108.182002
https://doi.org/10.1103/PhysRevLett.108.182002
https://doi.org/10.1103/PhysRevLett.108.182002
https://doi.org/10.1103/PhysRevLett.108.182002
https://doi.org/10.1103/PhysRevLett.114.122501
https://doi.org/10.1103/PhysRevLett.114.122501
https://doi.org/10.1103/PhysRevLett.114.122501
https://doi.org/10.1103/PhysRevLett.114.122501
https://doi.org/10.1007/JHEP09(2010)053
https://doi.org/10.1007/JHEP09(2010)053
https://doi.org/10.1007/JHEP09(2010)053
https://doi.org/10.1007/JHEP09(2010)053
https://doi.org/10.1103/PhysRevC.84.034314
https://doi.org/10.1103/PhysRevC.84.034314
https://doi.org/10.1103/PhysRevC.84.034314
https://doi.org/10.1103/PhysRevC.84.034314
https://doi.org/10.1103/PhysRevC.88.065205
https://doi.org/10.1103/PhysRevC.88.065205
https://doi.org/10.1103/PhysRevC.88.065205
https://doi.org/10.1103/PhysRevC.88.065205
https://doi.org/10.1088/0954-3899/42/3/034019
https://doi.org/10.1088/0954-3899/42/3/034019
https://doi.org/10.1088/0954-3899/42/3/034019
https://doi.org/10.1088/0954-3899/42/3/034019
https://doi.org/10.1103/PhysRevC.91.045205
https://doi.org/10.1103/PhysRevC.91.045205
https://doi.org/10.1103/PhysRevC.91.045205
https://doi.org/10.1103/PhysRevC.91.045205
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/10.1016/0893-6080(89)90003-8
https://doi.org/10.1016/0893-6080(89)90003-8
https://doi.org/10.1016/0893-6080(89)90003-8
https://doi.org/10.1016/0893-6080(89)90003-8
https://doi.org/10.1109/72.80265
https://doi.org/10.1109/72.80265
https://doi.org/10.1109/72.80265
https://doi.org/10.1109/72.80265
https://doi.org/10.1016/0893-6080(91)90075-G
https://doi.org/10.1016/0893-6080(91)90075-G
https://doi.org/10.1016/0893-6080(91)90075-G
https://doi.org/10.1016/0893-6080(91)90075-G
https://doi.org/10.1016/0893-6080(91)90074-F
https://doi.org/10.1016/0893-6080(91)90074-F
https://doi.org/10.1016/0893-6080(91)90074-F
https://doi.org/10.1016/0893-6080(91)90074-F
https://doi.org/10.1162/neco.1992.4.1.1
https://doi.org/10.1162/neco.1992.4.1.1
https://doi.org/10.1162/neco.1992.4.1.1
https://doi.org/10.1162/neco.1992.4.1.1
https://doi.org/10.1007/BF02589047
https://doi.org/10.1007/BF02589047
https://doi.org/10.1007/BF02589047
https://doi.org/10.1007/BF02589047
https://www.jstor.org/stable/29774559
https://doi.org/10.1038/nature09250
https://doi.org/10.1038/nature09250
https://doi.org/10.1038/nature09250
https://doi.org/10.1038/nature09250
https://doi.org/10.3390/atoms6010002
https://doi.org/10.3390/atoms6010002
https://doi.org/10.3390/atoms6010002
https://doi.org/10.3390/atoms6010002
https://doi.org/10.1162/neco.1992.4.3.415
https://doi.org/10.1162/neco.1992.4.3.415
https://doi.org/10.1162/neco.1992.4.3.415
https://doi.org/10.1162/neco.1992.4.3.415
https://doi.org/10.1162/neco.1992.4.3.448
https://doi.org/10.1162/neco.1992.4.3.448
https://doi.org/10.1162/neco.1992.4.3.448
https://doi.org/10.1162/neco.1992.4.3.448
https://doi.org/10.1016/0370-1573(72)90010-5
https://doi.org/10.1016/0370-1573(72)90010-5
https://doi.org/10.1016/0370-1573(72)90010-5
https://doi.org/10.1016/0370-1573(72)90010-5
https://doi.org/10.1016/0550-3213(71)90068-X
https://doi.org/10.1016/0550-3213(71)90068-X
https://doi.org/10.1016/0550-3213(71)90068-X
https://doi.org/10.1016/0550-3213(71)90068-X
https://doi.org/10.1103/PhysRevC.70.055503
https://doi.org/10.1103/PhysRevC.70.055503
https://doi.org/10.1103/PhysRevC.70.055503
https://doi.org/10.1103/PhysRevC.70.055503
https://doi.org/10.1103/PhysRevC.72.019902
https://doi.org/10.1103/PhysRevC.72.019902
https://doi.org/10.1103/PhysRevC.72.019902
https://doi.org/10.1007/BF01294589
https://doi.org/10.1007/BF01294589
https://doi.org/10.1007/BF01294589
https://doi.org/10.1007/BF01294589
https://doi.org/10.1103/PhysRevD.19.2521
https://doi.org/10.1103/PhysRevD.19.2521
https://doi.org/10.1103/PhysRevD.19.2521
https://doi.org/10.1103/PhysRevD.19.2521
https://doi.org/10.1016/0168-9002(94)90719-6
https://doi.org/10.1016/0168-9002(94)90719-6
https://doi.org/10.1016/0168-9002(94)90719-6
https://doi.org/10.1016/0168-9002(94)90719-6
https://doi.org/10.1103/PhysRevD.80.093001
https://doi.org/10.1103/PhysRevD.80.093001
https://doi.org/10.1103/PhysRevD.80.093001
https://doi.org/10.1103/PhysRevD.80.093001
https://doi.org/10.1090/qam/10666
https://doi.org/10.1090/qam/10666
https://doi.org/10.1090/qam/10666
https://doi.org/10.1090/qam/10666
https://doi.org/10.1137/0111030
https://doi.org/10.1137/0111030
https://doi.org/10.1137/0111030
https://doi.org/10.1137/0111030
https://doi.org/10.1103/PhysRevC.86.035503
https://doi.org/10.1103/PhysRevC.86.035503
https://doi.org/10.1103/PhysRevC.86.035503
https://doi.org/10.1103/PhysRevC.86.035503
https://doi.org/10.1103/PhysRevD.92.053006
https://doi.org/10.1103/PhysRevD.92.053006
https://doi.org/10.1103/PhysRevD.92.053006
https://doi.org/10.1103/PhysRevD.92.053006
http://www.wcss.wroc.pl
https://doi.org/10.1016/S0920-5632(01)01638-3
https://doi.org/10.1016/S0920-5632(01)01638-3
https://doi.org/10.1016/S0920-5632(01)01638-3
https://doi.org/10.1016/S0920-5632(01)01638-3



