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1 Introduction

It is common knowledge that scattering amplitudes in Quantum Field Theory can be

reconstructed from their singularities. While tree-level amplitudes only have poles loop

amplitudes develop branch cuts, corresponding to discontinuities associated with physi-

cal thresholds as well as infrared (IR) singularities in the soft and collinear limits. The

singular IR behavior of QCD amplitudes is well-known through general factorization for-

mulas [1, 2]. The physical consequences of the emergence of unitarity thresholds [3, 4],

anomalous thresholds and more generally Landau singularities [4–15], for specific kine-

matical configurations, have also been extensively discussed in the literature. Indeed a

thorough knowledge of the singular structure of scattering amplitudes is a prerequisite for

obtaining theoretical predictions of physical observables.

The Loop-Tree Duality (LTD) [16–22] is a powerful framework to analyze the singu-

lar structure of scattering amplitudes directly in the loop momentum space. The LTD

representation of a one-loop scattering amplitude is given by

A(1)({pn}N ) = −
∫
`
N (`, {pn}N )⊗GD(α) ,

GD(α) =
∑
i∈α

δ̃ (qi)
∏
j 6=i

GD(qi; qj) , (1.1)

where N (`, {pn}N ) is the numerator of the integrand that depends on the loop momentum

` and the N external momenta {pn}N . The delta function δ̃ (qi) = ı2π θ(qi,0) δ(q
2
i −m2

i )

sets on-shell the internal propagator with momentum qi = ` + ki and selects its positive

energy mode, qi,0 > 0. At one-loop, α = {1, · · · , N} labels all the internal momenta, and

eq. (1.1) is the sum of N single-cut dual amplitudes. The dual propagators,

GD(qi; qj) =
1

q2j −m2
j − ı0 η · kji

, (1.2)

differ from the usual Feynman propagators, GF (qj) = 1/(q2j −m2
j + ı0), only by the imagi-

nary prescription that now depends on η ·kji, with kji = qj−qi. Notice that the dual prop-

agators are implicitly linear in the loop momentum due to the on-shell conditions. Though
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Figure 1. Momentum flow of a two-loop Feynman diagram.

the vector η is mostly arbitrary — it only has to be future-like — the most convenient

choice is η = (1,0). This election is equivalent to integrating out the energy component of

the loop momentum, which renders the remaining integration domain Euclidean.

The master dual representation of a two-loop scattering amplitude is [18, 22]

A(2)({pn}N ) =

∫
`1

∫
`2

N (`1, `2, {pn}N )

⊗[GD(α1)GD(α2 ∪ α3) +GD(−α2 ∪ α1)GD(α3)

−GD(α1)GF (α2)GD(α3)] , (1.3)

where the internal momenta qi = `1+ki, qj = `2+kj and qk = `1+`2+kk, are classified into

three different sets, i ∈ α1, j ∈ α2 and k ∈ α3, as shown in figure 1. The minus sign in front

of α2 indicates that the momenta in α2 are reversed to hold a momentum flow consistent

with α1. The dual representation in eq. (1.3) contains one contribution that depends on

GF (α) =
∏
i∈αGF (qi), and spans over the sum of all possible double-cut contributions,

with each of the two cuts belonging to a different set. At higher orders, the iterative

application of LTD introduces a number of cuts equal to the number of loops [17]. The

dual amplitudes are thus tree-level like objects to all orders, and can even be related to the

forward limit of tree-level amplitudes [23, 24]. However, neither eq. (1.1), nor eq. (1.3), or

their higher order generalization [17], has been deducted from the forward limit of tree-level

amplitudes and they are therefore free of their potential spurious singularities.

A decisive feature that allows to progress from scattering amplitudes to cross-sections

and other physical observables in the LTD representation is the fact that all IR and physical

threshold singularities of the dual amplitudes are restricted to a compact region of the loop

three-momenta [19]. This is essential to establish a mapping between the real and virtual

kinematics in order to locally cancel the IR singularities without the need for subtraction

counter-terms, as done in the Four-Dimensional Unsubtraction (FDU) approach [25–27].

This is remarkably the place where the dual ı0 prescription plays its main role by encoding

efficiently and correctly the causal effects of the loop scattering amplitudes. A general
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analysis of causality [19, 28] necessarily requires studying in detail the interplay of the dual

prescription among different dual propagators.

In this article, we extend explicitly to two loops the analysis of the singular structure of

one-loop amplitudes in the LTD framework presented in ref. [19], and generalize it to higher

orders. This allows us to present a comprehensive description of unitarity thresholds and

anomalous thresholds in the loop-momentum space, and provide generalizable expressions

of their singular behavior. We show how non-causal unphysical thresholds cancel locally in

the forest defined by the sum of dual cuts thanks to the momentum dependent ı0 prescrip-

tion of the dual propagators. Most importantly, we demonstrate that soft and collinear

singularities are always restricted to a compact region of the loop three-momentum space.

2 Unitarity thresholds, anomalous thresholds and infrared singularities

at one loop

To analyze the singular behavior of one-loop amplitudes in the loop momentum space, it

is convenient to start by considering the integrand function

S(1)ij = (2πı)−1GD(qi; qj) δ̃ (qi) + (i↔ j) , (2.1)

representing the sum of two single-cut dual contributions. The singularities of the function

S(1)ij are encoded through the set of conditions

λ±±ij = ±q(+)
i,0 ± q

(+)
j,0 + kji,0 → 0 . (2.2)

where q
(+)
r,0 =

√
q2
r +m2

r , with r ∈ {i, j}, are the on-shell loop energies. There are indeed

only two independent limits that determine the location of the singularities in the loop

momentum space. The limit λ++
ij → 0 occurs in the intersection of the forward on-shell hy-

perboloid (positive energy mode) of one propagator with the backward on-shell hyperboloid

(negative energy mode) of the other. The solution to eq. (2.2) for λ++
ij → 0 requires

k2ji − (mj +mi)
2 ≥ 0 , (2.3)

with kji,0 < 0. This means that the qj propagator has to be in the future of the qi
propagator with both propagators causally connected (λ−−ij → 0 with kji,0 > 0 represents

the complementary solution). For massless propagators, and light-like separation, k2ji = 0,

the singular surface pinches to a collinear singularity along a finite segment. In both cases,

massive or massless,

lim
λ++
ij →0

S(1)ij =
θ(−kji,0)θ(k2ji − (mi +mj)

2)

xij(−λ++
ij − ı0kji,0)

+O
(

(λ++
ij )0

)
, (2.4)

with xij = 4 q
(+)
i,0 q

(+)
j,0 . It should be noted that the limit λ++

ij → 0 represents the usual

unitarity threshold. Since it involves one backward and one forward on-shell hyperboloid,

this situation is equivalent to two physical particles propagating in the same direction in

time. Moreover, the ı0 prescription is exactly the same as in the Feynman representation,
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and, in particular for IR singularities, the on-shell energy is bounded by the energy of

external momenta, q
(+)
r,0 ≤ |kji,0| with r ∈ {i, j}.

The other potential singularities occur for λ+−ij → 0, with

k2ji − (mj −mi)
2 ≤ 0 . (2.5)

It generates unphysical thresholds in each of the dual components of S(1)ij , but the sum

over the two single-cut dual contributions is not singular

lim
λ+−
ij →0

S(1)ij = O
(

(λ+−ij )0
)
. (2.6)

The cancellation of this integrand singularity is fully local due to the change of sign in the

dual prescription, q
(+)
j,0 GD(qi; qj)|λ+−

ij →0 = −q(+)
i,0 GD(qj ; qi)|λ+−

ij →0, and is not affected by

other propagators because

lim
λ+−
ij →0

GD(qj ; qk) = lim
λ+−
ij →0

GD(qi; qk) . (2.7)

This second configuration corresponds to the on-shell emission and on-shell reabsorption

of one virtual particle. The complete local cancellation of this integrand singularity would

not occur if all the propagators were Feynman propagators. As physics cannot depend

on the used representation of the loop amplitude, this mismatch in the ı0 prescription is

compensated in the Feynman Tree Theorem [29] by the multiple-cut contributions.

The LTD representation in eq. (1.1) is obtained by defining the momentum flow of

the loop anti-clockwise and then by closing the Cauchy integration contour of the complex

loop energy in the lower half-plane. Alternatively, one can close the contour in the upper

half-plane and select the modes with negative energy, which is equivalent to reversing the

momentum flow of the loop. The location of the causal unitarity thresholds in the loop-

momentum space is invariant under these transformations because physics cannot depend

on the specific dual representation. However, the emergence and location of the unphysical

thresholds in individual dual contributions depends on the choice of the momentum flow. It

is worth noticing that the unphysical singularities are spurious, and they cancel after adding

together all the dual contributions. Explicitly, in eq. (2.5) we can distinguish between two

scenarios. In the space-like case, k2ji < 0, unphysical thresholds occur in the intersection of

the two forward on-shell hyperboloids and in the intersection of the two backward on-shell

hyperboloids. Whereas, in the time-like configuration, 0 ≤ k2ji ≤ (mi −mj)
2, unphysical

thresholds occur only in the intersection of either the forward or the backward on-shell

hyperboloids. For example, the individual contributions to the dual representation of the

massive two-point function∫
`1

1

((`1 − p)2 −m2
1 + ı0)(`21 −m2

2 + ı0)
, (2.8)

given by eq. (1.1), with p = (p0,0) and p0 positive, are free of causal and unphysical

thresholds for 0 < p0 < m2−m1. But the backward on-shell hyperboloids or the individual

contributions of the dual integrand of (1.1) with inverted momentum flow (`1 → −`1)
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Figure 2. Forward (solid) and backward (dashed) on-shell hyperboloids of the massive two-point

function in eq. (2.8). For the kinematical configuration with 0 < p0 < m1−m2, the two forward on-

shell hyperboloids do not intersect, but the two backward on-shell hyperboloids feature unphysical

thresholds that cancel in the sum of individual dual contributions when the on-shell negative energy

modes are also considered.

feature unphysical thresholds for 0 < p0 < m1 −m2. This case is illustrated in figure 2.

Of course, the integral is invariant under this transformation. This is worth noticing

because the proposal of considering together both the positive and negative modes [30]

does not change the physics but inefficiently increases the number of necessary on-shell

cuts to describe a given loop amplitude, and it also proliferates the number of unphysical

singularities of the integrand, in particular at higher orders (A recent Erratum has been

published that modifies the incorrect symmetry factors presented in ref. [30] that spoiled the

expected local cancellations. We discuss later how our original dual prescription matches

better the causal conditions and leads to more compact and effective representations than

the alternative dual prescription introduced in ref. [30].).

We are now in the position to discuss the anomalous thresholds. For internal propa-

gators with real masses, anomalous thresholds at one loop occur when more than two of

them go on-shell simultaneously. In particular, for three propagators we should analyze

the integrand function

S(1)ijk = (2πı)−1GD(qi; qk)GD(qi; qj) δ̃ (qi) + perm. . (2.9)

The potential singularity of eq. (2.9) arising in the intersection of the three forward on-shell

hyperboloids cancels again locally among the dual contributions [19]. In order to generate

a physical effect, we need to consider the intersection of one forward with two backward

on-shell hyperboloids, or two forward with one backward.
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Explicitly, in the double limit λ++
ij and λ++

ik → 0 with kji,0 and kki,0 negative,

lim
λ++
ij ,λ++

ik →0
S(1)ijk =

1

xijk

∏
r=j,k

θ(−kri,0) θ(k2ri − (mi +mr)
2)

(−λ++
ir − ı0kri,0)

+O
(

(λ++
ij )−1, (λ++

ik )−1
)
,

(2.10)

with xijk = 8 q
(+)
i,0 q

(+)
j,0 q

(+)
k,0 . As expected from the discussion of the cancellation of unphysical

thresholds, eqs. (2.6) and (2.7), the leading term is free of singularities in λ−+jk . This is also

true for the next terms in the expansion, even though λ−+jk = λ++
ik − λ

++
ij .

Again, the local cancellation of the λ−+jk singularity occurs thanks to the momentum

dependent ı0 dual prescription, and the remaining singularities are described by causal +ı0

contributions. If all the uncut propagators were Feynman propagators, a mismatch would

be generated. Conversely, the anomalous threshold generated in the intersection of one

backward with two forward on-shell hyperboloids, λ++
ik and λ++

jk → 0 with λ+−ij = λ++
ik −

λ++
jk , is free of singularities in λ+−ij . This configuration also describes a soft singularity in

the limiting case of massless partons, with e.g. q
(+)
i,0 → 0. Notice that for a soft singularity to

be generated the participation of three propagators is necessary due to the soft suppression

of the integration measure. The extension of the discussion to anomalous box singularities

is straightforward from the results presented here. This analysis also allows us to move on

now to the discussion of the two-loop case.

3 Unitarity thresholds, anomalous thresholds and infrared singularities

at two loops

The characterization of singularities arising at two loops from two or more propagators of

the same subset αr is a replica of the one-loop case and does not need further discussion.

The genuine two-loop IR and threshold singularities arise when the propagator that even-

tually goes on shell and the two other on-shell propagators belong to a different subset

each. In this case, we have to consider the forest defined by all the possible permutations.

Inspired by the dual representation in eq. (1.3), we define the following integrand function

S(2)ijk = (2πı)−2
[
GD(qj ; qk) δ̃ (qi, qj) +GD(−qj ; qi) δ̃ (−qj , qk)

+ [GD(qk; qj) +GD(qi;−qj)−GF (qj)] δ̃ (qi, qk)
]
, (3.1)

with the shorthand notation δ̃ (qr, qs) = δ̃ (qr) δ̃ (qs), and i ∈ α1, j ∈ α2 and k ∈ α3. The

location of the singularities of S(2)ijk in the loop momentum space are determined by the set

of conditions [22]

λ±±±ijk = ±q(+)
i,0 ± q

(+)
j,0 ± q

(+)
k,0 + kk(ij),0 → 0 , (3.2)

where kk(ij),0 = qk − qi − qj depends on external momenta only, with our choice of the

momentum flow (see figure 1). Now, the unitarity threshold is defined by the limit

lim
λ+++
ijk →0

S(2)ijk =
θ(−kk(ij),0) θ(k2k(ij) − (mi +mj +mk)

2)

xijk(−λ+++
ijk − ı0kkj,0)

+O
(

(λ+++
ijk )0

)
. (3.3)

– 6 –
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Notice that kkj,0 depends on the energy of the loop momentum `1, however,

kkj,0|λ+++
ijk →0 = q

(+)
i,0 + kk(ij),0 < 0 , (3.4)

therefore −ı0kkj,0 = +ı0 on the physical threshold. We can interpret this singularity

as the intersection of the backward on-shell hyperboloid of qk with the forward on-shell

hyperboloids of qi and qj . The latter are independent of each other as each of them depends

on a different loop momentum. In other words, the three internal physical momenta flow

in the same direction in time, which is equivalent to the unitarity cut. Further, this

configuration generates a triple collinear singularity for massless partons and light-like

separation, k2k(ij) = 0. Likewise, the complementary solution with kk(ij),0 > 0 would

generate IR or threshold singularities in the limit λ−−−ijk → 0. In any of the two cases

discussed so far, the on-shell energies are limited by the energy of the external partons,

q
(+)
r,0 ≤ |kk(ij),0| with r ∈ {i, j, k}. Since this is an essential condition for the implementation

of FDU [25–27] at higher orders this observation constitutes one of the main results of

this work.

Similarly to the one-loop case, there are other potential singularities at λ++−
ijk → 0

and λ+−−ijk → 0. However, those singularities cancel locally in the sum of all the dual

components of S(2)ijk . This is again possible because, even though the dual prescriptions

depend on the loop momenta, the following conditions are fulfilled in each of the cases

λ++−
ijk = 0 , → q

(+)
k,0 − kk(ij),0 > 0 ,

λ+−−ijk = 0 , → q
(+)
i,0 + kk(ij),0 > 0 , (3.5)

in such a way that all the contributions conspire to match their ı0 prescriptions on

the singularity.

Let us stress that the on-shell conditions are determined by a set of equations that are

linear in the on-shell loop energies to all orders (e.g. eq. (3.2) and its obvious generaliza-

tion). Alternative dual prescriptions have been proposed recently [30, 31], which involve a

different dependence on the loop energies. Even if the final result has to be equivalent inde-

pendently of the prescription applied, we would like to highlight that the linear dependence

of our original LTD prescription straightforwardly exhibits the analytic cross-cancellation

of non-causal singularities among dual contributions. These dual cancellations have been

confirmed numerically in ref. [31].

Concerning anomalous thresholds, we will consider any configuration that involves

more on-shell propagators than those appearing in the unitarity cuts. Again, we can

distinguish the case where the propagators involved belong to the same subset αr, from the

genuine two-loop case where it is necessary to consider propagators going simultaneously

on shell from the three different sets. Prototype configurations are illustrated in figure 3.

Anomalous thresholds are generated in either of the two benchmarks shown in figure 3

with the participation of the two propagators adjacent to the external momentum p2, with

p2 = qi2 − qi1 , {i1, i2} ∈ α1, satisfying eq. (2.5). Specifically, for the right diagram the

anomalous threshold appears when four propagators become singular (i.e. there are two

– 7 –
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q

Figure 3. Prototype two-loop Feynman diagrams with anomalous thresholds.

dual cuts and two additional internal momenta become on-shell due to kinematics) which

we see in the limit

lim
λ+++
i1jk

,λ+++
i2jk

→0
S(2)i1i2jk

=
1

xi1i2jk

∏
i=i1i2

θ(−kk(ij),0) θ(k2k(ij) − (mi +mj +mk)
2)

(−λ+++
ijk − ı0kkj,0)

+O
(

(λ+++
i1jk

)−1, (λ+++
i2jk

)−1
)
, (3.6)

with the obvious generalization of the notation. Other anomalous threshold configurations

can easily be inferred from these results. At higher orders, the threshold and singular

structure can be deducted from e.g. the explicit dual representations reported in ref. [17].

Finally, let us comment that the most general dual representation of any planar dia-

gram at two loops (these are diagrams where one of the sets αi is composed by one single

propagator, e.g. assuming that it is α2) can be rewritten as

A(2)({pn}N ) =

∫
`1

∫
`2

N (`1, `2, {pn}N )

⊗[GD(α1)GD(α2)GF (α3) +GF (α1)GD(−α2)GD(α3)

+GD(α1)G
∗
F (α2)GD(α3)] , (3.7)

with

G∗F (α2) = G∗F (qj) =
1

q2j −m2
j − ı0

. (3.8)

The threshold and singular solutions to eq. (3.7) are in full agreement with the equivalent

representation in eq. (1.3) due to a similar local matching of the dual prescriptions. Another

great advantage of eq. (3.7) is that the dual prescriptions are independent of the loop

momenta, and therefore are simply fixed by the energy components of the external particle

momenta. In the specific case of the planar sunrise diagram, eq. (3.7) generates only three

double-cut contributions.
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4 Conclusions

In summary, we have presented the first comprehensive description of the singular structure

of scattering amplitudes in the LTD formalism at higher orders. The LTD representation

allows for a detailed discussion directly in the loop momentum space. Contrary to the

Landau equations [5], it does not rely on the Feynman parametrization and keeps track

of the imaginary prescription of internal propagators in a consistent way. This consistent

deployment of the imaginary prescriptions is needed to proof that there is a perfect local

cancellation of non-causal or unphysical thresholds in the forest defined by the sum of all the

on-shell dual contributions. The remaining causal thresholds, and in particular the soft and

collinear singularities, which are described as the limiting case of threshold singularities, are

restricted to a compact region of the loop three-momenta space. This feature is essential

to enable the establishment of momenta mappings between the kinematics of the virtual

and real contributions to physical observables in such a way that the cancellation of IR

singularities occurs locally, as defined in the FDU approach.
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