
Singularity Set Computation: A
Hands-On Session with the CUIK Suite

Oriol Bohigas

Abstract This chapter provides an introduction to the analysis of the singularities of
robot mechanisms using the CUIK suite software. The CUIK suite is an open-source
toolbox for motion analysis of general closed-chain mechanisms, resulting from
several years of research and development within the Kinematics and robot design
group at the Institut de Robòtica i Informàtica Industrial. It is available under GPLv3
license from the CUIK Project home page. The intention is not to provide thorough
definitions or developments, but to illustrate the basic concepts around singularity
analysis through a short and simple presentation. The text assumes basic knowledge
of the kinematics of robot mechanisms, such as the notions of configuration space,
or the forward and inverse kinematics problems. An exhaustive description of the
methods, algorithms, and the underlying mathematical concepts used by the CUIK
suite can be found in Bohigas et al. (2016). For a better understanding, we do strongly
recommend to install the CUIK suite and execute the examples provided while read-
ing this chapter.

1 Introduction

The so-called singularities of a robot mechanism are special postures of the mecha-
nism in which the kinetostatic behavior may degrade dramatically. Rigidity or dex-
terity losses arise, and there may appear unresolvable or uncontrollable end-effector
forces, among other effects (Bohigas et al. 2016). Singularities generally pose prob-
lems for the normal operation of a robot, and thus, they should be analyzed before
the actual construction of a prototype.

The CUIK suite provides a toolbox of methods for singularity computation
and avoidance to this end. They are applicable to nonredundant mechanisms of
large generality and allow a detailed study in the initial phases of the development
of a mechanism. The computation of the singularity set provides comprehensive

O. Bohigas (B)
Institut de Robòtica i Informàtica Industrial, CSIC-UPC, Barcelona, Spain
e-mail: bohigas@upc.edu; obohigas@iri.upc.edu

 1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05219-5_2&domain=pdf
mailto:bohigas@upc.edu
mailto:obohigas@iri.upc.edu

2 O. Bohigas

information on the local and global motion capabilities of a mechanism: Its projec-
tions onto the task and joint spaces determine the working regions in such spaces,
may inform about the existence of different assembly configurations, and highlight
areas where control or dexterity losses may arise. These projections also supply a
fair view of the feasible movements of the mechanism, although they do not reveal
all possible singularity-free motions. In order to also tackle this issue, the CUIK
suite includes general path planning methods that can generate movements of the
mechanism that avoid problematic singularities (Porta et al. 2014).

Overall, the CUIK suite can help eliminate barriers in design creativity, and it
contributes to the general understanding on how the motions of complex multibody
systems can be predicted, planned, and controlled in an efficient and reliable way.

This chapter concentrates on singularity computation, and the interested reader
on singularity avoidance can refer to Bohigas et al. (2016).

1.1 Basic Concepts

Configuration space: Usually, all the feasible configurations of a mechanism can
be characterized by a system of equations

�(q) = 0, (1)

which expresses the assembly constraints between the different bodies of the robot,
and q is the vector of configuration coordinates (see Sect. 2.2.1 of Bohigas et al.
(2016)). The set of these possible configurations is known as the configuration space,
or C-space, of the mechanism.

Velocity equation: For a given configuration q of the mechanism, it is possible to
find a velocity equation

L m = 0, (2)

which gives all possible motions of the manipulator at that specific configuration.
The velocity equation can be obtained in several ways, for example, by differ-

entiating the assembly constraints, or using the tools of screw theory, or by other
means (Zlatanov 1998). L is a matrix that depends on the configuration, and m is
a velocity vector that globally characterizes the velocity state of the manipulator. In
this vector, we can distinguish three different blocks. We have the output velocities
that usually encode the velocity of a point, or the angular velocity or the twist of some
body. The input velocities, which represent the velocities of the acutated joints, and
the rest, which we call passive velocities:

m =
⎡
⎣
mu

mv

mp

⎤
⎦

→ output
→ input
→ passive

Singularity Set Computation: A Hands-On Session with the CUIK Suite 3

Forward and inverse instantaneous kinematics problem: In general, the instan-
taneous kinematic analysis of a manipulator addresses two main problems:

• The forward instantaneous kinematics problem (FIKP): find m given the input
velocity mv .

• The inverse instantaneous kinematics problem (IIKP): find m given the output
velocity mu .

Note that in both cases, it is required to find all velocity components of m, not
just those referring to the output or input velocities. Following Zlatanov (1998), a
configuration is said to be nonsingularwhen both the FIKP and the IIKP have unique
solutions for any input or output velocity, and singular otherwise.

Forward and inverse singularities: Let Ly , Lz , and Lp be the submatrices of L ob-
tained by removing the columns corresponding to the input, output, and both the input
and output velocities, respectively. It is easy to see that the singular configurations
are those in which either Ly or Lz is rank deficient (Bohigas et al. 2016).

Recall that if a matrix is rank deficient, its kernel has to be nonnull and, in partic-
ular, it must include a vector of unit norm. Thus, all singular configurations can be
determined by solving the following two systems of equations:

�(q) = 0
LT

y ξ = 0
‖ξ‖2 = 1

⎫⎬
⎭ ,

�(q) = 0
LT
z ξ = 0

‖ξ‖2 = 1

⎫⎬
⎭ . (3)

The first line of each system constrains q to be a feasible configuration of the
mechanism, and the second and third lines enforce the existence of a nonzero vector in
the kernel of the correspondingmatrix. The solutions of the system on the left include
all singularities where the FIKP is indeterminate, called forward singularities, while
the solutions of the system on the right include all singularities where the IIKP is
indeterminate, called inverse singularities.

All singularities of a mechanism can thus be obtained as the union of the solution
sets of the systems of equations in Eq. (3).

1.2 An Illustrative Example

To illustrate the previous concepts on a very simple example, consider the three-
slider mechanism in Fig. 1. Let (xP , yP) denote the coordinates of points P = A,
B, or C relative to the reference frame OXY in the figure, and let L1 and L2 be
the lengths of the connector links. Clearly, a configuration of the mechanism can be
shortly described by the tuple q = (yA, yB, xC), because xA = xB = yC = 0 in any
configuration. Since the distances from A to B and from B to C must be kept equal
to L1 and L2, the assembly constraints for this mechanism can be written as

4 O. Bohigas

Fig. 1 A 1-DOF mechanism
with three sliders. The
prismatic joints at A and B
are on a line perpendicular to
the axis of the prismatic joint
at C

yA2 + xC 2 = L1
2

yB2 + xC 2 = L2
2

}
, (4)

which corresponds to Eq. (1) for this mechanism. It is easy to realize that in this
case the C-space corresponds to the intersection of two cylinders in the (yA, yB, xC)

space, as illustrated in Fig. 2.
The velocity equation in Eq. (2) could now be obtained using the revolute- and

prismatic joint screws (Zlatanov 1998), but a more compact expression can here be
derived by differentiating Eq. (4) with respect to time. Taking vA and vB as the input
and output velocities, the differentiation yields

L · m =
[

0 2yA 2xC
2yB 0 2xC

]
·
⎡
⎣

vB

vA

vC

⎤
⎦ = 0.

From here, we rapidly obtain

Ly =
[

0 2xC
2yB 2xC

]
,

Lz =
[
2yA 2xC
0 2xC

]
,

Lp =
[
2xC
2xC

]
,

Singularity Set Computation: A Hands-On Session with the CUIK Suite 5

Fig. 2 C-space and singularities of the three-slider mechanism

which allow defining any of the systems in Eq. (3).
These systems can be solved analytically in this case. For example, if L1 =

L2 = 1, the C-space has a single connected component composed of two ellipses
intersecting on the xC -axis (Fig. 2a), and the solutions of the systems reveal that the
singularity set has six isolated configurations, marked in red in Fig. 2a, bottom, with
the following values of q:

(0, 0, 1), (0, 0,−1),
(1, 1, 0), (1,−1, 0),

(−1,−1, 0), (−1, 1, 0).

All of these configurations satisfy both systems in Eq. (3), so they are all forward
and inverse singularities because both the FIKP and the IIKP are indeterminate on
them. Therefore, the control of the input or the output velocity does not determine
the overall motion of the mechanism. Note that the C-space self-intersects at two
singularities and presents a bifurcation that allows to change the mode of operation
from both sliders moving on the same side of the horizontal axis, yAyB ≥ 0, to one
slider moving on each side, yAyB ≤ 0.

The topology of the C-space changes when L1 �= L2, since it no longer presents
any bifurcation. It is instead formed by two connected components (Fig. 2b). By

6 O. Bohigas

solving Eq. (3) for L1 = 1 and L2 = 0.8, eight singularities are obtained (Fig. 2b,
bottom):

(1, 0.8, 0), (−1,−0.8, 0),
(−1, 0.8, 0), (0.6, 0,−0.8),
(1,−0.8, 0), (−0.6, 0, 0.8),
(0.6, 0, 0.8), (−0.6, 0,−0.8).

In this case, to change the operation mode from yA ≥ 0 to yA ≤ 0 the mechanism
has to be disassembled.

2 Singularity Set Computation with the CUIK Suite

The previous example was simple enough so that the systems of equations describing
the singularities could be solved by hand, but this is usually not the case. This section
shows how to use the CUIK suite to obtain the singularities of the Dextar, a five-bar
parallel robot designed to support teaching and research, with a more interesting
singularity set (Campos et al. 2010).

Despite its simple architecture, Dextar exhibits forward and inverse singularities,
which requires careful analysis and planning to keep it under control and to exploit
its full motion capabilities.

The section will guide you in the process of computing Dextar’s singularities:
from the formulation of the assembly constraints and singularity set equations, to
their numerical solution, to the visualization and interpretation of the results. Along
the way, we shall explain the syntax of the involved CUIK files and commands.

2.1 Preparation

For a better understanding, we suggest you to read Sects. 2.1 and 2.2 of
Bohigas et al. (2016) and, ideally, also Sects. 3.1–3.4. You should have the CUIK
suite installed in your computer. Refer to the instructions in the CUIK Project home
page if you have not installed it yet.

During this example, we shall build few files incrementally. We recommend you
to follow the instructions below, but you can download the finished files as well if
you wish at Tutorial Solutions.

Throughout, we will call CUIK’s commands from a UNIX/Linux terminal win-
dow. Occasionally, we shall give computation times. Take them as rough estimations.
The actual timewill dependonyourmachine.Ourswas an iMac2010with a 2.93GHz
Intel Core i7 processor and 12 Gb of RAM, running Mac OSX “Yosemite”. Unless
where noted, we used just one of the eight CPUs of the machine.

Singularity Set Computation: A Hands-On Session with the CUIK Suite 7

Fig. 3 Geometry of the Dextar robot. A reference frame Fi is attached to each link of the Dextar
robot. Also, the orientation of each link is represented by angle θi

2.2 Dextar’s Geometry

Dextar is a planar five-bar robot. It can be thought of as two-serial, three-revolute
arms that share their distal joint. We start labeling its joints and links as J1, . . . , J5
and L1, . . . , L5, respectively (Fig. 3). We assume that li is the length of link Li . The
distance between J1 and J5 is d . We shall adopt the parameters of the Mecademic
version of Dextar:

l2 = l3 = l4 = l5 = 90mm
d = 118mm

The actuated joints are J1 and J5. The end-effector is located in joint J3, and only
its x and y coordinates can be controlled.

For convenience, we assign a reference frame to each link Li , indicated with Fi .
We mark the x-axis of each frame with an “x”. Frame F1 is centered in J5 and acts
as the absolute frame. Frames F2, . . . , F5 are centered and oriented as indicated in
their respective links (Fig. 3).

We next see how to formulate Dextar’s assembly constraints and the conditions
characterizing its singularity locus. For simplicity, we shall derive the latter by taking
the time derivative of Eq. (1). This will require us to include both the input and output
coordinates in q:

• The input coordinates will be θ2 and θ5.
• The output coordinates will be J3x and J3y .

8 O. Bohigas

2.3 Assembly Constraints

Equation (1) has to be formulated in a form that allows it to be converted into quadratic
equation. There are basically two ways of achieving so: using joint-assembly con-
straints or using loop-closure constraints. We next explain both.

Using joint-assembly constraints: Under this method, we formulate Eq. (1) by
gathering Eq. 3.1 in Bohigas et al. (2016):

r j + R jp
Fj

i = rk + Rkp
Fk
i

for all joints Ji of the mechanism, which forces the assembly of links L j and Lk at
Ji (see Sect. 3.2.1 of Bohigas et al. (2016)), and:

• r j is the absolute position vector of the origin frame Fj .
• R j is the rotation matrix giving the orientation of Fj .

• pFj

i is the position vector of Ji in frame Fj , written in the vector basis of Fj .

Since this is a planar linkage, Eq. 3.2 in Bohigas et al. (2016) is not needed in this
case. If we write the equation for each joint Ji , we obtain

[
d
0

]
=

[
J1x
J1y

]
(5)

[
J1x
J1y

]
+ R2

[
l2
0

]
=

[
J2x
J2y

]
+ R3

[
0
0

]
(6)

[
J2x
J2y

]
+ R3

[
l3
0

]
=

[
J3x
J3y

]
+ R4

[
0
0

]
(7)

[
J3x
J3y

]
+ R4

[
l4
0

]
=

[
J5x
J5y

]
+ R5

[
l5
0

]
(8)

[
J5x
J5y

]
=

[
0
0

]
(9)

which altogether form the system of Eq. (1). Note that, using these equations,

q = (J3x , J3y, J1x , J1y, J2x , J2y, J5x , J5y, θ3, θ4, θ2, θ5),

where v = (θ2, θ5) andu = (J3x , J3y), encompasses the input and output coordinates
of the mechanism, respectively.

Since

Ri =
[
cos θi − sin θi
sin θi cosθi

]
,

Equations (5)–(9) are not quadratic and, thus, not directly solvable using CUIK.
However, we can apply the change of variables

Singularity Set Computation: A Hands-On Session with the CUIK Suite 9

Fig. 4 Dextar robot has only
one kinematic loop

ci = cos θi

si = sin θi c

and include the circle equations
s2i + c2i = 1 (10)

to readily obtain a quadratic system solvable by the CUIK suite.
This is a common technique in any system to be solved by CUIK. We first for-

mulate the systems without worrying about the appearance of sines and cosines, and
finally algebrize the systems with the mentioned change of variables.

In spatial mechanisms, we can directly formulate the systems in algebraic form
following Sect. 3.2 in Bohigas et al. (2016).

Using loop-closure constraints: The previous method is simple, but sometimes it
leads to a system �(q) = 0 with too many variables and equations. More compact
systems of equations can often be obtained using loop-closure constraints and graph
theory tools.

Dextar has only one kinematic loop. Forcing the assembly of this loop is equivalent
to constraining the inter-joint vectors to forma closed polygon (Fig. 4). This condition
can be expressed with the equations

d + l2 cos θ2 + l3 cos θ3 + l4 cos θ4 − l5 cos θ5 = 0 (11)

l2 sin θ2 + l3 sin θ3 + l4 sin θ4 − l5 sin θ5 = 0 (12)

which directly characterize the C-space of the robot.
Note that Eqs. (11) and (12) contain the input coordinates θ2 and θ5 as variables,

but not the output coordinates J3x and J3y . To introduce the latter, we can simply add
the equations

10 O. Bohigas

J3x = d + l2 cos θ2 + l3 cos θ3 (13)

J3y = l2 sin θ2 + l3 sin θ3. (14)

Then, Eq. (1) is the system formed by Eqs. (11)–(14), and the configuration vector
of the system is

q = (J3x , J3y, θ3, θ4, θ2, θ5),

again with v = (θ2, θ5) and u = (J3x , J3y) encompassing the input and output coor-
dinates of the mechanism, respectively.

Incidentally, note that Eqs. (11) and (12) can be obtained by adding Eqs. (5)–(9).
This is true in a general mechanism. The loop-closure constraint of any kinematic
loop can be obtained by adding the joint-assembly constraints of the loop joints. If
our robot hasmultiple loops, Eq. (1)will include the loop-closure equations of a set of
fundamental cycles of its connectivity graph. For details, seePorta et al. (2009),which
also shows that the two formulations (via joint-assembly or loop-closure constraints)
are equivalent.

Which formulation is better? Since Eqs. (11)–(14) involve less equations and vari-
ables than Eqs. (5)–(9), we shall prefer them to formulate the systems of the various
singularity sets of Dextar.

Note however that, in other cases, there might be no gain in using loop-closure
equations. For example, the general formulation of Bohigas et al. (2016) uses screw
theory to formulate the velocity equation (Sect. 3.2.2) which requires the joints Pi to
be available (see Table 3.1 of Bohigas et al. (2016) and the corresponding text). In
such a case, it might be simpler to use joint-assembly constraints, which make all Pi
points explicit and ready-to-use in the system.

2.4 Inverse Singularity Conditions

Inverse singularities occur when the mechanism is found to be shaky after locking
its outputs. In Dextar, this happens when the left or right arms happen to be aligned.
For example, if the left arm is aligned, we can feel the shakiness shown in Fig. 5.

Recall that such singularities are the configurations q that satisfy the right system
in Eq. (3), where Lz = �z(q) as shown in Sect. 2.2.1 of Bohigas et al. (2016). Since
in our case �(q) = 0 is defined by Eqs. (11)–(14), and

z = (θ3, θ4, θ2, θ5),

Singularity Set Computation: A Hands-On Session with the CUIK Suite 11

Fig. 5 An inverse
singularity happens when the
left (or right) arm of the
Dextar is aligned

we have

�z(q) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−l3 sin θ3 −l4 sin θ4 −l2 sin θ2 l5 sin θ5

l3 cos θ3 l4 cos θ4 l2 cos θ2 −l5 cos θ5

−l3 sin θ3 0 −l2 sin θ2 0

l3 cos θ3 0 l2 cos θ2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (15)

The rows of �z(q) correspond to the partial derivatives of Eqs. (11)–(14) with
respect to the z variables.

Again, the resulting system of equations is not quadratic, but it can be converted
into a quadratic one by replacing the sines and cosines of θi by si and ci , and adding
the corresponding circle equations.

2.5 Forward Singularity Conditions

The forward singularities are the configurations in which the mechanism is shaky
after locking the actuators. In Dextar, this happens when J2, J3, and J4 happen to be
aligned, as shown in Fig. 6.

These are the configurations that satisfy the left system in Eq. (3), with Ly =
�y(q). In our case

12 O. Bohigas

Fig. 6 A forward singularity
happens when J2, J3, and J4
are aligned

�y(q) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −l3 sin θ3 −l4 sin θ4

0 0 l3 cos θ3 l4 cos θ4

−1 0 −l3 sin θ3 0

0 −1 l3 cos θ3 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (16)

where the rows correspond to the partial derivatives of Eqs. (11)–(14) with respect
to the y variables

y = (J3x , J3y, θ3, θ4).

2.6 Computation and Output Plots

Wenext see how to prepare the CUIK input files associatedwith the previous systems
of equations and how to solve them using CUIK. We shall compute, in sequence, the
following sets:

• The full C-space;
• The inverse singularity locus;
• The forward singularity locus.

These correspond to the sets indicated on the top of Fig. 7. Strictly speaking, the
silhouettes of the C-space relative to the input and output spaces are called the input
and output singularity loci. This is because these silhouettes are only defined for
regular points of the C-space. However, Dextar does not have C-space singularities,
also known as increased instantaneous mobility singularities (Zlatanov 1998). Thus,
its inverse and forward singularity loci coincide with its output and input singularity
sets, respectively.

Once computed, the three sets will be projected to the input and output spaces,
producing what we call the input and output portraits of the mechanism (see Sect. 3.4
of Bohigas et al. (2016)). These portraits are also indicated in the bottom of Fig. 7.

Singularity Set Computation: A Hands-On Session with the CUIK Suite 13

Fig. 7 Singularities seen as C-space silhouettes (in an abstract C-space)

Computing the configuration space: Open a new file with a text editor, and save
it with the name cspace.cuik. Any cuik file has three sections which encom-
pass, respectively, definitions of constants used in the equations, the list of equation
variables, and the equations themselves:

[CONSTANTS]
...
[SYSTEM VARS]
...
[SYSTEM EQS]
...

In cspace.cuik type

[CONSTANTS]
l := 0.90
d := 1.18
l2 := l
l3 := l
l4 := l
l5 := l

14 O. Bohigas

These constants define the five link lengths. Although all moving links are of
the same length in Dextar, we prefer to define the link lengths independently using
“li = value” because this will allow us to test different geometric parameters.

Now let us define the variables in the system. Type in

[SYSTEM VARS]
J3x:[-l4-l4,l4+l5]
J3y:[-l4-l4,l4+l5]

The syntax is clear. A variable is created by specifying its name, followed by “:”
and its feasibility interval. Since the position of joint J3 is constrained to lie inside a
circle of radius l4 + l5 centered in the origin of the absolute frame, J3x and J3y can
be given the previous feasibility intervals.

We also define the sines and cosines of all angles θ2, . . . , θ5, which take values in
the range [−1, 1]:

ct2:[-1,1]
st2:[-1,1]
ct3:[-1,1]
st3:[-1,1]
ct4:[-1,1]
st4:[-1,1]
ct5:[-1,1]
st5:[-1,1]

Finally, we add Eqs. (11)–(14) and the circle equations relating the cti and sti
variables:

[SYSTEM EQS]

% Loop equations
d + l2*ct2 + l3*ct3 + l4*ct4 - l5*ct5 = 0;
l2*st2 + l3*st3 + l4*st4 - l5*st5 = 0;

% Position of J3
J3x = d + l2*ct2 + l3*ct3;
J3y = l2*st2 + l3*st3;

% Circle equations due to angle algebraizations
ct2ˆ2 + st2ˆ2 = 1;

Singularity Set Computation: A Hands-On Session with the CUIK Suite 15

ct3ˆ2 + st3ˆ2 = 1;
ct4ˆ2 + st4ˆ2 = 1;
ct5ˆ2 + st5ˆ2 = 1;

Pay attention at the syntax employed to define sums, products, and the square
of a variable, and note that all equations must be finished with a semicolon. Also
observe that a percentage sign “%” can be used to insert a comment. It can be placed
anywhere, and the result is that any text to the right of “%” will be neglected.

Now copy the following parameters into a new file cspace.param:

SIGMA = 0.2
EPSILON = 1e-6
RHO = 0.95
ERROR_SPLIT = TRUE
DUMMIFY = 1
LR2TM_Q =0.5
LR2TM_S = 0.1
MAX_NEWTON_ITERATIONS = 0

From the point of view of a user, the most important parameter is SIGMA. It
defines the resolution at which the solution set will be computed. The smaller the
sigma, the higher the resolution. SIGMA, in fact, is themaximumedge length allowed
to any of the solution boxes returned.

Now we are ready to launch the first computation. Execute

cuik cspace

This will throw a bunch of numbers showing CUIK’s progress on solving the
equations. Their meaning is not much relevant to an end user.

Wait until the computation finishes (about 45 s in our case). Once it does, you will
see that CUIK has created the file cspace.sol, which contains, in order:

• The numerical parameters used (SIGMA, RHO, and so on);
• The solved system of equations;
• A list of the solution boxes returned;
• Execution statistics.

To see the latter statistics, type

tail -30 cspace.cuik

16 O. Bohigas

We can inspect the *.sol file with a text editor if we wish, but a more useful
choice is to obtain a plot of the solution boxes. Since there are ten variables defined in
cpsace.cuik, the boxes returned will be ten dimensions, and we can only observe
their projections onto three of the ten coordinates.

To obtain such projections, use cuikplot3d to convert cspace.sol to a file
cspace.gcl:

cuikplot3d cspace 1 2 3 0 cpsace.gcl

The extension gcl stands for “Geomview Command Language”, and the created
*.gcl file contains all graphic commands needed to visualize the boxes using
Geomview. In the previous command:

• cspace is the name of the input *.sol file.
• 1, 2, 3 are the dimensions onto which we project the solution boxes: 1 means the
first variable that appears in cspace.cuik, 2 means the second variable, and so
on (in our case, these three variables are J3x, J3y, and ct2).

• 0 indicates that no artificial enlarging of the box is to be applied. If you use a number
different from zero here, then the output boxes will have their edge lengths equal
to this number. This is useful to visualize boxes that are too tiny in comparison to
other boxes.

• cspace.gcl is the desired output file.

Now we can readily view the boxes with Geomview. Type

geomview cspace.gcl

We can now obtain the views of the configuration space in Fig. 8, top. Nicer plots
can be obtained by using a smaller SIGMA value. For example, using SIGMA =
0.05 (and waiting about 10min), we get the refined plots in Fig. 8, bottom.

Observe that the first plot provides Dextar’s workspace because it is the projection
onto the J3x and J3y coordinates. The computation of the whole C-space, therefore,
provides a simple way of obtaining workspace maps of any of the mechanism coor-
dinates. In many cases, however, we shall prefer to obtain the workspace by finding
a generalized singularity set, as explained in Chap.4 of Bohigas et al. (2016). Such
a procedure is advantageous as it yields the boundary and interior barriers of the
workspace, and it also takes joint limits into account. It is often faster too because
the boundaries and barriers are, generically, of lower dimension.

Computing the inverse singularity locus: Let us prepare the *.cuik file of the
inverse singularity locus. To do so, we shall extend cspace.cuik with new equa-
tions forcing the rank deficiency of �z(q).

First copycspace.cuik toinv.cuik andcspace.param toinv.param:

Singularity Set Computation: A Hands-On Session with the CUIK Suite 17

Fig. 8 Three different views of the C-space of the Dextar robot, using a different value for SIGMA
(left and right)

cp cspace.cuik inv.cuik
cp cspace.param inv.param

and open inv.cuikwith a text editor. Add the following variables to its [SYSTEM
VARS] section:

[SYSTEM VARS]
...
xi1:[-1,1]
xi2:[-1,1]
xi3:[-1,1]
xi4:[-1,1]

18 O. Bohigas

These xi are the components of the ξ vector of Eq. (3). Nowadd the rank deficiency
equations to the [SYSTEM EQS] section:

[SYSTEM EQS]
...
% Inverse singularity conditions
-l3*st3*xi1 - l4*st4*xi2 - l2*st2*xi3 + l5*st5*xi4 = 0;
l3*ct3*xi1 + l4*ct4*xi2 + l2*ct2*xi3 - l5*ct5*xi4 = 0;

-l3*st3*xi1 - l2*st2*xi3 = 0;
l3*ct3*xi1 + l2*ct2*xi3 = 0;

xi1ˆ2 + xi2ˆ2 + xi3ˆ2 + xi4ˆ2 = 1;

Note that when �z(q) is rank deficient, there will be at least two vectors ξ satis-
fying these equations. To avoid computing each singularity point twice, we can add
the equation of a random half-plane through the origin, which will discard one of the
points almost always. For example, let us add

0.5795*xi1 + 0.5683*xi2 + 0.3000*xi3 + 0.5013*xi4 >=0;

to the [SYSTEM EQS] section. Although adding this inequality is optional, it dras-
tically reduces the computation time.

Now solve the equations

cuik inv

and plot the solutions in the (J3x, J3y, ct2) space:

cuikplot3d inv 1 2 3 0 inv.gcl
geomview inv.gcl

Using Geomview’s controls, it is not difficult to obtain the plots of the inverse
locus in Fig. 9, obtained for different values of SIGMA. Observe how, as expected,
the plots delimit the workspace of Dextar in the (J3x, J3y) space.

The inverse locus is formed by two circular arcs and two isolated points. The
arcs correspond to configurations in which the left or right arms are fully extended
(Fig. 10, left), and the isolated points correspond to those in which the arms are
folded back, with J3 coinciding with J2 or J5 (Fig. 10, middle).

Singularity Set Computation: A Hands-On Session with the CUIK Suite 19

Fig. 9 Inverse singularity set of the Dextar robot computed at different SIGMA values. From left
to right (in parentheses, the computation times needed in seconds): 1 (31), 0.1 (49), 0.01 (158)

Fig. 10 Left: two configurations with the end-effector at the workspace boundary (right or left arm
fully extended). Middle: two configurations with the end-effector at an interior barrier (left or right
arm folded back). Right: there is a continuum of configurations for which the end-effector coincides
with J2 or J5

20 O. Bohigas

In fact, the isolated points are curves in configuration space, as there is a one-
dimensional continuumof configurations inwhich J3 coincideswith J2 or J5 (Fig. 10,
right).
Computing the forward singularity locus: Let us now prepare the *.cuik file of
the forward singularity locus. We shall extend cspace.cuik with new equations
forcing the rank deficiency of �y(q).

First copycspace.cuik tofwd.cuik andcspace.param tofwd.param:

cp cspace.cuik fwd.cuik
cp cspace.param fwd.param

Then, add the following variables to the [SYSTEM VARS] section of
fwd.cuik:

[SYSTEM VARS]
...
xi1:[-1,1]
xi2:[-1,1]
xi3:[-1,1]
xi4:[-1,1]

Finally, add the rank deficiency equations to the [SYSTEM EQS] section:

[SYSTEM EQS]
...
% Forward singularity conditions
-l3*st3*xi3 - l4*st4*xi4 = 0;
l3*ct3*xi3 + l4*ct4*xi4 = 0;

-xi1 - l3*st3*xi3 = 0;
-xi2 + l3*ct3*xi3 = 0;
xi1ˆ2 + xi2ˆ2 + xi3ˆ2 + xi4ˆ2 = 1;

% Equation to select just one xi vector for each
singularity
0.0249*xi1 + 0.5923*xi2 + 0.6515*xi3 + 0.4734*xi4 >= 0;

Now, save fwd.cuik and start the computation of the forward singularity locus:

Singularity Set Computation: A Hands-On Session with the CUIK Suite 21

Fig. 11 Top: forward singularity set of the Dextar robot computed at different SIGMA values.
From left to right (in parentheses, the computation times needed in seconds): 1 (3), 0.1 (11),
0.01 (69). Bottom: three examples of forward singularities of the Dextar robot

cuik fwd

When the computation has finished, execute

cuikplot3d fwd 1 2 3 0 fwd.gcl
geomview fwd.gcl

and use Geomview to obtain the plots in Fig. 11, top.
Each point of the red curve corresponds to a configuration of the mechanism in

which J2, J3, and J4 are aligned. The configurations in Fig. 11, bottom, for example,
are forward singularities.

22 O. Bohigas

Fig. 12 Output portrait of
the Dextar robot

2.7 Visualizing the Output Portrait

The previous examples show Dextar overlaid onto its output portrait (the projection
of the C-space and the forward and inverse loci onto the output coordinates). To
generate this portrait, run

geomview

and then load the C-space, inverse and forward singularity loci:

• File → Open, select cspace.gcl + click OK;
• File → Open, select inv.gcl + click OK;
• File → Open, select fwd.gcl + click OK.

By tuning a bit Geomview’s output, you will obtain the image in Fig. 12.
To obtain this image, follow these hints after loading the three gcl files:

• Use ortographic projection:

– Inspect → camera → ortographic

• Center the objects in your window:

– Select World in “Targets”

Singularity Set Computation: A Hands-On Session with the CUIK Suite 23

– Use “Zoom” and “Translate”

• Choose a white background:

– Inspect → camera → background color

• Color the C-space boxes in gray and make them translucent:

– Select the cspace in “targets”
– Inspect → appearance and set Shading to “Constant”. Also click on [Cf] to
select a light gray color for the boxes

– Inspect → material and click Transparent. Move the Alpha slider to a small
value.

• Color the edges of the forward singularity boxes in red:

– Inspect → appearance → Ce → select red. Also make the edges thicker by
setting Line Width to 3 or 4 in the same panel.

• Color the edges of the inverse singularity boxes in blue:

– Inspect → appearance → Ce → select blue. Also make edges thicker

2.8 Visualizing the Input Portrait

A great advantage of computing the singularity sets on the C-space is that they can
be projected to any coordinate space. We next show how to project them to the active
joint space (θ2, θ5).

The boxes in our *.sol files only contain the sine and cosine intervals of θ2 and
θ5, but we can use

cuikatan2

to replace them by the corresponding angular intervals. Let us do that for
cspace.sol. We run

cuikatan2 cspace 4 3 10 9 cspace_angles

since in cspace.cuik st2 and ct2 are declared as the fourth and third variables, and
st5 and ct5 are declared as the tenth and ninth variables.

For each box in cspace.sol, this instruction substitutes the intervals appearing
in the mentioned positions (4, 3, 10, and 9) by the corresponding angle intervals. The
new angle intervals are added at the end of the box. The original file cspace.cuik
is left unaltered, and the results are saved in cspace_angles.sol.

24 O. Bohigas

Fig. 13 Input portrait of the
Dextar robot

Since each box in cspace.sol has 10 intervals, we will have 8 intervals in
each box of cspace_angles.sol (cuikatan2 will have replaced 4 sine–cosine
intervals by two angular intervals). The intervals relative to θ2 and θ5 will be in the
last two positions in cspace_angles.sol. Thus, we can run

cuikplot3d cspace_angles 8 7 1 0 cspace_angles.gcl

to generate the *.gcl file corresponding to cspace_angles.sol.
To get analogous files for the forward and inverse singularity loci, we run

cuikatan inv 4 3 10 9 inv_angles
cuikatan fwd 4 3 10 9 fwd_angles

Finally, using Geomview on the created *.gcl files, we obtain the input portrait
in the active joints space shown in Fig. 13:

cuikplot3d inv_angles 12 11 1 0 inv_angles.gcl
cuikplot3d fwd_angles 12 11 1 0 fwd_angles.gcl

Singularity Set Computation: A Hands-On Session with the CUIK Suite 25

Fig. 14 Left: the shown configuration is an inverse singularity. The end-effector (J3), coinciding
with J5, cannot move in the direction of link L5. Right: workspace of Dextar relative to the output
coordinates. In the plot, the inverse singularities in blue delimit the workspace boundaries, and
small red vectors are shown on the forbidden direction of motion

The horizontal and vertical axes correspond to the θ5 and θ2 angles, respectively.
The gray area spans the [−π, π] range in both directions.

The input portrait provides the workspace of the (θ2, θ5) angles, which is also
useful to a designer. For example, from the previous plot we see that, despite the
existence of inner voids, the two angles can take any value in [−π, π]. This implies
that Dextar should be equipped with multiturn actuators to exploit its full motion
capabilities.

Note also how the roles of the forward and inverse singularity loci are reversed
here. While the inverse locus delimited the attainable region in the task space, such
region is bounded by the forward locus in the active joint space. However, it is shown
in Bohigas et al. (2016) that not all points of the inverse (resp. forward) locus will
necessarily project to the boundary of the workspace (resp. active joint) space. The
isolated points of the inverse locus of Dextar, explained next, provide one example.

2.9 Workspace Boundaries and Interior Barriers

The inverse singularities help to delimit the workspace boundaries relative to the
output coordinates, in this case (J3x , J3y). But they can also reveal the existence of
interior barriers in the workspace. The isolated blue points that coincide with J1 and
J5 are an example of such barriers: e.g., if we place J3 on J5, J3 cannot move in the
direction of link L5 (using small variations of the input angles). In other words, there

26 O. Bohigas

is a motion barrier orthogonal to such direction (Fig. 14, left). Using the techniques
of Chap.4 in Bohigas et al. (2016), we would mark the workspace boundaries and
barriers as shown in Fig. 14, right.

Note that our initial workspace map that resulted from projecting the C-space
(Fig. 8, left) does not reveal the motion barriers interior to the workspace. The same
can be said of any map obtained by the usual method of discretization (sweeping the
task space points and checking whether the mechanism can be assembled in them,
using inverse kinematics). Such a method will provide a good approximation of the
workspace, but will fail to accurately detect the singularities and barriers present in
its interior.

Fig. 15 From left to right and top to bottom, the value of l decreases from 0.7 to zero

Singularity Set Computation: A Hands-On Session with the CUIK Suite 27

The previous punctual barriers can be better understood when seen as the limit
case of a family of workspaces. For example, if we consider the family of single-loop
five-bar mechanisms with these parameters:

l3 = l4 = l5 = 0.9 , l2 = l + 0.9

and make l evolve from 0.7 to zero, we obtain the workspaces in Fig. 15. It is clear
that the circular boundary of the workspace degenerates into an interior barrier with
just one point when l = 0.

References

O. Bohigas, M. Manubens, L. Ros. Singularities of Robot Mechanisms: Numerical Computation
and Avoidance Path Planning (Springer, Cham, 2016)

L. Campos, F. Bourbonnais, I. Bonev, P. Bigras, Development of a five-bar parallel robot with large
workspace, inProceedings of the ASME InternationalDesignEngineering Technical Conferences
and Computers and Information in Engineering Conference, IDETC/CIE (Montreal, Quebec,
2010)

Geomview. http://www.geomview.org/
Kinematics and robot design group at the Institut de Robòtica i Informàtica Industrial. http://www.
iri.upc.edu/research/kinematics

Mecademic version of Dextar. http://www.mecademic.com
J.M. Porta, L. Ros, F. Thomas, A linear relaxation technique for the position analysis of multi-loop
linkages. IEEE Trans. Robot. 25(2), 225–239 (2009)

J.M. Porta, L. Ros, O. Bohigas, M. Manubens, C. Rosales, L. Jaillet, The CUIK suite: motion
analysis of closed-chain multibody systems. IEEE Robot. Autom. Mag. 21(3), 105–114 (2014)

The CUIK Project Home Page. http://www.iri.upc.edu/cuik
Tutorial Solutions. www.iri.upc.edu/people/ros/srm/Dextar-tutorial.zip
D. Zlatanov, Generalized Singularity Analysis of Mechanisms. Ph.D. thesis, University of Toronto,
1998

http://www.geomview.org/
http://www.iri.upc.edu/research/kinematics
http://www.iri.upc.edu/research/kinematics
http://www.mecademic.com
http://www.iri.upc.edu/cuik
www.iri.upc.edu/people/ros/srm/Dextar-tutorial.zip

