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Abstract— In this paper, we present a new method based on
the Aerial Social Force Model (ASFM) to allow human-drone
side-by-side social navigation in real environments. To tackle
this problem, the present work proposes a new nonlinear-based
approach using Neural Networks. To learn and test the rightness
of the new approach, we built a new dataset with simulated
environments and we recorded motion controls provided by a
human expert tele-operating the drone. The recorded data is
then used to train a neural network which maps interaction
forces to acceleration commands. The system is also reinforced
with a human path prediction module to improve the drone’s
navigation, as well as, a collision detection module to completely
avoid possible impacts. Moreover, a performance metric is
defined which allows us to numerically evaluate and compare
the fulfillment of the different learned policies. The method
was validated by a large set of simulations; we also conducted
real-life experiments with an autonomous drone to verify the
framework described for the navigation process. In addition, a
user study has been realized to reveal the social acceptability
of the method.

I. INTRODUCTION

In recent years, the field of mobile robotics has seen an
increased interest in the deployment of Unmanned Aerial
Vehicles (UAV) in many domains of application, motivated
by the recent technological advances. Considerable success
has been achieved in many purposes, such as search and res-
cue [11], exploration [1], or mapping [13]. However, obstacle
avoidance and navigation are still crucial hurdles. Concretely,
the interest in human-robot side-by-side formation, in order
to allow robots to accompany people, is increasing [4], [5].

This kind of functionality requires robots to interact with
humans, as well as certain degree of knowledge about
people’s intentions. Furthermore, as in any other mobile
robot application, collision avoidance is another important
requirement. This particular problem has been addressed by
several authors in the case of ground robots [8]. However,
in the aerial robots field, this problem is mostly unexplored.

Moreover, there has been a general shift in the nature of
the proposed solutions to the problem of robot navigation,
from hand-crafted engineered solutions [12] to data based
solutions [6]. This trend is motivated by the recent advances
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in Machine Learning, which have produced remarkable
achievements in other fields, e.g. Computer Vision and
Natural Language Processing [10]. Thus, it is natural to find
an increasing number of solutions to the navigation task that
integrate the last advances in machine learning.

In the present work, we propose a new method, called
Non-linear Aerial Social Force Model, that allows au-
tonomous flying robots to accompany humans in urban envi-
ronments in a safe and comfortable manner. The approach is
completely based on experimental data that is used to learn a
motion controller. The system is based on an extension of the
Aerial Social Force Model paradigm [5] and it also includes
two additional features: a human path prediction module and
a collision detection module.

Following the ASFM, the interaction of the different
elements in the environment, i.e. obstacles, main human and
other pedestrians, are modeled as forces applied to the aerial
robot. But instead of computing the resulting force as a
linear combination governed by a set of hand crafted weights,
an interaction force model is learned from data. This data
consists of many recorded trajectories provided by a human
expert, so that after training, the learned model is able to
mimic the control signals provided by a human.

Furthermore, a human path prediction module is integrated
into the system to provide the motion controller some notion
about the human’s position in the near future. This informa-
tion allows the controller to anticipate to human’s trajectory
and results in a more proactive drone’s behaviour. A collision
detection module based on neural networks is also integrated
into the system.

Finally, the learned motion controller is evaluated on
simulated environments and real-life experiments. Since the
verification of man-in-the-loop systems is fuzzy, a new quan-
titative metric is defined to asses the level of performance of
the learned policy.

In Fig. 1 a schematic description of the different modules
of the new model is presented.

The remainder of the paper is organized as follows.
Section II introduces the new Non-Linear Aerial Social Force
Model (ASFM) and its main components. In Section III,
the Data collection is described. Section IV introduces the
exhaustive validation of the system in diverse simulations and
real-life experiments. Finally, Sections V and VI provide the
user study and conclusions, respectively.



Fig. 1: Non-linear Aerial Social Force Model (NASF): Diagram of the proposed method and its stage, (i) creation of
the new dataset to train the model, (ii) components of the NASF model and its evaluation: Non-trained Aerial Social Fore
model and Human path predictor (iii) obtained results.

II. NON-LINEAR AERIAL SOCIAL FORCE MODEL

In this section, we proceed to describe our method. The
proposed system aims to allow human-drone side-by-side
social navigation in real environments, and we base our
approach on a 3D extension of the Social Force Model
presented in [2], [5]. As a result, all drone’s interactions
with the different elements of the environment are integrated
into four different forces. These forces represent four of the
five features that the learning model uses as input in order to
predict the acceleration commands that must be applied to the
drone and are defined in detail in the following subsection.
The remaining subsections are dedicated to explaining all the
components that form the presented model so-called Non-
linear Aerial Social Force Model (NASF): the non-linear re-
gressor that predicts acceleration commands, the quantitative
metric of performance, the human path prediction module
and the collision detection module.

A. Feature Definition

Social Force Model states that changes in behav-
ior/intentions (trajectory) can be explained in terms of social
fields or forces, and the final motion can be expressed
through a function of the pedestrians positions and veloci-
ties [2]. The total force applied to the robot comes from three
separate components: the robot-humans and robot-objects
interaction forces, which are repulsive, and the goal attraction
force, which make the robot stay closer to the human being
accompanied. In the Non-Linear Social Force Model, these
forces are incorporated to the set of input features which
also include two new features: a human feature and the
instantaneous drone velocity. It is important to note that now
all features are expressed as 3D vectors because the drone
can move freely in all three dimensions.

1) Static Object Repulsive Feature: The static object
repulsive feature provides information about the relative
location of static objects with respect to the drone, and it also
offers information about their proximity. It takes the form of
a global force that aggregates all the individual interaction
forces

Fo =

O∑
o=1

fo (1)

where O is the set of detected objects and fo is defined as
a non-linear function of the distance of each detected static
objects in the environment.

fo =
Po −PR

‖Po −PR‖
AR,oe

(
dRo

−dR,o
BR,o

)
(2)

where Po and PR are the positions of the object and the
drone, respectively, and dRo

is the distance between the robot
and the object. AR,o, BR,o and dR,o are fixed parameters
that govern the module of the resulting force, the value of
the parameters were previously described in [5].

2) Pedestrian Repulsive Feature: Pedestrians can be con-
sidered as dynamic obstacles, but humans have personal
space, and intrusions into this area by external objects may
cause discomfort to the person, especially if the object is a
flying robot. Thus, we define a separate feature to model,
the repulsion exerted on the drone from pedestrians. The
pedestrian repulsive feature is again a force defined similarly
to the static object repulsive force,

Fh =

H∑
h=1

fh (3)

where H is the set of detected pedestrians and fh is defined
as,
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Ph −PR

‖Ph −PR‖
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vh
th
e
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)

(4)

Ph and PR are the positions of the pedestrian and the
drone respectively, and dRh

is the distance between the robot
and the object. AR,h, BR,h and dR,h are fixed parameters
that govern the module of the resulting force. Furthermore,
the term vh/th is introduced to modulate the force in such a
way that the pedestrian h is able to stop in time th, according
to [14].

3) Goal Feature: In order to obtain a flying behaviour
in which the drone is moving in a side-by-side formation
with the human, and it does not navigate behind the person,
the drone needs some notion of the path the human is
following. The people path prediction module is responsible
for computing a predicted future human’s position, which
is used to build the goal attractive feature. This feature is
defined as the vector form the drone position to the goal
(the predicted future human position),

fg = Pg −PR (5)

where PR is the drone’s position and Pg is the estimated
human position for one second into the future. This feature
is not expressed as a force, but still it provides the necessary
information to allow the drone to fly next to the main human.

4) Human Feature: Finally, a new feature is defined,
it provides information about the current position of the
human. This feature combined with the goal feature encode
information about the current position of the human and the
expected direction of movement, which allows the drone to
place itself in the right spot for a natural accompaniment
configuration. The human feature is defined similarly to the
goal feature, as a vector from the drone position PR to the
main human position Ph.

fc = Pc −PR (6)

B. Non-Linear Regressor

Previous research works on Social Navigation based on
Artificial Potential Fields [2], [5] extract forces from the
elements present in the environment, and linearly combine
them to obtain a resulting force, that is applied to the
robot, and, thus, determines its acceleration. In this work,
we attempt to substitute this linear approach by a non-linear
model learned from data, which is composed of recordings of
expert trajectories. We want to teach a dense neural network
to imitate the flying controls of a human expert, so that
the resulting behaviour is more accurate and natural from a
human perspective. By learning the model from data, we also
avoid to tune the parameters present in previous approaches.

The non-linear model used to learn the expert plying
policy is a fully connected 5 layer dense neural network.The
input layer has 15 neurons, one for each input dimension,
and the output layer has 3 neurons, one for each component
of a linear acceleration in a 3D space. Dropout regularization
technique is used to avoid overfitting. Dropout works by

randomly canceling neurons in a layer (governed by a
probability parameter) during training to make the network
less dependent on certain neurons or inputs. The probability
values defined for the network are, from input to output
layer, 0.1 and 0.1. Regarding the parameters used during the
training phase of the networks, the mean squared error was
the chosen loss function and Adam was used as the gradient
descend optimizer.

We desire our model to be able to profit from non-linear
relations among the forces but also consider the temporal
correlation between consecutive samples, as predicted the
acceleration at a certain point has an effect on future sam-
ples. We estimate the intention to react to a certain event
must happen during the second before the reaction event.
Therefore, we arrange consecutive samples into 1s windows.

C. Quantitative Metric of Performance

To properly evaluate the learned control policies, the Non-
linear Aerial Social Force Model defines a new quantitative
metric of performance inspired by the metric presented in
[5], which is based on the idea of proxemics [7].

To define the metric used in the present work, four
different areas have been defined: (i) People’s Personal space
Ci, it is required the drone does not perturb the human’s
personal spaced, in order to obtain a socially accepted navi-
gation by the person being accompanied. (ii) Social distance
area A, the drone must navigate considering an accepted
social distance. (iii) During the accompanied task, the drone
should be in the human’s field of view, the drone should
navigate side-by-side with the person being accompanied,
B. (iv) Finally, robot should consider other pedestrians in
the environment pj , the drone is not allowed to perturb
pedestrians’ personal space

⋃
pj

Cj .

A =
{
x ∈ R3 \ (B ∪ C) | d(x, pi) < 3

}
B =

{
x ∈ R3 \ C | d(x, pi) < 3ψ(ϕpi

, θpi
)
}

C =
{
x ∈ R3 | d(x, pi) < ψ(ϕpi , θpi)

}
(7)

where ψ(ϕpi
, θpi

) represents the anisotropic factor in the 3-
dimensional space, it is defined by:

ψ(ϕpi
, θpi

) = w(ϕpi
) cos(θpi

)(h + ξpi
w(ϕpi

)η) (8)

it depends on ϕpi
, an angle formed between the desired

velocity of the pedestrian pi and the vector rRj, indicating
the distance between the robot and the pedestrian pi and
pointing to him, and θpi

, which is the angle between the x
and z coordinates, an angle formed between the position of
the robot and the pedestrian. Moreover, h is the height of
the pedestrian, η is a constant defined by us as 1.25, after
performing experiments with non-trained volunteers.

Furthermore, we should define w(ϕpi
):

w(ϕpi
) = λpi

+ (1− λpi
)(
1 + cos(ϕRj)

2
) (9)

Where λpi defines the strength of the anisotropic, and
cos(ϕRj) is calculated as:



cos(ϕRj) = −nRj · epi
(10)

using nRj, the normalized vector pointing from the robot
to pi, it describes the direction of the force, and epi is
the desired motion direction of the pedestrian pi (which is
pointing to the goal).

Moreover, the flying robot has been represented as
ψ(ϕRj , θRj), its anisotropic factor:

ψ(ϕRj , θRj) = w(ϕRj) cos(θRj) (11)

Thus, we can define the following function witch evaluates
the behavior of the drone considered the volumes described
above:

ρ(r, pi) =

∫
(B\

⋃
pj

Cj)∩R

dx

|R|
+

∫
(A\

⋃
pj

Cj)∩R

dx

2|R|
∈ [0, 1]

(12)
Where x ∈ R3. If the complete area of the robot is allo-

cated in zone B, then, performance would get the maximum
value. As the robot moves far from the person and enters
to zone A, the performance decreases until 1/2. Finally, the
performance in zones Ci is 0, as it is not allowed that the
drone enters in people’s personal space.

D. Human Path Prediction Module

The Non-linear Aerial Social Force Model includes a
module that predicts the future position of the main human,
similarly to [5]. The main difference lies in the use of a
five layer neural network, which takes the last ten known
positions of the main human, and it infers the increment in
the current position one second into the future. The predicted
increment in position is then used to compute the Goal
Feature, which provides a notion of the path the human
is following, and allows the drone to fly in a side-by-side
formation with the human.

To train the model, a dataset of human paths was built
from all the recorded expert trajectories. Each feature vector
of each sample in the dataset is made of 10 consecutive
positions of the human, expressed as increments, so that they
belong to the same distribution. The corresponding target of
the feature vector is the increment in position observed in
the consecutive 30 frames of simulation. The global dataset
is then split into three subsets: the train set, which contains
46, 468, the validation set, containing 11, 592 samples, and
the test set, composed of 12, 056 samples. The validation set
is used to tune the hyperparameters of the neural network.
After training the model on the described dataset, the model
is able to predict the position of the main human one second
into the future with an mean squared error over the test set
of 0.01969.

E. Collision Detection Module

The collision detection module was not present in the
original Aerial Social Force Model, so it is a new addition in
the Non-linear Aerial Social Force Model. The main reason

(a) (b) (c)

Fig. 2: Simulated expert trajectories (a) shows two pictures
of ‘Open environments’, column (b) shows type ‘Crowded
environments’ and column (c) shows type ‘Cluttered Envi-
ronments’ environments.

behind the integration of such a mechanism into the system
is to avoid potential collisions that may happen at run time,
especially if the drone reaches states that are not seen during
training. Following the principles of the present work, and
supported by the evidence provided in [3], we decided to
learn the collision detection model from data.

A two layer neural network was trained with data collected
from collision trajectories. We created 600 simulated envi-
ronments densely populated with obstacles and configured
the drone to fly in a straight line until a collision happened.
We recorded all the data from the simulated trajectories and
built a dataset by labeling the samples automatically. Each
sample in the dataset corresponds to a given frame in a given
recorded trajectory, and it contains the static object repulsive
feature and the drone velocity. The labeling procedure works
as follows: the set of samples that are less than one second
distant to a collision are labeled with a 1, and the remaining
samples are labeled with a 0.

III. DATA COLLECTION

In the Non-linear Aerial Social Force model, we aim to
learn a motion controller for a drone that behaves similarly to
the controls provided by a human expert. Therefore, in order
to teach our model to behave similarly to a human, we need a
significant amount of expert demonstrations that will be later
used to build a dataset by extracting the relevant features,
this dataset will be then used to train the non linear model,
and hopefully the trained model will fulfill our requirements.
Thus, the first step to learn a flying control policy is to obtain
human expert demonstrations, and due to the lack of this kind
of data, we obtain the demonstrations ourselves. It has to be
mentioned, the information that we desire to capture with
the tele-operated behavior by an expert is the intention of
the robot’s movement, not the instantaneous changes, that is
why a time window is used in the training stage.

Simulated environments have been used to generate the
expert demonstrations because they are safe, easy to run and
allow complete freedom of environment design, compared
to gathering the data from a real drone. The software that



was used to build and run the simulator is FreeGLUT1 .
The simulator has an update frequency of 30Hz and each
cycle it generates an output file that contains the position of
all the elements in the simulated environment, as well as,
the velocity and acceleration of the drone. In each simulated
environment, the human expert controls the acceleration of
the drone with a PS3 controller and tries to fly next to the
main human, which is autonomously controlled. Therefore,
each recorded trajectory corresponds to a simulation run,
and is composed of the set of output files generated in the
episode.

Regarding the configuration of the simulated environments
that are used to record expert trajectories, we defined three
different types of environments, which belong to different
levels of complexity. The simplest type of environments are
named ‘Open Environments’ and only contain the drone and
the main human. The second type of environment called
‘Crowded environments’ contains the drone, the main human
and several pedestrians. Finally, the set of environments
called ’Cluttered Environments’ contain the drone, the main
human and static obstacles, like pillars & bridges. 260 expert
trajectories were recorded in type ’Open Environments’, 180
were recorded in type ’Crowded Environments’ and 270 were
recorded in type ’Cluttered Environments’ environments. All
the recorded expert demonstrations account for 326 minutes
of simulation. Fig. 2 shows several pictures for the different
types of simulated environments.

In order to build the final dataset that is used to train the
neural network, the defined features are extracted for each
simulation cycle in each recorded trajectory and put together
into a single dataset. The target associated to each feature
vector corresponds to the acceleration of the drone at the
simulation cycle the feature vector belongs to.

IV. EXPERIMENTS

The previously defined dataset was split into train, vali-
dation and test sets. This division was required because we
initially proposed three different model, a linear regressor, a
five layer neural network and a three layer neural network.
We trained all the models on the training set, then, we used
the validation set to adjust hyperparameters of the neural
networks and, finally, we tested the models’ average mean
squared error on the test set. The results are listed in table
I. These results provide an indicator of how well the models
predict a control action given a certain state of the envi-
ronment. However, this is not a good indicator of how well
the learned policy behaves in reality, because the problem of
learning a control policy from demonstrations violates the
i.i.d. assumption, in the sense that the model’s prediction
modify the distribution of the input, as new states of the
environment depend on previous control actions. Therefore,
to really asses the quality of the learned policies, we must
test them on simulated environments using the performance
metric described in section II-C.

1http://freeglut.sourceforge.net

Train MSE Validation MSE Test MSE
Linear Regression 0.7297e-3 0.6969e-3 0.6918e-3

3-Layer NN 0.7025e-3 0.6812e-3 0.6770e-3
5-Layer NN 0.7017e-3 0.6796e-3 0.6764e-3

TABLE I: MSE achieved by the models on different sets.

Pillars & Bridges Forest
5-Layer NN with CDM 0.7581 0.7256

5-Layer NN without CDM 0.5459 0.5196

TABLE II: Final performance average achieved by each
model after simulating the learned policies on Pillars and
Bridges environments and Forest, the enhancement of the
system using the Collision Detection Module (CDM) is
presented.

A. Simulations

The learned flying policies were tested on several test
environments of two new unseen types, called Pillars &
Bridges and Forest. These environments are more complex
than those used to train the models, as Fig. 3 shows. To
compute the performance of a model in a test environment,
the test environment is simulated and the trained model is
used to compute the drone intentions during the accompanied
task. To obtain the prediction an input must be fed to the
model, which is built from the data generated in the previous
simulation cycle. This way, the model takes control of the
motion of the drone, in the same way the human expert is
controlling the drone when expert trajectories are recorded.

The performance metric is computed in each cycle of a
test simulation, and thus, the final performance of a certain
model in a certain environment is obtained by averaging
the instantaneous measurements of performance along a test
simulation run on that environment.

To further illustrate the behaviour of the learned policies,
Fig. 3 shows the values of performance for each frame in
a test simulation achieved by each model. The quantitative
results allowed us to choose the five layer neural network
model as the final controller for the drone, which was later
implemented on a real drone for real life experiments. It
can be seen, as the density of pedestrians is increased the
performance of the system gets lower.

Finally, in order to evaluate if the collision detection
module (CDM) enhances the performance of the system,
we also compared the drone’s behavior using the collision
detection or without using it, Table II introduces the obtained
results ( average), it can be seen the CDM increases the
performances of the system.

B. Real-life Experiments

For the real experiments we have used a quadcopter
built by Parrot, the AR.Drone 2.0, on which we tested the
policy learned by the three layer neural network. We also
have made use of the Optitrack Motion Capture system,
created by NaturalPoint Inc, which provides all the necessary
information about absolute positions of all the elements in
the environment that are properly marked. The controller



Fig. 3: Synthetic experiments. Top row: Test environments,
the picture in the left belongs to a Pillars & Bridges
environment, the picture on the right is a Forest environment.
Note that the tree obstacles in the forest are not seen
during the training stage. Bottom row: Performance presented
previously. All results are function of the pedestrian density
in the environment.

of the drone was implemented as ROS node. With the
information provided by Optitrack, the controller node can
build the inputs of the model to get the predicted acceleration
commands for the drone. The drawback of using Optitrack
to accurately locate all the elements in the environment is
that the working area is limited to 5x5m, which imposes
severe constraints to the movement of the drone and the main
human.

In order to enhance the database, we added some real-
life trajectories, were the drone tele-operated by an expert
accompanied different volunteers, we, then, re-trained our
5-layer Neural Network, and we used this new model to
perform the real experimentation.

In first place, we run several experiments in the simplest
scenario, where only the main human and the drone are
present. During the experiments we observed that the drone
is able to approach the human if the take of point is far, and
once it reaches a certain distance to the human it stops and
maintains the position in the air. If the human starts moving,
the drone is able to follow the person while keeping a safe
distance.

In the second set of experiments a pillar obstacle was
introduced into the scenario. We observed that the drone
was still able to follow the main human maintaining a safe
distance, and additionally it successfully avoided the pillar if
it was found on the drone’s way. It is important to mention,
however, that due to the limitations of the experiment setup
it was not possible to fully replicate in reality the simulated
results, and we had to run very simplified experiments. Fig. 4
shows the real-life experiments, the drone moved and was
able to accompany a person.

We would like to address the reader to see videos and addi-
tional results of the real-life experiments, in the BRL, in the

Fig. 4: Real-life experiments: Validation of the model in a
real world environment.

following link http://www.iri.upc.edu/people/
agarrell/asfm-iros2019.html

V. USER STUDY

The results presented in the previous section demonstrate
that the drone is able to accompany people in different
environments, and this behavior has been learned from expert
trajectories. A user study was also conducted to deter-
mine whether the non-linear ASFM presented previously
are perceived by people as socially appropriate. Finally, we
concluded this section by studying how our social navigation
enhances a follower approach, wherein the robot only fol-
lows the person’s trajectory, without considering any social
conventions, and we should highlight that people perceived
a difference between these two approaches.

The hypothesis we endeavored to test was as follows:
“Participants will not perceive a difference between the Non-
Linear ASFM and the tele-operated drone by and expert.”

For the experiments, we selected 35 people (20 men,
15 women) on the University Campus. Participants ranged
in age from 21 to 53 years (M=29.13, SD=15.23), and
represented a variety of university majors and occupations
including computer science, mathematics, biology, finance
and chemistry. For each individual selected, we randomly
activated one of the two drone’s behaviors to accompany
the volunteer. It should be mentioned that none of the
participants had previous experience working or interacting
with robots.

Participants were asked to complete a variety of surveys.
Our independent variables considered whether the drone
autonomous accompanied a person (using the Non-linear
ASFM) or was tele-operated. The main dependent variables
involved participants’ perceptions of the comfortableness
and intellectual characteristics. Each of these fields, was
evaluated by every participant using a questionnaire to fill
out after the experiment, based on [9].

Participants were asked to answer a questionnaire, fol-
lowing their encounter with the drone in each mode of
behavior. To analyze their responses, we grouped the survey
questions into three scales: the first measured overall robot
behavior, while the second and third evaluated more specific



Fig. 5: HRI Navigation Results. Degree of acceptance of
the robot navigation using Non-linear ASFM. Left: Global
evaluation of the two navigation. Center: Robot’s sociability.
Right: Robot’s intelligence, as perceived by the humans.

questions on the robot’s movement. Both scales surpassed the
commonly used 0.7 level of reliability (Cronbach’s alpha).

Each scale response was computed by averaging the results
of the survey questions comprising the scale. ANOVAs were
run on each scale to highlight differences between the three
robot behaviors.

Below, we provide the results of comparing the two dif-
ferent behaviors. Human perception has been studied in the
navigation skill. To analyze the source of the difference, three
scores were examined: “overall”, “robot’s sociability” and
“robot’s intelligence”, plotted in Fig. 5. For the global eval-
uation score plotted in Fig. 5-Left, pairwise comparison with
Bonferroni demonstrate there were no difference between
the two kind of navigation approaches, p = 0.36. In terms
of robot’s sociability and intelligences the volunteers also
did not perceived a difference between the two navigation,
p = 0.18 and p = 0.27, respectively.

Therefore, after analyzing these three components in nav-
igation terms, we may conclude that the drones navigation
learned from expert trajectories was socially accepted by
volunteers.

VI. CONCLUSIONS

In this paper, we present a new solution to the robot
companion task for the case of a UAV that flies in a side-
by-side formation with a human. The presented approach is
inspired by the Aerial Social Force Model but it integrates
novel techniques from the Machine Learning field to learn a
flying control policy from expert demonstrations. A dataset is
built by recording the control actions provided by a human
expert in simulated environments. Three different learning
models are trained on the dataset and their performance is
assessed on simulated test environments in order to select
the best one. Finally, the best model is implemented on a
real drone and real-life experiments are performed.

The test simulations show that all the considered models
are able to learn control policies that resemble the one
provided by the expert, with slightly different degrees of
accuracy. From the real experiments, we conclude that the
learned policy has the potential to provide an accurate, safe
and human-like drone motion, but due to the limitations of
the setup, we cannot fully replicate the results from the test
simulations. Finally, a user study showed the acceptance of
the method by inexpert people, the method was compared

with a teleop performance and they found no statistical
difference between the two approaches.
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