
Int. J. Appl. Math. Comput. Sci., 2019, Vol. 29, No. 4, 725–737
DOI: 10.2478/amcs-2019-0054

AN LMI–BASED HEURISTIC ALGORITHM FOR VERTEX
REDUCTION IN LPV SYSTEMS
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The linear parameter varying (LPV) approach has proved to be suitable for controlling many non-linear systems. However,
for those which are highly non-linear and complex, the number of scheduling variables increases rapidly. This fact makes
the LPV controller implementation not feasible for many real systems due to memory constraints and computational bur-
den. This paper considers the problem of reducing the total number of LPV controller gains by determining a heuristic
methodology that combines two vertices of a polytopic LPV model such that the same gain can be used in both vertices.
The proposed algorithm, based on the use of the Gershgorin circles, provides a combinability ranking for the different
vertex pairs, which helps in solving the reduction problem in fewer attempts. Simulation examples are provided in order to
illustrate the main characteristics of the proposed approach.
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1. Introduction

The necessity for systematic analysis and design tools
for non-linear systems has led to the development of
gain-scheduled control techniques (Rugh and Shamma,
2000; Rotondo, 2017). In this sense, one of the most
successful paradigms is the linear parameter varying
(LPV) one (Mohammadpour and Scherer, 2012), which
has proved to be suitable for controlling non-linear
systems by embedding the non-linearities in the varying
parameters (Kwiatkowski et al., 2006; Rotondo et al.,
2015b), which often depends on some endogenous
signals, e.g., states, inputs or outputs. In this case, the
system is referred to as quasi-LPV, to distinguish it from
a pure LPV system, in which the varying parameters
depend only on exogenous signals (Marcos and Balas,
2004). The LPV paradigm has evolved quickly in the
last two decades and has been successfully exploited
in many applications (Hoffmann and Werner, 2015),
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e.g., wind turbines (Inthamoussou et al., 2014), vehicles
(Fergani et al., 2017), robots (Rotondo et al., 2015a) and
aeromechanical systems (Rotondo et al., 2013).

Since the introduction of the LPV paradigm, a
lot of research has concerned the development of
design techniques for LPV systems with a linear
fractional transformation (LFT) form (Packard, 1994).
However, this approach took into account complex
varying parameters that did not appear in real plants, thus
introducing a strong source of conservativeness (White
et al., 2013). For this reason, Lyapunov-based approaches
were developed, allowing taking into account constraints
on the rate of variation of the varying parameters (Gahinet
et al., 1996). A high number of related results published in
the last few years shows that the development of efficient
approaches to the design of gain-scheduled controllers for
LPV systems (Zhao and Nagamune, 2017; Nguyen et al.,
2018; Chitraganti et al., 2017) and for fault diagnosis
(López-Estrada et al., 2015; Zhou et al., 2018) is still a
hot research topic.
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The design problem in the case of a gain-scheduled
controller for LPV systems takes the form of a set of
parameter-dependent linear matrix inequalities (LMIs),
which correspond to an infinite number of constraints
and are thus computationally intractable. For this
reason, polytopic LPV models for which the state space
parameter-varying matrices can be expressed as convex
combinations of constant matrices, usually referred to as
vertex matrices, are widespread (Rotondo et al., 2014)
(the LTI systems obtained from these matrices are referred
to as vertex systems). However, when a system is
highly non-linear and complex, the number of scheduling
variables required to represent the system in an LPV
(or quasi-LPV) structure increases. Consequently, when
methods for obtaining a polytopic representation are
applied, the number of vertices grows even faster. For
example, for the most popular method, which is the
bounding box technique (Sun and Postlethwaite, 1998),
the relation between the number of vertices nv and
the number of scheduling variables np is given by the
exponential expression

nv = 2np . (1)

Even for a relatively small and simple laboratory
setup, such as the twin rotor MIMO system (Rahideh and
Shaheed, 2007), the direct application of the bounding box
technique would lead to 2048 vertex systems (Rotondo
et al., 2013). Ideally, the LPV controller for this system
would be obtained as a convex combination of 2048
vertex controller gains, i.e., a controller gain for each
vertex system. Thus, for many real systems, the real-time
implementation of an LPV controller in a microcontroller
might be infeasible. This fact is due to many reasons,
some of which are:

• Memory constraints: for each vertex, a different
controller gain should be stored in the embedded
system. For a system with 6 states, 4 inputs and
15 scheduling variables, each controller gain will
involve 24 floating-point values, so 3.15 MB will be
required to store the controller. For a system with the
same number of states and inputs, and 20 scheduling
variables, 100.7 MB would be required.

• Computational burden: the time required by the
embedded system to compute the current controller
gain as a convex combination of the vertex gains is
directly related to the number of vertices. Therefore,
the computational load can be a critical issue when
the main dynamics of the controlled system are fast.

In order to ease these problems, several researchers
have investigated methods that help in reducing the
controller complexity. These methods can be summarized
and classified as follows:

• PCA-based approaches: they aim at determining
operational trajectories of the plant and reshape
the hyper-box representing the parameter range,
such that it matches the given operating points as
closely as possible. This is done by means of a
procedure based on principal component analysis
(PCA) (Kwiatkowski and Werner, 2008; Rizvi et al.,
2016; Jabali and Kazemi, 2017).

• Gap metric-based approaches: they use the gap
metric (El-Sakkary, 1985) and the ν-gap metric
(Vinnicombe, 1996) to obtain an indication of
how much performance/robustness is lost when a
controller synthesized for a linear system P1 is
applied to a linear system P2. In this way, an
algorithm for finding an appropriate gridding for
the scheduling parameter space can be devised
(Fleischmann et al., 2016; Theodoulis and Duc,
2009; Zribi et al., 2016).

• Model order reduction approaches: their goal is to
reduce the state dimension and, accordingly, the
complexity of the underlying mathematical model,
with a minimal change in the overall input-output
behaviour (Luspay et al., 2018; Theis et al., 2017).

In this paper, we would like to tackle the problem
of reducing the total number of controller gains from
a different point of view than the aforementioned
approaches. This reduction will be made analyzing how
the LMIs, which represent a set of specifications, are
modified when two vertices have the same controller.

In particular, the goal of this paper is to provide a
heuristic methodology to combine two vertices of an LPV
polytopic model such that the same vertex controller gain
can be used in both vertices. In this way, the number of
vertex controllers will be reduced from nv to nv−1, which
is a first step in order to develop an iterative algorithm
that leads to the design of an efficient and implementable
controller.

Note that a possible way of solving the reduction
problem is through a brute-force search that considers
all possible vertex combinations and tests the feasibility
of suitable LMI-based design when groups of vertices
are combined together by assigning them a common
controller gain. However, this approach is not efficient
in practice, since one should check the feasibility for a
number of cases equal to the Bell number (Pemmaraju and
Skiena, 2003):

Bnv =

nv−1∑

k=0

(
nv − 1

k

)
Bk. (2)

For example, in the case of a system with 6 vertices,
203 possible combinations should be checked, while for a
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system with 15 vertices, we would need to check 1.38 ×
109 combinations, which is computationally untreatable.
Similarly, a brute-force search for reducing the number
of vertex controllers from nv to nv − 1 would require
checking LMI feasibility for nv(nv − 1)/2 possible pairs
of vertices. The heuristic algorithm proposed in this paper
provides a combinability ranking for the different vertex
pairs that helps in solving the reduction problem in fewer
attempts. The proposed heuristic algorithm is based on the
use of the Gershgorin circles, an algebraic tool which has
already found several applications in systems and control
theories (Curran, 2009; Ho et al., 2000).

The remainder of the paper is structured as follows.
Section 2 presents the controller design for an LPV
system, while the vertex reduction is analyzed in
Section 3. The Gershgorin circles-based algorithm is
provided in Section 4. Section 5 deals with the pole
placement case study and some simulation results are
presented in Section 6. Finally, Section 7 outlines the
main conclusions.

2. Feedback controller design for an LPV
model

Consider the following continuous time LPV system:

ẋ(t) = A(θ(t))x(t) +B(θ(t))u(t), (3)

where x(t) ∈ R
nx and u(t) ∈ R

nu are the state and
input vectors, respectively, and A(θ(t)) ∈ R

nx×nx and
B(θ(t)) ∈ R

nx×nu are parameter-dependent matrices.
Here θ(t) ∈ Θ ⊂ R

np is the vector of time-varying
parameters.

A standard assumption in the literature is that the
matrixA depends on θ(t) in a polytopic way, i.e., it can be
expressed as a convex combination of constant matrices
through non-negative coefficients which depend on θ(t)
(Apkarian et al., 1995). Moreover, the matrix B is often
assumed to be constant, which means that the LPV system
(3) can be equivalently represented as follows:

ẋ(t) =

nv∑

v=1

αv(θ(t))Avx(t) +Bu(t), (4)

where Av , v = 1, . . . , nv, defines the so-called vertex
systems, nv is the number of vertices and αv are the
coefficients of the polytopic decomposition, such that

⎧
⎨

⎩

nv∑
v=1

αv(θ(t)) = 1,

αv(θ(t)) ≥ 0, ∀v = 1, . . . , nv, ∀θ(t) ∈ Θ.
(5)

Note that LPV systems for which the matrix B is not
constant can be brought to the form (4) by prefiltering the

input u(t) (Apkarian et al., 1995) or, alternatively, they
can be dealt with by adding some complexity to the design
conditions (Montagner et al., 2005).

Hereafter, we will consider the problem of designing
an LPV state-feedback controller which achieves some
desired closed-loop specifications:

u(t) = K(θ(t))x(t), (6)

where K(θ(t)) ∈ R
nu×nx is the parameter-dependent

controller gain. In their simplest version, the design
conditions for different types of specifications, e.g.,
stability or guaranteed H∞ performance, take the form
of parameterized LMIs with unknown variables X � 0
(Lyapunov matrix) and Γ(θ(t)) = K(θ(t))X (Apkarian
and Tuan, 2000) such that

F (A(θ(t)),B,X,Γ(θ(t))) ≺ 0, ∀θ ∈ Θ. (7)

However, (7) involves an infinite number of LMIs, and
needs to be reduced to a finite number in order to be
computationally tractable. To this end, the LPV controller
is chosen to be polytopic, which means that (6) becomes

u(t) =

nv∑

v=1

αv(θ(t))Kvx(t), (8)

where Kv ∈ R
nu×nx are the vertex controller gains.

Under this assumption, (7) can be rewritten at the vertices
as:

F (Av,B,X,Γv) ≺ 0, ∀v = 1, . . . , nv (9)

and, once a feasible solution of (9) has been obtained, the
vertex controller gains can be determined as

Kv = ΓvX
−1. (10)

As stated in the introduction, we are interested in
decreasing the number of controller gains from nv to nv−
1, which means that for two indices i, j ∈ {1, . . . , nv}
with i �= j, Ki = Kj will hold. However, depending on
how i and j are chosen, this reduction could potentially
lead to infeasibility of the LMIs (9). In the following
sections, we will describe a heuristic algorithm, based on
the use of the Gershgorin circles, which will provide a
combinability ranking for the different vertex pairs, so that
if vertices i and j are combined, the feasibility of the LMI
(9) when Ki = Kj still holds.

3. Analysis of vertex reduction

The complexity of the LMI problem (9) implies that an
explicit solution cannot be determined. Hence, numerical
solvers such as interior point methods (Boyd et al., 1994)
must be used to obtain a solution. For this reason,
predicting when two or more vertices can be combined
is a complex task. Let us start by introducing a formal
definition of combinable vertices.
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Definition 1. (Combinable vertices) Two vertices i and j
are said to be combinable for the set of LMIs (9) if there
exist matrices Γv ∈ R

nu×nx , v ∈ {1, . . . , nv}\{i, j} and
a matrix Γw ∈ R

nu×nx such that

{
F (Av,B,X,Γv) ≺ 0, ∀v ∈ {1, . . . , nv} \ {i, j},
F (Av,B,X,Γw) ≺ 0, ∀v ∈ {i, j}.

(11)

Given this definition, we present a heuristic
methodology for determining the likelihood that two
vertices are combinable, based on quantifying how much
the LMIs are perturbed when a common controller gain is
used.

Considering two vertices of the system i and j,
the state matrix at the vertex i (Ai) can be seen as a
perturbation in the state matrix Aj such that

Ai = Aj +ΔA{i,j}, (12)

where ΔA{i,j} is the perturbation state matrix.

Furthermore, when vertices i and j are combinable,
this means that a common controller gain can be designed
for these vertices. This means that Ki = Kj and
consequently Γi = Γj = Γ{i,j} . Then, the objective
is to determine the effect of ΔA{i,j} on the LMI (9):

{
F
(
Ai,B,X,Γ{i,j}) ≺ 0,

F
(
Aj ,B,X,Γ{i,j}) ≺ 0,

⇔
{
F
(
Ai,B,X,Γ{i,j}) ≺ 0,

F
(
Ai,B,X,Γ{i,j})−ΔF

(
ΔA{i,j},X

) ≺ 0,

⇔
{
F
(
Aj ,B,X,Γ{i,j})+ΔF

(
ΔA{i,j},X

) ≺ 0,

F
(
Aj ,B,X,Γ{i,j}) ≺ 0,

(13)

where ΔF
(
ΔA{i,j},X

)
is the perturbation matrix that

represents the effect of ΔA{i,j} on the LMIs of vertex
j. Note that the notation ΔF

(
ΔA{i,j},X

)
:= ΔF{i,j},

F
(
Ai,B,X,Γ{i,j}) := Fi and F

(
Aj ,B,X,Γ{i,j}) :=

Fj will be used in the following sections.

Analyzing (13), it can be concluded that a lower
perturbation generates a lower variation in the eigenvalues
of (9) and this means that it is more likely that the
matrix on the left-hand side of the LMI will keep
negative definiteness by using the same controller gain.
A graphical method, referred to as Gershgorin circles,
can be used to predict the variation in the eigenvalues,
allowing determining the likelihood that two vertices can
be combined successfully.

4. Gershgorin circles-based algorithm

Gershgorin circles (GCs) (Quarteroni et al., 2010) provide
an a priori bound to the eigenvalues of the matrix E:

∀λ ∈ σ(E), λ ∈ SR ∩ SC , (14)

where

SR =

ne⋃

i=1

Ri, Ri =
{
z ∈ C : |z − eii| ≤

ne∑

j=1
j �=i

|eij |
}
,

(15)

SC =

ne⋃

j=1

Cj, Cj =
{
z ∈ C : |z − ejj | ≤

ne∑

i=1
i�=j

|eij |
}
,

(16)

The sets Ri and Cj are called row and column
Gershgorin circles, respectively. Here eij is the element
of matrix E ∈ R

ne×ne located in row i and column j and
σ(E) is the spectrum of matrix E. It must be highlighted
that Fi, Fj and ΔF{i,j} (13) are symmetric matrices.
Therefore, their eigenvalues will be real and SR = SC will
hold.

The perturbation ΔF{i,j} will move the centres and
modify the radii of the Gershgorin circles of the matrices
Fi andFj , because they are symmetric. Thus, in the worst
situation, the perturbation matrix ΔF{i,j} will produce
a variation in the eigenvalues of Fi and Fj equal to the
largest distance of the Gershgorin circles of ΔF{i,j}:

Δr{i,j}max = max
k

(
|Δf

{i,j}
kk |+

n∑

l=1
l �=k

|Δf
{i,j}
kl |

)
, (17)

where Δf
{i,j}
kl is the element of matrix ΔF{i,j} located

in row k and column l. Note that only the absolute values
of ΔF{i,j} are involved. Therefore, Δr

{i,j}
max = Δr

{j,i}
max .

The algorithm for determining the sequence will
be based on sorting increasingly the values Δr

{i,j}
max , as

detailed in Algorithm 1. The algorithm will stop when a
feasible solution is found or the first nk vertex pairs of the
sequence (sGC ) are analyzed, where nk ∈ {1, nv(nv −
1)/2} defines a trade-off between the probability to find
combinable vertices and the computational burden (a
lower value of nk means that it is harder to find a solution
but the computational load would be lower). If the
second condition is fulfilled, this means that probably two
combinable vertices for the required design specifications
do not exist. Note that certainty about this statement
can be obtained only by checking feasibility for all the
possible vertex pairs.
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Algorithm 1. Vertex reduction (nv → nv − 1): GC
sequence.

1: Solve (9) to obtain a solution of X.
2: Calculate ΔA{i,j} using (12) and determine ΔF{i,j}

for each pair of vertices.
3: Compute Δrmax (17) for each ΔF{i,j}.
4: Sort Δr

{i,j}
max increasingly, generating the Gershgorin

circles-based sequence (sGC).
5: for k = 1 to nk do
6: Combine the vertices {i, j} in the k-th position of

sGC .
7: Evaluate the LMIs (9).
8: if {i, j} provides a feasible solution then
9: return {i, j}

10: end if
11: end for
12: return No feasible solution found

Example 1. (Computation of Δrmax) Consider an
unknown matrix M that is perturbed by N as

M+N =

[
ma mc

mc mb

]
+

[
na nc

nc nb

]
. (18)

In the worst case, the Gershgorin circles are

R1 = C1 = {z : |z − (ma + |na|)| ≤ |mc|+ |nc|},
R2 = C2 = {z : |z − (mb + |nb|)| ≤ |mc|+ |nc|}.

(19)

Then, analyzing (19), it can be concluded that Δrmax

(17) of N is

Δrmax = max(|na|+ |nc|, |nb|+ |nc|). (20)

�

Example 2. (Sequence generation) Consider a system
with three vertices v = [1, 2, 3] such that the values of
Δrmax corresponding to the combinations {1, 2}, {1, 3}
and {2, 3} are 7, 2 and 6, respectively. Hence, the
sequence that should be followed to reduce the vertices
of the system is as follows:

�
It must be noted that, for a given Lyapunov matrix X,

different sets of possible Γv which provide the feasibility
of the LMIs (9) are obtained. As a consequence,
determining whether or not two vertices can be combined
will depend, in general, on the value of X. Algorithm 1

Vertex Δr
{i,j}
max sGC Δr

{i,j}
max

{1, 2} 7 {1, 3} 2
{1, 3} 2 → {2, 3} 6
{2, 3} 6 {1, 2} 7

assumes that a feasible solution of (9) has been obtained
(with non-combined vertices), and uses this specific
solutionX to compute the Gershgorin circles and generate
a sequence which ranks the vertex pairs based on their
susceptibility to be combinable.

5. Case study: Pole-placement constraints

In this paper, the pole-placement controller design (Chilali
and Gahinet, 1996) has been selected to apply and
illustrate the proposed methodology.

5.1. Pole-placement constraints: LMI formulation.
The system (4) is quadratically D-stabilizable in the
region S(α, r, γ) (Chilali and Gahinet, 1996) (see Fig. 1)
if there exist a symmetric positive definite matrix X > 0
and Γv ∀ v = 1, . . . , nv such that

Dv :=

⎛

⎝
Dαv 0 0
0 Drv 0
0 0 Dγv

⎞

⎠ < 0,

∀ v = 1, . . . , nv, (21)

where Dv = F (Av,B,X,Γv) is the LMI corresponding
to the D-stable region S(α, r, γ), created by the
intersection of three regions:

• Region α (Dαv ): represents the α-stability region (a
left half-plane with abscissa α),

Dαv = zv + zTv + 2αX (22)

with

zv = AvX+BΓv; (23)

• Region r (Drv ): represents the disc with radius r
and centre (−q, 0),

Drv =

( −rX qX+ zv
qX+ zTv −rX

)
(24)

with zv defined as (23);

• Region γ (Dγv ): represents the conic sector with
angle γ,

Dγv =

(
sin(γ)[zv + zTv ] cos(γ)[zv − zTv ]
cos(γ)[zTv − zv] sin(γ)[zv + zTv ]

)

(25)

with zv defined as (23).
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Fig. 1. S(α, r, γ) LMI region.

5.2. Generating sequences based on Gershgorin cir-
cles. The effect of the perturbation matrix ΔA{i,j} on
the D-stability region S(α, r, γ), taking into account (13),
is described by

{
Di < 0,

Dj < 0,
⇔

{
Di < 0,

Di −ΔD{i,j} < 0,

⇔
{
Dj +ΔD{i,j} < 0,

Dj < 0,
(26)

where ΔD{i,j} = ΔF
(
ΔA{i,j},X

)
is the perturbation

matrix which represents the effect of ΔA{i,j} on the LMI
of vertex j.

ΔD{i,j} can be computed by replacing (12) in (23)
and setting Γi = Γj = Γ{i,j}:

zi = AiX+BΓ{i,j} = (Aj +ΔA{i,j})X+BΓ{i,j}

= zj +ΔA{i,j}X. (27)

Taking into account that

Δz{i,j} = ΔA{i,j}X (28)

and substituting (27) in the LMIs (22), (24) and (25), we
obtain

• Region α: stability region,

Dαj = Dαi +ΔD{i,j}
α , (29)

where

ΔD{i,j}
α = Δz{i,j} + (Δz{i,j})T ; (30)

• Region r: disc region,

Drj = Dri +ΔD{i,j}
r , (31)

where

ΔD{i,j}
r =

(
0 Δz{i,j}

(Δz{i,j})T 0

)
; (32)

• Region γ: conic region,

Dγj = Dγi +ΔD{i,j}
γ , (33)

where

ΔD{i,j}
γ =

(
sin(γ)[Δz{i,j} + (Δz{i,j})T ]
cos(γ)[(Δz{i,j})T −Δz{i,j}]

cos(γ)[Δz{i,j} − (Δz{i,j})T ]
sin(γ)[Δz{i,j} + (Δz{i,j})T ]

)
. (34)

Thus, the perturbation matrix is

ΔF{i,j} = ΔD{i,j}

= diag(ΔD{i,j}
α ,ΔD{i,j}

r ,ΔD{i,j}
γ ).

(35)

Finally, to generate the sequence of vertex pairs
based on the Gershgorin circles, it is required to compute
Δr

{i,j}
max (17) for each vertex pair.

6. Simulation results

The results obtained in the following examples are based
on the methodology explained in Sections 3 and 4 when
the pole-placement specification is considered, as detailed
in Section 5.

Example 3. (Academic system) The methodology
for finding two combinable vertices is detailed for an
academic example. Consider a system that has 5 vertices,
3 states and 3 inputs. Assume that the state matrices Av

are

A1 =

⎡

⎣
3.79 2.07 −9.41
8.81 5.01 −8.70

−0.06 −0.20 7.76

⎤

⎦ ,

A2 =

⎡

⎣
−2.80 5.17 −4.85
−2.56 −6.78 −0.36
−7.50 −3.08 2.87

⎤

⎦ ,

A3 =

⎡

⎣
−0.56 2.27 −2.05
8.63 4.52 6.46

−4.71 −5.85 2.24

⎤

⎦ ,

A4 =

⎡

⎣
0.10 6.81 8.92
0.87 −1.45 −3.55

−0.16 1.83 −7.48

⎤

⎦ ,

A5 =

⎡

⎣
2.26 −6.29 5.55
2.68 −6.49 2.12

−2.17 6.26 −3.80

⎤

⎦ ,
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and the input matrix B is

B =

⎡

⎣
0.23 0.26 −0.09

−0.10 0.50 0.92
0.21 −0.91 −0.19

⎤

⎦

According to Algorithm 1, the steps used to find two
combinable vertices for this system are described below.

1. The LMIs (21) have been modelled using YALMIP
(Lofberg, 2004) and solved with SeDuMi (Sturm,
1999) for the D-stable region S(α, r, γ) =
S(1, 18.75, 0.6). The matrix X and the controller
gains Kv obtained as a feasible solution of (21) are

X =

⎡

⎣
24.2 −3.4 3.5
−3.4 5.4 −0.2
3.5 −0.2 2.3

⎤

⎦ · 10−4,

K1 =

⎡

⎣
−65.9 −79.3 −16.3
−11.6 −14.1 9.8
−11.8 −10.1 1.0

⎤

⎦ ,

K2 =

⎡

⎣
−12.6 −37.8 69.5
−12.7 −13.7 24.4

6.5 6.8 −2.4

⎤

⎦ ,

K3 =

⎡

⎣
−35.7 −63.8 −44.9
−12.5 −18.3 8.3
−7.3 −9.2 −19.2

⎤

⎦ ,

K4 =

⎡

⎣
−33.7 −45.9 43.4
−8.3 −9.2 7.9
−1.6 −2.3 7.1

⎤

⎦ ,

K5 =

⎡

⎣
−49.2 −72.7 24.3
−10.4 −3.5 3.2
−6.1 −8.8 5.7

⎤

⎦ .

2. ΔD{i,j} has been built for each vertex pair:

ΔD{i,j} = diag(ΔD{i,j}
α ,ΔD{i,j}

r ,ΔD{i,j}
γ ),

where ΔD{i,j}
α , ΔD{i,j}

r and ΔD{i,j}
γ are defined

in (30), (32) and (34), respectively. The number
of vertex pairs is n2vtx = (nv − 1)nv/2 = 10.
For example, to compute ΔD{1,2}, it is necessary
to determine ΔA{1,2} using (12):

ΔA{1,2} =

⎡

⎣
6.6 −3.1 −4.6
11.4 11.8 −8.3
7.4 2.8 4.9

⎤

⎦ .

Then Δz{1,2} is generated using (28):

Δz{1,2} =

⎡

⎣
15.4 −3.8 1.3
20.6 2.7 1.7
18.7 −1.1 3.6

⎤

⎦ · 10−3.

Finally, ΔD{1,2} is built using (30), (32) and (34).

3. Δr
{i,j}
max (17) has been calculated for each matrix

ΔD{i,j}.

4. Finally, as shown previously in Example 2, the values
Δr

{i,j}
max have been sorted to produce the Gershgorin

circles-based sequence given in Table 1 . Note
that only a feasible combination of vertices for the
selected region exists, which corresponds to 4 − 5,
highlighted in boldface in Table 1.

For this system, the solution generated by the solver,
when the same controller gain is used for vertices 4 and 5,
is

X =

⎡

⎣
170.6 9.5 27.1
9.5 9.9 −2.2

27.1 −2.2 10.6

⎤

⎦ · 10−3,

K1 =

⎡

⎣
−38.6 −165.6 −135.1
−6.5 −28.1 −12.0
−10.7 −15.1 −5.0

⎤

⎦ ,

K2 =

⎡

⎣
−15.6 −124.5 113.0
−12.6 −29.7 29.9

5.4 0.2 5.2

⎤

⎦ ,

K3 =

⎡

⎣
0.2 −207.2 −188.8

−4.4 −37.6 −18.5
−5.0 −22.8 −17.4

⎤

⎦ ,

K4 = K5 =

⎡

⎣
−47.8 −104.9 73.4
−10.7 −16.7 12.1
−2.1 −9.0 6.2

⎤

⎦ .

Hence, only two iterations will be required to find
the combinable vertices using the sequence determined
by the Gershgorin circles. By contrast, the mean number
of iterations needed when random sequences are used is
5.5. A random sample sequence that would require five
iterations is also shown in Table 1. �

Example 4. (Set of academic systems) A set of academic
systems has been generated to investigate the efficiency

Table 1. Sequence to combine vertex pairs in Example 3.

Gershgorin circles Random

Sequence (sGC) Δr
{i,j}
max [·10−2] sequence (sR)

1− 3 2.8 2− 4
4− 5 3.0 1− 2
1− 5 3.1 2− 5
1− 4 3.6 1− 5
3− 4 3.7 4− 5
3− 5 3.9 2− 3
2− 4 4.4 3− 4
2− 5 5.7 1− 4
2− 3 5.8 3− 5
1− 2 7.2 1− 3
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of the proposed algorithm. The procedure that has been
followed is described below:

• nsys artificial systems with nv vertices have been
generated, using the parameters detailed in Table 2.
The chosen D-stability region is S(α, r, γ) =
S(1, rmin, 0.6) (21), where rmin depends on the
specific system and allows restricting the number of
existing combinable vertex pairs nm.

• Algorithm 1 has been applied to every system by
computing sGC for each vertex pair, along with a
randomly generated sequence sR. Note that the
matrix X used is the solution obtained when a
different controller is designed for each vertex.

• Combinable vertices have been searched by checking
whether a feasible solution of (21) exists when
vertices are combined following the sequences sGC

and sR previously determined. The number of
attempts required to find combinable vertices has
been recorded.

Figure 2 shows the results obtained for a set of 250
systems with 3 states, 3 inputs and 5 vertices, and provides
the cumulative probability of finding combinable vertices
at each iteration. For instance, for 68.8% of the systems
a maximum of 2 iterations was needed in order to find
combinable vertices using the Gershgorin circles-based
sequence. On the other hand, for only 29.6% of the
systems, combinable vertices could be found using the
same number of iterations, when applying the random
sequence.

The results show that the probability of finding
combinable vertices at each iteration using the sequence
generated by the proposed methodology is higher than
following a random sequence. �

Example 5. (Different system structures) The objective
of this example is to demonstrate that the efficiency of
the proposed methodology is independent of the system
parameters. For this reason, different system structures
have been considered.

Table 2. Parameters of Example 4.

Parameter Symbol Value

No. of systems nsys 250
No. of states nx 3
No. of inputs nu 3
No. of vertices nv 5
No. of combinations (max) nm 2
Elements of Av aklv [−10, 10]
Elements of B bkm [−1, 1]
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Fig. 2. Behaviour of the proposed approach (Example 4). Sys-
tems with 3 states, 3 inputs and 5 vertices.

Four scenarios have been generated (see Table 3),
each composed by three configurations which represent
an under-actuated, a fully-actuated and an over-actuated
system. Each configuration consists of 250 academic
systems with a predefined number of states, inputs and
vertices. The approach based on the Gershgorin circles
has been applied to combine two vertices of each system.
The range of values for the matrices Av and B is the same
as in Example 4. The maximum number of combinable
vertices nm is 2 and 5 for the systems with 5 and 10
vertices, respectively. The same procedure explained in
Example 4 has been applied and the results obtained are
presented in Figs. 3–6.

In all scenarios and configurations, the Gershgorin
circles-based sequence (sGC := ns ∈ {1 − nm}) has
a higher probability of finding combinable vertices than
the random sequence sR. For about 40% of the systems,
combinable vertices were found at the first iteration using
sGC when the system has 3 states (see Figs. 3 and 5).
On the other hand, for only about 12% of the systems,
combinable vertices were found at the first iteration when
a random sequence sR was used.

Hence, according to the results, the main advantage
of the proposed methodology is that fewer iterations are
required to find combinable vertices. Figures 3 and 4 show
that for a system with 5 vertices, only 4 or 5 iterations

Table 3. Characteristics of the scenarios in Example 5.

Scenario nx nu nv

1 3 {2,3,5} 5
2 6 {5,6,8} 5
3 3 {2,3,5} 10
4 6 {5,6,8} 10
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are required in order to reach an 80% of probability of
finding combinable vertices, and less than 10 iterations
are necessary when 10 vertices are considered (see Figs. 5
and 6).

Note that the results denoted by ns ∈ {φ} show the
behaviour of the algorithm when the systems have exactly
φ combinable vertex pairs. For instance, in Fig. 3 ns ∈
{1} denotes the results obtained for systems which have
exactly one pair of combinable vertices. As expected,
when there exist multiple combinable vertices that are
feasible, the probability of finding them becomes higher.
However, the worst case of ns ∈ {1} is still better than
when using a random sequence (sR).

It can be concluded that the performance of the
proposed algorithm does not depend on the number
of states and inputs, whereas the number of vertices
determines the problem complexity. The sequence
generated by the proposed methodology increases the
likelihood of finding combinable vertices at each iteration.
It must be highlighted that the time to execute Algorithm 1
is shorter by fewer orders of magnitude than the one for
the brute-force procedure.

�

Example 6. (Two-link robot) The developed algorithm
has been applied to the two-link robot described by Tseng
et al. (2001) as a Takagi–Sugeno fuzzy system with nine
rules. Therefore, nine controllers should be designed to
regulate the robot motion. In this case, the matrix B is
not constant, consequently, a prefiltering of the inputs is
required to obtain a constant input matrix B̄ (Apkarian
et al., 1995):

ẋu(t) = −ωxu(t) + ωu(t), (36)

where u(t) is the input vector, xu(t) is a state vector
which represents the filtered input and ω allows us to
define the filter bandwidth. The selected ω is 45 s−1

because the filter bandwidth must be chosen larger than
the desired system bandwidth (Apkarian et al., 1995).

The selected D-stable region (21) is S(α, r, γ) =
S(1, 34.2, 0.6) and the first ten elements of the Gershgorin
circles-based sequence (sGC), when Algorithm 1 is
applied, are presented in Table 4.

The results show that all the combinable vertex
pairs are situated in the first sequence positions. It is
worth noting that, by repeatedly combining vertex pairs
following the obtained sequence, it is possible to reduce
the number of controller gains not only from nine to
eight, but also from nine to five, since by combining
vertices 3–7, 1–9, 2–8 and 4–6, the feasibility of the
designed LMIs is kept. It must be highlighted that the
obtained solution might not have the minimal number of
combinable tuples of vertices. Nevertheless, the proposed

algorithm allows achieving a substantial reduction in the
number of controller gains through a faster search of
combinable vertices. �

7. Conclusions

In this paper, a heuristic algorithm to decrease the
number of controller gains when the design of an LPV
state-feedback controller takes the form of parametrized
LMIs has been developed. The proposed technique is
based on the use of Gershgorin circles to determine how
much the LMIs are perturbed when a common controller
gain is chosen. This quantification allows us to produce
a sequence which provides information on the likelihood
that two vertices are combinable. The approach is not
limited to reduction in controller gains, since it can be
used for any LMI-based design, e.g., for state observers
or fault estimators.

The application examples have shown that the
efficiency of the algorithm does not depend on the number
of states and inputs, and the complexity of the problem
is linked to the number of vertices of the system. The
results show that, by means of the proposed approach,
fewer iterations are required to find combinable vertices.
Furthermore, the proposed methodology is not only
limited to reduce from nv to nv − 1, since a higher
reduction can be achieved, although the obtained solution
might not yield the minimal number of combinable tuples
of vertices.

This approach cannot determine whether a feasible
solution of (9) exists. However, the vertex pairs of
the Gershgorin circles-based sequence increase their
probability to become combinable vertices, when the
specification constraints are relaxed, e.g., increasing r of
the D-stability region. It must also be pointed out that
the metric based on Gershgorin circles is conservative

Table 4. Gershgorin circles-based sequence (sGC ) in Exam-
ple 6.

sGC Δr
{i,j}
max [×10−3] Feasible?

3–7 1.0 Yes
1–9 1.2 Yes
2–8 2.7 Yes
4–6 4.7 Yes
6–8 13.7 Yes
4–8 15.6 No
2–6 15.7 No
2–4 18.0 No
5–9 48.5 No
1–5 48.5 No

...
...

...
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Fig. 3. Scenario 1 (Example 5): behaviour of the proposed approach. Configurations: 3 states, {2,3,5} inputs and 5 vertices.
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Configuration 4: [6,5,5]
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Configuration 5: [6,6,5]
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Fig. 4. Scenario 2 (Example 5): behaviour of the proposed approach. Configurations: 6 states, {5,6,8} inputs and 5 vertices.
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Configuration 7: [3,2,10]
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Configuration 8: [3,3,10]
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Fig. 5. Scenario 3 (Example 5): behaviour of the proposed approach. Configurations: 3 states, {2,3,5} inputs and 10 vertices.
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Configuration 11: [6,6,10]

0 10 20 30 40 50

Required iterations

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y 

[0
,1

]

Configuration 12: [6,8,10]

s
R

n
s
  {1-5}

n
s
  {1}

n
s
  {2}

n
s
  {3}

n
s
  {4}

n
s
  {5}

Fig. 6. Scenario 4 (Example 5): behaviour of the proposed approach. Configurations: 6 states, {5,6,8} inputs and 10 vertices.
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because it considers the “worst-case scenario.” Hence, it
is necessary to develop new metrics in order to improve
the sequence generated by Algorithm 1.

The proposed methodology cannot quantify how
much the LMIs are perturbed when combinations of more
than two vertices are involved. Hence, the maximum
vertex reduction which can be achieved is nv/2 and (nv+
1)/2, when nv is even and odd, respectively. All these
are some open issues which deserve further investigation
in future research, the main one being extension of
the proposed approach to search for generic tuples of
combinable vertices.
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Model reduction for LPV systems based on approximate
modal decomposition, International Journal for Numerical
Methods in Engineering 113(6): 891–909.

Marcos, A. and Balas, G.J. (2004). Development of
linear-parameter-varying models for aircraft, Journal of
Guidance, Control, and Dynamics 27(2): 218–228.



736 A. Sanjuan et al.

Mohammadpour, J. and Scherer, C.W. (2012). Control of Linear
Parameter Varying Systems with Applications, Springer,
New York, NY.

Montagner, V., Oliveira, R., Leite, V.J. and Peres, P.L.D.
(2005). LMI approach for H∞ linear parameter-varying
state feedback control, IEE Proceedings: Control Theory
and Applications 152(2): 195–201.

Nguyen, A.-T., Chevrel, P. and Claveau, F. (2018).
Gain-scheduled static output feedback control for
saturated LPV systems with bounded parameter variations,
Automatica 89: 420–424.

Packard, A. (1994). Gain scheduling via linear fractional
transformations, Systems & Control Letters 22(2): 79–92.

Pemmaraju, S. and Skiena, S. (2003). Computational Dis-
crete Mathematics: Combinatorics and Graph Theory with
Mathematica, Cambridge University Press, New York, NY.

Quarteroni, A., Sacco, R. and Saleri, F. (2010). Numerical Math-
ematics, Vol. 37, Springer Science & Business Media, New
York, NY.

Rahideh, A. and Shaheed, M. (2007). Mathematical dynamic
modelling of a twin-rotor multiple input-multiple output
system, Proceedings of the Institution of Mechanical En-
gineers I: Journal of Systems and Control Engineering
221(1): 89–101.

Rizvi, S. Z., Mohammadpour, J., Tóth, R. and Meskin, N.
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