Surface States and Rashba-type Spin Polarization in Antiferromagnetic MnBi$_2$Te$_4$(0001)

R. C. Vidal, 1 H. Bentmann, 1 T. R. F. Peixoto, 1 A. Zeugner, 2 S. Moser, 3, 4 C. H. Min, 1 S. Schatz, 1 K. Kißner, 1 M. Ünzelmann, 1 C. I. Fornari, 1 H. B. Vasili, 5 M. Valviandes, 5 K. Sakamoto, 6 D. Mondal, 7, 8 J. Fujii, 7 I. Vobornik, 7 S. Jung, 9 C. Cacho, 9 T. K. Kim, 9 R. J. Koch, 3 C. Jozwiak, 3 A. Bostwick, 3 J. D. Denlinger, 3 E. Rothenberg, 3 J. Buck, 10 M. Hoesch, 10 F. Diekmann, 11 S. Rohlf, 11 M. Kalläne, 11, 12 K. Rossnagel, 11, 12 M. M. Otrokov, 13, 14, 15 E. V. Chulkov, 15, 16, 17, 18 M. Ruck, 2, 19 A. Isaeva, 19, 20, 21 and F. Reinert 1

1 Experimentelle Physik VII und Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
2 Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, Helmholtzstraße 10, D-01069 Dresden, Germany
3 Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
4 ExperimentellePhysik IV and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
5 ALBA Synchrotron Light Source, E-08290 Cerdanyola del Valles, Spain
6 Department of Material and Life Science, Osaka University, Osaka 565-0871, Japan
7 Istituto Officina dei Materiali (IOM)-CNR, Laboratorio TASC, Trieste 34149, Italy
8 ICTP (International Centre for Theoretical Physics (ICTP), Strada Costiera 11, I-34100 Trieste, Italy
9 Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
10 DESY Photon Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
11 Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
12 Ruprecht Hoensel Laboratory, Kiel University and DESY, Germany
13 Centro de Física de Materiales (CFM-MPC), Centro Mixto CSIC-UPV/EHU, 20018 Donostia-San Sebastián, Basque Country, Spain
14 IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Basque Country, Spain
15 Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Basque Country, Spain
16 Departamento de Física de Materiales UPV/EHU, 20080 Donostia-San Sebastián, Basque Country, Spain
17 Tomsk State University, 634050 Tomsk, Russia
18 Saint Petersburg State University, 198504 Saint Petersburg, Russia
19 Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, Helmholtzstraße 10, D-01069 Dresden, Germany
20 Leibniz IFW Dresden, Institute for Solid State Research, Helmholtzstrasse 20, D-01069 Dresden, Germany
21 Institut für Festkörper- und Materialphysik, Technische Universität Dresden, D-01062 Dresden, Germany

(Dated: September 13, 2019)

The layered van der Waals antiferromagnet MnBi$_2$Te$_4$ has been predicted to combine the band ordering of archetypical topological insulators like Bi$_2$Te$_3$ with the magnetism of Mn, making this material a viable candidate for the realization of various magnetic topological states. We have systematically investigated the surface electronic structure of MnBi$_2$Te$_4$(0001) single crystals by use of spin- and angle-resolved photoelectron spectroscopy (ARPES) experiments. In line with theoretical predictions, the results reveal a surface state in the bulk band gap and they provide evidence for the influence of exchange interaction and spin-orbit coupling on the surface electronic structure.

The hallmark of a topological insulator is a single spin-polarized Dirac cone at the surface which is protected by time reversal-symmetry and originates from a band inversion in the bulk 1, 2. Notably, breaking time-reversal symmetry by magnetic order does not necessarily destroy the non-trivial topology but instead may drive the system into another topological phase. One example is the quantum anomalous Hall (QAH) state that has been observed in magnetically doped topological insulators 3. The QAH state, in turn, may form the basis for yet more exotic electronic states, such as axion insulators 4, 5 and chiral Majorana fermions 6. Another example is the antiferromagnetic topological insulator state which is protected by a combination of time-reversal and lattice translational symmetries 7.

Magnetic order in a topological insulator has mainly been achieved by doping with 3d impurities 3, 8, which however inevitably gives rise to increased disorder. By contrast, the layered van der Waals material MnBi$_2$Te$_4$ 9, 10 has recently been proposed to realize an intrinsic magnetic topological insulator 11, 12, i.e. a compound that features magnetic order and a topologically non-trivial bulk band structure at the
The excitation energy dependent evolution of bulk conduction (BCB) and valence band (BVB) states can be seen as well as the states $S_1$ and $\sim$ substitution of Ge or Pb by Mn introduces local magnetic

Diamond Light Source (UK) [Fig. 1] with an energy resolution of $\sim 24$ K

ARPES measurements were performed at beamline I05 of the Elettra synchrotron by use of a Scienta DA30 hemispherical analyser combined with a spin polarimeter based on very low-energy electron diffraction (Sherman function $S = 0.3$). Resonant soft X-ray photoemission data and Mn 2$p$ core-level spectra were collected at the ASPHERE III endstation at beamline P04 of PETRA III (Germany) with an energy resolution of ca. 25 meV. Platelet-like MnBi$_2$Te$_4$ single crystals were obtained via an optimized crystal-growth procedure and characterized by X-ray diffraction and energy-dispersive X-ray spectroscopy, as described in Ref. [20].

MnBi$_2$Te$_4$ crystallizes in a trigonal lattice (the ordered GeAs$_2$Te$_4$ structure type) with septuple [Te-Bi-Te-Mn-Te-Bi-Te] layers stacked in the ABC fashion [9]. The septuple layers are separated by a van der Waals gap, as shown in Fig. 1(a). Our X-ray single-crystal study confirms the structure motif plus a certain degree of Mn/Bi antisite intermixing in both cation positions [20]. Mn atoms are ordered in definite crystallographic sites in a periodic crystal lattice in contrast to doped topological insulators. Cleavage of single crystals exposes well-ordered (0001) surfaces suitable for surface sensitive experiments. From an inspection of the Mn 2$p$ core-level line shapes in X-ray photoemission and absorption (XAS and XPS) in Fig. S.1 and S.2 we infer a 3$d^5$ configuration of the Mn ions (Mn$^{2+}$) [33][34]. Magnetic susceptibility measurements of bulk MnBi$_2$Te$_4$ imply an antiferromagnetic ground state.
below $T_N = 24$ K \[11\] \[20\] \[21\]. Furthermore, they indicate an out-of-plane orientation of the magnetic moments with ferromagnetic intralayer coupling and antiferromagnetic interlayer coupling, as confirmed by neutron powder diffraction experiments \[22\]. This is in agreement with first-principles calculations \[11\] \[13\] and in line with our previous XMCD and XMLD measurements \[11\] \[20\] (the data are reproduced in Fig. S1 of the supplemental material \[29\]).

Figure 1 presents our ARPES data for MnBi$_2$Te$_4$(0001) near the Fermi level $E_F$. Qualitatively, the electronic structure resembles the ones of the non-magnetic parent compound Bi$_2$Te$_3$(0001) \[18\] and of isostructural GeBi$_2$Te$_4$(0001) \[13\] \[17\], which are established topological insulators. However, for all used photon energies the spectra for MnBi$_2$Te$_4$(0001) show a gap at the $\bar{\Gamma}$-point. Similar gaps were observed for the topological insulator Bi$_2$Se$_3$(0001) after dilute doping with magnetic Fe \[8\] and Mn \[35\] impurities. Previous first-principles calculations for for antiferromagnetic MnBi$_2$Te$_4$(0001) predict a gap in the surface electronic structure of ca. 50-100 meV \[11\] \[13\].

We now analyze the ARPES data in Fig. 1 in more detail. A weak $k_z$ dispersion is found for the main valence-band feature BVB indicating its bulk origin. This is also seen in the energy distribution curves (EDC) at $\bar{\Gamma}$, shown in Fig. 1(b). A closer inspection of the EDC suggests the presence of another valence-band-related feature, visible as a shoulder at the low binding energy side of the main BVB peak, which could be related to an additional state of surface origin. This interpretation is supported by the supplementary ARPES data set in Fig. S3, where a linearly dispersive feature can be discerned at the top of the valence band. First-principles calculations indeed predict a superposition of bulk and surface states at the valence band maximum \[11\]. Close to the Fermi level we find another state with an apparent $k_z$ dependence, BCB, which we attribute to bulk conduction-band states. Its rather blurred spectral appearance has been observed similarly in n-doped topological insulators like Bi$_2$Se$_3$ \[26\] and GeBi$_2$Te$_4$ \[17\].

Furthermore, we observe the two states S1 and S2 whose spectral weight changes strongly with photon energy $h\nu$ and, particularly for S2, also with binding energy. Within experimental uncertainty we find no significant variations in the dispersion of these states with $h\nu$ in the studied energy range, in close contrast to the states BVB and BCB. We therefore assign a 2D-like character to S1 and S2. The state S1 has a band minimum at -0.2 eV and the state S2 ca. 20 meV lower, as seen in the EDC in Fig. 1(i). The dispersion of S2, furthermore, shows a characteristic change in slope at approximately -0.15 eV, where also its intensity in Fig. 1(f)-(g) quickly varies with binding energy.

Overall, our measurements are in reasonable agreement with first-principles calculation of the (0001) surface of MnBi$_2$Te$_4$ assuming ferromagnetic intralayer and antiferromagnetic interlayer coupling \[11\] \[13\], i.e. in accordance with the experimentally determined magnetic state \[11\] \[20\] \[22\]. In particular, surface-projected calculations for a semi-infinite half space reveal the presence of two 2D states with electron-like dispersion with band minima at approximately -0.02 eV and 0.08 eV \[12\]. Taking into account the n-doping of our samples, these states appear to qualitatively match with the states S1 and S2 observed in Fig. 1. By direct comparison to the calculations in Ref. \[12\], we can thus relate the state S2 to the predicted gapped topological surface state (TSS). This TSS arises from the non-trivial $Z_2$ topology of MnBi$_2$Te$_4$ in the antiferromagnetic state and the gap has been attributed to ferromagnetic intralayer ordering \[11\] \[13\]. The state S1 may be viewed as a more bulk-like state with surface-resonance character. Starting approximately 0.15 eV above the band minimum of this S1 state, the calculation shows a continuum of bulk states in good agreement with the blurred feature BCB we observe experimentally \[12\]. Furthermore, ca. 0.17 eV below this state the calculation predicts the topmost valence band states which is again in reasonable agreement with our ARPES data in Fig. 1.

The strong cross-section variations of S1 and S2 are also ev-
idenced by very recently reported ARPES experiments performed at low excitation energies of ca. 6-7 eV \[28,37,39\]. Here the photoemission intensity behavior near the \(\Gamma\) point is considerably different from our data in Fig. [1] and the spectral gap has even been interpreted as fully closed \[37\]. The latter has been attributed to a possible absence of magnetic order near the surface even significantly below \(T_N\) \[37\]. We note that for the samples studied in the present work \[20\] and also for the closely related compound MnBi\(_4\)Te\(_7\) \[40\] our surface-sensitive XMLD and XMCD measurements provide no indication for a strong change of the magnetic state near the surface [see Fig. S1].

To study the influence of the antiferromagnetic order on the surface electronic structure we next consider temperature-dependent measurements. A comparison of the ARPES data for \(h\nu = 21\) eV obtained at \(T = 10\) K and 80 K in Figs. [1]b) does not indicate dramatic changes in band structure. However, an analysis of EDC at the \(\Gamma\)-point in Fig. [1]b) reveals a temperature-dependence for the state S1. We find that its linewidth increases from \(\sim 40\) meV (FWHM) at \(T = 40\) K and 80 K to \(\sim 60\) meV at \(T = 10\) K. We attribute the enhanced linewidth below \(T_N\) to an exchange splitting of the state S1, which is in agreement with recent reports where this splitting into two subbands could be directly resolved \[38,39\]. From the change in linewidth we estimate an exchange splitting of \(\sim 25\) meV at \(\Gamma\), indicating a substantial influence of the Mn magnetic moments on the \(p\)-derived electronic states near the bottom of the conduction band.

To directly probe the location of the Mn 3\(d\) states in the valence band we carried out resonant photoemission experiments at the \(I_{2,3}\) absorption edge [Fig. 2(a)-(b)]. The measured Mn density of states (DOS) shows a main component at ca. 3.8 eV and additional peak at ca. 0.8 eV which is attributed to hybridization between Mn 3\(d\) and Te 5\(p\) orbitals. The Mn DOS is, thus, very similar to one of dilute Mn impurities in Sb\(_2\)Te\(_3\) \[41\] and GaAs \[42\], which suggests a rather local nature of the Mn states in MnBi\(_2\)Te\(_4\). This is in line with the ARPES data set at \(h\nu = 79\) eV in Fig. 2(c), where the main Mn component in the valence band forms a weakly dispersive feature near 3.8 eV. Based on these data, an accurate theoretical treatment of the localized Mn 3\(d\) states and their hybridization with the \(p\) bands will be crucial for a comprehensive description of the electronic structure of MnBi\(_2\)Te\(_4\) \[42\].

The band inversion in MnBi\(_2\)Te\(_4\)(0001) is predicted to arise from the strong spin-orbit interaction in the Bi and Te \(p\) states from which the bands near the bulk band gap are derived \[11,13\]. We have acquired spin-resolved ARPES data for MnBi\(_2\)Te\(_4\)(0001) to confirm the effect of spin-orbit interaction on the surface electronic structure [Fig. 3]. The measurements were performed at \(h\nu = 20\) eV and therefore mainly reflect the state S1 at energies near \(E_F\) [see also Figs. S4 and S5 in the supplemental material]. As depicted in Fig. 3(a) spin-polarized data was obtained in two experimental geometries, namely parallel and perpendicular to the plane of light incidence. In both cases the in-plane spin component perpendicular to the wave vector \(k_\|\) was probed. For both geometries the spin-resolved EDC exhibit a considerable spin-polarization. Moreover, the spin polarization reverses upon changing the sign of \(k_\|\) and it vanishes at \(k_\| = 0\). This observed Rashba-type spin polarization remains robust also for different photon energies [Fig. S4].

As the spin-resolved measurements were performed in the paramagnetic regime, the state S1 is expected to be spin-degenerate. Nevertheless, also in the case of spin-degenerate bulk states and surface resonances, strong spin-orbit interaction in combination with the potential step at the surface can induce a local spin density at the surface with a Rashba-type spin polarization in momentum space \[43,44\]. Due to the surface sensitivity of the photoemission process this local spin density can be reflected in the photoelectron spin polarization. The topological surface state S2 is expected to feature an intrinsic Rashba-type spin polarization \[11\], which may also contribute to the observed photoelectron spin polarization. Yet, the weak spectral weight of S2 is insufficient to explain the large observed spin polarization alone [Fig. S5]. We therefore attribute the observed Rashba-type spin polarization mainly to strong spin-orbit interaction in the wave function of the spin-degenerate surface resonance S1, in combination with scattering at the surface potential barrier \[43,44\]. To verify the spin polarization of S2 it will be desirable to perform spin-resolved measurements over a broader photon-range.

![Fig. 3: (color online) (a) Experimental geometry of the spin-resolved ARPES experiments for MnBi\(_2\)Te\(_4\)(0001). Spin-resolved EDC were measured at five different locations in \(k_\|\) space, schematically indicated as (i)-(v) in (a). (b) Spin-resolved EDC obtained at positive and negative wave vectors along \(k_x\) and \(k_y\). (c) Spin-resolved EDC at \(k_\| = 0\), showing the absence of spin polarization at \(\Gamma\). All data sets were acquired at \(h\nu = 20\) eV and at \(T = 50\) K, i.e. in the paramagnetic regime.](image-url)
energy range.

In summary, our ARPES experiments reveal a complex surface electronic structure of the van der Waals antiferromagnet MnBi$_2$Te$_4$(0001). The results confirm the presence of a surface state in the bulk energy gap. The measurements also provide evidence for the influence of exchange interaction and spin-orbit coupling on the surface electronic structure. In this regard, our findings support the predicted topologically non-trivial nature of MnBi$_2$Te$_4$, in agreement with recent transport studies [45, 46]. Yet, further work will be required to reveal how the antiferromagnetic order affects the topology of the surface electronic structure and to understand the complex photoemission characteristics of the surface states in dependence of excitation energy. Our results could provide pathways to exploit the interplay of antiferromagnetism and topology in the emerging material class of van der Waals magnets [47].

ACKNOWLEDGMENTS

We acknowledge financial support from the DFG through SFB1170 'Tocotronics', SFB1143 'Correlated Magnetism', SPP 1666 'Topological insulators', ERA-Chemistry Programme (RU-776/15-1), and the Würzburg-Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter – ct.qmat (EXC 2147, project-id 39085499). We also acknowledge the support by Spanish Ministerio de Economía y Competitividad (MINECO Grant No. FIS2016-75862-P), Academic D.I. Mendeleev Fund Program of Tomsk State University (Project No. 8.1.01.2018), the Saint Petersburg State University (Project No. 819278 and No. SI22468) that contributed to the results presented here. Parts of this research were carried out at PETRA III (DESY, Hamburg, Germany) under Proposal No. I-20180510. This work has been partly performed in the framework of the Nanoscience Foundry and Fine Analysis (NFFA-MIUR, Italy) facility. M.M.O. acknowledges support by the Diputacion Foral de Gipuzkoa ((SAREA 2018 - RED 2018, project no. 2018-CIEN-000025-01)).

* Electronic address: Hendrik.Bentmann@physik.uni-wuerzburg.de


