

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com

Review

Anthropogenic contaminants of high concern: Existence in water resources and their adverse effects

Itzel Y. López-Pacheco^a, Arisbe Silva-Núñez^a, Carmen Salinas-Salazar^a, Alejandra Arévalo-Gallegos^a, Laura A. Lizarazo-Holguin^b, Damiá Barceló^{c, d, e}, Hafiz M.N. Iqbal^{a, *}, Roberto Parra-Saldívar^{a, *}

^a Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico

^b Universidad de Antioquia, School of Microbiology, Cl. 67 #53 - 108, Medellín, Antioquia, Colombia

^c Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain

^d ICRA, Catalan Institute for Water Research, University of Girona, Emili Grahit 101, Girona 17003, Spain

^e Botany and Microbiology Department, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia

ARTICLE INFO

Article history: Received 22 April 2019 Received in revised form 2 July 2019 Accepted 3 July 2019 Available online xxx Editor: Patricia Holden

Keywords: Anthropogenic contaminants Endocrine disruptors Bioaccumulation Bio-magnification Wastewater Bisphenol A Toxicity

ABSTRACT

Existence of anthropogenic contaminants (ACs) in different environmental matrices is a serious and unresolved concern. For instance, ACs from different sectors, such as industrial, agricultural, and pharmaceutical, are found in water bodies with considerable endocrine disruptors potency and can damage the biotic components of the environment. The continuous ACs exposure can cause cellular toxicity, apoptosis, genotoxicity, and alterations in sex ratios in human beings. Whereas, aquatic organisms show bioaccumulation, trophic chains, and biomagnification of ACs through different entry route. These problems have been found in many countries around the globe, making them a worldwide concern. ACs have been found in different environmental matrices, such as water reservoirs for human consumption, wastewater treatment plants (WWTPs), drinking water treatment plants (DWTPs), groundwaters, surface waters, rivers, and seas, which demonstrate their free movement within the environment in an uncontrolled manner. This work provides a detailed overview of ACs occurrence in water bodies along with their toxicological effect on living organisms. The literature data reported between 2017 and 2018 is compiled following inclusion-exclusion criteria, and the obtained information was mapped as per type and source of ACs. The most important ACs are pharmaceuticals (diclofenac, ibuprofen, naproxen, ofloxacin, acetaminophen, progesterone ranitidine, and testosterone), agricultural products or pesticides (atrazine, carbendazim, fipronil), narcotics and illegal drugs (amphetamines, cocaine, and benzoylecgonine), food industry derivatives (bisphenol A, and caffeine), and personal care products (triclosan, and other related surfactants). Considering this threatening issue, robust detection and removal strategies must be considered in the design of WWTPs and DWTPs.

© 2019.

1. Introduction

Anthropogenic contaminants (ACs) are substances found in the environment due to human activities (Rhind, 2009), and can effects the living organisms, directly or indirectly. Many of these contaminants have now been recognized as endocrine disruptors and can pose human-health related risks, such as hormonal imbalance, metabolism disorders, neurological disorders, immunological disorders, male/ female reproductive system imbalance (Garcia-Morales et al., 2015; Barrios-Estrada et al., 2018a; Bilal et al., 2019a). Therefore, ACs containing wastewater treatment methods are of great importance due to the concentration and variety of emerging pollutants derived from anthropogenic processes (Rodríguez-Delgado et al., 2016; Bilal et al., 2017; Barrios-Estrada et al., 2018b; Bilal and Iqbal, 2019; Bilal et al., 2019b; Bilal et al., 2019c; López-Pacheco et al., 2019). The maximum concentrations of ACs detected in water bodies are shown in Fig. 1. Based on a data reported in Scopus from 2017 to 2018, ACs of high concern from different countries, types, and sources are summarized in Table 1. Some of these contaminants cannot be metabolized easily and thus accumulate in living organisms. From a broader perspective, such accumulation of concerning agents in living species is known as bioaccumulation. Whereas, the passage of the contaminant through various levels of a trophic chain is known as biomagnification (Blowes et al., 2003). The controlled or uncontrolled bioaccumulation and biomagnification of ACs can cause several adverse effects on living beings (Fig. 2).

There are many reports that confirm the persistence/existence of ACs in water bodies of several countries around the world. For instance, the sampling over two periods, i.e., (1) February 2014 and (2) October 2014, was performed in the Guarapiranga reserve in Brazil. In the first period, 31 ACs were detected, while in the second, around 27 ACs were recorded in the Guarapiranga reserve (López-Doval et

^{*} Corresponding authors.

Email addresses: hafiz.iqbal@tec.mx (H.M.N. Iqbal); r.parra@tec.mx (R. Parra-Saldívar)

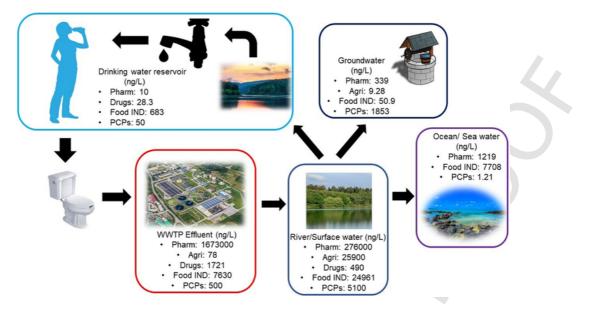


Fig. 1. Maximum concentrations of ACs found in different environmental matrices (Data source SCOPUS 2017–2018). Pharm: Pharmaceuticals, Food IND: Food Industry, Agri: Agricultural. PCPs: Personal care products.

Table 1

Range (ng/L) of ACs reported in 2017 and 2018 in Scopus. The obtained data is summarized as per source and type of ACs.

Source	Туре	Range (ng/L)	# of reported countries
Drinking water	Pharmaceuticals	10.3	1
-	Drugs	0.61-28.3	1
	Food industry	2.4-683	1
	Personal Care Products	1.1–50	1
WTTP effluent	Pharmaceuticals	0.103-1,673,000	9
	Agricultural	78	1
	Drugs	50-1721	3
	Food industry	2.4-7630	4
	Personal Care Products	<0.6-500	4
River/surface water	Pharmaceuticals	0.11-276,000	15
	Agricultural	1-25,900	5
	Drugs	4-490	2
	Food industry	1.7-24,961	7
	Personal Care Products	0.4–5100	8
Ocean/sea water	Pharmaceuticals	0.0038-1219	5
	Food industry	0.03-7708	3
	Personal Care Products	0.0036-1.21	1
Groundwater	Pharmaceuticals	0.33-339	2
	Agricultural	9.28	
	Food industry	50.9	1
	Personal Care Products	3.7–1853	2

al., 2017). From the Holtemme river in Germany, a study showed the presence of 86 micropollutants. Out of the total 86, around 50 ACs were detected in the water sample, around 47 in the sediment and 17 in the specimens of *Gammarus pulex* (Inostroza et al., 2017). Other studies also report the presence of ACs in the water reservoir, WWTPs, and vegetated draining ditch in Brazil and Mexico (Estrada-Arriaga et al., 2016; López-Doval et al., 2017; Moeder et al., 2017). The main ACs reported in different studies are pharmaceuticals (diclofenac, ibuprofen, naproxen, ofloxacin, acetaminophen, progesterone ranitidine and testosterone), agricultural products or pesticides

(atrazine, carbendazim, and fipronil), narcotics and illegal drugs (amphetamines, cocaine, and benzoylecgonine), food industry derivatives (bisphenol A, caffeine), and personal care products (triclosan, and other related surfactants). However, regardless of their concerning risk, there is no single report available in the literature that discusses all of them at one place with suitable examples. Thus, herein, an effort has been made to fill this literature gap. In addition, various environmentally related matrices, such as water reservoirs, wastewater treatment plants (WWTPs), drinking water treatment plants (DWTPs), groundwaters, surface waters, rivers, and seas, in which ACs were found, are discussed with suitable examples. Following a detailed inclusion-exclusion criterion, the Scopus dataset from the year 2017-2018 was scrutinized and comprehensively summarized in Table 2. Moreover, the obtained information was also mapped using the software ArcGIS 9.3.1 (Esri, USA), as per type and source of ACs (Fig. 3).

2. Contaminants from pharmaceutical products

2.1. Diclofenac

Diclofenac is a non-steroidal anti-inflammatory drug (NSAID) (Wang et al., 2010). In Europe, diclofenac has been found and reported in many water bodies. In Portugal, concentrations of 972 ng/L were found in WWTPs and rivers (Paíga et al., 2016). In Spain, diclofenac concentration ranged from 1 to 54 ng/L (Silva et al., 2011). More specifically, in the Turia River Basin (Valencia, Spain), diclofenac was found from 6.72 to 940 ng/L (Carmona et al., 2014). In Latin America (Cuernavaca, Mexico), concentrations between 258 and 1398, ng/L were detected (Rivera-Jaimes et al., 2018). In Chinese rivers, a maximum of 717 ng/L diclofenac was found (Wang et al., 2010). In Pakistan, the concentrations were found in the range of 10 to 1800 ng/L (Scheurell et al., 2009). In a WWTP in Turkey, the influent had a diclofenac concentration of 295-1376 ng/L, and the effluent had 119-1012 ng/L, resulting in removal efficiencies from 26 to 60% (Sari et al., 2014). In Malaysia, diclofenac in living organisms, from a river Estuary, was detected in fishes and mollusks samples (1.42 ng/g to 10.76 ng/g of diclofenac) (Omar et al., 2019). Regarding toxicological effects in fauna, it has been found that exposure

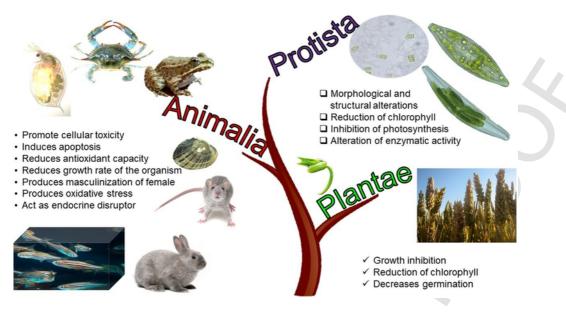


Fig. 2. Adverse effects of ACs on living organisms in a biological kingdom.

to diclofenac (200, 2000 and 20,000 ng/L) affects liver activity, decreases lipid peroxidation and reduces the amount of secreted dopamine in the fish *Rhamdia quelen* (Guiloski et al., 2017b). In the freshwater crustaceans, *Daphnia magna*, and *Moina macrocopa*, a reduction in the reproductive rate was observed at a concentration higher than 25 mg/L (Lee et al., 2011). Diclofenac affects the cellular level in the fish *Oryzias latipes* and causes cellular toxicity, apoptosis, genotoxicity and estrogenic effects at the concentrations of 8 ng/ L and 1000 ng/L (Hong et al., 2007). Diclofenac can be bio-accumulated and metabolized by animals. For instance, the mussels *Mytilus trossulus* can metabolize diclofenac into its hydroxy-derivative compounds (4-OH and 5-OH diclofenac) (Świacka et al., 2019). Furthermore, diclofenac affects amphibians, by producing morphological abnormalities, and alterations in the cardiac function and swimming performance (Peltzer et al., 2019).

2.2. Ibuprofen

Ibuprofen is an NSAID and an analgesic (Moro et al., 2014). It can be detected as a whole or in parts as metabolites, such as hydroxyibuprofen and carboxyibuprofen, in water bodies (Dvořáková Březinova et al., 2018). Ibuprofen has been reported at the concentration of $13.74 \,\mu\text{g/L}$ and its metabolites at the concentration of $130 \,\mu\text{g/L}$, in WWTPs in Spain (Ferrando-Climent et al., 2012). In South Africa, ibuprofen was found at the concentrations of 278, 261, and 170 ng/ L, in the water samples from Estuary and seawater (Primrose et al., 2019). In Cameroon, the samples from surface water and groundwater contained ibuprofen at 516 ng/L and 276 ng/L, respectively (Branchet et al., 2019). In the UK, ibuprofen was found in surface water at 6297 ng/L (Letsinger et al., 2019). Exposure to ibuprofen (1 mg/L) can cause a reduction in the growth rate of microorganisms. It can also induce morphological and structural alterations, including a reduction in chlorophyll production and an increase in the production of carotenoids (Moro et al., 2014). In Navicula sp. extended time exposure (10 days) to ibuprofen at the concentrations from 10 to 100 mg/L inhibits the photosynthesis rate of the diatom (T. Ding et al., 2017b). In the frog *Pelophylax ridibundus*, ibuprofen (250 ng/L) elevates oxyradicals and produces instability of the lysosomal membrane (Falfushynska et al., 2017). In zebrafish (Danio

rio), exposure to ibuprofen (5 to $500 \mu g/L$) reduces the growth rate, reduces the ability to respond to external stimuli and movement, and neurotoxic to the embryos (Xia et al., 2017). In zebra mussels, *Dreissena polymorpha*, ibuprofen ($100 \mu g/L$) increases the oxidation of lipids, decreases the amount of triglycerides, and antioxidant capacity (André and Gagné, 2017).

2.3. Naproxen

Naproxen is an analgesic and extensively used to treat moderate pain, fever, headache, and inflammation (Neal and Moore, 2017). While, it is considered as a toxic compound for some species, such as Pseudokirchneriella subcapitata, Brachionus calyciflorus and Ceriodaphnia dubia, subject to chronic exposure. The concentrations up to 31.81 mg/L, 0.56 mg/L, and 0.33 mg/L, and its photo-derivatives are considered even toxic than the original molecule in the above-mentioned species (Isidori et al., 2005). In Algiers, on the west side of Mediterranean Sea bay, naproxen has been found at the concentrations between 1220 and 9585 ng/L in wastewater, and 228.3 ng/L in the surface water (Kermia et al., 2016). In Kinmen (Taiwan), naproxen was present at the concentration of 0.3 ng/L in Taihu Lake and 104.3 ng/L in WWTP (Wei-po Lai et al., 2016). Also, it was found from 52.4 to 124.2 ng/L in surface water in Italy (Riva et al., 2019). In Pakistan, 215 to $464 \,\mu\text{g/L}$ of this pollutant had been found in pharmaceutical industry wastewater effluents (Ashfaq et al., 2017). The crayfish Orconectes virilis has been used to assess the effects of naproxen on marine species. The concentrations of 0.027 µg/L, 2.30 µg/L, and 14.0 µg/L showed a negative effect on the behavior and motility of marine species (Neal and Moore, 2017). Carps exposed at different concentrations of naproxen (10, 50, 100 and 200 µg/L) in their early stages of development, showed alterations in the rate of development, morphology, histopathology, and in some cases, increase in the mortality of organisms (Sehonova et al., 2017). In some microorganisms, such as microalgae Cymbella sp. and Scenedesmus quadricauda, it has been proven that this compound at 50 and 100 µg/L causes alterations to the amount of chlorophyll, carotenoids, and enzymatic activity (T. Ding et al., 2017a). In adult zebrafishes (Danio rerio), naproxen (1 and 100 mg/L) causes an alter-

 Table 2

 Anthropogenic contaminants (ACs) reported in wastewater treatment plants effluent and water resources in 2017 and 2018 (SCOPUS database).

Contaminant	Location	Source	Concentration (ng/L)	Reference
Pharmaceuticals				
Acetaminophen	Antarctic Peninsula	Stream	38	(González-Alonso et al., 2017)
1	Canada	WWTP	150-570	(Brown and Wong, 2018)
	China	WWTP	2.9-58.4	(Zhang et al., 2018)
		River	3.1-13.7	(He et al., 2018)
		WWTP	39.8	(Wang et al., 2018)
		Surface water	75	(Yao et al., 2018)
		River	1490	(Zha et al., 2017)
	Colombia	WWTP	25-35,100	(Botero-coy et al., 2018)
	Iran	WWTP	17-441	(Biel-maeso et al., 2018b)
	Italy	River	226	(Mandaric et al., 2017)
	Korea	Coastal area	48	(Kim et al., 2017)
	Saudi Arabia	Sea water	2363	(Ali et al., 2017)
	Spain	Sea water	41.5	(Biel-maeso et al., 2018a)
	Taiwan	Aquaculture ponds	91	(Lai et al., 2018)
Acyclovir	Great Lakes	Lake	1100	(Elliott et al., 2018)
mantadine	China	Surface water	108.5-1785	(Peng et al., 2018)
mitriptyline	China	River	4.8	(Wu et al., 2017)
Ampicillin	Vietnam	River	40-164	(Thai et al., 2018)
spirin	India	River	1340	(Mutiyar et al., 2018)
tenolol	Brazil	Surface water	12.6-665	(Ribeiro de Sousa et al., 2018)
	France	Treatment wetlands	1260	(Nuel et al., 2018)
	Iran	WWTP	134–2110	(Biel-maeso et al., 2018b)
	Italy	River	18.1	(Mandaric et al., 2017)
	Korea	Coastal area	85.7	(Kim et al., 2017)
	Spain	Sea water	138.9	(Biel-maeso et al., 2018a)
	Span	WWTP	211	(Afonso-Olivares et al., 2017)
	United Kingdom	River	10.1–100	(Burns et al., 2018)
	USA	Surface water	1700	(Elliott et al., 2018)
torvastatin		River	21.7	
	Italy China	WWTP	88-680	(Mandaric et al., 2017)
zithromycin				(Lin et al., 2018b)
	Colombia	WWTP	3020-4120	(Botero-coy et al., 2018)
	Portugal	River	32.12-35.66	(Pereira et al., 2017)
	Spain	Sea water	17.8	(Biel-maeso et al., 2018a)
		Groundwater	4.86-13.01	(Boy-roura et al., 2018)
	Vietnam	River	19-2270	(Thai et al., 2018)
Bezafibrate	China	Groundwater	0.33	(L. Ma et al., 2018)
		Landfill leachates	660	(Sui et al., 2017)
	Italy	River	10.32	(Mandaric et al., 2017)
	Spain	WWTP	260	(Afonso-Olivares et al., 2017)
Bromazepam	China	Surface water	2.58-3.72	(Xiang et al., 2018)
Carbamazepine	Bangladesh	River	8.8	(Hossain et al., 2018)
	Brazil	Surface water	12.6-659	(Ribeiro de Sousa et al., 2018)
	China	WWTP	43.4-672.5	(Zhang et al., 2018)
		WWTP	0.268-57.8	(Wang et al., 2018)
		Groundwater	0.42-1.21	(L. Ma et al., 2018)
		Surface water	69	(Yao et al., 2018)
		Surface water	12.28-83.8	(Xiang et al., 2018)
		Groundwater	18.1	(Yang et al., 2018)
		Surface water	9.78	(Yang et al., 2018)
		Landfill leachates	2120-6270	(Sui et al., 2017)
		River	13.9	(Zha et al., 2017)
		Surface water	1.38–145	(Peng et al., 2017)
	France	Seawater	1.01	(Poi et al., 2018)
	Tance	Treatment wetlands	448	(Nuel et al., 2018)
	Great Lakes	Lake	330	(Elliott et al., 2018)
	Hungary	Surface water	60-276,000	(Bókony et al., 2018)
	India	River	1346	(Bokony et al., 2018) (Mutiyar et al., 2018)
	Iran	WWTP	21-657	(Biel-maeso et al., 2018)
	Italy	Drinking water	10.3	(Riva et al., 2018)
	17	River	137	(Mandaric et al., 2017)
	Korea	WWTP	1035–11,478	(Ibe et al., 2018)
		River	14-2900	(Ibe et al., 2018)
		Coastal area	4.58-38.6	(Kim et al., 2017)
	Saudi Arabia	Sea water	110	(Ali et al., 2017)
	Spain	Sea water	31.1	(Biel-maeso et al., 2018a)
		WWTP	1290	(Afonso-Olivares et al., 2017)
	United Kingdom	River	8.7-195	(Burns et al., 2018)

Contaminant	Location	Source	Concentration (ng/L)	Reference
Cefalexin	Italy	River	17.1	(Mandaric et al., 2017)
Cefotaxim	Vietnam	River	10-145	(Thai et al., 2018)
Cefuroxim	Vietnam	River	195–7860	(Thai et al., 2018)
Celestolide	Italy	River	74.3	(Mandaric et al., 2017)
	5			
Cimetidine	United Kingdom	River	44	(Burns et al., 2018)
Ciprofloxacin	China	WWTP	2.54-26.2	(Wang et al., 2018)
	Colombia	WWTP	446-1070	(Botero-coy et al., 2018)
	Iran	WWTP	48-1450	(Biel-maeso et al., 2018b)
	Korea	Coastal area	1.25	(Kim et al., 2017)
	Spain	Sea water	211	(Biel-maeso et al., 2018a)
	-	WWTP	89	(Afonso-Olivares et al., 2017)
		Groundwater	30.04-298.29	(Boy-roura et al., 2018)
	Vietnam	River	75–40,900	(Thai et al., 2018)
Citalopram	China	River	5.1	(Wu et al., 2017)
naiopiani		Kivei		
	Italy		93	(Mandaric et al., 2017)
	Portugal		20.70-52.97	(Pereira et al., 2017)
	United Kingdom		71.4	(Burns et al., 2018)
Clarithromycin	Antarctic Peninsula	Glacier drain	20	(González-Alonso et al., 2017)
Clarithromycin	China	WWTP	1.2–342	(Zhang et al., 2018)
-			87-160	(Lin et al., 2018b)
	Iran		7640	(Biel-maeso et al., 2018b)
	Italy	River	159	(Mandaric et al., 2017)
	2	Kivei		
	Portugal		24.8-39.1	(Pereira et al., 2017)
	Vietnam		10-55,097	(Thai et al., 2018)
Climbazole	China	Groundwater	67.7	(Yang et al., 2018)
		Surface water	276	(Yang et al., 2018)
Clofibric acid	China	Groundwater	0.85	(L. Ma et al., 2018)
Clomipramine	China	River	3.2	(Wu et al., 2017)
Clotrimazole	China	Surface water	13.6	(Yang et al., 2018)
louinnazoie	China	Groundwater	3.23	(Yang et al., 2018)
Codeine	India	River	262	
Jodeme		Kivei		(Mutiyar et al., 2018)
	Italy		40.04	(Mandaric et al., 2017)
	United Kingdom		8.0-101	(Burns et al., 2018)
Coprostanol	Vietnam	River	57,800	(Chau et al., 2018)
Cyclophosphamid	China	WWTP	0.103-3.20	(Wang et al., 2018)
Danofloxacin	Spain	Groundwater	26.39-67.78	(Boy-roura et al., 2018)
Desvenlafaxine	Great Lakes	Lake	1200	(Elliott et al., 2018)
	United Kingdom	River	4.6-268	(Burns et al., 2018)
Diazanam	e	Surface water	15.26-79.33	
Diazepam	China	Surface water		(Xiang et al., 2018)
			2.5-104	(Peng et al., 2018)
	India	River	305	(Mutiyar et al., 2018)
Diclofenac	Antarctic Peninsula	Stream	7761	(González-Alonso et al., 2017)
		Glacier drain	77	
	Brazil	Surface water	4.8-364	(Ribeiro de Sousa et al., 2018)
	China	River	32	(Lin et al., 2018a)
		WWTP	7.9–237.7	(Zhang et al., 2018)
		River	20.2	(He et al., 2018)
				(, ,
		Groundwater	0.84-1.87	(L. Ma et al., 2018)
		Surface water	180	(Yao et al., 2018)
		Groundwater	6.03	(Yang et al., 2018)
		Surface water	45.3	(Yang et al., 2018)
		WWTP	13–59	(Lin et al., 2018b)
		Landfill leachates	4810-19,300	(Sui et al., 2017)
		River	374	(Zha et al., 2017)
	Czech Republic	Surface water	1070	(Marsik et al., 2017)
		Treatment Wetlands		
	France		7377	(Nuel et al., 2018)
	Germany	Surface water	1.2-486.5	(Fisch et al., 2017)
	Iran	WWTP	38-1020	(Biel-maeso et al., 2018b)
	Italy	River	675	(Mandaric et al., 2017)
	Mediterranean Sea	Sea water	0.02	(Brumovský et al., 2017)
	Pakistan	WWTP	836,000	(Ashfaq et al., 2017)
	Portugal	River	25.13-51.24	(Pereira et al., 2017)
	0			
	Saudi Arabia	Sea water	14,020	(Ali et al., 2017)
	Slovenia	WWTP	1.24-25.3	(Cesen et al., 2018)
		River	1.81-158	(Cesen et al., 2018)
	Spain	Sea water	31.9	(Biel-maeso et al., 2018a)
Diltiazem	Italy	River	10.5	(Mandaric et al., 2017)
Dimetridazole	China	Surface water	110.5	(Yao et al., 2018)
	China	River	32.9	(He et al., 2018)
Doxycycline				

Contaminant	Location	Source	Concentration (ng/L)	Reference
Enrofloxacin	China	River	2.9	(He et al., 2018)
Erythromycin	China	WWTP	2.4-271.3	(Zhang et al., 2018)
		Surface water	9.2	(Yao et al., 2018)
		Groundwater	57.6	(Yang et al., 2018)
		WWTP	25–99	(Lin et al., 2018b)
	Iran	WWTP	18-359	(Biel-maeso et al., 2018b)
	Italy	River	91.9	(Mandaric et al., 2017)
	Korea	Coastal area	0.196	(Kim et al., 2017)
	Portugal	River	32.89-38.8	(Pereira et al., 2017)
	Spain	Sea water	2.3	(Biel-maeso et al., 2018a)
	China	Surface water	425	(Yang et al., 2018)
	Taiwan	Aquaculture ponds	5.5-57.4	(Lai et al., 2018)
Estazolam	China	Surface water	0.53-1.06	(Xiang et al., 2018)
Fenbendazole	Korea	Coastal area	0.487–9.69	(Kim et al., 2017)
enoprofen	France	Treatment Wetlands	2481	(Nuel et al., 2018)
	Spain	Sea water	7.5	(Biel-maeso et al., 2018a)
Fexofenadine	USA	Surface water	3600	(Elliott et al., 2018)
Fluconazole	China	Groundwater	75.6	(Yang et al., 2018)
luconuzore	China	Surface water	121	(Yang et al., 2018)
Flumequine	Taiwan	Aquaculture ponds	1.8–331	(Lai et al., 2018)
Fluoxetine	China	WWTP	2.36-24.8	(Wang et al., 2018)
100Avunv	China	River	2.3-42.9	(Wu et al., 2017)
	Iran	WWTP	2.3–42.9 4–1570	(Wu et al., 2017) (Biel-maeso et al., 2018b)
Furosemide	Iran	WWTP	161–1990	(Biel-maeso et al., 2018b)
7-1	Italy	River	359	(Mandaric et al., 2017)
Gabapentin	United Kingdom	River	17.4–1445	(Burns et al., 2018)
	Vietnam	WWTP	690–1700	(Nguyen et al., 2018)
Gemfibrozil	Iran	WWTP	518-3720	(Biel-maeso et al., 2018b)
	Italy	River	19.1	(Mandaric et al., 2017)
	China	Landfill leachates	2010-4480	(Sui et al., 2017)
Hydrochlorothiazide	Antarctic Peninsula	Glacier drain	19	(González-Alonso et al., 2017)
Hydrochlorothiazide	Iran	WWTP	280-4430	(Biel-maeso et al., 2018b)
	Italy	River	189.5	(Mandaric et al., 2017)
Ibuprofen	Antarctic Peninsula	Stream	974	(González-Alonso et al., 2017)
	Brazil	Surface water	6.75-373	(Ribeiro de Sousa et al., 2018)
	China	River	2.4-320	(Lin et al., 2018a)
		River	14.3	(He et al., 2018)
		WWTP	26.4-294	(Wang et al., 2018)
		Surface water	590	(Yao et al., 2018)
		WWTP	52-100	(Lin et al., 2018b)
		River	203	(Zha et al., 2017)
	Czech Republic	Surface water	3210	(Marsik et al., 2017)
	France	Treatment Wetlands	3129	(Nuel et al., 2018)
	India	River	2302	(Mutiyar et al., 2018)
	Iran	WWTP	95-751	(Biel-maeso et al., 2018b)
	Italy	River	116	(Mandaric et al., 2017)
	Mediterranean Sea	Sea water	0.063-1.08	(Brumovský et al., 2017)
	Pakistan	WWTP	1,673,000	(Ashfaq et al., 2017)
	Saudi Arabia	Sea water	509	(Ashiaq et al., 2017) (Ali et al., 2017)
	Spain	Sea water	1219	(Biel-maeso et al., 2018a)
	Spun	WWTP	21,700	(Afonso-Olivares et al., 2017a)
	China	Groundwater	48.7	(Yang et al., 2018)
	Cillia	Surface water	292	(Yang et al., 2018)
	Slovenia	WWTP	1.82-35.9	(Yang et al., 2018) (Cesen et al., 2018)
	Siovenia	River	1.82-35.9	
···	Creat Day 11			(Cesen et al., 2018)
ndomethacin	Czech Republic	Surface water	69.29 28.5	(Marsik et al., 2017)
	Italy	River	28.5	(Mandaric et al., 2017)
1 4	Antarctic Peninsula	Glacier drain	56	(González-Alonso et al., 2017)
rbesartan	Italy	River	149	(Mandaric et al., 2017)
Ketoprofen	Brazil	River	620	(Honjo et al., 2017)
	China	WWTP	19.7-844	(Wang et al., 2018)
	Czech Republic	Surface water	930	(Marsik et al., 2017)
	France	Seawater	1.56	(Poi et al., 2018)
		Treatment wetlands	319	(Nuel et al., 2018)
	Iran	WWTP	210-5480	(Biel-maeso et al., 2018b)
	Italy	River	193	(Mandaric et al., 2017)
	Mediterranean Sea	Sea water	0.179	(Brumovský et al., 2017)
	Caralia	WWTP	1170	(Afonso-Olivares et al., 2017)
	Spain	W W I P	11/0	(A101150-011vales et al., 2017)

Science of the Total Environment xxx (xxxx) xxx-xxx

Contaminant	Location	Source	Concentration (ng/L)	Reference
Levamisole	Italy	River	9.44	(Mandaric et al., 2017)
Lidocaine	Great Lakes	Lake	2100	(Elliott et al., 2018)
	USA	Surface water	0.6-431	(Radley et al., 2017)
	0.071	Surface water	2100	(Elliott et al., 2018)
	Vietnam	River	230	(Chau et al., 2018)
Lincomycin	China	River	10.1	(Chau et al., 2018) (He et al., 2018)
Jincomycin	Cinilia			
		Groundwater	339	(Yang et al., 2018)
		Surface water	2840	(Yang et al., 2018)
	Korea	Coastal area	438	(Kim et al., 2017)
	Taiwan	Aquaculture ponds	2.9–226	(Lai et al., 2018)
Lorazepam	China	Surface water	3.21-8.27	(Xiang et al., 2018)
Losartan	Brazil	Seawater	0.60-8.70	(Sanzi et al., 2018)
	China	WWTP	19.7-844	(Wang et al., 2018)
	Colombia	WWTP	761–2760	(Botero-coy et al., 2018)
	France	Treatment wetlands	22,867	(Nuel et al., 2018)
	Italy	River	149	(Mandaric et al., 2017)
Mefenamic acid	China	Groundwater	1.86–3.40	
				(L. Ma et al., 2018) (Elliatt at al., 2018)
Meprobamate	USA	Surface water	110	(Elliott et al., 2018)
Metamizole	Spain	WWTP	3810	(Afonso-Olivares et al., 2017)
Metformin	Saudi Arabia	Sea water	4801	(Ali et al., 2017)
	United Kingdom	River	45.2–2595	(Burns et al., 2018)
	USA	Surface water	34,000	(Elliott et al., 2018)
	Vietnam	River	8250	(Chau et al., 2018)
Methocarbamol	USA	Surface water	590	(Elliott et al., 2018)
Metoprolol	China	WWTP	16.1-1372.8	(Zhang et al., 2018)
-		WWTP	2.26-400	(Wang et al., 2018)
		Surface water	130	(Yao et al., 2018)
		Landfill leachates	5390-14,100	(Sui et al., 2017)
	E			
	France	Treatment wetlands	890	(Nuel et al., 2018)
	Italy	River	57.7	(Mandaric et al., 2017)
	USA	Surface water	410	(Elliott et al., 2018)
Aetoprolol acid	China	Surface water	7.6–324	(Peng et al., 2018)
Metronidazole	China	Surface water	190	(Yao et al., 2018)
	Italy	River	171	(Mandaric et al., 2017)
Mianserin	China	Surface water	0.11-0.52	(Xiang et al., 2018)
Miconazole	China	Groundwater	2.56	(Yang et al., 2018)
N,N–diethyl–meta toluamide	China	WWTP	22.6-469	(Zhang et al., 2018)
,		Groundwater	9.20-15.8	(L. Ma et al., 2018)
N-Acetyl-4-amino antipyrine	China	Surface water	25-213	
2 10				(Peng et al., 2018)
Nalidixic acid	China	WWTP	4.7–199.7	(Zhang et al., 2018)
Naproxen	Antarctic Peninsula	Stream	333	(González-Alonso et al., 2017)
	Brazil	Surface water	6.67–145	(Ribeiro de Sousa et al., 2018)
		River	340	(Honjo et al., 2017)
	China	River	0.6	(He et al., 2018)
		WWTP	16.8	(Wang et al., 2018)
		Surface water	110	(Yao et al., 2018)
		River	10	(Zha et al., 2017)
		Surface water	4–125	(Peng et al., 2018)
	Colombia	WWTP	432-3160	(Botero-coy et al., 2018)
	Czech Republic	Surface water	1424	(Marsik et al., 2017)
	France	Treatment Wetlands	19,904	(Nuel et al., 2018)
	Iran	WWTP	40–1630	(Biel-maeso et al., 2018b)
	Italy	River	73.1	(Mandaric et al., 2017)
	Mediterranean Sea	Sea water	1.7	(Brumovský et al., 2017)
	Pakistan	WWTP	464,000	(Ashfaq et al., 2017)
	Slovenia	WWTP	2.62-235	(Cesen et al., 2018)
		River	2.98-221	(Cesen et al., 2018)
	Spain	Sea water	95.8	(Biel-maeso et al., 2018a)
	Spann	WWTP	872	(Afonso-Olivares et al., 2017)
Vicotine	Voran			
vicouile	Korea	River	59-2040	(Ibe et al., 2018)
		WWTP	345-3532	
Nordiazepam	China	Surface water	0.44-1.22	(Xiang et al., 2018)
Norfloxacin	China	WWTP	624	(Wang et al., 2018)
	Colombia	WWTP	350-606	(Botero-coy et al., 2018)
	Iran	WWTP	5-350	(Biel-maeso et al., 2018b)
	Spain	Sea water	207.5	(Biel-maeso et al., 2018a)
	Vietnam	River	45-22,319	(Thai et al., 2018)
Norverapamil	Italy	River	65.5	(Mandaric et al., 2017)
Ofloxacin	China	River	23	(Lin et al., 2018a)

Contaminant	Location	Source	Concentration (ng/L)	Reference
		River	8	(He et al., 2018)
		WWTP	2.88-384	(Wang et al., 2018)
		Groundwater	6.83	(Yang et al., 2018)
		Surface water	43.5	(Yang et al., 2018)
		WWTP	46	(Lin et al., 2018b)
	France	Treatment wetlands	387	(Nuel et al., 2018)
	Iran	WWTP	37-1470	(Biel-maeso et al., 2018b)
	Korea	Coastal area	12.4	(Kim et al., 2017)
	Pakistan	WWTP	81,000	(Ashfaq et al., 2017)
	Spain	Sea water	34.4	(Biel-maeso et al., 2018a)
		Groundwater	18.15	(Boy-roura et al., 2018)
	Vietnam	River	23-85,190	(Thai et al., 2018)
Omeprazole	France	Treatment wetlands	4979	(Nuel et al., 2018)
Oxazepam	China	Surface water	4.95-7.96	(Xiang et al., 2018)
	France	Seawater	1.74	(Poi et al., 2018)
Oxcarbazepine	France	Treatment wetlands	13,727	(Nuel et al., 2018)
Oxytetracycline	China	Surface water	230	(Yao et al., 2018)
	China	Surface water	1880	(Yang et al., 2018)
	Taiwan	Aquaculture ponds	75	(Lai et al., 2018)
Paracetamol	China	River	16	(Lin et al., 2018a)
		Surface water	17.8	(Yang et al., 2018)
	France	Treatment wetlands	19,810	(Nuel et al., 2018)
	India	River	1565	(Mutiyar et al., 2018)
	Mediterranean Sea	Marine water	0.468-1.70	(Brumovský et al., 2017)
	Pakistan	WWTP	64,000	(Ashfaq et al., 2017)
	Portugal	River	69.15	(Pereira et al., 2017)
	United Kingdom	River	14.3–9822	(Burns et al., 2018)
Paraxanthine	Spain	WWTP	999	(Afonso-Olivares et al., 2017)
Paroxetine	China	River	2.1	(Wu et al., 2017)
Phenacetin	China	River	296	(Zha et al., 2017)
Phenazone	China	Surface water	2.12-66.40	(Peng et al., 2018)
	Italy	River	0.956	(Mandaric et al., 2017)
	Spain	Sea water	309	(Biel-maeso et al., 2018a)
Piroxicam	Italy	River	42.2	(Mandaric et al., 2017)
Pravastatin	Italy	River	40.89	(Mandaric et al., 2017)
Propranolol	Brazil	Surface water	5.46-48.1	(Ribeiro de Sousa et al., 2018)
	China	WWTP	1.9–17.2	(Zhang et al., 2018)
	Iran	WWTP	9–235	(Biel-maeso et al., 2018b)
	Italy	River	57	(Mandaric et al., 2017)
	Korea	Coastal area	11.9	(Kim et al., 2017)
	Spain	Sea water	5.9	(Biel-maeso et al., 2018a)
	United Kingdom	River	64.9	(Burns et al., 2018)
Ranitidine	Iran	WWTP	499-7500	(Biel-maeso et al., 2018b)
	United Kingdom	River	74	(Burns et al., 2018)
Roxithromycin	China	River	1.4–190	(Lin et al., 2018a)
		WWTP	1.9-269	(Zhang et al., 2018)
		Surface water	480	(Yao et al., 2018)
		WWTP	110-210	(Lin et al., 2018b)
Salicylic acid	Brazil	River	5170	(Honjo et al., 2017)
	Germany	Surface water	2.2-51	(Fisch et al., 2017)
	Iran	WWTP	23-419	(Biel-maeso et al., 2018b)
	Italy	River	47.8	(Mandaric et al., 2017)
	Spain	Sea water	977	(Biel-maeso et al., 2018a)
	Vietnam	WWTP	460-660	(Nguyen et al., 2018)
Sertraline	China	River	5	(Wu et al., 2017)
Sotalol	Italy	River	49.4	(Mandaric et al., 2017)
Sparfloxacin	Pakistan	WWTP	19,000	(Ashfaq et al., 2017)
Spiramycin	Iran	WWTP	181-2790	(Biel-maeso et al., 2018b)
Sulfadiazine	Bangladesh	River	0.58	(Hossain et al., 2018)
	China	River	0.93-68	(Lin et al., 2018a)
		WWTP	1.22-41.03	(Zhang et al., 2018)
		WWTP	1.8–57	(Lin et al., 2018b)
		Landfill leachates	540-4690	(Sui et al., 2017)
	Germany	Surface water	0.9-7.6	(Fisch et al., 2017)
Sulfaguanidine	Taiwan	Aquaculture ponds	72.6	(Lai et al., 2018)
Sulfamerazine	Germany	Surface water	0.7-1.2	(Fisch et al., 2017)
Junumerazine				
	China	WWIP	3.7-20	(Lin et al., 2018n)
Sulfamethazine	China China	WWTP Landfill leachates	3.7–26 730–2390	(Lin et al., 2018b) (Sui et al., 2017)

Contaminant	Location	Source	Concentration (ng/L)	Reference
	Spain	Sea water	67.1	(Biel-maeso et al., 2018a)
Sulfamethoxazole	Vietnam	River	10-252,082	(Thai et al., 2018)
	Bangladesh	River	7.24	(Hossain et al., 2018)
	China	River	17.4	(He et al., 2018)
		Surface water	380	(Yao et al., 2018)
		Groundwater	25.7	(Yang et al., 2018)
		WWTP	19–43	(Lin et al., 2018b)
		Landfill leachates	2330	(Sui et al., 2017)
		River	320	(Zha et al., 2017)
		Surface water	2.14-57.88	(Peng et al., 2018)
	France	Seawater	1.6	(Poi et al., 2018)
		Treatment wetlands	5118	(Nuel et al., 2018)
	Germany	Surface water	0.6-47.5	(Fisch et al., 2017)
	USA	Lake	1400	(Elliott et al., 2018)
	Hungary	Surface water	1	(Bókony et al., 2018)
	Iran	WWTP	26-633	(Biel-maeso et al., 2018b)
	Italy	River	106.7	(Mandaric et al., 2017)
	Korea	Coastal area	2.2	(Kim et al., 2017)
	Mediterranean sea	Marine water	0.007-0.017	(Brumovský et al., 2017)
	Saudi Arabia	Sea water	62	(Ali et al., 2017)
	Spain	Sea water	99	(Biel-maeso et al., 2018a)
		WWTP	1520	(Afonso-Olivares et al., 2017)
		Groundwater	0.68-28.60	(Boy-roura et al., 2018)
	Taiwan	Aquaculture ponds	2.2-23.2	(Lai et al., 2018)
	United Kingdom	River	33	(Burns et al., 2018)
	USA	Surface water	1400	(Elliott et al., 2018)
ulfamonomethoxine	China	River	7.4	(He et al., 2018)
	Taiwan	Aquaculture ponds	1.5-98	(Lai et al., 2018)
ulfaquinoxaline	China	River	4	(He et al., 2018)
ulfathiazole	Korea	Coastal area	7.01–18.6	(Kim et al., 2017)
emazepam	China	Surface water	1.15-2.4	(Xiang et al., 2018)
estosterone	Hungary	Surface water	10	(Bókony et al., 2018)
estosterone	Spain	Sea water	63.3	(Biel-maeso et al., 2018a)
raimterene	USA	Surface water	380	(Elliott et al., 2018)
Tramadol	France	Treatment wetlands	193,720	(Nuel et al., 2018)
Tulliudof	United Kingdom	River	21-650	(Burns et al., 2018)
	USA	Surface water	860	(Elliott et al., 2018)
Frimethoprim	Bangladesh	River	17.2	(Hossain et al., 2018)
mileuopim	China	Surface water	4500	(Yao et al., 2018)
	China	WWTP	6.2–15	(Lin et al., 2018)
		Landfill leachates	1550-6000	(Sui et al., 2017)
	Germany	Surface water	1.6–17.8	(Fisch et al., 2017)
		WWTP		(Biel-maeso et al., 2018b)
	Iran		33-788	
	Italy	River	196	(Mandaric et al., 2017)
	Korea	Coastal area	5.3	(Kim et al., 2017)
	Spain	Sea water	10.6	(Biel-maeso et al., 2018a)
	Taiwan	WWTP	31 1.5–9.4	(Afonso-Olivares et al., 2017) (Lai et al., 2018)
	Taiwan	Aquaculture ponds		(Lai et al., 2018)
	Vietnam	River	16-106,587	(Thai et al., 2018)
rimipramine	China	River	2.1	(Wu et al., 2017) (Man danis et al. 2017)
alsartan	Italy	River	344	(Mandaric et al., 2017)
<i>renlafaxine</i>	China	River	4.1	(Wu et al., 2017) (Mandaria et al. 2017)
	Italy	River	197	(Mandaric et al., 2017)
·	USA	Surface water	320	(Elliott et al., 2018)
/erapamil	Italy	River	20.81	(Mandaric et al., 2017)
.gricultural	Durall	River	19.4-72.3	(Enosite et al. 2019)
-Hydroxyatrazine	Brazil			(Sposito et al., 2018)
	China	Surface water	22-2680	(Peng et al., 2018)
cetamiprid	China	Surface water	2.2–58	(Peng et al., 2018)
ldrin	Brazil	River	6.05	(Yamamoto et al., 2018)
minomethylphosphonic acid	Hungary	Surface water	2620-25,900	(Bókony et al., 2018)
trazine	Brazil	River	42.1	(Sposito et al., 2018)
	China	Surface water	21.28-1726	(Peng et al., 2018)
	USA	Surface water	810	(Elliott et al., 2018)
Azoxystrobin	China	Surface water	2.5-45	(Peng et al., 2018)
Carbendazim	China	Surface water	45.8	(Yang et al., 2018)
		Groundwater	9.28	(Yang et al., 2018)
		Surface water	108–1785	(Peng et al., 2018)

Contaminant	Location	Source	Concentration (ng/L)	Reference
Dimethoate	China	Surface water	2.1-57	(Peng et al., 2018)
Diuron	Brazil	River	6.2-11.7	(Sposito et al., 2018)
	China	Surface water	1.7-107	(Peng et al., 2018)
Endosulfan	Brazil	River	6.13	(Yamamoto et al., 2018)
Fipronil				
1 A A A A A A A A A A A A A A A A A A A	Brazil	River	29.2	(Sposito et al., 2018)
Glyphosate	Hungary	Surface water	2360-15,000	(Bókony et al., 2018)
Heptachlor	Brazil	River	1.22-3.53	(Yamamoto et al., 2018)
Hexazinone	Brazil	River	12.7	(Sposito et al., 2018)
midacloprid	Brazil	River	31.4	(Sposito et al., 2018)
	China	Surface water	10.9-1886	(Peng et al., 2018)
midacloprid urea	China	Surface water	1.1-5238	(Peng et al., 2018)
1		Surface water		
soproturon	China		3-847	(Peng et al., 2018)
Malathion	Brazil	River	50.4	(Sposito et al., 2018)
Metalaxyl	China	Surface water	1–30.77	(Peng et al., 2018)
Metolachlor	USA	Surface water	1600	(Elliott et al., 2018)
	China	Surface water	9.44-316	(Peng et al., 2018)
Propiconazole	China	Surface water	1.8-810	(Peng et al., 2018)
Febuconazole	China	Surface water	3.6–133	(Peng et al., 2018)
Febuthiuron	Brazil	River	10.4–25	(Sposito et al., 2018)
Ferbuthylazine	Hungary	Surface water	330	(Bókony et al., 2018)
Ferbutryn	Hungary	Surface water	30	(Bókony et al., 2018)
-	China	Surface water	5.9-1687	(Peng et al., 2018)
Thiamethoxam	China	Surface water	2.9–90.8	(Peng et al., 2018)
	Cillina	Surface water	2.7 90.0	(1 0115 01 ul., 2010)
Drugs	T. 1	D 11		(D : (1.2010)
Benzoylecgonine	Italy	Drinking water	0.61	(Riva et al., 2018)
	Australia	WWTP	117	(Yadav et al., 2018)
Cocaine	Italy	Drinking water	4.44	(Riva et al., 2018)
Codeine	Australia	WWTP	1721	(Yadav et al., 2018)
	Croatia	WWTP	379	(Krizman-matasic et al., 2018)
	Cround	River	4	(Krizman-matasic et al., 2018)
	Vietnam	WWTP	50	
V - 4				(Nguyen et al., 2018)
Ketamine	Taiwan	Aquaculture ponds	2.8-10.8	(Lai et al., 2018)
Methadone	Croatia	WWTP	65	(Krizman-matasic et al., 2018)
	Taiwan	Aquaculture ponds	0.3–13.7	(Lai et al., 2018)
Methamphetamine	Taiwan	Aquaculture ponds	20.5-22.7	(Lai et al., 2018)
	Vietnam	WWTP	100-180	(Nguyen et al., 2018)
Momhine				
Morphine	Australia	WWTP	104	(Yadav et al., 2018)
	Croatia	WWTP	52	(Krizman-matasic et al., 2018)
Nicotine	Italy	Drinking water	28.3	(Riva et al., 2018)
	USA	Surface water	490	(Elliott et al., 2018)
Food industry				
Bisphenol A	Brazil	River	9.9-48.7	(Sposito et al., 2018)
	China	River	1131	(Tan et al., 2018)
	Cinina			
		River	23-107	(Niu and Zhang, 2018)
		Surface water	26-720	(Yanhua Liu et al., 2017)
		River	12.75-62.78	(Diao et al., 2017)
		River	1.7-563	(Yan-hua Liu et al., 2017)
	Italy	Drinking water	9.72–683	(Riva et al., 2018)
	Slovenia	WWTP	20.3-118	(Cesen et al., 2018)
	Thailand	Freshwater	50.67	(Ocharoen et al., 2018)
	USA	Surface water	2700	(Elliott et al., 2018)
			20-1040	(Sposito et al., 2018)
Caffeine	Brazil	River	20-1040	
Caffeine				
Caffeine	Brazil	River	27.9–24,961	(Ribeiro de Sousa et al., 2018)
Caffeine		River Surface water	27.9–24,961 3500	(Ribeiro de Sousa et al., 2018) (Yao et al., 2018)
Caffeine	Brazil	River Surface water Landfill leachates	27.9–24,961 3500 1700–349,000	(Ribeiro de Sousa et al., 2018) (Yao et al., 2018) (Sui et al., 2017)
Caffeine	Brazil	River Surface water	27.9–24,961 3500	(Ribeiro de Sousa et al., 2018) (Yao et al., 2018)
Caffeine	Brazil	River Surface water Landfill leachates	27.9–24,961 3500 1700–349,000	(Ribeiro de Sousa et al., 2018) (Yao et al., 2018) (Sui et al., 2017)
Caffeine	Brazil	River Surface water Landfill leachates WWTP	27.9–24,961 3500 1700–349,000 2.42–686 767	(Ribeiro de Sousa et al., 2018) (Yao et al., 2018) (Sui et al., 2017) (Wang et al., 2018) (Yang et al., 2018)
Caffeine	Brazil China	River Surface water Landfill leachates WWTP Surface water Groundwater	27.9–24,961 3500 1700–349,000 2.42–686 767 50.9	(Ribeiro de Sousa et al., 2018) (Yao et al., 2018) (Sui et al., 2017) (Wang et al., 2018) (Yang et al., 2018) (Yang et al., 2018)
Caffeine	Brazil China Hungary	River Surface water Landfill leachates WWTP Surface water Groundwater Surface water	27.9–24,961 3500 1700–349,000 2.42–686 767 50.9 40–90	(Ribeiro de Sousa et al., 2018) (Yao et al., 2018) (Sui et al., 2017) (Wang et al., 2018) (Yang et al., 2018) (Yang et al., 2018) (Bókony et al., 2018)
Caffeine	Brazil China Hungary India	River Surface water Landfill leachates WWTP Surface water Groundwater Surface water River	27.9–24,961 3500 1700–349,000 2.42–686 767 50.9 40–90 2640	(Ribeiro de Sousa et al., 2018) (Yao et al., 2018) (Sui et al., 2017) (Wang et al., 2018) (Yang et al., 2018) (Yang et al., 2018) (Bókony et al., 2018) (Mutiyar et al., 2018)
Caffeine	Brazil China Hungary	River Surface water Landfill leachates WWTP Surface water Groundwater Surface water	27.9–24,961 3500 1700–349,000 2.42–686 767 50.9 40–90	(Ribeiro de Sousa et al., 2018) (Yao et al., 2018) (Sui et al., 2017) (Wang et al., 2018) (Yang et al., 2018) (Yang et al., 2018) (Bókony et al., 2018)
Caffeine	Brazil China Hungary India	River Surface water Landfill leachates WWTP Surface water Groundwater Surface water River	27.9–24,961 3500 1700–349,000 2.42–686 767 50.9 40–90 2640	(Ribeiro de Sousa et al., 2018) (Yao et al., 2018) (Sui et al., 2017) (Wang et al., 2018) (Yang et al., 2018) (Yang et al., 2018) (Bókony et al., 2018) (Mutiyar et al., 2018)
Caffeine	Brazil China Hungary India Italy	River Surface water Landfill leachates WWTP Surface water Groundwater Surface water River Drinking water	27.9–24,961 3500 1700–349,000 2.42–686 767 50.9 40–90 2640 2.4–5.2	(Ribeiro de Sousa et al., 2018) (Yao et al., 2018) (Sui et al., 2017) (Wang et al., 2018) (Yang et al., 2018) (Yang et al., 2018) (Bókony et al., 2018) (Mutiyar et al., 2018) (Riva et al., 2018) (Brumovský et al., 2017)
Caffeine	Brazil China Hungary India Italy Mediterranean Sea Saudi Arabian	River Surface water Landfill leachates WWTP Surface water Groundwater Surface water River Drinking water Marine water Sea water	27.9–24,961 3500 1700–349,000 2.42–686 767 50.9 40–90 2640 2.4–5.2 0.030–0.111 7708	(Ribeiro de Sousa et al., 2018) (Yao et al., 2018) (Sui et al., 2017) (Wang et al., 2018) (Yang et al., 2018) (Yang et al., 2018) (Bókony et al., 2018) (Mutiyar et al., 2018) (Riva et al., 2018) (Brumovský et al., 2017) (Ali et al., 2017)
Caffeine	Brazil China Hungary India Italy Mediterranean Sea Saudi Arabian Slovenya	River Surface water Landfill leachates WWTP Surface water Groundwater Surface water River Drinking water Marine water Sea water WWTP	27.9–24,961 3500 1700–349,000 2.42–686 767 50.9 40–90 2640 2.4–5.2 0.030–0.111 7708 58–7630	(Ribeiro de Sousa et al., 2018) (Yao et al., 2018) (Sui et al., 2017) (Wang et al., 2018) (Yang et al., 2018) (Yang et al., 2018) (Bókony et al., 2018) (Mutiyar et al., 2018) (Riva et al., 2018) (Brumovský et al., 2017) (Ali et al., 2017) (Cesen et al., 2018)
Caffeine	Brazil China Hungary India Italy Mediterranean Sea Saudi Arabian	River Surface water Landfill leachates WWTP Surface water Groundwater Surface water River Drinking water Marine water Sea water WWTP WWTP	$\begin{array}{c} 27.9-24,961\\ 3500\\ 1700-349,000\\ 2.42-686\\ 767\\ 50.9\\ 40-90\\ 2640\\ 2.4-5.2\\ 0.030-0.111\\ 7708\\ 58-7630\\ 166-186\end{array}$	(Ribeiro de Sousa et al., 2018) (Yao et al., 2018) (Sui et al., 2017) (Wang et al., 2018) (Yang et al., 2018) (Yang et al., 2018) (Bokony et al., 2018) (Mutiyar et al., 2018) (Riva et al., 2018) (Brumovský et al., 2017) (Ali et al., 2017) (Cesen et al., 2018) (Biel-maeso et al., 2018a)
Caffeine	Brazil China Hungary India Italy Mediterranean Sea Saudi Arabian Slovenya	River Surface water Landfill leachates WWTP Surface water Groundwater Surface water River Drinking water Marine water Sea water WWTP	27.9–24,961 3500 1700–349,000 2.42–686 767 50.9 40–90 2640 2.4–5.2 0.030–0.111 7708 58–7630	(Ribeiro de Sousa et al., 2018) (Yao et al., 2018) (Sui et al., 2017) (Wang et al., 2018) (Yang et al., 2018) (Yang et al., 2018) (Bókony et al., 2018) (Mutiyar et al., 2018) (Riva et al., 2018) (Brumovský et al., 2017) (Ali et al., 2017) (Cesen et al., 2018)
Caffeine	Brazil China Hungary India Italy Mediterranean Sea Saudi Arabian Slovenya	River Surface water Landfill leachates WWTP Surface water Groundwater Surface water River Drinking water Marine water Sea water WWTP WWTP	$\begin{array}{c} 27.9-24,961\\ 3500\\ 1700-349,000\\ 2.42-686\\ 767\\ 50.9\\ 40-90\\ 2640\\ 2.4-5.2\\ 0.030-0.111\\ 7708\\ 58-7630\\ 166-186\end{array}$	(Ribeiro de Sousa et al., 2018) (Yao et al., 2018) (Sui et al., 2017) (Wang et al., 2018) (Yang et al., 2018) (Yang et al., 2018) (Bokony et al., 2018) (Mutiyar et al., 2018) (Riva et al., 2018) (Brumovský et al., 2017) (Ali et al., 2017) (Cesen et al., 2018) (Biel-maeso et al., 2018a)
Caffeine	Brazil China Hungary India Italy Mediterranean Sea Saudi Arabian Slovenya	River Surface water Landfill leachates WWTP Surface water Groundwater Surface water River Drinking water Marine water Sea water WWTP WWTP Coastal water	$\begin{array}{c} 27.9-24,961\\ 3500\\ 1700-349,000\\ 2.42-686\\ 767\\ 50.9\\ 40-90\\ 2640\\ 2.4-5.2\\ 0.030-0.111\\ 7708\\ 58-7630\\ 166-186\\ 6.1-327.3 \end{array}$	(Ribeiro de Sousa et al., 2018) (Yao et al., 2018) (Sui et al., 2017) (Wang et al., 2018) (Yang et al., 2018) (Yang et al., 2018) (Bikony et al., 2018) (Mutiyar et al., 2018) (Riva et al., 2018) (Brumovský et al., 2017) (Ali et al., 2017) (Cesen et al., 2018) (Biel-maeso et al., 2018a) (Biel-maeso et al., 2018a)

Contaminant	Location	Source	Concentration (ng/L)	Reference
	Vietnam	Surface water	13,000	(Chau et al., 2018)
		WWTP	1600	(Nguyen et al., 2018)
Di(2-ethylhexyl)adipate	Vietnam	Surface water	440	(Chau et al., 2018)
Diethyl phthalate	China	River	25-310	(Niu and Zhang, 2018)
- 1	Hungary	Surface water	30-250	(Bókony et al., 2018)
	Vietnam	Surface water	7490	(Chau et al., 2018)
Di-n-butyl phthalate	Vietnam	Surface water	4920	(Chau et al., 2018)
Triphenylphosphate	Vietnam	Surface water	140	(Chau et al., 2018)
Personal Care Products	Vietnam	Surface water	110	(Chuu et ul., 2010)
2–Ethylhexyl methoxycinnamate	Australia	Surface water	8.9-640	(Allinson et al., 2018)
2–Hydroxy–4–methoxybenzophenone	Australia	Surface water	4.3-7.1	(Allinson et al., 2018)
2–Phenoxyethanol	Australia	Surface water	7.6–315	(Allinson et al., 2018)
2				
4–Methylbenzilidene camphor	Australia	Surface water	642	(Allinson et al., 2018)
	China	WWTP	0.442–57.2	(Wang et al., 2018)
	Italy	WWTP	<1.8	(Palmiotto et al., 2018)
		River	61.65	(Mandaric et al., 2017)
Benzophenone	Australia	Surface water	21.8–36.4	(Allinson et al., 2018)
Benzyl salicylate	Australia	Surface water	6	(Allinson et al., 2018)
Benzophenone-1 (BP1)	Germany	Surface water	1.3–2.8	(Fisch et al., 2017)
Benzophenone-3 (BP3)	China	WWTP	8.72	(Wang et al., 2018)
	Germany	Surface water	6.7–11.4	(Fisch et al., 2017)
	Italy	WWTP	4.1	(Palmiotto et al., 2018)
	2	Drinking water	1.1-5.7	(Riva et al., 2018)
		River	14.3	(Mandaric et al., 2017)
Benzophenone-4 (BP4)	Italy	WWTP	454.7	(Palmiotto et al., 2018)
Butyl paraben	China	Surface water	0.4	(Yang et al., 2018)
DEET	China	Surface water	9.9–574	(Peng et al., 2018)
DEET	China	WWTP	38.8-57.2	(L. Ma et al., 2018)
		Groundwater	9.20–15.8	(L. Ma et al., 2018)
		Surface water	101	(Yang et al., 2018)
		Groundwater	53.8	(Yang et al., 2018)
	Mediterranean Sea	Marine water	0.506-1.21	(Brumovský et al., 2017)
	Saudi Arabia	Sea water	49	(Ali et al., 2017)
	USA	Surface water	5100	(Elliott et al., 2018)
	Vietnam	WWTP	300-400	(Nguyen et al., 2018)
Ethyl paraben	Australia	Surface water	245	(Allinson et al., 2018)
	China	WWTP	1.9	(W. L. Ma et al., 2018)
Galaxolide	Australia	Surface water	10.2	(Allinson et al., 2018)
HHCB	USA	Surface water	2200	(Elliott et al., 2018)
Lauryl diethanolamide	China	Surface water	6.2-646	(Peng et al., 2018)
Methyl paraben	Australia	Surface water	4-1770	(Allinson et al., 2018)
······································	China	River	3.2–10.3	(He et al., 2018)
	China	WWTP	57.6	(W. L. Ma et al., 2018)
		WWTP	94.4	(Wang et al., 2018)
		Surface water	24.4	(Yang et al., 2018)
	C1	Groundwater	14.9	(Yang et al., 2018)
	Slovenya	WWTP	14.2-52.8	(Cesen et al., 2018)
Octocrylene	Australia	Surface water	2-109	(Allinson et al., 2018)
	China	Surface water	3-258.8	(Peng et al., 2018)
	Germany	Surface water	5.3-30.8	(Fisch et al., 2017)
Octyl salycilate	Australia	Surface water	18-31.6	(Allinson et al., 2018)
Octyldimethyl PABA	Australia	Surface water	0.4	(Allinson et al., 2018)
ODPABA	Italy	River	748	(Mandaric et al., 2017)
PBSA	Germany	Surface water	1.8-836	(Fisch et al., 2017)
	Italy	WWTP	347.7	(Palmiotto et al., 2018)
		Drinking water	50	(Riva et al., 2018)
		Groundwater	3.7–1853	(Castiglioni et al., 2018)
Propyl paraben	Australia	Surface water	237	(Allinson et al., 2018)
riopyr paraoen	China	WWTP	115	(Wang et al., 2018)
	Ciinia	Surface water	11.9	(Yang et al., 2018)
		Groundwater	9.5	
	Slovorva			(Yang et al., 2018) (Casan et al., 2018)
	Slovenya	WWTP	2.44-5.18	(Cesen et al., 2018)
Triclocarban	China	Surface water	180	(Yao et al., 2018)
		WWTP	4.78-500	(Wang et al., 2018)
		Surface water	71.8	(Yang et al., 2018)
		Groundwater	25.8	(Yang et al., 2018)
	India	River	2.2-1119	(Vimalkumar et al., 2018)
	Italy	WWTP	<0.6	(Palmiotto et al., 2018)
	Mediterranean Sea	Marine water	0.0036-0.0442	(Brumovský et al., 2017)

Contaminant	Location	Source	Concentration (ng/L)	Reference
Triclosan	Brazil	River	4.54-61.3	(Ribeiro de Sousa et al., 2018)
	China	River	1.5	(He et al., 2018)
		WWTP	88.8	(Wang et al., 2018)
		Surface water	105	(Yang et al., 2018)
		Groundwater	30.9	(Yang et al., 2018)
	Italy	WWTP	329.7	(Palmiotto et al., 2018)
		Groundwater	32-85	(Castiglioni et al., 2018)
	Mediterranean Sea	Marine water	0.305	(Brumovský et al., 2017)
	Slovenia	WWTP	5.05-12.6	(Cesen et al., 2018)
Benzotriazole Ultraviolet Stabilizer-326 (UV-326)	India	River	5.7	(Vimalkumar et al., 2018)
Benzotriazole Ultraviolet Stabilizer-327 (UV-327)	India	River	9.5	(Vimalkumar et al., 2018)
Benzotriazole Ultraviolet Stabilizer-328 (UV-328)	Australia	Surface water	48.4-216	(Allinson et al., 2018)
	Italy	River	669	(Mandaric et al., 2017)
Benzotriazole Ultraviolet Stabilizer-329 (UV-329)	India	River	31.3	(Vimalkumar et al., 2018)
	Italy	River	553	(Mandaric et al., 2017)
Benzotriazole Ultraviolet Stabilizer-9 (UV-9)	India	River	28.1	(Vimalkumar et al., 2018)

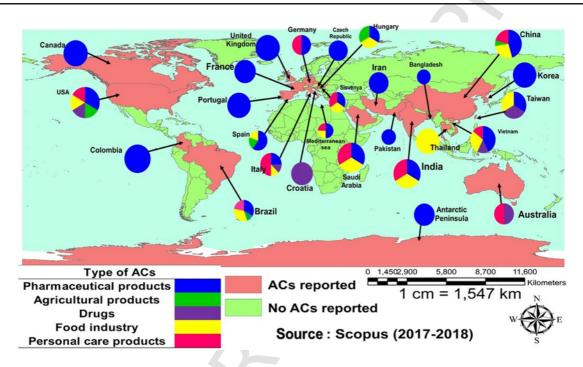


Fig. 3. Map of countries with possible existence of ACs. ACs were classified as per type. Figure was mapped using the software ArcGIS 9.3.1 (Esri, USA). (Data source SCOPUS 2017–2018).

ation in mRNA expression in the intestine, as well as in the expression of antioxidant genes (Stancová et al., 2015).

2.4. Ofloxacin

Ofloxacin is a quinolone antibiotic used for the treatment of bacterial infections and fertility treatments (Erhart et al., 1998). In Hong Kong, ofloxacin at the concentration of 0.7 ng/L has been found in the water samples from rivers (Deng et al., 2016). In Poyang Lake, the largest freshwater lake in China, ofloxacin has been detected below the quantification limit (H. Ding et al., 2017). Whereas, in the Huangpu River and Taihu Lake (Shanghai, China), ofloxacin is reported at the concentrations of approximately 28.5 ng/L and 33.6 ng/L, respectively (Chen and Zhou, 2014; Xu et al., 2014). Sun et al. (2015) reported the occurrences of pharmaceutically related compounds in drinking water sources of major river watersheds in China. Whereas, the persistence of ofloxacin ranged from 4.33 to 9.43 ng/L

in the surface water (Cheng et al., 2014) and 497 ng/L in WWTP (Du et al., 2017). In Shanghai, ofloxacin was found at the concentration of 2936.94 ng/L being the highest in the wastewater (M. H. Wu et al., 2016). In Pakistan, ofloxacin in wastewater was detected at a concentration of 66 µg/L (Ashfaq et al., 2016). Ofloxacin was also found in the range between 12 and 197 ng/L in the northern peninsula of the Antarctic (González-Alonso et al., 2017). In a karst river system (China), ofloxacin was found at a maximum concentration of 308 ng/ L (Huang et al., 2019). In aquatic ecosystems, ofloxacin at the concentrations above 10 mg/L can damage autotrophic organisms by reducing the transport of electrons from the photosystems of plant cells. Therefore, it can reduce the metabolism of plants and consequently, the rate of carbon dioxide transformation (Deng et al., 2015). In animals, the ofloxacin exposure at the concentrations of 5, 10, 20, 40, and 80 µg/mL is harmful. For example, in chondrocytes of juvenile rabbits, it causes an increase in oxidative stress, lipid peroxidation, DNA damage, and reduction of antioxidant enzymes (Li et al., 2010).

2.5. Acetaminophen

3. Pollutants from agricultural products

3.1. Atrazine

Atrazine is an herbicide which is used to kill weeds in various crops, such as sugar cane, corn, pineapple, and sorghum, among others (Wirbisky and Freeman, 2017). Because it is soluble in water, it can reach to surface and groundwater bodies by surface runoff, underground runoff, infiltration and/or accidental spillage during improper handling (EPA, 2017a). Due to its potential to filtrate through the soil, this compound has been found in drinking water reserves at the concentrations of 0.42 ppb (Stayner et al., 2017). Exposure to 30 µg/L of atrazine had negative effects in the zebrafish (Danio rerio, wild-type AB strain). It can cause the loss of methylation in the DNA and lead to the loss of genome protection (Wirbisky-Hershberger et al., 2017). Exposure to 10 mg/L of atrazine can changes the number of copies of some genes, as well as alterations of gene expression (Wirbisky and Freeman, 2017). It has also been proven that exposure to atrazine (300 ng/L) increases the probability of cancer, angiogenesis, and neuronal alterations (Wirbisky et al., 2016). In the crayfish Cherax quadricarinatus, the exposure to 2.5 mg/L of atrazine in the juvenile stage causes an imbalance in the sexual ratios by increasing the female proportions, which affects the reproductive rates of the species (Mac Loughlin et al., 2016).

3.2. Carbendazim

Carbendazim is a broad-spectrum fungicide used for pests control in agriculture (Andrade et al., 2016). In China, the maximum dietary exposure of carbendazim (0.26 mg/person/day) through consumption of the residues existing in tomato crops has been reported (Li et al., 2016). In the water flea Daphnia magna, carbendazim at 5 to $50 \,\mu\text{g}/$ L had serious ecotoxicity repercussions. It causes genotoxicity, DNA damage, and reduces the rate of reproduction (Silva et al., 2015). In the zebrafish (Danio rerio), carbendazim at 20 and 100 µg/L induces apoptosis by up-regulation of the genes p53, Mdm2, Bbc3, and Cas8. It is also immunotoxic and alters the endocrine system in embryonic cells (Jiang et al., 2014). The exposure of carbendazim in a range of 4-500 µg/L produces different trends in gene expression at larval stages (Jiang et al., 2015), as well as locomotor abnormalities and other alterations in the behavior of the species at 160 ng/L (Andrade et al., 2016). The combined effects of intra- and interspecific competition for food and exposure to carbendazim (400, 800 and $1200\,\mu\text{g}/$ L) were analyzed in some species (Del Arco et al., 2015). Aquatic invertebrates have a low tolerance for carbendazim. For example, in the flatworm Dugesia lugubris, 50% of the population died after 96h exposure to 25 µg/L of carbendazim (Van Wijngaarden et al., 1998). At high concentrations (>33 μ g/L), the organisms of the taxa *Cladocera*, Copepod, and Rotatoria suffered a reduction in their populations (Van Den Brink et al., 2000).

3.3. Fipronil

Fipronil is an insecticide used for the control of veterinary and agricultural pests (Stark and Vargas, 2005). Fipronil is leached into the environment through anthropogenic activities, such as crop spraying or the medical treatment of dogs for the control of fleas since the water used after these activities is released untreated into the environmental matrices (Teerlink et al., 2017). In the river Elbe (Germany),

Likewise, other painkillers, Acetaminophen is an NSAID and used to control mild to moderate pain (Cao et al., 2016). In Central Europe, a study was carried out in subsurface constructed wetlands, where influent concentrations contained >10,000 ng/L of acetaminophen, while in the effluent the overall concentration was <50 ng/L (Chen et al., 2016). In 10 different sampling areas of the Mediterranean sea, it has been recorded in the range between 0.468 and 1.70 ng/L (Brumovský et al., 2017). In a river and a WWTP in China, acetaminophen was found at the concentration of 76.6 ng/L and 75.2 ng/L, respectively (He et al., 2019).

The exposure to acetaminophen at the concentration of 66 mg/kg body weight (bw) has undesirable effects on living organisms, such as alterations in biochemistry and histopathology in the liver of rats (Mossa et al., 2012). It has also been demonstrated that with 5 and 15 mg/kg bw exposure to acetaminophen in the early stages of development affects the neurotransmission associated with the medulla oblongata (Blecharz-Klin et al., 2015a), or can directly affect the spinal cord (Blecharz-Klin et al., 2015b). Also, in rats, acetaminophen at 10 and 50 mg/kg bw causes the reduced synthesis of amino acids in brain cells (Blecharz-Klin et al., 2014). At concentrations of 5 and 15 mg/kg bw of acetaminophen damage the cerebellum of developing rats (Blecharz-Klin et al., 2016). While exposure to 66 and 100 mg/ kg bw decrease in the quantity and quality of sperm (Abedi et al., 2017). In Rhamdia quelen exposure to acetaminophen at the concentration of $0.25\,\mu\text{g/L}$ causes a reduction in the levels of hemoglobin, hematocrit, and testosterone. In addition, it also causes hepatotoxicity and disruption in the hypothalamic-pituitary-gonadal axis (Guiloski et al., 2017a). In plants like wheat (Triticum aestivum L.), acetaminophen causes growth inhibition at 200 mg/L, reduces the accumulation of chlorophyll and the synthesis of soluble proteins at 1.4 to 22.4 mg/L and 11.2 to 22.4 mg/L, respectively. Acetaminophen also induces the activity of peroxidase and superoxide dismutase at concentrations ranging from 1.4 to 22.4 mg/L and damages the antioxidant defensive system (An et al., 2009). In the saltwater clam Ruditapes philippinarum, acetaminophen at 0.05 mg/L causes elevated oxidative stress, the alteration of superoxide dismutase (SOD) and reduced/oxidized glutathione (GSH/GSSG) (Correia et al., 2016).

2.6. Progesterone

Progesterone is a steroidal hormone involved in the female reproductive process. It can regulate the activity of a reproductive system, thus used for in vitro fertilization treatments (Dante et al., 2013). Its excessive consumption ultimately finds the way to water bodies through different routes. For instance, the activated sludge from a WWTPs in China contained progesterone in the range of 0.9-237 ng/ g (Q. Wu et al., 2016). In an earlier study, Liu et al. (2015) reported the presence of 0.47 ng/L of progesterone in the South China Sea. In France, progesterone ranging from a few ng/L to 199 ng/L was found in 75% of the water samples collected from the Rhône-Alpes region (Vulliet and Cren-Olive, 2011). Several studies have been conducted to determine the effects caused by steroid hormones. For example, in mosquitofish Gambusia affinis, exposure for 42 days to small doses of progesterone (4-410 ng/L) caused the masculinization of female fish, reduced the fertility of females, altered the transcription of genes related to reproduction, detoxification of the liver, and alterations in ovaries, liver and gills (Hou et al., 2017). In the pond snail, Lymnaea stagnalis, progesterone at 10 ng/L changes the quantity and quality of fipronil and two of its derivatives were found in a concentration of 0.5 to 1.6 ng/L. The same study detected fipronil in eel's muscle $(4.05\pm3.73 \text{ ng/g})$ and in liver tissue $(19.91\pm9.96 \text{ ng/g})$ (Michel et al., 2016), which demonstrates the bioaccumulation in animals. In surface water from Florida (USA), fipronil has been found at the concentrations ranging from 0.5 to 207.3 ng/L (Wu et al., 2015).

In the blue crab Callinectes sapidus, fipronil in a range from 10 to 500 ng/L alter the gene expression, such as decrease of Vtg (vitellogenin) and EcR (ecdysone receptor). These effects were found to be salinity-dependent (Goff et al., 2017). In the water flea Daphnia pulex, exposure to increasing concentrations of fipronil (0-80 µg/L) can reduce the survival in the first, second, third and fourth stages of juvenile development (Stark and Vargas, 2005). In amphibians, like Eupemphix nattereri tadpoles, fipronil (35-180 µg/kg in water and sediment) increase the oxidative stress and lipid peroxidation (Gripp et al., 2017). The exposure up to 15 mg/kg/day of fipronil can alter the cytochrome P450 enzymatic activity and liver damage in rats (Caballero et al., 2015). In the Japanese rice fish (medaka) Oryzias latipes, fipronil (0.1 to 910µg/L) caused sub-lethal alterations in embryos, such as tail deformities and reduced hatching (Wagner et al., 2017). In the Caspian white fish (Rutilus frisii), fipronil (750 mg/kg bw intraperitoneal route) caused acute toxicity along with histopathological alterations to specific organs (Ardeshir et al., 2017).

4. Contaminants from narcotics and other drugs

Narcotics are used to induce human reactions like the stimulation of the central nervous system, analgesia, and narcosis (Fig. 4). The use of this kind of substances is usually regulated by governments due to their adverse human-health related effects (Argoff et al., 2009).

4.1. Amphetamines

Amphetamines are substances that stimulate the central nervous system. They are sympathomimetic type amines, and their mechanism of action involves the physiological pathways of several neurotransmitters, including dopamine, serotonin, and adrenaline. The effects in the human body of the consumption of these substances include an increase in blood pressure, increase in heart rate, the sensation of alertness, high stimulation, improvement of intellectual performance, and feelings of great amounts of energy, accompanied by the decrease in fatigue, sleep, and hunger. Amphetamines can cause dependence. The medical use of amphetamines is for the treatment of narcolepsy and attention deficit in children, at a recommended dose (Robledo, 2008). The existence of amphetamines in different environmental matrices, including WWTPs confirms their anthropogenic origin. The possible accumulation of 4.7 ng/g of amphetamine was recorded in aquatic species, specifically in freshwater mussels (Lasmigona costata) from the Great River in Ontario, Canada (de Solla et al., 2016). In the Puget estuary in Washington, organisms of two species, i.e., (1) Pacific staghorn sculpin (Leptocottus armatus) and (2) Chinook salmon (Oncorhynchus tshawytscha), were collected to identify the bioaccumulated substances. The study found that these species bioaccumulate 245 and 25 ng/g of amphetamine, respectively (Meador et al., 2017). Around 9.7 ng/L of amphetamine was found in the water, 3.3 ng/g in the sediment and 60 ng/g in mussels collected from 5 different places in the bay of San Francisco, California (Klosterhaus et al., 2013). This implies that following the bioaccumulation and passing through the food chain, it can be biomagnified. In the zebrafish (Danio rerio), amphetamine (5 and 10 mg/L) has an effect of hypermobility of the fish and increase in erratic movements such as a change in the direction of movements, as well as an increase in freezing bouts (Kyzar et al., 2013).

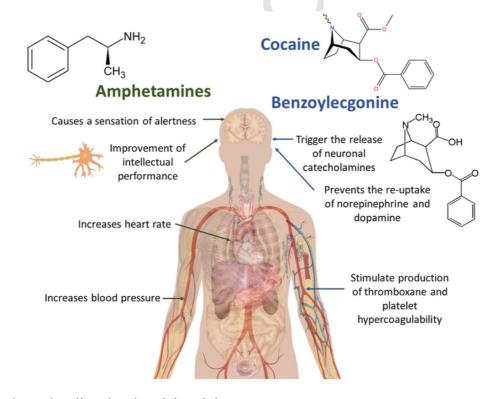


Fig. 4. Effects of amphetamines, cocaine and bencoylecgonine on the human body.

4.2. Cocaine

Cocaine, an illegal substance, was found in surface water and wastewater treatment plants in Belgium, which leads to the direct exposure to animals and plants (García-Cambero et al., 2015; van Nuijs et al., 2009a). Around 28 rivers and 37 WWTPs have been found contaminated with cocaine concentrations ranging from <1 to 753 ng/L. Those concentrations were used to estimate the amount of cocaine abuse by the population>. These were correlated to >1.8 g/day of cocaine for every 1000 people (van Nuijs et al., 2009a). Exposure to cocaine $(0.3 \mu g/L)$ and its metabolites changes the protein profile, alter the transport of lipids and stress response in zebrafish embryos (Parolini et al., 2017a). In Dreissena polymorpha, cocaine (40 ng/L) causes DNA damage, reduces the stability of the lysosomal membrane, increases the number of micronucleated cells, and cellular apoptosis (Binelli et al., 2012). The consumption or exposure to cocaine (20 mg/kg bw) can modify the lipid profile, the main regulators of the neuronal structure and function, of the brain in mice (Lin et al., 2017).

4.3. Benzoylecgonine

Benzoylecgonine is the main metabolite of cocaine and an analgesic from the pharmaceutical industry (Efeoglu et al., 2013). Several studies have been reported the existence of Benzoylecgonine in different water bodies, around the globe. For example, around 10 to 1019 ng/L in the surface waters in Brazil (Campestrini and Jardim, 2017), around 37 to 2130 ng/L in 30 Belgian WWTPs (van Nuijs et al., 2009b), and 14.7 ng/L of benzoylecgonine in 3 London rivers (Wilkinson et al., 2017). In the species, Daphnia magna, exposure to benzoylecgonine (500 ng/L and 1000 ng/L), induces oxidative stress and inhibits acetylcholine transferase. This is related to the swimming pattern and reproductive capacity of the species (Parolini et al., 2017b). In riparian plants and irrigated crops, this contaminant at a concentration of 1 ng/L alters the mitochondrial activity along with a reduction in the germination (García-Cambero et al., 2015). Benzoylecgonine can be transmitted from pregnant rats to their fetuses through maternal blood. Benzoylecgonine was administered to animals by an intravenous bolus dose of 1 mg/kg bw, followed by an infusion at a rate of 0.2 mg/kg bw/min, showing that exposure can cause an organism to pass it on to their offspring (Morishima et al., 2001). In Dreissena polymorpha, it was determined that exposure to benzoylecgonine (500 and 1000 ng/L) affects the stability of the lysosomal membrane and imbalances the defense enzyme activity, which implies an increase of oxidative stress (Parolini et al., 2013).

5. Contaminants from the food industry

Caffeine is the main component of coffee, energy drinks, and some medications used for chronic diseases (Gracia-Lor et al., 2017). The caffeine found in the environment is due to anthropogenic activities (Valenzuela, 2010). In the sea water of the coast of Spain, the existence of caffeine was reported at the concentrations of 857 ng/L (Dafouz et al., 2018). A study of ten WWTPs across Europe found that the amount of caffeine discharged due to consumption by humans was between 37 and 320 mg/person/day (Gracia-Lor et al., 2017). Exposure to caffeine has repercussions on the health of living organisms. Exposure to caffeine (19.41 mg/L) at the larval stage of *Galleria mellonella* affects the behavior and development, as well as increase the abundance of peptides associated with brain trauma (Maguire et al., 2017). In mice, it was determined that exposure to caffeine at the concentration of 2 mg/100g bw affects embryonic de-

velopment by causing a minor malformation of the phalanges of the developing limbs (Lashein et al., 2016). In zebrafish, exposure to $48.54 \mu g/L$ causes cellular damage, increases apoptosis, mitochondrial damage, and morphological abnormalities in the early stages of development (Rah et al., 2017).

Bisphenol A (BPA) is a chemical used in the plastic and epoxy resin industry (Staniszewska et al., 2015; Bilal et al., 2019a). BPA is used to manufacture the food packaging material, baby toys, plastic wares, compact discs, and medical instruments. The way that humans are exposed to this pollutant is through the consumption of food that has been stored in a container with BPA (NIH, 2017). In Taihu Lake, China, the concentrations of BPA and eight analogs in surface waters ranged from 49.7 to 3480 ng/L. It has been found that BPA can accumulate through the food chain (Q. Wang et al., 2017). In India, BPA was found in surface water at the concentrations from 54 to 1950 ng/L (Yamazaki et al., 2015), whereas, in the Baltic region, it was found in a range of <5.0 to 277 ng/L in rivers and the coastal zone (Staniszewska et al., 2015). The consequences of exposure to BPA (5, 25 and 125 µg/kg bw) in rats include a significant decrease in daily weight gain, an increase in gamma globulin, induced damage in the liver, and promotion of death of liver cells (Kazemi et al., 2017). BPA, at concentrations of 8.6 mg/L in water and at 13.5 mg/L in sediment, in Asellus aquaticus acts as an endocrine disruptor (Plahuta et al., 2015). In rats, the exposure to BPA (10 mg/kg bw) caused female rats to reach puberty at a younger age with a possible effect on the reproductive functions (Shi et al., 2017).

6. Personal care products

6.1. Triclosan

Triclosan is an antimicrobial present in the formulations of a large number of personal care products, such as antibacterial gels and toothpaste (Z. Wang et al., 2017). In the USA, the use of triclosan in personal care products is regulated by the FDA (EPA, 2017b). Triclosan has been found in some sediments of rivers in China (0.10-64.9 ng/ g) (Z. F. Chen et al., 2018). In Minnesota, USA, it was found in surface water (0.005-0.31 µg/L), WWTPs (0.13-2.90 µg/L) and in surface sediments (0.9-672 µg/L) (Lyndall et al., 2017). The effects in organisms exposed to 580 ng/L of triclosan include the increase of oxidative stress in the species Dreissena polymorpha (Riva et al., 2012). Also, triclosan reduces the lifespan, survival rate, and fecundity in Brachionus havanaensis and Plationus patulus at a concentration of 6.25 µg/L (González-Pérez et al., 2018). In the frog Pelophylax nigromaculatus it can disrupt gonadal differentiation and development, affecting the sex ratios of the species at a concentration of $0.868 \,\mu\text{g/L}$ (J. Chen et al., 2018). In a study, triclosan was administrated to mice at 10, 100 and 200 mg/kg diet/day, inducing tumors in mice by involving receptors CAR and PPAR α , which mediate the process that increases the synthesis of DNA in the liver (Z. Wang et al., 2017).

6.2. Surfactants

There are different types of surfactants used in personal care products and likewise, triclosan, are regulated by the FDA (EPA, 2017b). Some of the most used are alkyl sulfates. For example, sodium lauryl ether sulfate (SLS), an anionic surfactant, is a mixture of linear primary alkyl ether sulfates (AES) used as an emulsifying agent in household cleaning products. SLS concentration is generally from 0.01% to 50% in cosmetic products and 1%–30% in cleaning products. However, the concentration of SLS in domestic wastewater can vary between 0.4 and 12 mg/L (Marks et al., 2015). One of the problems with SLS is that in WWTPs it causes a decrease in the floccus size of activated sludge. In addition, it becomes toxic to microorganisms by binding to enzymes, structural proteins, and phospholipids, or by changing the hydrophobicity of the bacterial cell (Paulo et al., 2017). Studies show that different concentrations of SLS may affect aquatic organisms, for example, a concentration of 4.68 mg/L causes growth inhibition of marine microalga *Dunaliella salina* (Sibila et al., 2008), and 2.10 mg/L inhibits the freshwater microalgae *Pseudokirchneriella subcapitata* (Pavlić et al., 2005).

7. Human consumption of anthropogenic contaminants and their presence in drinking water reservoirs

ACs have been found in drinking water reservoirs, WWTP, DWTP, and in places where humans are in contact with these contaminated water resources (Fawell and Nieuwenhuijsen, 2003). For example, water from some rivers is used as drinking water, such as the Yangtze River in China. In this river, triclosan was found at the concentrations of 1.85 ng/L, and it was estimated that the daily intake of triclosan is of 0.03 ng/kg bw/day in children and 0.02 ng/kg bw/day in teenagers and adults (X. Ma et al., 2018). In Vietnam, drinking water also contains some pesticides such as butachlor $(0.47 \,\mu\text{g/L})$ and fipronil ($0.04 \mu g/L$). The source of contamination by pesticides may be by direct contact with the pesticide or by infiltration (Toan et al., 2013). As in the case of groundwater from the River Ganges Basin (India), several ACs have been detected, including acetaminophen, at the concentration of 1.92 ng/L, caffeine at 208 ng/L, carbamazepine at 27.2 ng/L, sulfamethoxazole at 3.49 ng/L, diclofenac at 1.56 ng/L, naproxen at 2.37 ng/L, ibuprofen at 49.4 ng/L, and triclosan at 10.2 ng/ L (Sharma et al., 2019). In Milan, groundwater was analyzed after drinking water treatment, and the analysis profile revealed 10.3 ng/ L of carbamazepine, 0.61 ng/L of benzoylecgonine, 4.44 ng/L of cocaine, 683 ng/L of BPA and 5.2 ng/L of caffeine (Riva et al., 2018). Additional studies are included in Table 2.

Groundwater in Sub-Saharan Africa was reported to contain 335 ng/L of carbamazepine, 276 ng/L of ibuprofen, 518 ng/L of diclofenac, 111 ng/L of acetaminophen and 1285 ng/L of sulfamethoxazole (Branchet et al., 2019). A lake in Brazil (Guarapiranga), contained 179 ng/L of benzoylecgonine and 12 ng/L of cocaine. Also, in Brazil, drinking water from rivers that supply five cities contain 652 ng/L of benzoylecgonine and 22 ng/L of cocaine (Campestrini and Jardim, 2017). In China, two recent studies found the following ACs before and after the water treatment process in a DWTP (expressed as AC maximum concentration in raw water to AC concentration in effluent): 37.1 to 6.4 ng/L of acetaminophen, 1.01 to 0.65 ng/L of carbamazepine, 14.2 to 3.8 ng/L of caffeine, 12.0 to 5 ng/L of indomethacin, 4.3 to 2.5 ng/L of lincomycin, 35.4 to 5.4 ng/L of sulfamethoxazole, 17.0 to 3.7 ng/L of trimethoprim (Lin et al., 2016), and 34.9 to 6.5 ng/ L of BPA (Zhang et al., 2019). In a DWTP in Taiwan, BPA was found at the concentration of 38 ng/L after water treatment. Based on these results, it was estimated that the daily intake of BPA per person is between 4.3 and 76 ng/day, considering that a person consumes 21 of water daily (Chen et al., 2013). Water samples from DWTP in Madrid (Spain) were analyzed and found contaminated with ACs, such as methylparaben (9.87-85.89 ng/L), ethylparaben (11.97 ng/L) and BPA (5123 ng/L) (Alda et al., 2018). Another study carried out in a DWTP that treats water from the Mediterranean Llobregat River (Spain). Acetaminophen, carbamazepine, hydrochlorothiazide, thiabendazole, diltiazem, norverapamil, BPA, and propyl-paraben were detected even after the treatment process (Gabarrón et al., 2016). The ACs removal treated in water from а

WTP in the area of Gdańsk (Poland) was determined, and the results are expressed as concentration range and % of compound removal from untreated water): 4.9-5.6 ng/L (0.0%) of ranitidine, 9.3-44.0 ng/L (44.5%) of acetaminophen, 12.7-158.7 ng/L (61.3%) of caffeine, 2.1-6.0 ng/L (88.9%) of carbamazepine, 114.3 ng/L (-298.8%) of diclofenac and 5.7-223.6 ng/L (21.2%) of ibuprofen (Kot-Wasik et al., 2016). Drinking water samples obtained from a local water supply system in Brazil were analyzed (Sodré et al., 2018). The samples were found to contain 3.3 ng/L of atrazine and 16 ng/L of caffeine (Sodré et al., 2018). In Croatia, drinking water samples obtained from municipal water supplies contained 5-68 ng/L of atrazine (Fingler et al., 2017). In Ohio, USA, the atrazine concentration in drinking water was monitored (2006–2008), and it was detected in a range of 0–15.7 µg/L (Almberg et al., 2018).

Furthermore, commercial bottled waters from France and other European countries contain several ACs, i.e., diclofenac, sulfamethoxazole, carbamazepine, ofloxacin, ibuprofen, acetaminophen, caffeine, metformin (12 ng/L), salicylic acid (16 ng/L) and gabapentine (12 ng/ L) (Lardy-Fontan et al., 2017). In Thailand, some commercial canned carbonated drinks and plastic-bottled waters were analyzed. In both types of test samples, BPA was found at the concentrations of 51-340 and 30 ng/L, respectively (Chailurkit et al., 2017). While, in Lebanon, bottled water contained 1.37 ng/L of BPA (Dhaini and Nassif, 2014). In Vietnam, it was reported that 10 brands of bottled water contained some ACs from the agricultural sector, including fenobucarb, isoprothiolane, pretilachlor, fipronil, hexaconazole and azoxystrobin (Chau et al., 2015). A study on the food diet of 50 North Carolina (USA) adults, found BPA at 0.062 ng/mL in 38% of solid food and 4% of drinking water samples. It was estimated that people are consuming up to 10.7 ng/kg/day (Morgan et al., 2018). A study carried out in China with 12 adults (25 years old), ACs detected in urine with 3.5 µg of triclosan/g creatinine and 2.75 µg of BPA/g creatinine (Li et al., 2013).

8. Challenges and threats

The amount of ACs found in different water bodies alarms to consider the pollution plume that is derived from various anthropogenic activities. This is not only damaging for humans but also for many other aquatic species, alike. Although the processes of the current wastewater treatment plants can reduce the pollutant load. However, the above-discussed examples reflect that treated effluents discharged into water bodies have considerable concentrations of different ACs. Thus, more robust strategies are needed for complete removal of various types of ACs. This is even highly requisite in rural areas where there is no such wastewater disposal. The filtration process (groundwater) or storage of water in reservoirs for human consumption is carried out through the flow of water in an endorheic and exorheic basin, thus making it possible for certain ACs to return to the population due to the currents of drinking water treatments. The map proposed, shows that ACs are present at detectable levels in water bodies all over the world. Since these pollutants have been found even in the polar zones, where the production of ACs is considered minimal. For all these reasons, it is necessary to optimize and redesign the treatment of waste and drinking waters for the effective removal of ACs in a safe and eco-friendly way.

9. Concluding summary

In summary, the presence of ACs in different environmental matrices needs more attention, planning of mitigation strategies, and implementation of strategic measures to detect and remove effectively. Unless otherwise, their free movement can cause uncontrol spread throughout the environment and damage various habitats. Until recently, ACs had not been actively addressed as a major environmental concern. In addition, the data discussed above with suitable examples show that the methods used are not sufficient for the removal of ACs. Clearly, more studies are needed to effectively regulate and evaluate the number of hazardous substances found in different environmental matrices around the globe. Besides effective removal, adverse effects on different organisms should also be considered with care. Although the information obtained is of great importance, the studies so far do not reflect the magnitude of the current problem with ACs, as was shown anthropogenic contaminants occurrence around the globe in 2017 and 2018 found in water bodies give the idea that the occurrence of ACs happens around the globe. The majority of the ACs reviewed in this article are endocrine disruptors, which cause changes in behavior, cellular toxicity, genotoxicity, and alter the sex ratios in organisms. These types of contaminants are already affecting the biodiversity hotspots worldwide. Furthermore, they also affect the trophic chain at all levels through bioaccumulation and biomagnification.

Declaration of Competing Interest

The authors declare no conflict of interest.

Acknowledgments

The financial support provided by the Bioprocess Research Chair (0020209113) at Tecnologico de Monterrey, Mexico, Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico, and CONA-CYT-Innovate UK project "Phycopigments" (grant #268792) is thankfully acknowledged. The Master Scholarship awarded by Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico to Itzel Y. López-Pacheco (637424) and Arisbe Silva-Núñez (888365) is thankfully acknowledged.

References

- Abedi, N., Nabi, A., Mangoli, E., Talebi, A.R., 2017. Short and long term effects of different doses of paracetamol on sperm parameters and DNA integrity in mice. Middle East Fertil. Soc. J. 22, 323–328. https://doi.org/10.1016/j.mefs.2017.06. 001.
- Afonso-Olivares, C., Sosa-Ferrera, Z., Santana-Rodríguez, J.J., 2017. Occurrence and environmental impact of pharmaceutical residues from conventional and natural wastewater treatment plants in Gran Canaria (Spain). Sci. Total Environ. 599–600, 934–943. https://doi.org/10.1016/j.scitotenv.2017.05.058.
- Alda, D., Gil, A., Gorga, M., Valc, Y., Navas, J.M., Petrovic, M., Barcel, D., 2018. Determining the presence of chemicals with suspected endocrine activity in drinking water from the Madrid region (Spain) and assessment of their estrogenic, androgenic and thyroidal activities. Chemosphere 201, 388–398. https://doi.org/10.1016/ j.chemosphere.2018.02.099.
- Ali, A.M., Thorsen, H., Alarif, W., Kallenborn, R., Al-lihaibi, S.S., 2017. Occurrence of pharmaceuticals and personal care products in ef fl uent- dominated Saudi Arabian coastal waters of the Red Sea. Chemosphere 175, 505–513. https://doi.org/10. 1016/j.chemosphere.2017.02.095.
- Allinson, M., Kameda, Y., Kimura, K., Allinson, G., 2018. Occurrence and assessment of the risk of ultraviolet filters and light stabilizers in Victorian estuaries. Environ. Sci. Poll. Res. 25 (12), 12022–12033.
- Almberg, K.S., Turyk, M.E., Jones, R.M., Rankin, K., Freels, S., Stayner, L.T., 2018. Atrazine contamination of drinking water and adverse birth outcomes in community water systems with elevated atrazine in Ohio, 2006–2008. Int. J. Environ. Res. Public Health 15, 12–15. https://doi.org/10.3390/ijerph15091889.
- An, J., Zhou, Q., Sun, F., Zhang, L., 2009. Ecotoxicological effects of paracetamol on seed germination and seedling development of wheat (Triticum aestivum L.). J. Hazard. Mater. 169, 751–757. https://doi.org/10.1016/j.jhazmat.2009.04.011.
- Andrade, T.S., Henriques, J.F., Almeida, A.R., Machado, A.L., Koba, O., Giang, P.T., Soares, A.M.V.M., Domingues, I., 2016. Carbendazim exposure induces develop-

mental, biochemical and behavioural disturbance in zebrafish embryos. Aquat. Toxicol. 170, 390–399. https://doi.org/10.1016/j.aquatox.2015.11.017.

- André, C., Gagné, F., 2017. Cumulative effects of ibuprofen and air emersion in zebra mussels Dreissena polymorpha. Environ. Toxicol. Pharmacol. 55, 156–164. https:// doi.org/10.1016/j.etap.2017.08.016.
- Ardeshir, R.A., Zolgharnein, H., Movahedinia, A., Salamat, N., Zabihi, E., 2017. Comparison of waterborne and intraperitoneal exposure to fipronil in the Caspian white fish (Rutilus frisii) on acute toxicity and histopathology. Toxicol. Reports 4, 348–357. https://doi.org/10.1016/j.toxrep.2017.06.010.
- Argoff, C.E., McCleane, G., Kanner, R., 2009. Opioid analgesics. Pain Manag. Secrets 255–261. https://doi.org/10.1016/B978-0-323-04019-8.00034-2.
- Ashfaq, M., Khan, K.N., Rasool, S., Mustafa, G., Saif-Ur-Rehman, M., Nazar, M.F., Sun, Q., Yu, C.P., 2016. Occurrence and ecological risk assessment of fluoroquinolone antibiotics in hospital waste of Lahore, Pakistan. Environ. Toxicol. Pharmacol. 42, 16–22. https://doi.org/10.1016/j.etap.2015.12.015.
- Ashfaq, M., Nawaz Khan, K., Saif Ur Rehman, M., Mustafa, G., Faizan Nazar, M., Sun, Q., Iqbal, J., Mulla, S.I., Yu, C.P., 2017. Ecological risk assessment of pharmaceuticals in the receiving environment of pharmaceutical wastewater in Pakistan. Ecotoxicol. Environ. Saf. 136, 31–39. https://doi.org/10.1016/j.ecoenv.2016. 10.029.
- Barrios-Estrada, C., de Jesús Rostro-Alanis, M., Muñoz-Gutiérrez, B.D., Iqbal, H.M.N., Kannan, S., Parra-Saldívar, R., 2018. Emergent contaminants: endocrine disruptors and their laccase-assisted degradation – a review. Sci. Total Environ. 612, 1516–1531. https://doi.org/10.1016/J.SCITOTENV.2017.09.013.
- Barrios-Estrada, C., de Jesús Rostro-Alanis, M., Parra, A.L., Belleville, M.P., Sanchez-Marcano, J., Iqbal, H.M., Parra-Saldívar, R., 2018. Potentialities of active membranes with immobilized laccase for Bisphenol A degradation. Int. J. Biol. Macromol. 108, 837–844. https://doi.org/10.1016/j.ijbiomac.2017.10.177.
- Biel-maeso, M., Baena-nogueras, R.M., Corada-fernández, C., Lara-martín, P.A., 2018. Occurrence, distribution and environmental risk of pharmaceutically active compounds (PhACs) in coastal and ocean waters from the Gulf of Cadiz (SW Spain). Sci. Total Environ, 612, 649–659. https://doi.org/10.1016/j.scitotenv.2017. 08.279.
- Biel-maeso, M., Corada-fern, C., Lara-martín, P.A., 2018. Monitoring the occurrence of pharmaceuticals in soils irrigated with reclaimed wastewater. Environ. Pollut. 235, 312–321. https://doi.org/10.1016/j.envpol.2017.12.085.
- Bilal, M., Iqbal, H.M., 2019. An insight into toxicity and human-health-related adverse consequences of cosmeceuticals—a review. Sci. Total Environ. 670, 555–568. https://doi.org/10.1016/j.scitotenv.2019.03.261.
- Bilal, M., Asgher, M., Parra-Saldivar, R., Hu, H., Wang, W., Zhang, X., Iqbal, H.M., 2017. Immobilized ligninolytic enzymes: an innovative and environmental responsive technology to tackle dye-based industrial pollutants–a review. Sci. Total Environ. 576, 646–659. https://doi.org/10.1016/j.scitotenv.2016.10.137.
- Bilal, M., Iqbal, H.M., Barceló, D., 2019. Mitigation of bisphenol A using an array of laccase-based robust bio-catalytic cues–a review. Sci. Total Environ. 689, 160–177. https://doi.org/10.1016/j.scitotenv.2019.06.403.
- Bilal, M., Rasheed, T., Nabeel, F., Iqbal, H.M., Zhao, Y., 2019. Hazardous contaminants in the environment and their laccase-assisted degradation–a review. J. Environ. Manag. 234, 253–264. https://doi.org/10.1016/j.jenvman.2019.01.001.
- Bilal, M., Adeel, M., Rasheed, T., Zhao, Y., Iqbal, H.M., 2019. Emerging contaminants of high concern and their enzyme-assisted biodegradation-a review. Environ. Int. 124, 336–353. https://doi.org/10.1016/j.envint.2019.01.011.
- Binelli, A., Pedriali, A., Riva, C., Parolini, M., 2012. Illicit drugs as new environmental pollutants: cyto-genotoxic effects of cocaine on the biological model Dreissena polymorpha. Chemosphere 86, 906–911. https://doi.org/10.1016/j.chemosphere. 2011.10.056.
- Blecharz-Klin, K., Joniec-Maciejak, I., Piechal, A., Pyrzanowska, J., Wawer, A., Widy-Tyszkiewicz, E., 2014. Paracetamol impairs the profile of amino acids in the rat brain. Environ. Toxicol. Pharmacol. 37, 95–102. https://doi.org/10.1016/j.etap. 2013.11.004.
- Blecharz-Klin, K., Joniec-Maciejak, I., Jawna, K., Pyrzanowska, J., Piechal, A., Wawer, A., Widy-Tyszkiewicz, E., 2015. Developmental exposure to paracetamol causes biochemical alterations in medulla oblongata. Environ. Toxicol. Pharmacol. 40, 369–374. https://doi.org/10.1016/j.etap.2015.07.001.
- Blecharz-Klin, K., Joniec-Maciejak, I., Jawna, K., Pyrzanowska, J., Piechal, A., Wawer, A., Widy-Tyszkiewicz, E., 2015. Effect of prenatal and early life paracetamol exposure on the level of neurotransmitters in rats-focus on the spinal cord. Int. J. Dev. Neurosci. 47, 133–139. https://doi.org/10.1016/j.ijdevneu.2015.09.002.
- Blecharz-Klin, K., Joniec-Maciejak, I., Jawna-Zboińska, K., Pyrzanowska, J., Piechal, A., Wawer, A., Widy-Tyszkiewicz, E., 2016. Cerebellar level of neurotransmitters in rats exposed to paracetamol during development. Pharmacol. Reports 68, 1159–1164. https://doi.org/10.1016/j.pharep.2016.06.005.
- Blowes, D.W., Ptacek, C.J., Jambor, J.L., Weisener, C.G., 2003. The geochemistry of acid mine drainage. In: Treatise on Geochemistry. pp. 149–204. https://doi.org/10. 1016/B0-08-043751-6/09137-4.
- Bókony, V., Üveges, B., Ujhegyi, N., Verebélyi, V., Nemesházi, E., Csíkvári, O., Hettyey, A., 2018. Endocrine disruptors in breeding ponds and reproductive health of

toads in agricultural, urban and natural landscapes. Sci. Total Environ. 634, 1335–1345. https://doi.org/10.1016/j.scitotenv.2018.03.363.

Botero-coy, A.M., Martínez-pachón, D., Boix, C., Rincón, R.J., Castillo, N., Arias-marín, L.P., 2018. An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater. Sci. Total Environ. 642, 842–853. https://

doi.org/10.1016/j.scitotenv.2018.06.088.
 Boy-roura, M., Mas-pla, J., Petrovic, M., Gros, M., Soler, D., Brusi, D., Menció, A., 2018. Towards the understanding of antibiotic occurrence and transport in ground-towards the understanding of antibiotic occurrence and transport in ground-towards.

 water: findings from the Baix Fluvià alluvial aquifer (NE Catalonia, Spain). Sci. Total Environ. 612, 1387–1406. https://doi.org/10.1016/j.scitotenv.2017.09.012.
 Branchet, P., Ariza Castro, N., Fenet, H., Gomez, E., Courant, F., Sebag, D., Gardon, J., Jourdan, C., Ngounou Ngatcha, B., Kengne, I., Cadot, E., Gonzalez, C., 2019.
 Anthronic impaction on Sub Scharm undergourges through their sciences.

Anthropic impacts on Sub-Saharan urban water resources through their pharmaceutical contamination (Yaoundé, Center Region, Cameroon). Sci. Total Environ. 660, 886–898. https://doi.org/10.1016/j.scitotenv.2018.12.256.
Brown, A.K., Wong, C.S., 2018. Distribution and fate of pharmaceuticals and their

Brown, A.K., Wong, C.S., 2018. Distribution and fate of pharmaceuticals and their metabolite conjugates in a municipal wastewater treatment plant. Water Res. 144, 774–783. https://doi.org/10.1016/j.watres.2018.08.034.

Brumovský, M., Bečanová, J., Kohoutek, J., Borghini, M., Nizzetto, L., 2017. Contaminants of emerging concern in the open sea waters of the Western Mediterranean. Environ. Pollut. 229, 976–983. https://doi.org/10.1016/j.envpol.2017.07.082.

Burns, E.E., Carter, L.J., Kolpin, D.W., Thomas-oates, J., Boxall, A.B.A., 2018. Temporal and spatial variation in pharmaceutical concentrations in an urban river system. Water Res. 137, 72–85. https://doi.org/10.1016/j.watres.2018.02.066.

Caballero, M.V., Ares, I., Martínez, M., Martínez-Larrañaga, M.R., Anadón, A., Martínez, M.A., 2015. Fipronil induces CYP isoforms in rats. Food Chem. Toxicol. 83, 215–221. https://doi.org/10.1016/j.fct.2015.06.019.

Campestrini, I., Jardim, W.F., 2017. Occurrence of cocaine and benzoylecgonine in drinking and source water in the S??o Paulo State region, Brazil. Sci. Total Environ. 576, 374–380. https://doi.org/10.1016/j.scitotenv.2016.10.089.

Cao, F., Zhang, M., Yuan, S., Feng, J., Wang, Q., Wang, W., Hu, Z., 2016. Transformation of acetaminophen during water chlorination treatment: kinetics and transformation products identification. Environ. Sci. Pollut. Res. 23, 12303–12311. https://doi.org/10.1007/s11356-016-6341-x.

Carmona, E., Andreu, V., Picó, Y., 2014. Occurrence of acidic pharmaceuticals and personal care products in Turia River Basin: from waste to drinking water. Sci. Total Environ. 484, 53–63. https://doi.org/10.1016/j.scitotenv.2014.02.085.

Castiglioni, S., Davoli, E., Riva, F., Palmiotto, M., Camporini, P., Manenti, A., Zuccato, E., 2018. Mass balance of emerging contaminants in the water cycle of a highly urbanized and industrialized area of Italy. Water Res. 131, 287–298. https:// doi.org/10.1016/j.watres.2017.12.047.

Cesen, M., Heath, D., Krivec, M., Kosmrlj, J., Kosjek, T., Heath, E., 2018. Seasonal and spatial variations in the occurrence, mass loadings and removal of compounds of emerging concern in the Slovene aqueous environment and environmental risk assessment. Environ. Pollut. J. 242, https://doi.org/10.1016/j.envpol.2018.06.052.

Chailurkit, L. or, Srijaruskul, K., Ongphiphadhanakul, B., 2017. Bisphenol A in canned carbonated drinks and plastic-bottled water from supermarkets. Expo. Heal. 9, 243–248. https://doi.org/10.1007/s12403-016-0235-5.

Chau, N.D.G., Sebesvari, Z., Amelung, W., Renaud, F.G., 2015. Pesticide pollution of multiple drinking water sources in the Mekong Delta, Vietnam: evidence from two provinces. Environ. Sci. Pollut. Res. 22, 9042–9058. https://doi.org/10.1007/ s11356-014-4034-x.

Chau, H.T.C., Kadokami, K., Duong, H.T., Kong, L., 2018. Occurrence of 1153 Organic Micropollutants in the Aquatic Environment of Vietnam. 7147–7156. https://doi.org/10.1007/s11356-015-5060-z.

Chen, K., Zhou, J.L., 2014. Occurrence and behavior of antibiotics in water and sediments from the Huangpu River, Shanghai, China. Chemosphere 95, 604–612. https://doi.org/10.1016/j.chemosphere.2013.09.119.

Chen, H.W., Liang, C.H., Wu, Z.M., Chang, E.E., Lin, T.F., Chiang, P.C., Wang, G.S., 2013. Occurrence and assessment of treatment efficiency of nonylphenol, octylphenol and bisphenol-A in drinking water in Taiwan. Sci. Total Environ. 449, 20–28. https://doi.org/10.1016/j.scitotenv.2013.01.038.

Chen, Y., Vymazal, J., Březinová, T., Koželuh, M., Kule, L., Huang, J., Chen, Z., 2016. Occurrence, removal and environmental risk assessment of pharmaceuticals and personal care products in rural wastewater treatment wetlands. Sci. Total Environ. 566–567, 1660–1669. https://doi.org/10.1016/j.scitotenv.2016.06.069.

Chen, J., Meng, T., Li, Y., Gao, K., Qin, Z., 2018. Effects of triclosan on gonadal differentiation and development in the frog Pelophylax nigromaculatus. J. Environ. Sci. (China) 64, 157–165. https://doi.org/10.1016/j.jes.2017.05.040.

Chen, Z.F., Wen, H.B., Dai, X., Yan, S.C., Zhang, H., Chen, Y.Y., Du, Z., Liu, G., Cai, Z., 2018. Contamination and risk profiles of triclosan and triclocarban in sediments from a less urbanized region in China. J. Hazard. Mater. 357, 376–383. https://doi.org/10.1016/j.jhazmat.2018.06.020.

Cheng, D., Liu, X., Wang, L., Gong, W., Liu, G., Fu, W., Cheng, M., 2014. Seasonal variation and sediment-water exchange of antibiotics in a shallower large lake in North China. Sci. Total Environ. 476–477, 266–275. https://doi.org/10.1016/j. scitotenv.2014.01.010. Correia, B., Freitas, R., Figueira, E., Soares, A.M.V.M., Nunes, B., 2016. Oxidative effects of the pharmaceutical drug paracetamol on the edible clam Ruditapes philippinarum under different salinities. Comp. Biochem. Physiol. Part - C Toxicol. Pharmacol. 179, 116–124. https://doi.org/10.1016/j.cbpc.2015.09.006.

Dafouz, R., Cáceres, N., Rodríguez-Gil, J.L., Mastroianni, N., López de Alda, M., Barceló, D., de Miguel, Á.G., Valcárcel, Y., 2018. Does the presence of caffeine in the marine environment represent an environmental risk? A regional and global study. Sci. Total Environ. 615, 632–642. https://doi.org/10.1016/j.scitotenv.2017.09.155.

Dante, G., Vaccaro, F., Facchinetti, F., 2013. Use of progestagens during early pregnancy. FVV ObGyn 5, 66–71.

de Solla, S.R., Gilroy, A.M., Klinck, J.S., King, L.E., McInnis, R., Struger, J., Backus, S.M., Gillis, P.L., 2016. Bioaccumulation of pharmaceuticals and personal care products in the unionid mussel Lasmigona costata in a river receiving wastewater effluent. Chemosphere 146, 486–496. https://doi.org/10.1016/j.chemosphere.2015. 12.022.

Del Arco, A.I., Parra, G., Rico, A., Van den Brink, P.J., 2015. Effects of intra- and interspecific competition on the sensitivity of aquatic macroinvertebrates to carbendazim. Ecotoxicol. Environ. Saf. 120, 27–34. https://doi.org/10.1016/j.ecoenv. 2015.05.001.

Deng, C., Pan, X., Zhang, D., 2015. Influence of ofloxacin on photosystems I and II activities of Microcystis aeruginosa and the potential role of cyclic electron flow. J. Biosci. Bioeng. 119, 159–164. https://doi.org/10.1016/j.jbiosc.2014.07.014.

Deng, W., Li, N., Zheng, H., Lin, H., 2016. Occurrence and risk assessment of antibiotics in river water in Hong Kong. Ecotoxicol. Environ. Saf. 125, 121–127. https:// doi.org/10.1016/j.ecoenv.2015.12.002.

Dhaini, H.R., Nassif, R.M., 2014. Exposure assessment of endocrine disruptors in bottled drinking water of Lebanon. Environ. Monit. Assess. 186, 5655–5662. https:// doi.org/10.1007/s10661-014-3810-x.

Diao, P., Chen, Q., Wang, R., Sun, D., Cai, Z., Wu, H., Duan, S., 2017. Phenolic endocrine-disrupting compounds in the Pearl River Estuary: occurrence, bioaccumulation and risk assessment. Sci. Total Environ. 584–585, 1100–1107. https://doi. org/10.1016/j.scitotenv.2017.01.169.

Ding, H., Wu, Y., Zhang, W., Zhong, J., Lou, Q., Yang, P., Fang, Y., 2017. Occurrence, distribution, and risk assessment of antibiotics in the surface water of Poyang Lake, the largest freshwater lake in China. Chemosphere 184, 137–147. https://doi.org/10.1016/j.chemosphere.2017.05.148.

Ding, T., Lin, K., Yang, B., Yang, M., Li, J., Li, W., Gan, J., 2017. Biodegradation of naproxen by freshwater algae Cymbella sp. and Scenedesmus quadricauda and the comparative toxicity. Bioresour. Technol. 238, 164–173. https://doi.org/10.1016/j. biortech.2017.04.018.

Ding, T., Yang, M., Zhang, J., Yang, B., Lin, K., Li, J., Gan, J., 2017. Toxicity, Degradation and Metabolic Fate of Ibuprofen on Freshwater Diatom Navicula sp. https:// doi.org/10.1016/j.jhazmat.2017.02.004.

Du, J., Zhao, H., Liu, S., Xie, H., Wang, Y., Chen, J., 2017. Antibiotics in the coastal water of the South Yellow Sea in China: occurrence, distribution and ecological risks. Sci. Total Environ. 595, 521–527. https://doi.org/10.1016/j.scitotenv.2017. 03.281.

Dvořáková Březinova, T., Vymazal, J., Koželuh, M., Kule, L., 2018. Occurrence and Removal of Ibuprofen and its Metabolites in Full-scale Constructed Wetlands Treating Municipal Wastewater. 120, 1–5. https://doi.org/10.1016/j.ecoleng.2018. 05 020

Efeoglu, P., Daglioglu, N., Hilal, A., Yaldiz, F., Korkut Gulmen, M., 2013. Determination of cocaine and its major metabolite benzoylecgonine in rabbit hair by GC/MS. Rom. J. Leg. Med. 21, 111–114. https://doi.org/10.4323/rjlm.2013.111.

Elliott, S.M., Brigham, M.E., Kiesling, R.L., Schoenfuss, H.L., Jorgenson, Z.G., 2018. Environmentally Relevant Chemical Mixtures of Concern in Waters of United States Tributaries to the Great Lakes. vol. 14, 509–518. https://doi.org/10.1002/ ieam.4041.

EPA, 2017. Atrazine - Background and Updates [WWW Document].

EPA, 2017. Triclosan [WWW Document].

Erhart, B., Chan, P.J., Patton, W.C., King, A., 1998. Ofloxacin: the next generation of antibiotic in sperm and embryo cultures for assisted reproductive technologies. Fertil. Steril. 69, 246–251. https://doi.org/10.1016/S0015-0282(97)00485-8.

Estrada-Arriaga, E.B., Cortés-Muñoz, J.E., González-Herrera, A., Calderón-Mólgora, C.G., de Lourdes Rivera-Huerta, M., Ramírez-Camperos, E., Montellano-Palacios, L., Gelover-Santiago, S.L., Pérez-Castrejón, S., Cardoso-Vigueros, L., Martín-Domínguez, A., García-Sánchez, L., 2016. Assessment of full-scale biological nutrient removal systems upgraded with physico-chemical processes for the removal of emerging pollutants present in wastewaters from Mexico. Sci. Total Environ. 571, 1172–1182. https://doi.org/10.1016/j.scitotenv.2016.07.118.

Falfushynska, H.I., Gnatyshyna, L.L., Horyn, O., Stoliar, O.B., 2017. Vulnerability of marsh frog Pelophylax ridibundus to the typical wastewater effluents ibuprofen, triclosan and estrone, detected by multi-biomarker approach. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 202, 26–38. https://doi.org/10.1016/j.cbpc. 2017.07.004.

Fawell, J., Nieuwenhuijsen, M.J., 2003. Contaminants in drinking water. Br. Med. Bull. 68, 199–208. https://doi.org/10.1093/bmb/ldg027.

- Ferrando-Climent, L., Collado, N., Buttiglieri, G., Gros, M., Rodriguez-Roda, I., Rodriguez-Mozaz, S., Barceló, D., 2012. Comprehensive study of ibuprofen and its metabolites in activated sludge batch experiments and aquatic environment. Sci. Total Environ. 438, 404–413. https://doi.org/10.1016/j.scitotenv.2012.08.073.
- Fingler, S., Mendaš, G., Dvoršćak, M., Stipičević, S., Vasilić, Drevenkar, V., 2017. Herbicide micropollutants in surface, ground and drinking waters within and near the area of Zagreb, Croatia. Environ. Sci. Pollut. Res. 24, 11017–11030. doi:https: //doi.org/10.1007/s11356-016-7074-6.
- Fisch, K., Waniek, J.J., Schulz-bull, D.E., 2017. Occurrence of pharmaceuticals and UV- filters in riverine run-o ff s and waters of the German Baltic Sea. Mar. Pollut. Bull. 124, 388–399. https://doi.org/10.1016/j.marpolbul.2017.07.057.
- Gabarrón, S., Gernjak, W., Valero, F., Barceló, A., Petrovic, M., Rodríguez-roda, I., 2016. Evaluation of emerging contaminants in a drinking water treatment plant using electrodialysis reversal technology. J. Hazard. Mater. 309, 192–201. https:// doi.org/10.1016/j.jhazmat.2016.02.015.
- García-Cambero, J.P., García-Cortés, H., Valcárcel, Y., Catalá, M., 2015. Environmental concentrations of the cocaine metabolite benzoylecgonine induced sublethal toxicity in the development of plants but not in a zebrafish embryo-larval model. J. Hazard. Mater. 300, 866–872. https://doi.org/10.1016/j.jhazmat.2015.08.019.
- Garcia-Morales, R., Rodríguez-Delgado, M., Gomez-Mariscal, K., Orona-Navar, C., Hernandez-Luna, C., Torres, E., ... & Ornelas-Soto, N. 2015. Biotransformation of endocrine-disrupting compounds in groundwater: bisphenol A, nonylphenol, ethynylestradiol and triclosan by a laccase cocktail from *Pycnoporus sanguineus* CS43. Water, Air, Soil Pollution. 226(8), 251. doi:https://doi.org/10.1007/s11270-015-2514-3.
- Goff, A.D., Saranjampour, P., Ryan, L.M., Hladik, M.L., Covi, J.A., Armbrust, K.L., Brander, S.M., 2017. The effects of fipronil and the photodegradation product fipronil desulfinyl on growth and gene expression in juvenile blue crabs, Callinectes sapidus, at different salinities. Aquat. Toxicol. 186, 96–104. https://doi.org/ 10.1016/j.aquatox.2017.02.027.
- González-Alonso, S., Merino, L.M., Esteban, S., López de Alda, M., Barceló, D., Durán, J.J., López-Martínez, J., Aceña, J., Pérez, S., Mastroianni, N., Silva, A., Catalá, M., Valcárcel, Y., 2017. Occurrence of pharmaceutical, recreational and psychotropic drug residues in surface water on the northern Antarctic Peninsula region. Environ. Pollut. 229, 241–254. https://doi.org/10.1016/j.envpol.2017.05.060.
- González-Pérez, B.K., Sarma, S.S.S., Castellanos-Páez, M.E., Nandini, S., 2018. Multigenerational effects of triclosan on the demography of Plationus patulus and Brachionus havanaensis (ROTIFERA). Ecotoxicol. Environ. Saf. 147, 275–282. https://doi.org/10.1016/j.ecoenv.2017.08.049.
- Gracia-Lor, E., Rousis, N.I., Zuccato, E., Bade, R., Baz-Lomba, J.A., Castrignanò, E., Causanilles, A., Hernández, F., Kasprzyk-Hordern, B., Kinyua, J., McCall, A.K., van Nuijs, A.L.N., Plósz, B.G., Ramin, P., Ryu, Y., Santos, M.M., Thomas, K., de Voogt, P., Yang, Z., Castiglioni, S., 2017. Estimation of caffeine intake from analysis of caffeine metabolites in wastewater. Sci. Total Environ. 609, 1582–1588. https://doi.org/10.1016/j.scitotenv.2017.07.258.
- Gripp, H.S., Freitas, J.S., Almeida, E.A., Bisinoti, M.C., Moreira, A.B., 2017. Biochemical effects of fipronil and its metabolites on lipid peroxidation and enzymatic antioxidant defense in tadpoles (Eupemphix nattereri: Leiuperidae). Ecotoxicol. Environ. Saf. 136, 173–179. https://doi.org/10.1016/j.ecoenv.2016.10.027.
- Guiloski, I.C., Ribas, J.L.C., Piancini, L.D.S., Dagostim, A.C., Cirio, S.M., Fávaro, L.F., Boschen, S.L., Cestari, M.M., da Cunha, C., Silva de Assis, H.C., 2017. Paracetamol causes endocrine disruption and hepatotoxicity in male fish Rhamdia quelen after subchronic exposure. Environ. Toxicol. Pharmacol. 53, 111–120. https://doi.org/10.1016/j.etap.2017.05.005.
- Guiloski, I.C., Stein Piancini, L.D., Dagostim, A.C., de Morais Calado, S.L., Fávaro, L.F., Boschen, S.L., Cestari, M.M., da Cunha, C., Silva de Assis, H.C., 2017. Effects of environmentally relevant concentrations of the anti-inflammatory drug diclofenac in freshwater fish Rhamdia quelen. Ecotoxicol. Environ. Saf. 139, 291–300. https://doi.org/10.1016/j.ecoenv.2017.01.053.
- He, S., Dong, D., Zhang, X., Sun, C., Wang, C., Hua, X., Zhang, L., Guo, Z., 2018. Occurrence and Ecological Risk Assessment of 22 Emerging Contaminants in the Jilin Songhua River (Northeast China). 24003–24012.
- He, S., Dong, D., Sun, C., Zhang, X., Zhang, L., Hua, X., Guo, Z., 2019. Contaminants of emerging concern in a freeze-thaw river during the spring fl ood. Sci. Total Environ. 670, 576–584. https://doi.org/10.1016/j.scitotenv.2019.03.256.
- Hong, H.N., Kim, H.N., Park, K.S., Lee, S.-K., Gu, M.B., 2007. Analysis of the effects diclofenac has on Japanese medaka (Oryzias latipes) using real-time PCR. Characteristics 2006 1211 https://doi.org/10.1016/j.feture.pcbaracteristics.2006 12.000
- Chemosphere 67, 2115–2121. https://doi.org/10.1016/j.chemosphere.2006.12.090. Honjo, A., Arimura, R., Oliveira, L., Pereira, J., Rodriguez de Azevedo, J., 2017. Occurrence of pharmaceutical products, female sex hormones and caffeine in a subtropical region in Brazil. Clean 45, https://doi.org/10.1002/clen.201700334.
- Hossain, A., Nakamichi, S., Tani, K., 2018. Occurrence and ecological risk of pharmaceuticals in river surface water of Bangladesh. Environ. Res. 165, 258–266. https:// doi.org/10.1016/j.envres.2018.04.030.
- Hou, L., Xu, H., Ying, G., Yang, Y., Shu, H., Zhao, J., Cheng, X., 2017. Physiological responses and gene expression changes in the western mosquitofish (Gambusia

affinis) exposed to progesterone at environmentally relevant concentrations. Aquat. Toxicol. 192, 69–77. https://doi.org/10.1016/j.aquatox.2017.09.011.

- Huang, F., Zou, S., Deng, D., Lang, H., Liu, F., 2019. Antibiotics in a typical karst river system in China: spatiotemporal variation and environmental risks. Sci. Total Environ. 650, 1348–1355. https://doi.org/10.1016/j.scitotenv.2018.09.131.
- Ibe, K., Sim, W., Lee, H., Oh, J., 2018. Occurrence and distribution of carbamazepine, nicotine, estrogenic compounds, and their transformation products in wastewater from various treatment plants and the aquatic environment. Sci. Total Environ. 640–641, 1015–1023. https://doi.org/10.1016/j.scitotenv.2018.05.218.
- Inostroza, P.A., Massei, R., Wild, R., Krauss, M., Brack, W., 2017. Chemical activity and distribution of emerging pollutants: insights from a multi-compartment analysis of a freshwater system. Environ. Pollut. 231, 339–347. https://doi.org/10.1016/ j.envpol.2017.08.015.
- Isidori, M., Lavorgna, M., Nardelli, A., Parrella, A., Previtera, L., Rubino, M., 2005. Ecotoxicity of naproxen and its phototransformation products. Sci. Total Environ. 348, 93–101. https://doi.org/10.1016/j.scitotenv.2004.12.068.
- Jiang, J., Wu, S., Wu, C., An, X., Cai, L., Zhao, X., 2014. Embryonic exposure to carbendazim induces the transcription of genes related to apoptosis, immunotoxicity and endocrine disruption in zebrafish (Danio rerio). Fish Shellfish Immunol 41, 493–500. https://doi.org/10.1016/j.fsi.2014.09.037.
- Jiang, J., Wu, S., Wang, Y., An, X., Cai, L., Zhao, X., Wu, C., 2015. Carbendazim has the potential to induce oxidative stress, apoptosis, immunotoxicity and endocrine disruption during zebrafish larvae development. Toxicol. Vitr. 29, 1473–1481. https://doi.org/10.1016/j.tiv.2015.06.003.
- Kazemi, S., Mousavi Kani, S.N., Rezazadeh, L., Pouramir, M., Ghasemi-Kasman, M., Moghadamnia, A.A., 2017. Low dose administration of bisphenol A induces liver toxicity in adult rats. Biochem. Biophys. Res. Commun. 494, 107–112. https://doi. org/10.1016/j.bbrc.2017.10.074.
- Kermia, A.E.B., Fouial-Djebbar, D., Trari, M., 2016. Occurrence, fate and removal efficiencies of pharmaceuticals in wastewater treatment plants (WWTPs) discharging in the coastal environment of Algiers. Comptes Rendus Chim 19, 963–970. https://doi.org/10.1016/j.erci.2016.05.005.
- Kim, H., Lee, I., Oh, J., 2017. Human and veterinary pharmaceuticals in the marine environment including fi sh farms in Korea. Sci. Total Environ. 579, 940–949. https: //doi.org/10.1016/j.scitotenv.2016.10.039.
- Klosterhaus, S.L., Grace, R., Hamilton, M.C., Yee, D., 2013. Method validation and reconnaissance of pharmaceuticals, personal care products, and alkylphenols in surface waters, sediments, and mussels in an urban estuary. Environ. Int. 54, 92–99. https://doi.org/10.1016/j.envint.2013.01.009.
- Kot-Wasik, A., Jakimska, A., Śliwka-Kaszyńska, M., 2016. Occurrence and seasonal variations of 25 pharmaceutical residues in wastewater and drinking water treatment plants. Environ. Monit. Assess. 188, https://doi.org/10.1007/s10661-016-5637-0.
- Krizman-matasic, I., Kostanjevecki, P., Ahel, M., Terzic, S., 2018. Simultaneous analysis of opioid analgesics and their metabolites in municipal wastewaters and river water by liquid chromatography – tandem mass spectrometry. J. Chromatogr. A 1533, 102–111. https://doi.org/10.1016/j.chroma.2017.12.025.
- Kyzar, E., Stewart, A.M., Landsman, S., Collins, C., Gebhardt, M., Robinson, K., Kalueff, A.V., 2013. Behavioral effects of bidirectional modulators of brain monoamines reserpine and d-amphetamine in zebrafish. Brain Res. 1527, 108–116. https://doi.org/10.1016/j.brainres.2013.06.033.
- Lai, W.W., Lin, Y., Wang, Y., Guo, Y.L., Lin, A.Y., 2018. Occurrence of Emerging Contaminants in Aquaculture Waters: Cross-Contamination between Aquaculture Systems and Surrounding Waters.
- Lardy-Fontan, S., Le Diouron, V., Drouin, C., Lalere, B., Vaslin-Reimann, S., Dauchy, X., Rosin, C., 2017. Validation of a method to monitor the occurrence of 20 relevant pharmaceuticals and personal care products in 167 bottled waters. Sci. Total Environ. 587–588, 118–127. https://doi.org/10.1016/j.scitotenv.2017.02.074.
- Lashein, F.E.-D.M., Seleem, A.A., Ahmed, A.A., 2016. Effect of caffeine and retinoic acid on skeleton of mice embryos. J. Basic Appl. Zool. 75, 36–45. https://doi.org/ 10.1016/j.jobaz.2016.06.003.
- Lee, J., Ji, K., Lim Kho, Y., Kim, P., Choi, K., 2011. Chronic exposure to diclofenac on two freshwater cladocerans and Japanese medaka. Ecotoxicol. Environ. Saf. 74, 1216–1225. https://doi.org/10.1016/j.ecoenv.2011.03.014.
- Letsinger, S., Kay, P., Rodríguez-mozaz, S., Villagrassa, M., Barceló, D., Rotchell, J.M., 2019. Spatial and Temporal Occurrence of Pharmaceuticals in UK Estuaries. 678, 74–84. https://doi.org/10.1016/j.scitotenv.2019.04.182.
- Li, Q., Peng, S., Sheng, Z., Wang, Y., 2010. Ofloxacin induces oxidative damage to joint chondrocytes of juvenile rabbits: excessive production of reactive oxygen species, lipid peroxidation and DNA damage. Eur. J. Pharmacol. 626, 146–153. https://doi.org/10.1016/j.ejphar.2009.09.044.
- Li, X., Ying, G.G., Zhao, J.L., Chen, Z.F., Lai, H.J., Su, H.C., 2013. 4-Nonylphenol, bisphenol-A and triclosan levels in human urine of children and students in China, and the effects of drinking these bottled materials on the levels. Environ. Int. 52, 81–86. https://doi.org/10.1016/j.envint.2011.03.026.
- Li, H., du, H., Fang, L., Dong, Z., Guan, S., Fan, W., Chen, Z., 2016. Residues and dissipation kinetics of carbendazim and diethofencarb in tomato (Lycopersicon escu-

lentum Mill.) and intake risk assessment. Regul. Toxicol. Pharmacol. 77, 200–205. https://doi.org/10.1016/j.yrtph.2016.03.012.

- Lin, T., Yu, S., Chen, W., 2016. Occurrence, removal and risk assessment of pharmaceutical and personal care products (PPCPs) in an advanced drinking water treatment plant (ADWTP) around Taihu Lake in China. Chemosphere 152, 1–9. https:// doi.org/10.1016/j.chemosphere.2016.02.109.
- Lin, Y., Gu, H., Jiang, L., Xu, W., Liu, C., Li, Y., Qian, X., Li, D., Li, Z., Hu, J., Zhang, H., Guo, W., Zhao, Y., Cen, X., 2017. Cocaine modifies brain lipidome in mice. Mol. Cell. Neurosci. 85, 29–44. https://doi.org/10.1016/j.mcn.2017.08.004.
- Lin, H., Chen, L., Li, H., Luo, Z., Lu, J., Yang, Z., 2018. Pharmaceutically active compounds in the Xiangjiang River, China: distribution pattern, source apportionment, and risk assessment. Sci. Total Environ. 636, 975–984. https://doi.org/10.1016/j. scitotenv.2018.04.267.
- Lin, H., Li, H., Chen, L., Li, L., Yin, L., Lee, H., Yang, Z., 2018. Mass loading and emission of thirty-seven pharmaceuticals in a typical municipal wastewater treatment plant in Hunan Province, Southern China. Ecotoxicol. Environ. Saf. 147, 530–536. https://doi.org/10.1016/j.ecoenv.2017.08.052.
- Liu, S., Chen, H., Zhou, G.J., Liu, S.S., Yue, W.Z., Yu, S., Sun, K.F., Cheng, H., Ying, G.G., Xu, X.R., 2015. Occurrence, source analysis and risk assessment of androgens, glucocorticoids and progestagens in the Hailing Bay region, South China Sea. Sci. Total Environ. 536, 99–107. https://doi.org/10.1016/j.scitotenv.2015.07. 028.
- Liu, Yan-hua, Zhang, S., Ji, G., Wu, S., Guo, R., Cheng, J., Yan, Z., Chen, J., 2017. Occurrence, distribution and risk assessment of suspected endocrine-disrupting chemicals in surface water and suspended particulate matter of Yangtze River (Nanjing section). Ecotoxicol. Environ. Saf. 135, 90–97. https://doi.org/10.1016/j. ecoenv.2016.09.035.
- Liu, Yanhua, Zhang, S., Song, N., Guo, R., Chen, M., Mai, D., Yan, Z., Han, Z., Chen, J., 2017. Science of the Total Environment Occurrence, distribution and sources of bisphenol analogues in a shallow Chinese freshwater lake (Taihu Lake): implications for ecological and human health risk. Sci. Total Environ. 599–600, 1090–1098. https://doi.org/10.1016/j.scitotenv.2017.05.069.
- López-Doval, J.C., Montagner, C.C., de Alburquerque, A.F., Moschini-Carlos, V., Umbuzeiro, G., Pompêo, M., 2017. Nutrients, emerging pollutants and pesticides in a tropical urban reservoir: spatial distributions and risk assessment. Sci. Total Environ. 575, 1307–1324. https://doi.org/10.1016/j.scitotenv.2016.09.210.
- López-Pacheco, I.Y., Carrillo-Nieves, D., Salinas-Salazar, C., Silva-Núñez, A., Arévalo-Gallegos, A., Barceló, D., ... Parra-Saldívar, R., 2019. Combination of nejayote and swine wastewater as a medium for Arthrospira maxima and Chlorella vulgaris production and wastewater treatment. Sci. Total Environ. 676, 356–367. https://doi.org/10.1016/j.scitotenv.2019.04.278.
- Lyndall, J., Barber, T., Mahaney, W., Bock, M., Capdevielle, M., 2017. Evaluation of triclosan in Minnesota lakes and rivers: part I – ecological risk assessment. Ecotoxicol. Environ. Saf. 142, 578–587. https://doi.org/10.1016/j.ecoenv.2017.04.049.
- Ma, L., Liu, Y., Zhang, J., Yang, Q., Li, G., Zhang, D., 2018. Impacts of irrigation water sources and geochemical conditions on vertical distribution of pharmaceutical and personal care products (PPCPs) in the vadose zone soils. Sci. Total Environ. 626, 1148–1156. https://doi.org/10.1016/j.scitotenv.2018.01.168.
- Ma, X., Wan, Y., Wu, M., Xu, Y., Xu, Q., He, Z., Xia, W., 2018. Occurrence of benzophenones, parabens and triclosan in the Yangtze River of China, and the implications for human exposure. Chemosphere 213, 517–525. https://doi.org/10.1016/j. chemosphere.2018.09.084.
- Ma, W.L., Zhao, X., Zhang, Z.F., Xu, T.F., Zhu, F.J., Li, Y.F., 2018. Concentrations and fate of parabens and their metabolites in two typical wastewater treatment plants in northeastern China. Sci. Total Environ. 644, 754–761. https://doi.org/10. 1016/j.scitotenv.2018.06.358.
- Mac Loughlin, C., Canosa, I.S., Silveyra, G.R., López Greco, L.S., Rodríguez, E.M., 2016. Effects of atrazine on growth and sex differentiation, in juveniles of the freshwater crayfish Cherax quadricarinatus. Ecotoxicol. Environ. Saf. 131, 96–103. https://doi.org/10.1016/j.ecoenv.2016.05.009.
- Maguire, R., Kunc, M., Hyrsl, P., Kavanagh, K., 2017. Caffeine administration alters the behaviour and development of Galleria mellonella larvae. Neurotoxicol. Teratol. 64, 37–44. https://doi.org/10.1016/J.NTT.2017.10.002.
- Mandaric, L., Diamantini, E., Stella, E., Cano-paoli, K., Valle-sistac, J., Molins-delgado, D., Bellin, A., Chiogna, G., Majone, B., Diaz-cruz, M.S., Sabater, S., Barcelo, D., Petrovic, M., 2017. Contamination sources and distribution patterns of pharmaceuticals and personal care products in Alpine rivers strongly affected by tourism. Sci. Total Environ. 590–591, 484–494. https://doi.org/10.1016/j.scitotenv. 2017.02.185.
- Marks, J., Bondi, C., Wroblewski, L., Raatikainen, H., Lenox, S., Gebhardt, K., 2015. Human and environmental toxicity of sodium lauryl sulfate (SLS): evidence for safe use in household cleaning products. Environ. Health Insights 27, https://doi. org/10.4137/EHI.S31765.
- Marsik, P., Rezek, J., Zidkov, M., Kramulov, B., Tauchen, J., Vanek, T., 2017. Non-steroidal Anti-inflammatory Drugs in the Watercourses of Elbe Basin in Czech Republic. 171. https://doi.org/10.1016/j.chemosphere.2016.12.055.

- Meador, J.P., Yeh, A., Gallagher, E.P., 2017. Determining potential adverse effects in marine fish exposed to pharmaceuticals and personal care products with the fish plasma model and whole-body tissue concentrations. Environ. Pollut. 230, 1018–1029. https://doi.org/10.1016/j.envpol.2017.07.047.
- Merel, S., Benzing, S., Gleiser, C., Napoli-davis, G. Di, Zwiener, C., 2018. Occurrence and overlooked sources of the biocide carbendazim in wastewater and surface water*. Environ. Pollut. 239, 512–521. https://doi.org/10.1016/j.envpol.2018.04.040.
- Michel, N., Freese, M., Brinkmann, M., Pohlmann, J.D., Hollert, H., Kammann, U., Haarich, M., Theobald, N., Gerwinski, W., Rotard, W., Hanel, R., 2016. Fipronil and two of its transformation products in water and European eel from the river Elbe. Sci. Total Environ. 568, 171–179. https://doi.org/10.1016/j.scitotenv.2016. 05.210.
- Moeder, M., Carranza-Diaz, O., López-Angulo, G., Vega-Aviña, R., Chávez-Durán, F.A., Jomaa, S., Winkler, U., Schrader, S., Reemtsma, T., Delgado-Vargas, F., 2017. Potential of vegetated ditches to manage organic pollutants derived from agricultural runoff and domestic sewage: a case study in Sinaloa (Mexico). Sci. Total Environ. 598, 1106–1115. https://doi.org/10.1016/j.scitotenv.2017.04.149.
- Morgan, M.K., Nash, M., Barr, D.B., Starr, J.M., Scott Clifton, M., Sobus, J.R., 2018. Distribution, variability, and predictors of urinary bisphenol A levels in 50 North Carolina adults over a six-week monitoring period. Environ. Int. 112, 85–99. https: //doi.org/10.1016/j.envint.2017.12.014.
- Morishima, H.O., Okutomi, T., Ishizaki, A., Zhang, Y., Cooper, T.B., 2001. The disposition of benzoylecgonine in maternal and fetal rats. Neurotoxicol. Teratol. 23, 247–253. https://doi.org/10.1016/S0892-0362(01)00136-2.
- Moro, I., Matozzo, V., Piovan, A., Moschin, E., Vecchia, F.D., 2014. Morpho-physiological effects of ibuprofen on scenedesmus rubescens. Environ. Toxicol. Pharmacol. 38, 379–387. https://doi.org/10.1016/j.etap.2014.06.005.
- Mossa, A.T.H., Heikal, T.M., Omara, E.A.A., 2012. Physiological and histopathological changes in the liver of male rats exposed to paracetamol and diazinon. Asian Pac. J. Trop. Biomed. 2, S1683–S1690. https://doi.org/10.1016/S2221-1691(12)60478-X.
- Mutiyar, P.K., Kumar, S., Kumar, A., 2018. Fate of pharmaceutical active compounds (PhACs) from River Yamuna, India: An ecotoxicological risk assessment approach. Ecotoxicol. Environ. Saf. 150, 297–304. https://doi.org/10.1016/j.ecoenv. 2017.12.041.
- Neal, A.E., Moore, P.A., 2017. Mimicking natural systems: changes in behavior as a result of dynamic exposure to naproxen. Ecotoxicol. Environ. Saf. 135, 347–357. https://doi.org/10.1016/j.ecoenv.2016.10.015.
- Nguyen, H.T., Thai, P.K., Kaserzon, S.L., Brien, J.W.O., Eaglesham, G., Mueller, J.F., 2018. Assessment of drugs and personal care products biomarkers in the in fl uent and ef fl uent of two wastewater treatment plants in Ho Chi Minh. Sci. Total Environ. 631–632, 469–475. https://doi.org/10.1016/j.scitotenv.2018.02.309.
- NIH, 2017. Bisphenol A (BPA): Your Environment, Your Health | National Library of Medicine [WWW Document].
- Niu, S., Zhang, C., 2018. Endocrine disrupting compounds from the source water of the Huai River (Huainan City), China. Arch. Environ. Contam. Toxicol. 74, 471–483. https://doi.org/10.1007/s00244-017-0445-2.
- Nuel, M., Laurent, J., Bois, P., Heintz, D., Wanko, A., 2018. Seasonal and ageing effect on the behaviour of 86 drugs in a full-scale surface treatment wetland: removal ef fi ciencies and distribution in plants and sediments. Sci. Total Environ. 615, 1099–1109. https://doi.org/10.1016/j.scitotenv.2017.10.061.
- Ocharoen, Y., Boonphakdee, C., Boonphakdee, T., Shinn, A.P., 2018. High levels of the endocrine disruptors bisphenol-A and 17 β -estradiol detected in populations of green mussel, Perna viridis, cultured in the Gulf of Thailand. Aquaculture 497, 348–356. https://doi.org/10.1016/j.aquaculture.2018.07.057.
- Omar, T.F.T., Aris, A.Z., Yusoff, F.M., Mustafa, S., 2019. Occurrence and level of emerging organic contaminant in fish and mollusk from Klang River estuary, Malaysia and assessment on human health risk. Environ. Pollut. 248, 763–773. https://doi.org/10.1016/j.envpol.2019.02.060.
- Paíga, P., Santos, L.H.M.L.M., Ramos, S., Jorge, S., Silva, J.G., Delerue-Matos, C., 2016. Presence of pharmaceuticals in the Lis river (Portugal): sources, fate and seasonal variation. Sci. Total Environ. 573, 164–177. https://doi.org/10.1016/j. scitotenv.2016.08.089.
- Palmiotto, M., Castiglioni, S., Zuccato, E., Manenti, A., Riva, F., Davoli, E., 2018. Personal care products in surface, ground and wastewater of a complex aquifer system, a potential planning tool for contemporary urban settings. J. Environ. Manag. 214, 76–85. https://doi.org/10.1016/j.jenvman.2017.10.069.
- Parolini, M., Pedriali, A., Riva, C., Binelli, A., 2013. Sub-lethal effects caused by the cocaine metabolite benzoylecgonine to the freshwater mussel Dreissena polymorpha. Sci. Total Environ. 444, 43–50. https://doi.org/10.1016/j.scitotenv.2012.11. 076.
- Parolini, M., Bini, L., Magni, S., Rizzo, A., Ghilardi, A., Landi, C., Armini, A., Giacco, L. Del, Binelli, A., 2017. Exposure to Cocaine and its Main Metabolites Altered the Protein Profile of Zebrafish Embryos. 232, 603–614. https://doi.org/10. 1016/j.envpol.2017.09.097.
- Parolini, M., De Felice, B., Ferrario, C., Salgueiro-González, N., Castiglioni, S., Finizio, A., Tremolada, P., 2017. Benzoylecgonine exposure induced oxidative

stress and altered swimming behavior and reproduction in Daphnia magna. Environ. Pollut. 232, 236–244. https://doi.org/10.1016/j.envpol.2017.09.038.

Paulo, A.M.S., Aydin, R., Dimitrov, M.R., Vreeling, H., Cavaleiro, A.J., García-Encina, P.A., Stams, A.J.M., Plugge, C.M., 2017. Sodium lauryl ether sulfate (SLES) degradation by nitrate-reducing bacteria. Appl. Microbiol. Biotechnol.

101, 5163–5173. https://doi.org/10.1007/s00253-017-8212-x. Pavlić, , Vidaković-Cifrek, , Puntarić, D., 2005. Toxicity of surfactants to green microalgae Pseudokirchneriella subcapitata and Scenedesmus subspicatus and to marine diatoms Phaeodactylum tricornutum and Skeletonema costatum. Chemosphere 61, 1061–1068. https://doi.org/10.1016/j.chemosphere.2005.03.051.

Peltzer, P.M., Lajmanovich, R.C., Martinuzzi, C., Attademo, A.M., Curi, L.M., Sandoval, M.T., 2019. Biotoxicity of diclofenac on two larval amphibians: assessment of development, growth, cardiac function and rhythm, behavior and antioxidant system. Sci. Total Environ. 683, 624–637. https://doi.org/10.1016/j.scitotenv.2019. 05.275.

Peng, Y., Fang, W., Krauss, M., Brack, W., Wang, Z., Li, F., Zhang, X., 2018. Screening hundreds of emerging organic pollutants (EOPs) in surface water from the Yangtze River Delta (YRD): occurrence, distribution, ecological risk. Environ. Pollut. 241, 484–493. https://doi.org/10.1016/j.envpol.2018.05.061.

Pereira, A.M.P.T., Silva, L.J.G., Laranjeiro, C.S.M., Meisel, L.M., Lino, C.M., Pena, A., 2017. Human pharmaceuticals in Portuguese rivers: the impact of water scarcity in the environmental risk. Sci. Total Environ. 609, 1182–1191. https://doi. org/10.1016/j.scitotenv.2017.07.200.

Plahuta, M., Tišler, T., Pintar, A., Toman, M.J., 2015. Adverse effects of bisphenol A on water louse (Asellus aquaticus). Ecotoxicol. Environ. Saf. 117, 81–88. https:// doi.org/10.1016/j.ecoenv.2015.03.031.

Poi, C. Di, Costil, K., Bouchart, V., 2018. Toxicity Assessment of Five Emerging Pollutants, Alone and in Binary or Ternary Mixtures, towards Three Aquatic Organisms. 6122–6134. https://doi.org/10.1007/s11356-017-9306-9.

Primrose, N., Naicker, D., Ncube, S., Chimuka, L., 2019. Determination of naproxen, diclofenac and ibuprofen in Umgeni estuary and seawater: a case of northern Durban in KwaZulu – Natal Province of South Africa. Reg. Stud. Mar. Sci. 29, 100675https://doi.org/10.1016/j.rsma.2019.100675.

Radley, P.A.U.L.M.B., Attaglin, W.I.A.B., Lark, J.I.M.C., Enning, F.R.P.H., Ladik, M.I.L.H., Wanowicz, L.U.K.E.R.I., Ourney, C.E.A.J., Iley, J.E.W.R., Omanokf, K.R.M.R., 2017. Widespread occurrence and potential for biodegradation of bioactive contaminants in congaree national park, USA. Environ. Toxicol. Chem. 36, 3045–3056. https://doi.org/10.1002/etc.3873.

Rah, Y.C., Yoo, M.H., Choi, J., Park, S., Park, H.C., Oh, K.H., Lee, S.H., Kwon, S.Y., 2017. In vivo assessment of hair cell damage and developmental toxicity caused by gestational caffeine exposure using zebrafish (Danio rerio) models. Neurotoxicol. Teratol. 64, 1–7. https://doi.org/10.1016/j.ntt.2017.08.003.

Rhind, S.M., 2009. Anthropogenic pollutants: a threat to ecosystem sustainability ?. Philos. Trans. R. Soc. 364, 3391–3401. https://doi.org/10.1098/rstb.2009.0122.

Ribeiro de Sousa, D., Mozeto, A., Lajarim, R., Fadini, P., 2018. Spatio-Temporal Evaluation of Emerging Contaminants and their Partitioning Along a Brazilian Watershed. 4607–4620.

Riva, C., Cristoni, S., Binelli, A., 2012. Effects of triclosan in the freshwater mussel Dreissena polymorpha: a proteomic investigation. Aquat. Toxicol. 118–119, 62–71. https://doi.org/10.1016/j.aquatox.2012.03.013.

Riva, F., Castiglioni, S., Fattore, E., Manenti, A., Davoli, E., Zuccato, E., 2018. Monitoring emerging contaminants in the drinking water of Milan and assessment of the human risk. Int. J. Hyg. Environ. Health 221, 451–457. https://doi.org/10.1016/j. ijheh.2018.01.008.

Riva, F., Zuccato, E., Davoli, E., Fattore, E., Castiglioni, S., 2019. Risk assessment of a mixture of emerging contaminants in surface water in a highly urbanized area in Italy. J. Hazard. Mater. 361, 103–110. https://doi.org/10.1016/j.jhazmat.2018.07. 099.

Rivera-Jaimes, J.A., Postigo, C., Melgoza-Alemán, R.M., Aceña, J., Barceló, D., López de Alda, M., 2018. Study of pharmaceuticals in surface and wastewater from Cuernavaca, Morelos, Mexico: occurrence and environmental risk assessment. Sci. Total Environ. 613–614, 1263–1274. https://doi.org/10.1016/j.scitotenv. 2017.09.134.

Robledo, P., 2008. Las anfetaminas. Trastor. Adict. 10, 166–174. https://doi.org/10. 1016/S1575-0973(08)76363-3.

Rodríguez-Delgado, M., Orona-Navar, C., García-Morales, R., Hernandez-Luna, C., Parra, R., Mahlknecht, J., Ornelas-Soto, N., 2016. Biotransformation kinetics of pharmaceutical and industrial micropollutants in groundwaters by a laccase cocktail from Pycnoporus sanguineus CS43 fungi. Int. Biodeter. Biodegrad. 108, 34–41. https://doi.org/10.1016/j.ibiod.2015.12.003.

Sanzi, F., Souza, S., Lopes, L., Emanoel, J., Hermes, F., Alves, L., Gonçalves, L., Rodrigues, C., Barbosa, B., Moledo, D., Abessa, D.S., Cesar, A., Ramos, A., Dias, C., Pereira, S., 2018. Ecotoxicological effects of losartan on the brown mussel Perna perna and its occurrence in seawater from Santos Bay (Brazil). Sci. Total Environ. 637–638, 1363–1371. https://doi.org/10.1016/j.scitotenv.2018.05.069.

Sari, S., Ozdemir, G., Yangin-Gomec, C., Zengin, G.E., Topuz, E., Aydin, E., Pehlivanoglu-Mantas, E., Okutman Tas, D., 2014. Seasonal variation of diclofenac concentration and its relation with wastewater characteristics at two municipal wastewater treatment plants in Turkey. J. Hazard. Mater. 272, 155–164. https://doi.org/ 10.1016/j.jhazmat.2014.03.015.

- Scheurell, M., Franke, S., Shah, R.M., Hühnerfuss, H., 2009. Occurrence of diclofenac and its metabolites in surface water and effluent samples from Karachi, Pakistan. Chemosphere 77, 870–876. https://doi.org/10.1016/j.chemosphere.2009.07.066.
- Sehonova, P., Plhalova, L., Blahova, J., Doubkova, V., Prokes, M., Tichy, F., Fiorino, E., Faggio, C., Svobodova, Z., 2017. Toxicity of naproxen sodium and its mixture with tramadol hydrochloride on fish early life stages. Chemosphere 188, 414–423. https://doi.org/10.1016/j.chemosphere.2017.08.151.
- Sharma, B.M., Bečanová, J., Scheringer, M., Sharma, A., Bharat, G.K., Whitehead, P.G., Klánová, J., Nizzetto, L., 2019. Health and ecological risk assessment of emerging contaminants (pharmaceuticals, personal care products, and artificial sweeteners) in surface and groundwater (drinking water) in the Ganges River Basin, India. Sci. Total Environ. 646, 1459–1467. https://doi.org/10.1016/j. scitotenv.2018.07.235.
- Shi, M., Sekulovski, N., MacLean, J.A., Hayashi, K., 2017. Effects of bisphenol A analogues on reproductive functions in mice. Reprod. Toxicol. 73, 280–291. https: //doi.org/10.1016/j.reprotox.2017.06.134.
- Sibila, M.A., Garrido, M.C., Perales, J.A., Quiroga, J.M., 2008. Ecotoxicity and biodegradability of an alkyl ethoxysulphate surfactant in coastal waters. Sci. Total Environ. 394, 265–274. https://doi.org/10.1016/j.scitotenv.2008.01.043.

Silva, B.F. da, Jelic, A., López-Serna, R., Mozeto, A.A., Petrovic, M., Barceló, D., 2011. Occurrence and distribution of pharmaceuticals in surface water, suspended solids and sediments of the Ebro river basin, Spain. Chemosphere 85, 1331–1339. https://doi.org/10.1016/j.chemosphere.2011.07.051.

Silva, A.R.R., Cardoso, D.N., Cruz, A., Lourenço, J., Mendo, S., Soares, A.M.V.M., Loureiro, S., 2015. Ecotoxicity and genotoxicity of a binary combination of triclosan and carbendazim to Daphnia magna. Ecotoxicol. Environ. Saf. 115, 279–290. https://doi.org/10.1016/j.ecoenv.2015.02.022.

Sodré, F.F., Santana, J.S., Sampaio, T.R., Brandão, C.C.S., 2018. Seasonal and spatial distribution of caffeine, atrazine, atenolol and deet in surface and drinking waters from the brazilian federal district. J. Braz. Chem. Soc. 29, 1854–1865. https://doi. org/10.21577/0103-5053.20180061.

Sposito, J.C.V., Montagner, C.C., Casado, M., Navarro-martín, L., Julio, C., 2018. Emerging Contaminants in Brazilian Rivers: Occurrence and Effects on Gene Expression in Zebra Fish (Danio rerio) Embryos. 209, 696–704. https://doi.org/10. 1016/j.chemosphere.2018.06.046.

Stancová, V., Ziková, A., Svobodová, Z., Kloas, W., 2015. Effects of the non-steroidal anti-inflammatory drug(NSAID) naproxen on gene expression of antioxidant enzymes in zebrafish (Danio rerio). Environ. Toxicol. Pharmacol. 40, 343–348. https: //doi.org/10.1016/j.etap.2015.07.009.

Staniszewska, M., Koniecko, I., Falkowska, L., Krzymyk, E., 2015. Occurrence and distribution of bisphenol A and alkylphenols in the water of the gulf of Gdansk (Southern Baltic). Mar. Pollut. Bull. 91, 372–379. https://doi.org/10.1016/j. marpolbul.2014.11.027.

Stark, J.D., Vargas, R.I., 2005. Toxicity and hazard assessment of fipronil to Daphnia pulex. Ecotoxicol. Environ. Saf. 62, 11–16. https://doi.org/10.1016/j.ecoenv.2005. 02.011.

Stayner, L.T., Almberg, K., Jones, R., Graber, J., Pedersen, M., Turyk, M., 2017. Atrazine and nitrate in drinking water and the risk of preterm delivery and low birth weight in four Midwestern states. Environ. Res. 152, 294–303. https://doi. org/10.1016/j.envres.2016.10.022.

Sui, Q., Zhao, W., Cao, X., Lu, S., Qiu, Z., Gu, X., 2017. Pharmaceuticals and personal care products in the leachates from a typical landfill reservoir of municipal solid waste in Shanghai, China: occurrence and removal by a full-scale membrane bioreactor. J. Hazard. Mater. 323, 99–108. https://doi.org/10.1016/j.jhazmat.2016.03. 047.

Sun, J., Luo, Q., Wang, D., Wang, Z., 2015. Occurrences of pharmaceuticals in drinking water sources of major river watersheds, China. Ecotoxicol. Environ. Saf. 117, 132–140. https://doi.org/10.1016/j.ecoenv.2015.03.032.

Świacka, K., Szaniawska, A., Caban, M., 2019. Evaluation of bioconcentration and metabolism of diclofenac in mussels Mytilus trossulus - laboratory study. Mar. Pollut. Bull. 141, 249–255. https://doi.org/10.1016/j.marpolbul.2019.02.050.

Tan, R., Liu, R., Li, B., Liu, X., Li, Z., 2018. Typical endocrine disrupting compounds in Rivers of Northeast China: occurrence, partitioning, and risk assessment. Arch. Environ. Contam. Toxicol. 75, 213–223. https://doi.org/10.1007/s00244-017-0482x.

Teerlink, J., Hernandez, J., Budd, R., 2017. Fipronil washoff to municipal wastewater from dogs treated with spot-on products. Sci. Total Environ. 599–600, 960–966. https://doi.org/10.1016/j.scitotenv.2017.04.219.

Thai, P.K., Ky, L.X., Binh, V.N., Nhung, P.H., Nhan, P.T., Hieu, N.Q., Dang, N.T.T., Tam, N.K.B., Anh, N.T.K., 2018. Occurrence of antibiotic residues and antibiotic-resistant bacteria in effluents of pharmaceutical manufacturers and other sources around Hanoi, Vietnam. Sci. Total Environ. 645, 393–400. https://doi.org/ 10.1016/j.scitotenv.2018.07.126.

- Toan, P. Van, Sebesvari, Z., Bläsing, M., Rosendahl, I., Renaud, F.G., 2013. Pesticide management and their residues in sediments and surface and drinking water in the Mekong Delta, Vietnam. Sci. Total Environ. 452–453, 28–39. https://doi.org/10. 1016/j.scitotenv.2013.02.026.
- Valenzuela, A., 2010. El café y sus efectos en la salud cardiovascular y en la salud materna. Rev. Chil. Nutr. 37, 514–523. https://doi.org/10.4067/S0717-75182010000400013.
- Van Den Brink, P.J., Hattink, J., Bransen, F., Van Donk, E., Brock, T.C.M., 2000. Impact of the fungicide carbendazim in freshwater microcosms. II. Zooplankton, primary producers and final conclusions. Aquat. Toxicol. 48, 251–264. https://doi. org/10.1016/S0166-445X(99)00037-5.
- van Nuijs, A.L.N., Pecceu, B., Theunis, L., Dubois, N., Charlier, C., Jorens, P.G., Bervoets, L., Blust, R., Neels, H., Covaci, A., 2009. Cocaine and metabolites in waste and surface water across Belgium. Environ. Pollut. 157, 123–129. https:// doi.org/10.1016/j.envpol.2008.07.020.
- van Nuijs, A.L.N., Pecceu, B., Theunis, L., Dubois, N., Charlier, C., Jorens, P.G., Bervoets, L., Blust, R., Neels, H., Covaci, A., 2009. Spatial and temporal variations in the occurrence of cocaine and benzoylecgonine in waste- and surface water from Belgium and removal during wastewater treatment. Water Res. 43, 1341–1349. https://doi.org/10.1016/j.watres.2008.12.020.
- Van Wijngaarden, R.P.A., Crum, S.J.H., Decraene, K., Hattink, J., Van Kammen, A., 1998. Toxicicity of Derosal (active ingredient carbendazim) to aquatic invertebrates. Chemosphere 37, 673–683. https://doi.org/10.1016/S0045-6535(98)00083-6
- Vimalkumar, K., Arun, E., Krishna-kumar, S., Poopal, R.K., Nikhil, N.P., Subramanian, A., Babu-rajendran, R., 2018. Occurrence of triclocarban and benzotriazole ultraviolet stabilizers in water, sediment, and fi sh from Indian rivers. Sci. Total Environ. 625, 1351–1360. https://doi.org/10.1016/j.scitotenv.2018.01.042.
- Vulliet, E., Cren-Olive, C., 2011. Screening of pharmaceuticals and hormones at the regional scale, in surface and groundwaters intended to human consumption. Environ. Pollut. 159, 2929–2934. https://doi.org/10.1016/j.envpol.2011.04.033.
- Wagner, S.D., Kurobe, T., Hammock, B.G., Lam, C.H., Wu, G., Vasylieva, N., Gee, S.J., Hammock, B.D., Teh, S.J., 2017. Developmental effects of fipronil on Japanese Medaka (Oryzias latipes) embryos. Chemosphere 166, 511–520. https://doi. org/10.1016/j.chemosphere.2016.09.069.
- Wang, L., Ying, G.G., Zhao, J.L., Yang, X.B., Chen, F., Tao, R., Liu, S., Zhou, L.J., 2010. Occurrence and risk assessment of acidic pharmaceuticals in the Yellow River, Hai River and Liao River of north China. Sci. Total Environ. 408, 3139–3147. https://doi.org/10.1016/j.scitotenv.2010.04.047.
- Wang, Q., Chen, M., Shan, G., Chen, P., Cui, S., Yi, S., Zhu, L., 2017. Bioaccumulation and biomagnification of emerging bisphenol analogues in aquatic organisms from Taihu Lake, China. Sci. Total Environ. 598, 814–820. https://doi.org/10. 1016/j.scitotenv.2017.04.167.
- Wang, Z., Li, X., Klaunig, J.E., 2017. Investigation of the mechanism of triclosan induced mouse liver tumors. Regul. Toxicol. Pharmacol. 86, 137–147. https://doi. org/10.1016/j.yrtph.2017.03.001.
- Wang, Yuwen, Li, Y., Hu, A., Rashid, A., Ashfaq, M., Wang, Yinhan, 2018. Monitoring, mass balance and fate of pharmaceuticals and personal care products in seven wastewater treatment plants in Xiamen City, China. J. Hazard. Mater. 354, 81–90. https://doi.org/10.1016/j.jhazmat.2018.04.064.
- Wei-po Lai, W., Lin, Y., Tung, H., Lo, S., Yu-chen Lin, A., 2016. Occurrence of pharmaceuticals and per fl uorinated compounds and evaluation of the availability of reclaimed water in Kinmen. Emerg. Contam. 2, 135–144. https://doi.org/10.1016/j. emcon.2016.05.001.
- Wilkinson, J.L., Hooda, P.S., Swinden, J., Barker, J., Barton, S., 2017. Spatial distribution of organic contaminants in three rivers of Southern England bound to suspended particulate material and dissolved in water. Sci. Total Environ. 593–594, 487–497. https://doi.org/10.1016/j.scitotenv.2017.03.167.
- Wirbisky, S.E., Freeman, J.L., 2017. Atrazine exposure elicits copy number alterations in the zebrafish genome. Comp. Biochem. Physiol. Part - C Toxicol. Pharmacol. 194, 1–8. https://doi.org/10.1016/j.cbpc.2017.01.003.
- Wirbisky, S.E., Weber, G.J., Schlotman, K.E., Sepúlveda, M.S., Freeman, J.L., 2016. Embryonic atrazine exposure alters zebrafish and human miRNAs associated with angiogenesis, cancer, and neurodevelopment. Food Chem. Toxicol. 98, 25–33. https://doi.org/10.1016/j.fct.2016.03.027.

- Wirbisky-Hershberger, S.E., Sanchez, O.F., Horzmann, K.A., Thanki, D., Yuan, C., Freeman, J.L., 2017. Atrazine exposure decreases the activity of DNMTs, global DNA methylation levels, and dnmt expression. Food Chem. Toxicol. 109, 727–734. https://doi.org/10.1016/j.fct.2017.08.041.
- Wu, J., Lu, J., Lu, H., Lin, Y., Chris Wilson, P., 2015. Occurrence and ecological risks from fipronil in aquatic environments located within residential landscapes. Sci. Total Environ. 518–519, 139–147. https://doi.org/10.1016/j.scitotenv.2014.12.103.
- Wu, Q., Lam, J.C.W., Kwok, K.Y., Tsui, M.M.P., Lam, P.K.S., 2016. Occurrence and fate of endogenous steroid hormones, alkylphenol ethoxylates, bisphenol A and phthalates in municipal sewage treatment systems. J. Environ. Sci. (China) 1–10. https://doi.org/10.1016/j.jes.2017.02.021.
- Wu, M.H., Que, C.J., Xu, G., Sun, Y.F., Ma, J., Xu, H., Sun, R., Tang, L., 2016. Occurrence, fate and interrelation of selected antibiotics in sewage treatment plants and their receiving surface water. Ecotoxicol. Environ. Saf. 132, 132–139. https:// doi.org/10.1016/j.ecoenv.2016.06.006.
- Wu, M., Xiang, J., Chen, F., Fu, C., Xu, G., 2017. Occurrence and Risk Assessment of Antidepressants in Huangpu River of Shanghai, China. 20291–20299. https://doi. org/10.1007/s11356-017-9293-x.
- Xia, L., Zheng, L., Zhou, J.L., 2017. Effects of ibuprofen, diclofenac and paracetamol on hatch and motor behavior in developing zebrafish (Danio rerio). Chemosphere 182, 416–425. https://doi.org/10.1016/j.chemosphere.2017.05.054.
- Xiang, J., Wu, M., Lei, J., Fu, C., Gu, J., Xu, G., 2018. The fate and risk assessment of psychiatric pharmaceuticals from psychiatric hospital e ffl uent. Ecotoxicol. Environ. Saf. 150, 289–296. https://doi.org/10.1016/j.ecoenv.2017.12.049.
- Xu, J., Zhang, Y., Zhou, C., Guo, C., Wang, D., Du, P., Luo, Y., Wan, J., Meng, W., 2014. Distribution, sources and composition of antibiotics in sediment, overlying water and pore water from Taihu Lake, China. Sci. Total Environ. 497–498, 267–273. https://doi.org/10.1016/j.scitotenv.2014.07.114.
- Yadav, M.K., Short, M.D., Gerber, C., Akker, B. Van Den, Aryal, R., 2018. Occurrence, Removal and Environmental Risk of Markers of Five Drugs of Abuse in Urban Wastewater Systems in South Australia.
- Yamamoto, F.Y., Diamante, G.D., Santana, M.S., Santos, D.R., Bombardeli, R., Martins, C.C., Ribeiro, C.A.O., Schlenk, D., 2018. Alterations of cytochrome P450 and the occurrence of persistent organic pollutants in tilapia caged in the reservoirs of the Iguaçu. Environ. Pollut. 240, 670–682. https://doi.org/10.1016/j.envpol.2018. 04.019.
- Yamazaki, E., Yamashita, N., Taniyasu, S., Lam, J., Lam, P.K.S., Moon, H.B., Jeong, Y., Kannan, P., Achyuthan, H., Munuswamy, N., Kannan, K., 2015. Bisphenol A and other bisphenol analogues including BPS and BPF in surface water samples from Japan, China, Korea and India. Ecotoxicol. Environ. Saf. 122, 565–572. https://doi.org/10.1016/j.ecoenv.2015.09.029.
- Yang, Y., Zhao, J., Liu, Y., Liu, W., Zhang, Q., Yao, L., 2018. Pharmaceuticals and personal care products (PPCPs) and arti fi cial sweeteners (ASs) in surface and ground waters and their application as indication of wastewater contamination. Sci. Total Environ. 616–617, 816–823. https://doi.org/10.1016/j.scitotenv.2017.10.241.
- Yao, B., Yan, S., Lian, L., Yang, X., Wan, C., Dong, H., Song, W., 2018. Occurrence and indicators of pharmaceuticals in Chinese streams: a nationwide study *. Environ. Pollut. 236, 889–898. https://doi.org/10.1016/j.envpol.2017.10.032.
- Zha, D., Li, Y., Wang, L., Yang, C., Lu, G., 2017. Occurrence and Attenuation of Pharmaceuticals and their Transformation Products in Rivers Impacted by Sewage Treatment Plants. 40905–40913. https://doi.org/10.1039/c7ra06852b.
- Zhang, Y., Wang, B., Cagnetta, G., Duan, L., Yang, J., Deng, S., Huang, J., Wang, Y., Yu, G., 2018. Typical pharmaceuticals in major WWTPs in Beijing, China: occurrence, load pattern and calculation reliability. Water Res. 140, 291–300. https:// doi.org/10.1016/j.watres.2018.04.056.
- Zhang, H., Zhang, Y., Li, J., Yang, M., 2019. Occurrence and exposure assessment of bisphenol analogues in source water and drinking water in China. Sci. Total Environ. 655, 607–613. https://doi.org/10.1016/j.scitotenv.2018.11.053.
- Zrinyi, Z., Maasz, G., Zhang, L., Vertes, A., Lovas, S., Kiss, T., Elekes, K., Pirger, Z., 2017. Effect of progesterone and its synthetic analogs on reproduction and embryonic development of a freshwater invertebrate model. Aquat. Toxicol. 190, 94–103. https://doi.org/10.1016/j.aquatox.2017.06.029.