## SUPPLEMENTARY MATERIAL

## Ab-initio modelling of hydrogen molecular rotation in the outside of carbon nanotubes

María Pilar de Lara-Castells<sup>a</sup> and Alexander O. Mitrushchenkov<sup>b</sup>

<sup>a</sup> Instituto de Física Fundamental (C.S.I.C.), Serrano 123, E-28006, Madrid, Spain;
 <sup>b</sup> Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208, CNRS, UPEC, UPEM, F-77454, Marne la Vallée, France

## ARTICLE HISTORY

Compiled November 28, 2018

In Table 1 we analyze the contribution of individual  $V^{ik}$  terms to the energy of different rotational levels, corresponding to

$$(1-x^2)^i \cos^{2k}(\phi) = \sin^{2i}(\theta) \cos^{2k}(\phi),$$

cf. Eq. (6) of the main manuscript. From Table 1, it can be observed that the terms with i > 1 can be safely neglected. Hence, the main contribution comes from the  $V^{00}$ ,  $V^{10}$  and  $V^{11}$  components. For convenience, they can be written in terms of the full three-dimensional (3D) interaction potential at specific values of the angles  $\theta$  and  $\phi$ :

$$V^{00}(R) = V(R, \theta = 0^{\circ}, \phi = any)$$

$$V^{10}(R) = V(R, \theta = 90^{\circ}, \phi = 90^{\circ}) - V(R, \theta = 0^{\circ}, \phi = any)$$

$$V^{11}(R) = V(R, \theta = 90^{\circ}, \phi = 0^{\circ}) - V(R, \theta = 90^{\circ}, \phi = 90^{\circ})$$

Assuming that j is a good quantum number, we have to evaluate the angular factors over spherical harmonics. It is reminded that we employ

$$\Theta_{j|m|}(\theta) \frac{\exp(im\phi)}{\sqrt{2\pi}}$$

as a basis, which differs from spherical harmonics only by a phase factor for m < 0. Due to the symmetry of the problem, we further symmetrize functions of  $\phi$  for  $m \neq 0$  such as  $|+m\rangle \equiv \cos(m\phi)/\sqrt{\pi}$  and  $|-m\rangle \equiv \sin(m\phi)/\sqrt{\pi}$ , which are then equivalent to real spherical harmonics.

Corresponding Authors. Email: Pilar.deLara.Castells@csic.es; Email: Alexander.Mitrushchenkov@u-pem.fr

**Table 1.** Decomposition of the dispersion and dispersionless contributions of the potential for different rotational energy levels as a function of i and k (see also Table 2 of the main manuscript). Energies E are given in cm,<sup>-1</sup> being relative to those of the ground state. The contribution of kinetic energy terms is also given for comparison.

|   | CNT(10,10)    |                  |                                                                 | CNT(5,5)                                                            |                                                                 |  |  |  |  |
|---|---------------|------------------|-----------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------|--|--|--|--|
| i | k             | Disp             | Disp-less                                                       | Disp                                                                | Disp-less                                                       |  |  |  |  |
|   |               | j = 0, m = 0     |                                                                 |                                                                     |                                                                 |  |  |  |  |
|   |               | E = 0,           | , $\langle V \rangle = -289.5, \langle K_R \rangle = 28.7$      | $E = 0, \langle V \rangle = -214.4, \langle K_R \rangle = 24.6$     |                                                                 |  |  |  |  |
|   |               | $\langle K_{ir}$ | $\langle ht \rangle = 0.399, \langle K_{ext} \rangle = 0.0003$  |                                                                     | $ mt\rangle = 1.45, \langle K_{ext}\rangle = 0.0019$            |  |  |  |  |
| 0 | 0             | -510.0           | 231.5                                                           | -397.4                                                              | 214.8                                                           |  |  |  |  |
| 1 | 0             | 3.1              | 0.0                                                             | 3.5                                                                 | -11.1                                                           |  |  |  |  |
| 1 | 1             | -27.6            | 13.9                                                            | -21.5                                                               | 2.4                                                             |  |  |  |  |
| 2 | 0             | 0.0              | 0.0                                                             | 0.0                                                                 | 0.0                                                             |  |  |  |  |
| 2 | 1             | 0.3              | 0.0                                                             | 0.4                                                                 | 0.0                                                             |  |  |  |  |
| 2 | 2             | -0.8             | 0.0                                                             | -0.7                                                                | 0.0                                                             |  |  |  |  |
|   | j=1,m=0       |                  |                                                                 |                                                                     |                                                                 |  |  |  |  |
|   |               |                  | .1, $\langle V \rangle = -284.5$ , $\langle K_R \rangle = 28.3$ |                                                                     | $0, \langle V \rangle = -199.2, \langle K_R \rangle = 22.7$     |  |  |  |  |
|   |               |                  | $ _{nt}\rangle = 118.8, \langle K_{ext}\rangle = 0.000$         | $\langle K_i \rangle$                                               | $ nt\rangle = 119.1, \langle K_{ext}\rangle = 0.000$            |  |  |  |  |
| 0 | 0             | -512.5           | 234.3                                                           | -384.8                                                              | 203.2                                                           |  |  |  |  |
| 1 | 0             | 1.9              | 0.0                                                             | 2.0                                                                 | -6.3                                                            |  |  |  |  |
| 1 | 1             | -16.2            | 8.2                                                             | -11.7                                                               | -1.5                                                            |  |  |  |  |
| 2 | 0             | 0.0              | 0.0                                                             | 0.0                                                                 | 0.0                                                             |  |  |  |  |
| 2 | 1             | 0.1              | 0.0                                                             | 0.1                                                                 | 0.0                                                             |  |  |  |  |
| 2 | 2             | -0.3             | 0.0                                                             | -0.3                                                                | 0.0                                                             |  |  |  |  |
|   | j=1,m=+1      |                  |                                                                 |                                                                     |                                                                 |  |  |  |  |
|   |               |                  | .7, $\langle V \rangle = -300.1$ , $\langle K_R \rangle = 29.5$ | $E = 100.4, \langle V \rangle = -234.5, \langle K_R \rangle = 27.0$ |                                                                 |  |  |  |  |
|   |               |                  | $ _{nt}\rangle = 118.9, \langle K_{ext}\rangle = 0.081$         |                                                                     | $ mt\rangle = 119.3, \langle K_{ext}\rangle = 0.178$            |  |  |  |  |
| 0 | 0             | -508.0           | 228.9                                                           | -409.1                                                              | 225.4                                                           |  |  |  |  |
| 1 | 0             | 3.7              | 0.0                                                             | 4.3                                                                 | -13.5                                                           |  |  |  |  |
| 1 | 1             | -47.4            | 23.7                                                            | -36.9                                                               | -3.8                                                            |  |  |  |  |
| 2 | 0             | 0.0              | 0.0                                                             | 0.0                                                                 | 0.0                                                             |  |  |  |  |
| 2 | 1             | 0.6              | 0.0                                                             | 0.7                                                                 | 0.0                                                             |  |  |  |  |
| 2 | 2             | -1.6             | 0.0                                                             | -1.5                                                                | 0.0                                                             |  |  |  |  |
|   | j = 1, m = -1 |                  |                                                                 |                                                                     |                                                                 |  |  |  |  |
|   |               |                  | $\langle V \rangle = -282.4, \langle K_R \rangle = 28.2$        |                                                                     | .1, $\langle V \rangle = -203.8$ , $\langle K_R \rangle = 23.2$ |  |  |  |  |
|   |               |                  | $ _{nt}\rangle = 118.8, \langle K_{ext}\rangle = 0.081$         |                                                                     | $ _{nt}\rangle = 119.1, \langle K_{ext}\rangle = 0.176$         |  |  |  |  |
| 0 | 0             | -509.8           | 231.7                                                           | -392.7                                                              | 211.0                                                           |  |  |  |  |
| 1 | 0             | 3.7              | 0.0                                                             | 4.1                                                                 | -12.7                                                           |  |  |  |  |
| 1 | 1             | -16.1            | 8.1                                                             | -12.0                                                               | -1.4                                                            |  |  |  |  |
| 2 | 0             | 0.0              | 0.0                                                             | 0.0                                                                 | 0.0                                                             |  |  |  |  |
| 2 | 1             | 0.2              | 0.0                                                             | 0.2                                                                 | 0.0                                                             |  |  |  |  |
| 2 | 2             | -0.3             | 0.0                                                             | -0.3                                                                | 0.0                                                             |  |  |  |  |

The explicit evaluation of angular factors provides the following relationship

$$\langle \Theta_{jm} | 1 - x^2 | \Theta_{jm} \rangle = \frac{1}{2j+1} \left\{ \frac{(j-m)(j-m-1)}{2j-1} + \frac{(j+m+1)(j+m+2)}{2j+3} \right\}$$

for  $\boldsymbol{\theta}$  and

$$\langle \pm m | \cos^2(\phi) | \pm m \rangle = \frac{1}{2}$$

with the exception of  $\langle +1|\cos^2(\phi)|+1\rangle = 3/4$  and  $\langle -1|\cos^2(\phi)|-1\rangle = 1/4$ . For j > 1 there are also couplings for  $\Delta m=2$ :

$$\langle \pm m | \cos^2(\phi) | \pm (m \pm 2) \rangle = \frac{1}{4}$$

with  $\langle 0|\cos^2(\phi)| + 2 \rangle = 1/2\sqrt{2}$ . The corresponding factors for  $\theta$  can also be easily evaluated using recurrence relations. For instance, the explicit expression for j = 2 is:

$$\langle \Theta_{20}|1-x^2|\Theta_{22}\rangle = -\frac{4}{7}\sqrt{\frac{2}{3}}$$

Using these expressions, we can readily write effective diagonal one-dimensional (1D) potentials as

$$V_{jm}(R) = V^{00}(R) + q_{10}V^{10}(R) + q_{11}V^{11}(R)$$

Explicit expressions of the coefficients  $q_{10}$  and  $q_{11}$  for  $j \leq 2$  are presented in Table 2. Table 2. Explicit expressions of the coefficients  $q_{10}$  and  $q_{11}$  for  $j \leq 2$ .

| j                                                                                                                  | m            | $q_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $q_{11}$                            |
|--------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| 0                                                                                                                  | 0            | $\frac{2}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{1}{3}$                       |
| 1                                                                                                                  | 0            | $\frac{2}{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{1}{5}$                       |
| 1                                                                                                                  | +1           | $\frac{4}{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{3}{5}$                       |
| 1                                                                                                                  | -1           | $\frac{4}{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{1}{5}$                       |
| 2                                                                                                                  | 0            | $\frac{10}{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{5}{21}$                      |
| 2                                                                                                                  | +1           | $\frac{4}{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{\overline{3}}{\overline{7}}$ |
| 2                                                                                                                  | -1           | $\frac{4}{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{1}{7}$                       |
| $     \begin{array}{c}       1 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2     \end{array} $ | $^{+2}_{-2}$ | $\frac{6}{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-100-1-100-1-0-1-0-1-0-1-0-1-      |
| 2                                                                                                                  | -2           | $\begin{array}{c} q_{10} \\ \hline 2 \\ \hline 3 \\ \hline 5 \\ \hline $ | $\frac{\frac{3}{7}}{7}$             |

Aimed to provide deeper physical insights, we present the explicit expressions of the potentials for  $j \leq 1$  in terms of the three-dimensional (3D) interaction potentials

at different angular configurations as,

$$V_{j=0}(R) = \frac{1}{3} \left\{ V(R, \theta = 0^{\circ}) + V(R, \theta = 90^{\circ}, \phi = 0^{\circ}) + V(R, \theta = 90^{\circ}, \phi = 90^{\circ}) \right\}$$

$$V_{j=1,m=0}(R) = \frac{1}{5} \left\{ 3V(R,\theta=0^{\circ}) + V(R,\theta=90^{\circ},\phi=0^{\circ}) + V(R,\theta=90^{\circ},\phi=90^{\circ}) \right\}$$

$$V_{j=1,m=+1}(R) = \frac{1}{5} \{ V(R,\theta = 0^{\circ}) + 3V(R,\theta = 90^{\circ},\phi = 0^{\circ}) + V(R,\theta = 90^{\circ},\phi = 90^{\circ}) \}$$
$$V_{j=1,m=-1}(R) = \frac{1}{5} \{ V(R,\theta = 0^{\circ}) + V(R,\theta = 90^{\circ},\phi = 0^{\circ}) + 3V(R,\theta = 90^{\circ},\phi = 90^{\circ}) \}$$

which perfectly match the orientations of the corresponding wave functions as isotropic, along Z ( $\theta = 0$ ), X ( $\theta = 90^{\circ}, \phi = 0^{\circ}$ ), and Y ( $\theta = 90^{\circ}, \phi = 90^{\circ}$ ). The effective potentials are shown in Figures 1 and 2.

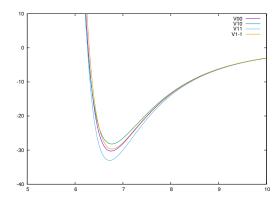



Figure 1. Effective 1D potentials for j = 0 and j = 1 for H<sub>2</sub> in the outside of the CNT(5,5) nanotube.

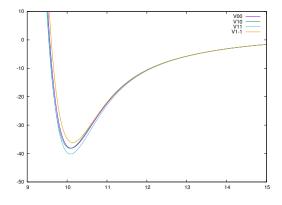



Figure 2. Effective 1D potentials for j = 0 and j = 1 for H<sub>2</sub> in the outside of the CNT(10,10) nanotube.

The energy levels within this effective 1D model for  $\Lambda = 0$  can be obtained by diagonalizing an effective 1D Hamiltonian to which the internal rotational energy should be added,

$$\hat{H}_{jm}^{\text{eff}}(R) = \hat{K}(R) + V_{jm}(R) + j(j+1) B_{\text{H}_2}$$

We notice that for j > 1, as mentioned above, off-diagonal potential coupling terms might show up, coming from the  $V_{11}$  term. For example, for j = 2, the following coupling term is non-zero:

$$\langle 20|\hat{H}|2+2\rangle = -\frac{2}{7\sqrt{3}}V^{11}$$

In this case, the combined multi-channel Hamiltonian is constructed and diagonalized, increasing the size of the problem. This simple 1D model is capable of accurately reproducing the energy levels obtained with the full three-dimensional (3D) treatment, as clearly shown in Table 2 of the main manuscript.

Focusing on the levels with j = 2, we can observe an interesting feature in Table 2 of the main manuscript: the sub-levels m = 0 and m = -1 are nearly degenerate for both (5,5) and (10,10) CNTs while the energies of the levels with m = -2 and m = +1 are very close. At first glance, this could look surprising since the level m = 0 is obtained via simultaneous diagonalization of the m = 0 and +2 basis functions. This can be easily understood when assuming that the  $V_{10}$  contribution is smaller than the  $V_{11}$ contribution. This condition becomes exact for a CNT with infinite diameter (i.e., for the graphene limit). Then, we could first diagonalize the  $(2 \times 2)$  potential matrix (i.e.,  $V_{11}$ ). This operation would result in a  $\pi/6$  rotation of the m = 0, +2 basis functions, with the eigenvalue of the  $q_{11}$  matrix being equal to 1/7 for m = 0 (and to 11/21 for m = +2). Then, as shown in Table 2 above, the  $q_{11}$  effective values are the same (1/7)for m = 0 and m = -1. The same holds true for the levels with m = -2 and m = 1(3/7). Moreover, the transformed coefficient  $q_{10}$  becomes the same also for m = 0 and m = -1 (4/7), which explains why these levels are nearly exactly degenerate even for the (5,5) CNT. This  $q_{10}$  coefficient is different for m = -2 and m = 1, resulting in a slight splitting. We must surely note that this diagonalization introduces off-diagonal kinetic terms, mainly due to the  $K_R$  kinetic energy term. However, the values of these off-diagonal matrix elements are very small (proportional to the diagonal difference of  $K_R$  values, see Table 1 above, i.e. 1-2 cm<sup>-1</sup>) and can be neglected. It should be also noticed that in the limit of infinite diameter, i.e. the graphene limit, and considering the change of quantization axes, this corresponds to an exact degeneracy of  $\pm m$  levels. In fact, by considering the explicit expressions of spherical Harmonics in CNT-like and graphene-like coordinates, we can show that: (1) m = -2, 1 levels of CNT correspond to m = +1, -1 levels in graphene; (2) the  $\pi/6$  rotated m = 0 and m = -1 levels of CNT correlate with the m = +2, -2 levels of graphene; (3) and the  $\pi/6$  rotated m = +2 level of CNT corresponds to the m = 0 level of graphene. This explains why the levels with j = 2 behave similarly to those obtained in the case of graphene, where the splittings are proportional to  $m^2$  when the graphene coordinate system is used instead [1].

## References

 M. P. de Lara-Castells and A. O. Mitrushchenkov, J. Phys. Chem. A, 2015, 119, 11022– 11032.