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In Table 1 we analyze the contribution of individual V ik terms to the energy of
different rotational levels, corresponding to

(1− x2)i cos2k(φ) = sin2i(θ) cos2k(φ),

cf. Eq. (6) of the main manuscript. From Table 1, it can be observed that the terms
with i > 1 can be safely neglected. Hence, the main contribution comes from the V 00,
V 10 and V 11 components. For convenience, they can be written in terms of the full
three-dimensional (3D) interaction potential at specific values of the angles θ and φ:

V 00(R) = V (R, θ = 0◦, φ = any)

V 10(R) = V (R, θ = 90◦, φ = 90◦)− V (R, θ = 0◦, φ = any)

V 11(R) = V (R, θ = 90◦, φ = 0◦)− V (R, θ = 90◦, φ = 90◦)

Assuming that j is a good quantum number, we have to evaluate the angular factors
over spherical harmonics. It is reminded that we employ

Θj|m|(θ)
exp(ımφ)√

2π

as a basis, which differs from spherical harmonics only by a phase factor for m < 0.
Due to the symmetry of the problem, we further symmetrize functions of φ for m 6= 0
such as |+m >≡ cos(mφ)/

√
π and | −m >≡ sin(mφ)/

√
π, which are then equivalent

to real spherical harmonics.
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Table 1. Decomposition of the dispersion and dispersionless contributions of the potential for different rota-

tional energy levels as a function of i and k (see also Table 2 of the main manuscript). Energies E are given
in cm,−1 being relative to those of the ground state. The contribution of kinetic energy terms is also given for

comparison.

CNT(10,10) CNT(5,5)
i k Disp Disp-less Disp Disp-less

j = 0,m = 0
E =0, 〈V 〉 = −289.5, 〈KR〉 =28.7 E =0, 〈V 〉 = −214.4, 〈KR〉 =24.6
〈Kint〉 =0.399, 〈Kext〉 =0.0003 〈Kint〉 =1.45, 〈Kext〉 =0.0019

0 0 -510.0 231.5 -397.4 214.8
1 0 3.1 0.0 3.5 -11.1
1 1 -27.6 13.9 -21.5 2.4
2 0 0.0 0.0 0.0 0.0
2 1 0.3 0.0 0.4 0.0
2 2 -0.8 0.0 -0.7 0.0

j = 1,m = 0
E =123.1, 〈V 〉 = −284.5, 〈KR〉 =28.3 E=131.0, 〈V 〉 = −199.2, 〈KR〉 =22.7
〈Kint〉 =118.8, 〈Kext〉 =0.000 〈Kint〉 =119.1, 〈Kext〉 =0.000

0 0 -512.5 234.3 -384.8 203.2
1 0 1.9 0.0 2.0 -6.3
1 1 -16.2 8.2 -11.7 -1.5
2 0 0.0 0.0 0.0 0.0
2 1 0.1 0.0 0.1 0.0
2 2 -0.3 0.0 -0.3 0.0

j = 1,m = +1
E =108.7, 〈V 〉 = −300.1, 〈KR〉 =29.5 E =100.4, 〈V 〉 = −234.5, 〈KR〉 =27.0
〈Kint〉 =118.9, 〈Kext〉 =0.081 〈Kint〉 =119.3, 〈Kext〉 =0.178

0 0 -508.0 228.9 -409.1 225.4
1 0 3.7 0.0 4.3 -13.5
1 1 -47.4 23.7 -36.9 -3.8
2 0 0.0 0.0 0.0 0.0
2 1 0.6 0.0 0.7 0.0
2 2 -1.6 0.0 -1.5 0.0

j = 1,m = −1
E =125.1, 〈V 〉 = −282.4, 〈KR〉 =28.2 E =127.1, 〈V 〉 = −203.8, 〈KR〉 =23.2
〈Kint〉 =118.8, 〈Kext〉 =0.081 〈Kint〉 =119.1, 〈Kext〉 =0.176

0 0 -509.8 231.7 -392.7 211.0
1 0 3.7 0.0 4.1 -12.7
1 1 -16.1 8.1 -12.0 -1.4
2 0 0.0 0.0 0.0 0.0
2 1 0.2 0.0 0.2 0.0
2 2 -0.3 0.0 -0.3 0.0
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The explicit evaluation of angular factors provides the following relationship

〈Θjm|1− x2|Θjm〉 =
1

2j + 1

{
(j −m)(j −m− 1)

2j − 1
+

(j +m+ 1)(j +m+ 2)

2j + 3

}
for θ and

〈±m| cos2(φ)| ±m〉 =
1

2

with the exception of 〈+1| cos2(φ)|+ 1〉 = 3/4 and 〈−1| cos2(φ)| − 1〉 = 1/4. For j > 1
there are also couplings for ∆m=2:

〈±m| cos2(φ)| ± (m± 2)〉 =
1

4

with 〈0| cos2(φ)| + 2〉 = 1/2
√

2. The corresponding factors for θ can also be easily
evaluated using recurrence relations. For instance, the explicit expression for j = 2 is:

〈Θ20|1− x2|Θ22〉 = −4

7

√
2

3

Using these expressions, we can readily write effective diagonal one-dimensional (1D)
potentials as

Vjm(R) = V 00(R) + q10V
10(R) + q11V

11(R)

Explicit expressions of the coefficients q10 and q11 for j ≤ 2 are presented in Table 2.

Table 2. Explicit expressions of the coefficients q10 and q11 for j ≤ 2.

j m q10 q11

0 0 2
3

1
3

1 0 2
5

1
5

1 +1 4
5

3
5

1 −1 4
5

1
5

2 0 10
21

5
21

2 +1 4
7

3
7

2 −1 4
7

1
7

2 +2 6
7

3
7

2 −2 6
7

3
7

Aimed to provide deeper physical insights, we present the explicit expressions of
the potentials for j ≤ 1 in terms of the three-dimensional (3D) interaction potentials
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at different angular configurations as,

Vj=0(R) =
1

3
{V (R, θ = 0◦) + V (R, θ = 90◦, φ = 0◦) + V (R, θ = 90◦, φ = 90◦)}

Vj=1,m=0(R) =
1

5
{3V (R, θ = 0◦) + V (R, θ = 90◦, φ = 0◦) + V (R, θ = 90◦, φ = 90◦)}

Vj=1,m=+1(R) =
1

5
{V (R, θ = 0◦) + 3V (R, θ = 90◦, φ = 0◦) + V (R, θ = 90◦, φ = 90◦)}

Vj=1,m=−1(R) =
1

5
{V (R, θ = 0◦) + V (R, θ = 90◦, φ = 0◦) + 3V (R, θ = 90◦, φ = 90◦)}

which perfectly match the orientations of the corresponding wave functions as
isotropic, along Z (θ = 0), X (θ = 90◦, φ = 0◦), and Y (θ = 90◦, φ = 90◦). The
effective potentials are shown in Figures 1 and 2.
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Figure 1. Effective 1D potentials for j = 0 and j = 1 for H2 in the outside of the CNT(5,5) nanotube.
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Figure 2. Effective 1D potentials for j = 0 and j = 1 for H2 in the outside of the CNT(10,10) nanotube.

The energy levels within this effective 1D model for Λ = 0 can be obtained by
diagonalizing an effective 1D Hamiltonian to which the internal rotational energy
should be added,

Ĥeff
jm(R) = K̂(R) + Vjm(R) + j(j + 1) BH2
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We notice that for j > 1, as mentioned above, off-diagonal potential coupling terms
might show up, coming from the V11 term. For example, for j = 2, the following
coupling term is non-zero:

〈20|Ĥ|2 + 2〉 = − 2

7
√

3
V 11

In this case, the combined multi-channel Hamiltonian is constructed and diagonalized,
increasing the size of the problem. This simple 1D model is capable of accurately
reproducing the energy levels obtained with the full three-dimensional (3D) treatment,
as clearly shown in Table 2 of the main manuscript.

Focusing on the levels with j = 2, we can observe an interesting feature in Table 2 of
the main manuscript: the sub-levels m = 0 and m = −1 are nearly degenerate for both
(5,5) and (10,10) CNTs while the energies of the levels with m = −2 and m = +1 are
very close. At first glance, this could look surprising since the level m = 0 is obtained
via simultaneous diagonalization of the m = 0 and +2 basis functions. This can be
easily understood when assuming that the V10 contribution is smaller than the V11

contribution. This condition becomes exact for a CNT with infinite diameter (i.e., for
the graphene limit). Then, we could first diagonalize the (2× 2) potential matrix (i.e.,
V11). This operation would result in a π/6 rotation of the m = 0,+2 basis functions,
with the eigenvalue of the q11 matrix being equal to 1/7 for m = 0 (and to 11/21 for
m = +2). Then, as shown in Table 2 above, the q11 effective values are the same (1/7)
for m = 0 and m = −1. The same holds true for the levels with m = −2 and m = 1
(3/7). Moreover, the transformed coefficient q10 becomes the same also for m = 0 and
m = −1 (4/7), which explains why these levels are nearly exactly degenerate even for
the (5,5) CNT. This q10 coefficient is different for m = −2 and m = 1, resulting in a
slight splitting. We must surely note that this diagonalization introduces off-diagonal
kinetic terms, mainly due to the KR kinetic energy term. However, the values of these
off-diagonal matrix elements are very small (proportional to the diagonal difference of
KR values, see Table 1 above, i.e. 1–2 cm−1) and can be neglected. It should be also
noticed that in the limit of infinite diameter, i.e. the graphene limit, and considering
the change of quantization axes, this corresponds to an exact degeneracy of ±m levels.
In fact, by considering the explicit expressions of spherical Harmonics in CNT-like and
graphene-like coordinates, we can show that: (1) m = −2, 1 levels of CNT correspond
to m = +1,−1 levels in graphene; (2) the π/6 rotated m = 0 and m = −1 levels
of CNT correlate with the m = +2,−2 levels of graphene; (3) and the π/6 rotated
m = +2 level of CNT corresponds to the m = 0 level of graphene. This explains why
the levels with j = 2 behave similarly to those obtained in the case of graphene, where
the splittings are proportional to m2 when the graphene coordinate system is used
instead [1].
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