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ABSTRACT
The one-point probability distribution function (PDF) of the matter density field in the universe
is a fundamental property that plays an essential role in cosmology for estimates such as grav-
itational weak lensing, non-linear clustering, massive production of mock galaxy catalogues,
and testing predictions of cosmological models. Here we make a comprehensive analysis of
the dark matter PDF, using a suite of ∼7000 N-body simulations that covers a wide range of
numerical and cosmological parameters. We find that the PDF has a simple shape: it declines
with density as a power-law P ∝ ρ−2, which is exponentially suppressed on both small and
large densities. The proposed double-exponential approximation provides an accurate fit to
all our N-body results for small filtering scales R < 5 h−1 Mpc with rms density fluctuations
σ > 1. In combination with the spherical infall model that works well for small fluctuations σ

< 1, the PDF is now approximated with just few per cent errors over the range of 12 orders of
magnitude – a remarkable example of precision cosmology. We find that at ∼5−10 per cent
level the PDF explicitly depends on redshift (at fixed σ ) and on cosmological density pa-
rameter �m. We test different existing analytical approximations and find that the often-used
lognormal approximation is always 3–5 times less accurate than either the double-exponential
approximation or the spherical infall model.

Key words: methods: numerical – galaxies: haloes – dark matter – cosmology: Large-scale
structure.

1 IN T RO D U C T I O N

The one-point probability distribution function (PDF) of the matter
density field in the universe, and its related statistics the distribu-
tion of galaxy counts, have a long and somewhat patchy history
in cosmology and extragalactic astronomy. It was Edwin Hubble
almost a century ago who found that the counts of about 44 000
extra-galactic nebulae distributed over a large area of the sky have
a probability distribution that is not Gaussian but can be approxi-
mated by a lognormal distribution (Hubble 1934). The statistics of
galaxy counts in the Lick survey, in projected cells of size 10 arcmin
× 10 arcmin, was studied by Soneira & Peebles (1978), who also
discovered that the distribution of the counts is much broader than
the Poisson PDF.

The rms of galaxy counts σ in cells of size R is an integral over
the power spectrum of the galaxy distribution (e.g. Peebles 1980,
section 36). As such, in former times, a count-in-cells analysis
of the IRAS redshift galaxy survey was performed by Efstathiou
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et al. (1990), who used the counts as a measure of the 2-point
clustering statistics on different scales. Once methods to estimate
the correlation function and the power spectrum were developed
and new large-scale galaxy surveys were available, the count-in-
cells as clustering statistics started to play a secondary role. Higher
moments of cell counts depend on correlation functions of order
larger than 2. This means that the whole PDF has information not
only on the 2-point clustering but also on higher order statistics,
which by itself is very valuable information.

At present, a precise description and modeling of the underlying
matter density distribution – and biasing prescription that connects
the dark matter field with the galaxy distribution – are fundamental
to extract cosmological information from current and upcoming
large-scale redshift and lensing galaxy surveys (e.g. Taruya et al.
2002; Takahashi et al. 2011; Manera et al. 2013; Carron, Wolk &
Szapudi 2015; Kitaura et al. 2016; Clerkin et al. 2017). For this
reason in the last years there has been a rejuvenated interest in
the cosmic density distribution from both cosmological N-body
simulations and galaxy surveys.

Wild et al. (2005) estimated the PDF of galaxies in the 2dF red-
shift survey, using about 200 000 galaxies. Because of a relatively
small volume, their analysis was done only for large cells of size
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10–30 Mpc. They found that the lognormal distribution fits the data
reasonably well, but the noise in the data did not allow them to make
accurate measurements of the PDF. The situation was improved
by Hurtado-Gil et al. (2017), using the count-in-cells statistics for
galaxies in the SDSS main sample. They used ∼100 000 galaxies
and estimated the PDF for spheres of radius R = (8–24) h−1 Mpc.
They found that the lognormal distribution was very inaccurate (a
factor of ∼2 errors) for spheres of R = 8 h−1 Mpc. A modification
of the lognormal distribution (called lognormal + bias) somewhat
improved the fits, but it still had ∼50 per cent errors at a low number
of galaxy counts. The negative binomial distribution was a much
better fit for all filtering scales. At hight redshift, Bel et al. (2016)
studied the count-in-cells distribution of ∼30 000 galaxies in the
VIPERS redshift survey with the typical average number of galax-
ies per cell of 0.5–5 and spherical cells of radius R = (4–8) h−1

Mpc. They found that the skewed lognormal distribution (a modifi-
cation of the lognormal distribution with four more free parameters)
was not accurate enough to fit the results of observations. Instead,
they found that the negative binomial distribution was much more
accurate. Yet, Clerkin et al. (2017), using the DES science verifica-
tion data, confirmed that the lognormal model is a good fit to both
the galaxy density contrast and weak lensing convergence PDFs on
scales of (3–10) Mpc at median redshift z = 0.3. In spite of the fact
that at present these seems to be the best observational results, the
errors and noise in the data are still substantial.

On the theoretical side the situation is also complicated. There
are two types of approaches: models that start with some dynami-
cal description of the non-linear evolution of the density field and
proceed to make predictions of the matter PDF (e.g. Betancort-
Rijo 1991; Bernardeau 1994; Kofman et al. 1994; Betancort-Rijo &
López-Corredoira 2002; Ohta, Kayo & Taruya 2003; Lam & Sheth
2008a), and then there are phenomenological approximations that
assume a specific analytical form of the PDF (Coles & Jones 1991;
Gaztañaga, Fosalba & Elizalde 2000; Lee et al. 2017; Shin et al.
2017), and find best-fitted parameters of this distribution function
to simulation data.

Theoretical models based on the non-linear dynamics typically
use either some variant of the spherical infall model (e.g. Ohta
et al. 2003; Lam & Sheth 2008a; Neyrinck 2016) or the Zeldovich
approximation (e.g. Kofman et al. 1994; Betancort-Rijo & López-
Corredoira 2002). These models have made substantial progress
and now can make very accurate predictions for relatively large
smoothing scales R � 5 h−1 Mpc and small σ � 1 (Lam & Sheth
2008a) giving errors less than ∼10 per cent. Not surprisingly, as
expected, the models are not very useful and start to fail at larger
rms fluctuations σ � 1 (Lam & Sheth 2008a; Neyrinck 2016).

One of the disadvantages of the dynamical models is their com-
plexity. They typically require some manipulation of the linear
power spectrum, analytical approximations for different terms, and
can be quite cumbersome to deal with. This is not a serious im-
pediment to their use, but it is a nuisance. Simple analytical func-
tions can serve as an alternative to more complicated dynamical
models.

The lognormal distribution is an example of this approach. It
was heavily advocated by Coles & Jones (1991) and is often used
for relatively large smoothing scales. There is little justification
why the density distribution function should be lognormal. Coles &
Jones (1991) argue that under the assumption that the divergence
of the peculiar velocity field in Eulerian coordinates grows as the
velocities themselves (as given by linear theory) the density field
can be expressed as the exponential of a Gaussian field. But while
their assumption is acceptable for the Lagrangian divergence, for

the Eulerian one there is an additional growth roughly proportional
to the cubic root of the normalized density. This leads to a density
field that is equal to a Gaussian field to the third power, whose
PDF is quite different from a lognormal distribution. Here is the
main argument of Coles & Jones (1991): ‘The lognormal is one
of the simplest ways of defining a fully self-consistent random
field that always has ρ > 0 and, most importantly, is one of the
few non-Gaussian random fields for which interesting properties
are calculable analytically.’ This says that the PDF should be log-
normal because it can be handled analytically – hardly a serious
argument. Another argument is of the same caliber: the lognor-
mal distribution is well-known and frequently used in other fields
of science (Ohta et al. 2003). Similar arguments were used for
other phenomenological models (Gaztañaga et al. 2000; Lee et al.
2017).

The only real justification for the existing phenomenological ap-
proximations (including the lognormal) is that they make a fit to
N-body results. This is the reason why cosmological N-body simu-
lations are important for the field. In this paper we use a very large
suite of cosmological simulations to produce accurate estimates of
the dark matter distribution functions. Our simulations cover a wide
range of numerical and cosmological parameters. We use the es-
timates to test different dynamical models and approximations for
the PDF and to study its dependence on redshift and cosmological
parameters.

One of our goals in this paper is to make a comprehensive study
of the different effects that can be associated with N-body results
regarding the matter density distribution, such as mass and force
resolution, size of the box, shot noise, and cosmic variance. In this
regard we find that systematic errors in the PDF can be important.
For example, noise related to the discreteness of the density probed
by particles is the leading factor of seriously wrong estimates of the
PDF in underdense regions.

Generation of mock galaxy catalogues provides a motivation for
our study of the density distribution function. One needs to produce
thousands of realizations of the dark matter density and velocity
fields. This can be done by carefully tuning parameters of simu-
lations and limiting their resolution to a fraction of a megaparsec
(see e.g. Tassev, Zaldarriaga & Eisenstein 2013; Chuang et al. 2015;
Klypin & Prada 2018). A biasing prescription then connects the dark
matter with galaxies. This path requires knowledge of the distribu-
tion of dark matter mass on very small scales 100 h−1 kpc−1 h−1

Mpc. This is a challenge because the resolution of these simulations
is not sufficient to resolve individual haloes and subhaloes, making
it difficult to apply existing tools such as Halo Abundance Matching
and Halo Occupation Distribution. A path to solve the problem is
to map dark matter to galaxies using a biasing scheme (e.g. Kitaura
et al. 2016) that requires the understanding details of the density
distribution function and finding limitations to its estimates.

Unfortunately, only very few studies in the literature provide PDF
results for small smoothing scales �1 h−1 Mpc (Bouchet, Schaef-
fer & Davis 1991; Bouchet & Hernquist 1992; Platen 2009; Pandey
et al. 2013; Lee et al. 2017). So, we will make an effort to study this
regime too. Bouchet et al. (1991), Bouchet & Hernquist (1992), and
Platen (2009) find that in the regime of small smoothing and large
density the PDF has a power-law shape with a slope of ≈−2, which
is similar to what we find in this work.

This paper is organized as follows. In Section 2, we define
quantities related with the PDF and provide details of some an-
alytical approximations in Section 3.1. The spherical infall and
the double-exponential models are introduced in Section 3.2.
Numerical simulations used in this paper are discussed in
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Section 4. Section 5 also presents main features of the PDF. Accu-
racy of different approximations are discussed in Section 6. Sum-
mary of results is given in Section 7. Finally, numerical effects
are discussed in Appendix A, and Appendix B presents tables of
parameters and fits for the double-exponential approximation.

Results of simulations – tables of PDFs for thousands of real-
izations at different redshifts and filtering scales – are available on
skiesanduniverses.org (Klypin, Prada & Comparat 2017).

2 D E F INITIONS

In order to estimate the density distribution function P(ρ) from
N-body simulations, we split the computational volume L3, where
L is the box size, with a 3D mesh of size N3

cell and use the Cloud-
In-Cell (CIC) density assignment scheme to estimate the den-
sity ρ at each grid point of the mesh. The cell size of the grid
�x = L/Ncell defines the smoothing length. The density is normal-
ized to the average matter density ρav ≡ �mρcr, i.e.

ρ ≡ 1 + δNL = ρDM/�mρcr, (1)

where δNL is the matter density contrast or overdensity. The index
NL highlights the fact that ρ is a non-linear quantity and it can be
distinguished from the density contrast δ as estimated by the linear
theory. Throughout the paper we use the quantity ρ as ‘density’ in
spite of the fact that it is really a normalized density – a dimension-
less quantity as shown in equation (1). This is done for convenience
to avoid repeating 1 + δNL in most plots and equations.

The values of density ρ are binned using logarithmically spaced
bins with width �log10(ρ) = 0.025–0.050. The density distribution
function – PDF of the cosmic density field – is then defined as a
normalized number of cells with density in the range [ρ, ρ + �ρ]:

P (ρ) = �Ncell

N3
cell�ρ

. (2)

The PDF can have a surprisingly large range of values. For example,
density can reach values larger than 105 for hundreds of cells when
we use a large mesh of ∼30003 cells in high-resolution simulations.
That gives P(ρ) ∼ 10−12. At the same time the number of cells at
low densities can be millions for a small density bin leading to a
large PDF value P(ρ) � 1. In order to avoid a large dynamical range
of quantities, we typically plot ρ2P(ρ).

By design, the density distribution function is normalized to have
the total volume and total mass equal to unity:∫ ∞

0
P (ρ)dρ = 1,

∫ ∞

0
ρP (ρ)dρ = 1. (3)

The second moment of P(ρ) gives the rms density fluctuation of
the density field σ , and as such it is related to the non-linear power
spectrum PNL(k) of density perturbations:

σ 2 =
∫ ∞

0
(ρ − 1)2P (ρ)dρ = 1

2π2

∫ kNy

0
PNL(k)W 2(k�x)k2dk,

(4)

where W2(k�x) is the power spectrum of the CIC filter with the
width �x, and the integral is truncated at the Nyquist frequency of
the mesh kNy = π/�x.

Fig. 1 shows our first results on the structure of the PDF. More
detailed discussion is given later in Section 5. The plot demonstrates
the main trend of the shape of the PDF. In the linear regime of
the growth of fluctuations, when σ � 1, the PDF is a Gaussian
distribution that quickly acquires a skewed shape as σ increases.
With the further increase of σ , the PDF becomes progressively

Figure 1. Density distribution function at z = 0 for different filtering scales
indicated in the plots. Full curves show the results from our simulations.
Double-exponential models are presented by dashed and dotted curves. The
full line shows the power-law behaviour with the slope −2. As the filtering
scale decreases in value, the PDF becomes wider and approaches the power
law.

wider and becomes a power law with the slope close to −2 that is
smoothly suppressed on small and large densities.

3 ME T H O D O L O G Y

Different analytical approximations and theoretical models, as men-
tioned in Section 1, are used to fit and make predictions for the PDF
estimates obtained from numerical simulations. Here we describe
both approaches.

3.1 PDF analytical approximations: lognormal, negative
binomial, and generalized extreme value

We introduce the lognormal, negative binomial, and the general-
ized extreme value (GEV) distributions that have been traditionally
adopted as analytical approximations for the PDF in many works.

The log-normal (LN) distribution function PLN is defined
as

ρPLN(ρ) = 1√
2πσ 2

LN

exp

(
− [ln(ρ) + σ 2

LN/2]2

2σ 2
LN

)
, (5)

where

σ 2
LN = ln[1 + σ 2]. (6)

is the only free parameter. σ 2
LN can be obtained from results of

simulations, and thus should be considered as fixed.
Because the lognormal distribution does not provide accurate

fits to numerical simulations, a number of modifications have been
proposed (Hamilton 1985; Colombi 1994; Shin et al. 2017). None
of those modifications extend the approximation to large densities,
hence we do not discuss them in this paper.

The negative binomial (NBN) distribution (Betancort-Rijo
2000; Gaztañaga et al. 2000; Bel et al. 2016) is defined as a
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discrete distribution. It is the probability PN(V) to find N parti-
cles in a cell of volume V with the average number of particles N̄ .
It can be re-written as a distribution function of density contrast
ρ = N/N̄ :

PNBN(ρ) = 1

N̄
· �(N + 1/g)

�(1/g)�(N + 1)
· (gN̄)N

(1 + gN̄ )N+1/g
, (7)

where g is a parameter that is defined by rms fluctuations of counts:
g = (σ 2

N − N̄)/N̄2. The average number of particles per cell N̄ in
general is not an integer number and is defined by the average
density and cell volume: N̄ = ρ̄V . So the two parameters g and N̄

that define the NBN distribution are not free and can be fixed from
simulations. However, for PDFs with not too small rms fluctuations
(σ � 1), the fits produced by this distribution are not very accurate.
As a result, we decided to treat both N̄ and g as free parameters.

While the negative bimodal distribution formally has two param-
eters, there is little change in PNBN when N̄ > 10. For cases where
NBN makes some reasonable fits, our simulations have typical val-
ues of N̄ of many hundreds. So, in practice, the NBN PDF depends
only on one parameter g, which defines the width of the distribution
function: the larger is g, the wider is P(ρ).

At large average number of objects in a cell N̄ � 1 and for large
N > N̄ the NBN approximation predicts that the density distribu-
tion changes with density ρ = N/N̄ as follows

PNBN(ρ) ≈ 1

N̄1/g�(1/g)
ρ1−1/g exp

(
−ρ

g

)
. (8)

This expression is very different compared to the behaviour of the
PDF observed in N-body simulations for large ρ and σ : in that
regime P(ρ) ∝ ρ−2exp (−Cρ0.5). Thus, the NBN approximation
predicts too steep a decline with density and lacks the power-law
regime of the N-body PDF.

A GEV distribution as an approximation for the density distribu-
tion function was used by Lee et al. (2017) and Repp & Szapudi
(2018). It can be written as

ρPGEV(ρ) = 1

ln(10)β

exp(−z−1/k)

z1+1/k
, z ≡ 1 + k

β
lg10

(
ρ

ρ0

)
, (9)

where k, ρ0, and β are free parameters.

3.2 Spherical infall and double-exponential PDF models

Approximations discussed so far were not based on any dynamical
models. They simply make a guess regarding the functional form
of P(ρ) and then proceed to finding parameters that produce the
best fit. The guess is not based on any insights from the dynamics of
clustering either. Spherical infall models are different because they
are theoretical predictions for the density distribution function that
are based on simplified approximations of the non-linear evolution
of the density field. Here we closely follow the theoretical frame-
work developed by Betancort-Rijo & López-Corredoira (2002) and
Lam & Sheth (2008a). We assume that the linear density field was
smoothed with a top-hat filter with radius Rf and corresponding
mass M. The variance of the smoothed field is equal to

σ 2
L(M) = 1

2π2

∫
k2dkP (k)W 2(kR). (10)

In the spherical infall model the mapping from linear density con-
trast δL to the non-linear overdensity ρ is approximated by the
following relation (Betancort-Rijo 1991; Bernardeau 1994):

ρ =
(

1 − δL

δc

)−δc

, ρ ≡ M

M̄
, M̄ = ρb�x3, (11)

where δc is the linear theory prediction for the critical overdensity
of collapse. Here we will use δc = 5/3 as suggested by Betancort-
Rijo & López-Corredoira (2002). For the initial Gaussian fluctua-
tions, this model gives the density distribution function:

ρ2P (ρ) = 1√
2π

exp

(
− δ2

L

2σ 2
L

)
d(δL/σL)

d ln ρ
. (12)

This is the same as equation (6) in Lam & Sheth (2008a). We also
use a modification of the spherical infall model, which is based on
the excursion set model (Sheth 1998; Lam & Sheth 2008a):

ρ2P (ρ) = 1√
2πσ 2

L

exp

(
− δ2

L

2σ 2
L

) [
1 − δL

(
1

δc

− γ

3

)]
, (13)

where γ (ρ) is

γ = −3
d ln σ 2

L

d ln M
. (14)

Note that in these equations σ L is a function of filtering mass M,
which in turn depends on density ρ = M/M̄ . So, σ L = σ L(ρ).

In order to apply the models, we need to adjust the top-hat filtering
scale Rf used in the spherical infall model so that it matches the
Cloud-In-Cell filtering scale used in our simulations. This is done
by matching the power spectra of both filters at wavenumbers k
< 0.7kNy by applying Rf = �x/

√
1.3, where kNy = π/�x is the

Nyquist frequency of the density grid used for density assignment,
and �x is the grid size. Specifically, for every bin with density ρ we
find the mass M = ρM̄ and then the top-hat filtering radius is found
as Rf = √

2 [3M/4πρcr�m]1/3. When applying the relations given
in equations (10–14), we integrate numerically equation (10) (4)
with the top-hat filter W(kRf) and use finite differences to estimate
the derivatives in equation (12) and equation (14).

As was found previously (e.g. Betancort-Rijo & López-
Corredoira 2002; Lam & Sheth 2008a,b; Neyrinck 2016), the
spherical infall model provides good approximations for the PDF
in those cases with large filtering scales where the rms fluctuation
in the simulation box σ (M) is relatively small σ � 1. This is
consistent with our results, which will be presented later. At larger
σ (large densities), the model provides results that are much less
accurate. Even so, the spherical infall model predicts trends that
track our N-body results. This is somewhat unexpected because
at large overdensities ρ � 102 the model is clearly outside of the
limits of its dynamical applicability. After all, a simplistic treatment
of non-linear evolution used by the model cannot be valid for
densities that are appropriate for collapsed and virialized haloes.

It is interesting and instructive to find what makes the spherical
infall model much better than expected. The last factor in equa-
tion (12) is just a correction to the leading terms that are the power-
law P ∝ ρ−2 (see also Fig. 1) and the exponential term on the right
hand side of equation (12). The exponential term originates from
the assumption that the density distribution function of primordial
fluctuations is Gaussian. The ρ−2 term comes from integrating the
Gaussian distribution function over mass and then by writing it in
a differential form. This is basically the same logic as in the Press–
Schechter derivation of the mass function of dark matter haloes.

More in detail, we see that the exponential term provides the
truncation of the P ∝ ρ−2 behaviour both on the low-density
ρ < 1 and on the high-density ρ � 1 regimes. At low densities
(small masses, large σ L), the truncation is mostly due to large nega-
tive values of δL. At large ρ (large masses and small σ L) the decline
is related to the combination of decreasing σ L and increasing δL.
However, the increase of δL is limited: it cannot exceed δL, max =
δc = 5/3, and the decline in σ L is not strong enough by itself
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Figure 2. Density distribution function scaled with ρ2 at z = 0 for different
filtering scales indicated in the plot. Full curves show the results from our
simulations. Double-exponential models are presented by dashed and dotted
curves. As the filtering scale decreases in value, the PDF becomes wider
and approaches the power law.

to produce a substantial suppression of the PDF. So, the ρ2P(ρ)
shape becomes nearly flat at very large densities ρ > 100 and small
smoothing scales �x � 1 h−1 Mpc. This is clearly seen in Fig. 2.

At very small smoothing scales �x � 1 h−1 Mpc and large
densities there is another regime that sheds light on how the density
distribution function should behave at very large densities. When
density is larger than ∼100, we are likely to deal with interiors of
collapsed dark matter haloes. In this regime the distribution function
P(ρ) is a sum over the distribution functions of individual haloes.
Assuming that the density profile of a halo can be approximated
by the Navarro–Frank–White (NFW) profile, and for a very small
filtering scale, we can can derive the PDF provided by a single
halo. If ρ(r) is the halo density profile, then the density distribution
function given in equation (2) can be written as

P (ρ)dρ = dV /V , (15)

where dV/V is a fraction of volume with density in the range (ρ, ρ

+ dρ). The density dependence on radius can be inverted to give us
the radius at a given density r = r(ρ). Then PDF in equation (15)
takes the form,

P (ρ) = −4πr2(ρ)

V

dr(ρ)

dρ
. (16)

This can be applied, for example, to the NFW profile as was exten-
sively done by Pandey et al. (2013). It is easy to see the trend, if
the density profile is a power-law ρ ∝ r−α with the slope α. In this
case

ρ2P (ρ) ∝ ρ1−3/α. (17)

In the outer regions of a dark matter halo the density declines as
a power law with the slope α ≈ 3, which implies that ρ2P(ρ) ≈
constant. It is easy to invert the NFW profile numerically. Results
show that for the halo masses in the range M = (1012−1015) h−1M�
the product ρ2P(ρ) is nearly constant for overdensities ρ = 102−104

and declines at much larger densities. This decline is consistent with

the fact that the slope α becomes smaller at radii comparable with the
characteristic scale radius rs of the NFW profile. Adding results for
many haloes with different masses and concentrations will change
the behaviour of the ρ2P(ρ) trend at ρ > 104, but not for the range
ρ = 102−104, where it should remain flat because it is also flat for
each halo.

In summary, both the spherical infall model and the dark matter
halo profiles indicate that the leading term in the density distribution
function should be P(ρ) ∝ ρ−2. The trend should be modified by
adding suppression on large and small scales.1 However insightful,
the spherical infall model or the NFW results at large densities can-
not be used to produce accurate results for the density distribution
function. We use those hints to construct our own approximation
for the PDF P(ρ).

Motivated by these results and by our simulations, we design
our own model. It is nearly a power-law P(ρ) ∝ ρ−α with the
slope α ≈ 2 that is truncated with exponents on both the small
and large densities. We call this model double-exponential. We
tested different shapes for the exponential terms and find that the
following expression provides errors less than few per cent at all
redshifts, smoothing scales, and cosmologies that we study:

P (ρ) = Aρ−α exp

[
−

(
ρ0

ρ

)1.1
]

exp

[
−

(
ρ

ρ1

)0.55
]

, (18)

where A, α, ρ0, and ρ1 are free parameters. As noticed above, the
slope α ≈ 2. The slopes in the exponential terms 0.55 and 1.1 are
results of the fitting of numerical PDFs at different smoothing scales
and redshifts. One may expect that adding two more free parameters
to the approximation (i.e. the slopes in the exponential terms) may
further improve the quality of the fits. We find that this is not the
case: the data prefer the same slopes, regardless of the value of σ .

The double-exponential model has four formal free parameters.
One may use three constraints to limit the parameters: the total
mass and volume should be equal to unity (see equation 3), and
the second moment of the PDF should be equal to σ measured in
simulations (see equation 4). Note that there must be a degree of
freedom left after fixing the constraints otherwise the model would
not be able to reproduce the numerical results that show that the
PDF is not defined solely by σ , and depends on both the redshift
and �m. The double-exponential model has this additional degree
of freedom.

In practice, we use all four parameters to fit the numerical data.
We typically find that the best-fitting parameters provide PDF ap-
proximations that within 1–2 per cent conserve the mass and match
well the numerical value of σ measured in the simulations. The
volume is conserved within 1–5 per cent accuracy.

4 SI M U L AT I O N S

Numerical parameters of our simulations are presented in Table 1,
which gives box size, the number of particles, mass of a particle
mp, the number of mesh points N3

g (if relevant), cell size of the

1Our results are in broad agreement with analysis of the density distribu-
tion function in Millenium simulations by Pandey et al. (2013) though the
comparison is complicated by the fact that Pandey et al. (2013) used adap-
tive kernel to find density at position of each particle while we are using a
constant kernel (a cube) with volume-weighted PDF. Mass-weighted PDF,
in combination with volume assigned to each particle V ∝ 1/ρ, gives the
difference −2 in the slopes of P(ρ). Indeed, Pandey et al. (2013) find that
for a wide range of densities ρ ∼ 10−1−104 their PDF is nearly constant.
That correspods to P(ρ) ∝ ρ−2 for our definition of PDF.
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Table 1. Numerical and cosmological parameters of different simulations. The columns give the simulation identifier,
the size of the simulated box in h−1 Mpc, the number of particles, the mass per simulation particle mp in units h−1 M�,
the mesh size N3

g, the gravitational softening length ε in units of h−1 Mpc, the number of time-steps Ns, the amplitude
of perturbations σ 8, the matter density �m, the number of realizations Nr.

Simulations Box particles mp N3
g ε Ns σ 8 �m Nr

A0.5 5003 12003 6.16 × 109 24003 0.208 181 0.822 0.307 680
A1.5 15003 12003 1.66 × 1011 24003 0.625 136 0.822 0.307 4513
A2.5 25003 10003 1.33 × 1012 20003 1.250 136 0.822 0.307 1960
B0.5 5003 16003 2.66 × 109 32003 0.156 271 0.828 0.307 5
D0.5 5003 16003 2.33 × 109 32003 0.156 271 0.828 0.270 5
MDPL1 10003 38403 1.5 × 109 – 0.010 – 0.828 0.307 1
BolshoiP 2503 20483 1.5 × 108 – 0.001 – 0.828 0.307 1

density/force mesh ε, the number of time-steps Ns, cosmological
parameters σ 8 and �m, and number of realizations Nr.

In order to estimate the density distribution function, we split
each simulation box with a 3 − D mesh with the cell size �x. We
then use the Cloud-In-Cell (CIC) density assignment to generate the
density field. Many filtering sizes �x were used for each simulation
and snapshot.

Different codes were used to make those simulations. The Mul-
tiDark 1Gpc/h simulation (MDPL1) (Klypin et al. 2016) was
done with the GADGET-2 code (Springel 2005). The ART code
(Kravtsov, Klypin & Khokhlov 1997) was used to produce the Bol-
shoiP simulation (Klypin, Trujillo-Gomez & Primack 2011). These
two simulations have the largest resolution and the largest number
density of particles. However, there are only two of these simula-
tions because they are very expensive computationally. Other simu-
lations were carried out with the parallel Particle-Mesh code GLAM
(Klypin & Prada 2018). Because the GLAM code is much faster,
we have many realizations of the same cosmological and numerical
parameters. Simulations B0.5 and D0.5 were designed for testing
possible dependence of the PDF on the matter density �m. These
simulations have the same random seeds to make comparisons of
results easier.

All the simulations were started at initial redshift zinit = 100
using the Zeldovich approximation. The simulations span three
orders of magnitude in mass resolution, a factor of hundred in force
resolution, and differ by a factor of 500 in effective volume (see
Table 1). Altogether, we use about 7000 simulations to study the
density distribution function. To our knowledge, this is the largest
set of simulations available today for this type of analysis.

Analysis of different numerical effects in the estimates of the PDF
is presented in Appendix A. In summary, our results are mostly dom-
inated by systematics, not by the finite-volume simulation variance.
When dealing with individual simulations such as MDPL1 or Bol-
shoiP, we use only bins with more than N > 100 cells per bin. For
the large sets of simulations A0.5, A1.5, A2.5 we accept bins with
more than 10 cells. The discreteness of density assignment may
become an issue at small densities while the force resolution may
affect the high-density tail of the PDF. We find limits on numerical
parameters that should be satisfied to produce the P(ρ) with errors
less than few per cent: (1) the filtering scale �x must be resolved
with not fewer than 8 force resolution elements: �x > 8ε, and (2)
the number of particles per filtering cell should be not less than
10–20.

5 PD F : MA I N TR E N D S

The overall dependence of P(ρ) on filtering scale and rms density
fluctuation σ is illustrated in Figs 1 and 2. Full curves in the plots

show the results from our simulations. At small σ and large �x
the PDF has a peak at ρ ≈ 1 that shifts to smaller densities as σ

increases (and smoothing scale �x decreases). At the same time
the distribution function becomes extremely wide and develops a
distinct ρ−2 power-law trend that expands to both large and small
densities. By scaling out the ρ−2 dependence (Figs 2), we reduce the
dynamical range and can see better details of the PDF. In particular,
we find a very steep decline of ρ2P(ρ) on both high- and low-density
tails. The double-exponential model equation (18) was tuned to
find the shape of both declines. Our results for different filtering
scales and different redshifts show that the decline at the large-
density limit is ∝ exp [ − (ρ/ρ1)ν] and at the small-density limit it is
∝ exp [ − (ρ/ρ0)−2ν] with ν ≈ 0.55.

Note that at very large σ � 10 the peak of ρ2P(ρ) has a nearly
constant amplitude ρ2P(ρ) ≈ 0.11 but the position of the peak shifts
to larger values of ρ. Because the total mass must be preserved
(
∫

ρP(ρ)dρ = 1), this implies that at intermediate scales ρ ≈ 1–100
the PDF P(ρ) should decline when σ increases, and that the slope α

in equation (18) must become slightly shallower with increasing σ .
It is often taken for granted that the PDF depends only on the

amplitude of the density perturbations on a given filtering scale σ .
Indeed, this is the dominant behaviour of P(ρ). However, this is
not exactly correct. Our simulations have such a good accuracy that
now we can test the dependence of the PDF on redshift at fixed σ

and on cosmological parameters.
We first select redshifts and smoothing scales in such a way that

σ for two different redshifts are nearly identical. Fig. 3 presents two
examples of such cases – one for relatively low σ ≈ 1 and another
for larger σ ≈ 4. The differences between PDFs at the same σ and
different z are not large: 5–10 per cent depending on the density
where the differences are measured. Nevertheless, the differences
clearly exist. We also estimate the differences using the spherical
infall model and present the results in the right-hand panel of Fig. 3.

The PDF also slightly depends on parameters of the cosmolog-
ical model. In the left-hand panel of Fig. 4 we compare z = 0
results for the B0.5Gpc and D0.5Gpc simulations that differ only
by the matter density parameter �m. Again, differences are small
but clearly present at ∼5 − 10 per cent level. The right-hand panel
shows predictions for the spherical infall model with the same basic
conclusion: PDF does depend on �m.

One can understand why the PDF depends on z and �m, if one
realizes that at any given density ρ the value of P(ρ) is formally
a functional on the non-linear power spectrum. This means that it
depends not only on σ (R) but also on the whole shape of the power
spectrum. We can analyse the situation by assuming that P(ρ) de-
pends just on σ L(R) (see equation 10) and on its local logarithmic
derivative γ at scale R as defined by equation (14). Then the de-
pendence of the PDF on redshift for a fixed value of σ L(R) can be

MNRAS 481, 4588–4601 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/481/4/4588/5107359 by U
niversidad de G

ranada - Biblioteca user on 06 April 2020



4594 A. Klypin et al.

Figure 3. Dependence of P(ρ) on redshift at fixed rms amplitude of perturbations σ . Two left-hand panels show examples for different redshifts and for
different σ in the N-body simulations. In each case we select nearly identical σ . The left-hand panel is for relatively small σ ≈ 1 and for z > 0.5. The middle
panel is for high σ and z < 0.5. The distribution function clearly depends on redshift though the differences are relatively minor for low redshifts. The right-hand
panel presents analytical estimates based on the spherical infall model for the same parameters selected for the left-hand panel. The model reproduces the same
trend of P(ρ) with redshift.

Figure 4. Dependence of P(ρ) on the cosmological matter density �m. Dashed (full) curves show results for models with �m = 0.307 (�m = 0.270) at z =
0 for different filtering scales. Other cosmological parameters are the same for both models. The left-hand panel presents comparison of N-body simulations
B0.5 and D0.5. The right-hand panel shows results of the spherical infall model. The density distribution function weakly but systematically depends on �m

with ∼5 per cent deviations at different densities.

explained, because at larger redshits the given value of σ L is attained
at a smaller scale R, where σ L(R) is less steep for a CDM-type power
spectrum.

If we look at different terms for ρ2P(ρ) in equation (12), then
we note that σ L in the argument of the exponential term is also
a function of ρ (falling faster with ρ as γ grows). So, for larger
values of γ the PDF will be smaller for large ρ values, where
the exponential behaviour dominates, while for small values of ρ

it will be larger. The derivative in the right hand side of equa-
tion (12) also depends on γ : it will be larger for larger γ val-
ues. However, it is only important for the intermediate values of
density, where the behaviour can qualitatively be explained by
the behaviour in the extremes and the conservation of probabil-
ity. In short, this all implies a smaller PDF in the low ρ limit and

a larger one in the large ρ limit as compared to the PDF at smaller
redshift.

The same qualitative behaviour would be observed for smaller
values of �m when studying the dependence of the PDF on �m at a
given redshift: as �m decreases the power spectrum flattens (up to
scales of the order of the horizon at the start of matter domination),
leading to a less steep σ L.

6 PDF: TESTING D IFFERENT
APPROX I MATI ONS AND MODELS

We start our analysis of different approximations by testing the
spherical infall model and the lognormal distribution. Both models
are expected to work and typically used for relatively low rms
fluctuations σ � 1.

MNRAS 481, 4588–4601 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/481/4/4588/5107359 by U
niversidad de G

ranada - Biblioteca user on 06 April 2020



PDF of the matter density field 4595

Fig. 5 shows results for two modifications of the spherical infall
model. We select five configurations with different filtering scales, σ
and redshifts. There are some differences between the pure spherical
infall model in equation (12) and the excursion set model in equa-
tion (13). For example, the excursion set model produces smaller
errors at ρ < 1 and σ ≈ 1. At the same time, it makes visibly larger
errors at ρ > 1. For this reason we prefer the standard spherical in-
fall model. It provides smaller than 10 per cent errors for points that
are larger than 0.1 of the maximum of the PDF. The error increases
substantially in the peripheral regions. If better accuracy is required
for the small values of the PDF, one would need to use results of
N-body simulations, not the approximations.

Results for the lognormal distribution are shown in Fig. 6, where
in the left-hand panel we present z = 0 results, and results for dif-
ferent redshifts are shown in the right-hand panel. It is clear that the
lognormal distribution produces much worse fits as compared with
the spherical infall model. For example, errors in the central region
are less than 10 per cent only for σ < 0.5. They become dramatically
worse for even slightly larger σ . For σ > 1 the lognormal distribu-
tion makes typically ∼50 per cent errors and, which is even worse,
predicts a wrong shape of the PDF. It predicts a wrong position of
the maximum; slopes of the declining PDF are not correct.

The lognormal distribution has two advantages as compared with
the spherical infall model: (a) It is simple and does not require the
machinery of handling the power spectrum and numerical deriva-
tives. (b) It makes mediocre predictions that do not totally fail. We
definitely recommend it for quick-and-dirty applications, but not
for accurate estimates.

Left-hand panels in Fig. 7 show results for the Negative Bino-
mial distribution given by equation (7). For the large smoothing
scale �x = 20 h−1 Mpc it provides a reasonable fit with errors
∼10 per cent for densities ρ = 0.4–2.5. However, it is clear that it
has a wrong shape: too steep at large densities and too shallow at
small densities. This becomes a serious issue for large values of σ .
For example, we could not find any good fit for �x = 5 h−1 Mpc
shown in the bottom panel. It may not be fair to use the NBN for the
dark matter PDF because we are in a regime that was not favourable
for the NBN: study configurations with a very large number of par-
ticles per cell while the NBN was designed to handle very small
number N̄ .

The GEV approximation equation (9) scored much better, as illus-
trated in the right-hand panels of Fig. 7. Indeed, it provided excellent
fits for σ � 2 with errors less than 10 per cent and even for larger σ it
gives very good accuracy, but it starts to fail catastrophically at very
large densities. Lee et al. (2017) tested this approximation for PDF
for the Bolshoi simulation. Their results are compatible with ours.
However, it seems that Lee et al. (2017) did not pay attention to the
situation at large densities, where the GEV becomes unacceptable.
It still can be useful for low densities, but the problem is that there
is no a priori estimate at what density and σ the GEV fails.

Comparison of the double-exponential model with the N-body
results has been already presented in Fig. 1. More detailed analysis
is shown in Fig. 8. Parameters of the fits for different smoothing
scales and redshifts are given in Appendix B. Of all approximations
studied in this paper the double exponential model is by far the best.
It provides very accurate (few per cent) fits for σ � 1 with densities
ρ ≈ 10−1−105. With somewhat larger errors it still works down to
σ ≈ 0.5. To some degree the success of the approximation is not
surprising because it was designed to reproduce the main features
of the spherical infall model and the PDF of individual NFW halo
profiles that predict the P(ρ) ∝ ρ−2 trend for large densities. And,
of course, the parameters of the approximation – the two power-law
slopes – were tuned to produce best fits.

However, it is unexpected that the exponential terms in equa-
tion (18) should have the same power-law slopes 0.55 and 1.11 for
all densities and smoothing scales, respectively. Indeed, we tried
different combinations of the slopes – even with changing values
of the slopes for different σ – and did not find them to improve
the fits. There is one problem with the constant slopes, though the
approximation cannot work for a very small σ where the PDF must
become a Gaussian. Equation (18) does not allow a transition to a
Gaussian distribution. This is not a serious issue because at σ � 1
the spherical infall model provides an adequate approximation for
the dark matter density distribution function.

7 C O N C L U S I O N S

Using a large suite of cosmological N-body simulations, we study
the shape and the evolution of the dark matter 1-point PDF. Unlike
most of other studies, we cover a very large range of smoothing
scales R = 100 h−1 kpc − 20 h−1 Mpc and rms density fluctuations
σ . We find that as σ increases, the PDF becomes a power-law
P ∝ ρ−2, which is truncated with exponential terms on both small
and large densities. The same qualitative results were previously
found by Bouchet et al. (1991), Bouchet & Hernquist (1992), and
Platen (2009). This trend is consistent with the extrapolation of both
the spherical infall model and the PDF expected at high densities
for the NFW density profile of dark matter haloes.

The PDF weakly depends on redshift (at fixed σ ) and on matter
density �m. The effect is relatively small (∼5 − 10 per cent) but is
clearly observed in simulations. The spherical infall model also has
the same trend. This behaviour contradicts analytical approxima-
tions such as the lognormal or the GEV that assume that the PDF
should depend only on σ .

The basic trend P ∝ ρ−2 gives us a motivation to construct a new
model given in equation (18), which we call double-exponential
distribution. It formally has four free parameters of which two can
be fixed by requiring that the total volume and mass must be equal to
unity. The model works only for σ � 1 and does not allow the transi-
tion to a Gaussian distribution as expected for σ � 1. Nevertheless,
for σ � 1 the model gives the best performance of all approxima-
tions that we tested in this work, with errors of just few per cent for
P(ρ) when the PDF changes by 12 orders of magnitude. Parameters
of the double-exponential model are provided in Appendix B. The
model potentially may be modified by adding few extra parameters
to allow for accurate treatment at small σ . We did not try to do it for
two reasons: (1) the spherical infall model gives accurate enough
treatment for this regime and (2) it is cheap to make adequately
accurate N-body simulations for σ < 1 if needed.

The spherical infall model provides accurate predictions for the
N-body PDF results for low values of σ < 1, but it becomes less
reliable for larger σ , which is expected for this model. The com-
bination of the double-exponential model at large rms fluctuation
with the spherical infall model in the small rms regime yields a re-
markably accurate density distribution for all regimes of clustering
of the cosmological matter field.

We also tested different analytical approximations. The often-
used lognormal distribution, as was shown before, does not make
good fits and needs significant modifications before it can provide
accurate results. It is pretty much useless for large densities because
it does not provide a path to explain the main trend at large densi-
ties, i.e. the power-law trend P ∝ ρ−2. It clearly has an advantage
of being simple, and it does not fail catastrophically as shown in
Fig. 6. Our results for σ < 1 demonstrate that the lognormal ap-
proximation always made significantly worse fits as compared with
the spherical infall model predictions. In addition, the lognormal
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Figure 5. Accuracy of spherical infall model in the regime of σ � 1. The left-hand panel presents results for the approximation equation (12). The right-hand
panel is for equation (13). We select different redshifts and different filtering scales. Full curves in the bottom panels show results of simulations, while the
dashed curves are for the analytical approximation. The top panels present relative errors of the approximations.

Figure 6. Accuracy of the lognormal distribution. Left: Results for different smoothing scales at z = 0. Right: Results for different redshifts. The lognormal
distribution provides accurate fits (less than 10 per cent errors) only for a very limited range of densities and σ . Comparison with the predictions of the spherical
infall model in Fig. 5 shows that the lognormal fits for σ < 1 always give errors 2–3 times larger than the spherical infall model. To make things worse, the
lognormal distribution has a wrong shape. It predicts wrong position of the maximum; slopes on both ends of the PDF are also incorrect. The only advantages
of the lognormal fits are that it is very simple and that it never fails catastrophically.

approximation cannot accomodate the dependence of the PDF on
redshift and �m, while the spherical infall model nicely reproduces
the effect.

The GEV approximation scores much better than the lognormal
distribution. Even for a large σ ≈ 10 it gives remarkably accurate
results for densities up to ρ ≈ 103. However, the approximation fails
catastrophically at larger densities, and there is no obvious way to
predict at what density it still works or fails.

While it is useful and insightful to have analytical models for
the PDF, one does not really need them if ∼1 per cent accuracy
is a requirement and σ � 0.5. Then there is no alternative to

N-body simulations: one can get very accurate, fast, and cheap
results. The cost of one GLAM A0.5 simulation is just 3.5 h of wall
clock on a modest data server (Klypin & Prada 2018). For the B0.5
run it is 10 h. In this paper we analyse thousands of realizations,
but this was to prove that one does not need those to make accurate
PDF: just a few realizations are enough. However, one needs to be
careful about numerical effects when using these fast Particle-Mesh
simulations. Klypin & Prada (2018) provide detailed description
of constraints for the simulations, and Appendix A in this paper
gives prescriptions on how to use the N-body simulations to reach
∼1 per cent accuracy in the PDF.
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Figure 7. Accuracy of different analytical approximations. PDF of N-body simulations are taken at z = 0. Left: Negative BiModal (NBN) fits (equation 7)
are shown as thin cuves labeled by values of g parameter used to make the fits. N-body results are the thick lines. NBN provides a reasonable fit (∼10 per cent
accuracy for ρ = 0.4–3) for large cell sizes corresponding to low rms fluctuations σ < 0.5. The bottom panel shows an example of NBN fits for large σ . It does
not provide a good fit, regardless of what value of g is used. Right: Results of fitting with the GEV distribution. Full cuves in the bottom panel show N-body
results; GEV fits are the dashed curves. GEV provides much more accurate fits as compared with the lognormal or NBN approximations. However, it fails at
very large densities for small cell sizes.

Figure 8. Accuracy of the double-exponential model given by equation (18). The left-hand panels show results for z = 0. Results of fits for different redshifts
are presented in the right-hand panel.
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Gaztañaga E., Fosalba P., Elizalde E., 2000, ApJ, 539, 522
Hamilton A. J. S., 1985, ApJ, 292, L35
Hubble E., 1934, ApJ, 79, 8
Hurtado-Gil L., Martı́nez V. J., Arnalte-Mur P., Pons-Borderı́a M.-J., Pareja-

Flores C., Paredes S., 2017, A&A, 601, A40
Kitaura F.-S. et al., 2016, MNRAS, 456, 4156
Klypin A., Prada F., 2018, MNRAS, 478, 4602
Klypin A., Prada F., Comparat J., 2017, preprint (arXiv:1711.01453)
Klypin A. A., Trujillo-Gomez S., Primack J., 2011, ApJ, 740, 102
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APPENDI X A : NUMERI CAL EFFECTS:
FI NI TE-VO LUME VA RI ANCE, MASS, AND
F O R C E R E S O L U T I O N

Numerical effects may play an important role for the estimates of
the density distribution function. We start with the analysis of the
effects of the variance due to the fine volume of the simulations. We
use the GLAM simulations A0.5 with small cell �x = 0.83 h−1 Mpc
and A1.5 with larger cell �x = 0.5 h−1 Mpc to estimate the level
of fluctuations in different realizations. Bottom panels in Fig. A1
show the average values of ρ2P(ρ) and the statistical fluctuations
of a single realization. As expected, the fluctuations due to the fine-
volume simulation variance are larger for very large densities and
become very small for ρ ≈ 0.5–10.

The middle panels present relative fluctuations �P/〈P〉, where
〈P〉 is the average PDF over an ensamble of realizations and �P
is the rms deviation. The vertical dotted lines at large ρ show the
density bin with 100 cells in a single realization. At this density the
level of statistical fluctuations �P/P is about 0.1, which is consistant
with the expected shot noise. We clarify this situation by plotting in
the top panels the relative fluctuations scaled with N1/2, where N is
the number of cells of given density in a bin. Indeed, the fluctuations
are defined by the number of cells in a bin for large densities.

The situation is different at small densities ρ � 1, where the fluc-
tuations become substantially stronger than the Gaussian �P/P =
N−1/2. This is likely related with the increasing noise in the density
field due to too few particles per cell n. The vertical dotted lines on
low densities show the bin at which n = 10.

In spite of being strongly non-Poissonian at small densities,
the errors are still very small. For example, at ρ = 0.1 for the
A0.5 simulations the errors are just ∼2 per cent for a single re-
alization (right-hand panels). Note that the fluctuations plotted in

Figure A1. Statistical errors of the density distribution function P(ρ) due to the finite-volume simulation variance. Results are shown at z = 0 for the GLAM
A1.5 (left) and A0.5 (right) simulations with different cell sizes. The middle panels present the rms fluctuations �P/P of a single realization. The errors of the
mean P(ρ) are significantly lower because these simulations have a very large number of realizations. The top panels show the rms deviations scaled with

√
N ,

where N is the number of cells in a bin of P(ρ). For densities that are probed with a large number of particles, the rms fluctuations are defined by the number
of cells per bin of ρ. The fluctuations are substantially non-Gaussian for bins with a number of particles n per bin less than 10.
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Figure A2. Comparison of density distribution functions estimated in simulations with different box sizes and resolutions. Left: Example of numerical
convergence for the cell size �x = 1.25 h−1 Mpc at z = 0. Insufficient force resolution reduces the amplitude of P(ρ) at large densities. As the force resolution
increases, the results converge. In order to have errors less than few per cent the ratio of the cell size �x to the force resolution ε should be larger than
∼8. At small densities the noise due to the finite number-density of particles can produce large errors. The vertical lines at the top of the panel show the
density ρone that a single particle produces when placed at the center of the cell. The bump in the A2.5 curve at ρ � ρone is due to large discreteness effects:
for this cell size the A2.5 simulations did not have enough particles. Right: The same as for the left-hand panel, but now for better force resolution �x/ε
and for larger number-densities of particles. To facilitate detailed comparisons, the top panel shows deviations of P(ρ) from the same analytical fit. Results
indicate that the box size does not affect the density distribution. However, the force resolution has a tendency to reduce the amplitude of P(ρ) at very large
density ρ.

Fig. A1 provide average deviations of a single realization from
the ensamble average. Errors of the average P(ρ) are signifi-
cantly smaller. For example, for the A1.5 simulations (left-hand
panels) the error of the mean at ρ = 60, N = 100 is just ∼0.1 per cent.

In summary, our results are mostly dominated by systematics,
not by the variance. When dealing with individual simulations such
as MDPL1 or BolshoiP, we use only bins with more than N > 100
per bin. For large sets of simulations A0.5, 1.5, 2.5 we accept bins
with more than 10 cells.

In order to evaluate other possible numerical effects, we select
two filtering scales �x = 1.25 h−1 Mpc and �x = 5 h−1 Mpc and
analyse P(ρ) at z = 0 obtained from different simulations. The two
filtering scales probe different dynamical regimes. For �x = 1.25
h−1 Mpc the rms density fluctuation is large σ ≈ 5. So, we are
testing very non-linear regime with densities up to 1000. The larger
filtering scale �x = 5 h−1 Mpc probes more modest fluctuations
with σ ≈ 1.5 and densities ρ = 0.1–100.

By comparing these results, we test the effects of the finite box
size (ranging from 500 h−1 Mpc to 2500 h−1 Mpc), the effects of
force resolution �x/ε (ranging from 1 to 500) and the discreteness
effects associated with the finite number of dark matter particles.
The later can be characterized by the density ρone produced by a
single particle placed at the node of a cell:

ρone =
(

L

�xNp

)3

, (A1)

where N3
p is the number of particles and L is the size of the simula-

tion box. Vertical lines in the left-hand panel of Fig. A2 show ρone

for different simulations. Values of different parameters are also
given in Fig. A2.

We use the left-hand panel in Fig. A2 to demonstrate two numer-
ical effects. At large densities ρ � 50 the discreteness effects are

small even for the A2.5 simulations and the results are dominated
by the force resolution. Here we find a trend that is expected for
simulations with low force resolution: the PDF increases with in-
creasing force resolution. However, there is little difference between
simulations when the resolution becomes sufficiently high: the PDF
for B0.5 simulations with eight resolution elements across one cell
(�x/ε = 8) is nearly the same as for the much high-resolution simu-
lation MDPL1 with �x/ε = 125. This is a signature that the results
have converged.

The discreteness of density assignment becomes an issue at small
densities as is clearly seen in Fig. A2 for ρ � 10. The A2.5 simula-
tions provide a good example on how the particle noise affects the
PDF. There is a large bump in ρ2P(ρ) at densities slightly below
ρone. At much smaller densities ρ ≈ 0.1ρone the PDF falls much be-
low the real one. The effects of the particle noise extend to densities
above ρone but quickly die out beyond ρ ≈ 10ρone.

The right-hand panel in Fig. A2 shows better convergence of
P(ρ) because we select simulations that have better force resolu-
tion and smaller level of the particle noise. In order to see the
differences more clearly, we make a fit to the data, and on the top
panel plot we show only the deviations from the fit. The A2.5
data still fall below the more accurate MDPL1 results at both
small densities (effects of the particle noise) and large densities
(effects of the force resolution). The A1.5 data show much smaller
errors.

Using the results presented in Fig. A2 and similar results of
the comparison between different simulations (e.g. comparison of
BolshoiP and MDPL1), we find limits on numerical parameters that
should be satisfied to produce a PDF P(ρ) with errors less than a
few per cent:

(a) the filtering scale �x must be resolved with not less than 8
force resolution elements: �x > 8ε, and (b) the number of particles
per filtering cell should be not less than 10–20: ρ > (10–20)ρone.
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Figure A3. Dependence of the parameters of the double-exponential approximation, equation (18), on the rms density fluctuation σ . Different symbols
represent results of fitting the PDFs for different simulations at redshifts z = 0–1. The only parameter that depends on redshift is the slope α. Curves in the
plots are approximations B1-5 in Appendix B.

A P P E N D I X B: PA R A M E T E R S O F TH E
D O U B L E - E X P O N E N T I A L MO D E L F O R TH E
DARK M ATTER DENSITY DISTRIBU TION
F U N C T I O N

Tables B1 and B2 list the parameters for the double-exponential
model given in equation (18) for our set of simulations, filtering
scales and redshifts discussed in the main text. The simulation data
and PDF tables are available at www.skiesanduniverses.org (Klypin
et al. 2017)

Fig. A3 shows the dependence of the double-exponential approx-
imation parameters on the rms fluctuation σ for redshifts z = 0, 0.5,
1. We find that with the exception of the slope α all other three
parameters do not show any signs of evolution with redshift. The
slope slightly evolves with redshift with the tendency to produce
smaller values of α at higher redshifts at constant σ . Yet, the effect
is small and is limited only to z < 0.5.

For practical reasons it is convenient to have fitting expressions
for the dependence of those four parameters as a function of σ and
redshift. Fig. A3 clearly indicates that for a given redshift there

are tight relations of those parameters with σ . We tried different
analytical expressions and find that the following relations provide
accurate fits for σ > 0.7:

A = 0.47√
σ

exp

(
2.2

σ 2

)
(B1)

ρ0 = 0.048 +
(

0.77

σ

)
(B2)

ρ1 = 4.7σ 1.9 exp

(
− 2

σ

)
(B3)

α + 2 = − 0.05

f (z)

[
1 − 2.4σ 0.05 exp

(
−

[
4.7

f (z)σ

]2
)]

(B4)

f (z) = 0.75 + 0.25/(1 + z)5 (B5)
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Table B1. Best-fit parameters for the double-exponential model, equation (18), for redshift z = 0. Different columns give (1) name of the simulation, (2) cell
size in h−1 Mpc, (3) rms density fluctuation, (4–7) parameters for the double-exponential model, (8) the number of cells in 1D, (9) relative force resolution –
the number of force resolution elements per each density assignment cell.

Simulation Cell Size σ A α + 2 ρ0 ρ1 Ncell �x/ε
(1) (2) (3) (4) (5) (6) (7) (8) (9)

BolshoiP 0.081 34.62 8.20E-02 0.092 0.070 3800.0 3100 80
BolshoiP 0.125 27.92 9.00E-02 0.087 0.069 2500.0 2000 125
MDPL1 0.167 24.02 9.90E-02 0.080 0.081 1850.0 6000 17
MDPL1 0.250 19.07 1.06E-01 0.084 0.094 1070.9 4000 25
BolshoiP 0.250 18.89 1.03E-01 0.079 0.095 1223.0 1000 250
BolshoiP 0.313 16.42 1.07E-01 0.080 0.097 916.00 800 313
MDPL1 0.313 16.63 1.12E-01 0.080 0.102 811.29 3200 31
MDPL1 0.500 12.15 1.30E-01 0.064 0.125 451.21 2000 50
BolshoiP 0.625 10.08 1.38E-01 0.056 0.121 362.30 400 616
MDPL1 0.625 10.34 1.38E-01 0.063 0.125 319.20 1600 62
A0.5 0.833 7.75 1.65E-01 0.045 0.151 180.09 600 4
MDPL1 1.000 7.14 1.73E-01 0.044 0.152 143.08 1000 100
MDPL1 1.250 5.90 1.98E-01 0.027 0.175 95.484 800 125
B0.5 1.250 5.71 2.05E-01 0.005 0.186 103.01 400 8
MDPL1 1.429 5.24 2.17E-01 0.014 0.195 74.855 700 143
A0.5 1.667 4.42 2.51E-01 − 0.023 0.228 58.198 300 8
MDPL1 2.000 3.83 2.84E-01 − 0.019 0.248 36.300 500 200
MDPL1 2.500 3.10 3.50E-01 − 0.040 0.295 21.230 400 250
B0.5 2.500 3.04 3.58E-01 − 0.045 0.302 20.465 200 16
A0.5 3.333 2.29 5.02E-01 − 0.054 0.375 9.010 150 16
MDPL1 3.333 2.34 4.85E-01 − 0.055 0.368 9.694 300 333
A1.5 5.000 1.55 9.81E-01 − 0.059 0.532 2.829 300 8
MDPL1 5.000 1.58 8.90E-01 − 0.050 0.495 3.100 200 500
A1.5 10.000 0.83 8.97E + 00 − 0.042 1.090 0.368 150 16
A2.5 10.000 0.83 9.12E + 00 − 0.047 1.097 0.368 250 8
A2.5 20.000 0.45 2.19E + 03 − 0.034 2.508 0.052 125 16

Table B2. Best-fitting parameters for the double-exponential model, equation (18), for redshifts z ≈ 0.5–1. Different columns give (1) name of the simulation,
(2) cell size in h−1 Mpc, (3) rms density fluctuation, (4–7) parameters for the double-exponential model, (8) number of cells in 1D, (9) relative force resolution
– the number of force resolution elements per each density assignment cell, (10) redshift.

Simulation Cell Size σ A α + 2 ρ0 ρ1 Ncell �x/ε redshift
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

MDPL1 0.167 16.050 1.160E-01 0.065 0.10 820.00 6000 16.7 0.492
MDPL1 0.250 12.780 1.260E-01 0.055 0.11 520.40 4000 25.0 0.492
BolshoiP 0.313 11.000 1.361E-01 0.052 0.12 399.62 800 300 0.500
MDPL1 0.500 8.177 1.683E-01 0.022 0.16 213.10 2000 50.0 0.492
B0.5 0.625 6.510 1.907E-01 0.015 0.17 126.33 800 4 0.510
BolshoiP 0.625 6.765 1.920E-01 − 0.015 0.18 165.64 400 625 0.500
A0.5 0.833 5.136 2.151E-01 − 0.007 0.20 75.60 600 4 0.510
MDPL1 1.000 4.793 2.476E-01 − 0.050 0.23 72.81 1000 100 0.492
MDPL1 1.250 3.961 2.909E-01 − 0.068 0.27 46.15 800 125 0.492
B0.5 1.250 3.837 2.993E-01 − 0.081 0.28 45.38 400 8 0.492
A0.5 1.667 2.923 3.882E-01 − 0.082 0.33 19.24 300 8 0.510
B0.5 2.500 2.068 6.078E-01 − 0.067 0.42 6.282 200 16 0.492
MDPL1 2.500 2.112 5.801E-01 − 0.069 0.41 6.892 400 250 0.492
A0.5 3.333 1.575 1.015E + 00 − 0.062 0.55 2.635 150 16 0.510
MDPL1 5.000 1.138 2.413E + 00 − 0.058 0.75 0.974 200 500 0.492
A2.5 5.000 1.099 2.731E + 00 − 0.069 0.79 0.930 500 4 0.497
A2.5 10.00 0.625 7.163E + 01 − 0.053 1.63 0.141 250 8 0.497
A2.5 20.00 0.347 1.409E + 05 − 0.026 3.57 0.024 125 16 0.497
B0.5 1.25 2.671 4.516E-01 − 0.060 0.3612 11.71 400 8 0.99
A0.5 1.667 2.066 6.462E-01 − 0.062 0.4374 5.37 300 8 0.99
B0.5 2.50 1.475 1.248E + 00 − 0.070 0.5876 2.10 200 16 0.99
A0.5 3.333 1.157 2.484E + 00 − 0.056 0.7563 0.94 150 16 0.99

This paper has been typeset from a TEX/LATEX file prepared by the author.
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