
PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

A flexible and heterogeneous
framework for scientific image data
processing on-board the Solar
Orbiter PHI instrument

Lange, Tobias, Fiethe, Björn, Guan, Yejun, Michalik,
Harald, Albert, Kinga, et al.

Tobias Lange, Björn Fiethe, Yejun Guan, Harald Michalik, Kinga Albert,
Johann Hirzberger, David Orozco Suárez, Manuel Rodríguez-Valido, "A
flexible and heterogeneous framework for scientific image data processing on-
board the Solar Orbiter PHI instrument," Proc. SPIE 11155, Image and Signal
Processing for Remote Sensing XXV, 1115506 (7 October 2019); doi:
10.1117/12.2532102

Event: SPIE Remote Sensing, 2019, Strasbourg, France

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 30 Mar 2020 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

A flexible and heterogeneous framework for scientific image
data processing on-board the Solar Orbiter PHI instrument

Tobias Langea, Björn Fiethea, Yejun Guana, Harald Michalika, Kinga Albertb, Johann
Hirzbergerb, David Orozco Suárezc, and Manuel Rodríguez-Validod

aIDA, Technische Univ. Braunschweig, Germany
bMax-Planck-Institut für Sonnensystemforschung, Germany

cInstituto de Astrofísica de Andalucía - CSIC, Spain
dUniv. de La Laguna, Spain

ABSTRACT
Present scientific space instruments generate a high amount of raw data while deep-space missions only have a
very limited telemetry rate. Because the computation of the scientific relevant parameters is usually accompanied
with the reduction of the data, the processing is desired to be carried out already on-board.
To accomplish this, the following paper presents a flexible image processing framework which makes use of a
heterogeneous data processing module consisting of a space-grade General Purpose Processor (GPP) as well as
two dynamically reconfigurable Field-Programmable Gate Arrays used for hardware acceleration. The flexibility
and capabilities of the presented framework are proven by means of three exemplary processing tasks of the
Polarimetric and Helioseismic Imager (PHI) on-board Solar Orbiter.

Keywords: Solar Orbiter, on-board processing, FPGA, Kuhn-Lin-Loranz, Hough Transform

1. INTRODUCTION
Among the scientific instrumentation of space missions, especially imaging instruments produce a very high
amount of data. This amount is reduced by the calculation of the scientific parameters of interest, which
typically is performed on ground. Since the telemetry rate of deep-space missions is very restricted, the required
processing has to be carried out already on-board. As, on the other hand, the availability of qualified processing
components (such as General Purpose Processors, GPPs) for such missions is very limited, space-grade Field
Programmable Gate Arrays (FPGAs) are widely used for dedicated processing tasks. For complex instruments
such as the Polarimetric and Helioseismic Imager (PHI) on Solar Orbiter [1], on-board processing is desired to
be very flexible. PHI is a camera-based instrument which will acquire high-resolution and full disk measurements
of the solar photosphere used to provide maps of the continuum intensity, the magnetic field vector and the line-
of-sight velocity within the photosphere. This is done by scanning six different wavelength positions within the
FeI-6173 Å line with four different polarization states, each. Final magnetic field vectors are determined by the
inversion of the Radiative Transfer Equation (RTE). Because the instrument is equipped with an active pixel
sensor of 2048×2048 pixels, a set of 24 acquired images would lead to an overall amount of approx. 265MiB. Due
to the very limited telemetry rate, the processing of the acquired data already has to be carried out on-board.
Therefore, the Data Processing Module (DPM) for PHI utilizes a GPP in combination with two reconfigurable
FPGAs to speed up data acquisition and processing. While data acquisition, image stabilization and the inversion
of the RTE [2] are done by dedicated FPGA designs, the image pre-processing demands a high grade of flexibility.
To retain the performance gained by the use of FPGAs, a heterogeneous on-board processing framework has
been implemented which overcomes the bottleneck between FPGA and GPP.

Further author information:
Tobias Lange: E-mail: tlange@ida.ing.tu-bs.de

Image and Signal Processing for Remote Sensing XXV, edited by Lorenzo Bruzzone, Proc. of SPIE
Vol. 11155, 1115506 · © 2019 SPIE · CCC code: 0277-786X/19/$21 · doi: 10.1117/12.2532102

Proc. of SPIE Vol. 11155 1115506-1
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 30 Mar 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Detector
12 bit/px

10 fps

Online
Image

Accumulation

Storage
in Flash
Memory

Offline Pre-
Processing

Offline
RTE

Inversion

Bit Depth
Reduction

&
Data

Compr.

Spacecraft3.2 Gbit
355 Mbit 100 Mbit

FPGA Configuration: Acquisition Processing

503 Mbit/s 3.2 Gbit 3.2 Gbit

Figure 1. Data processing of the PHI instrument

1.1 Data Processing Module for Solar Orbiter PHI
The Data Processing Module (DPM) for the PHI instrument which is the underlying hardware platform for the
presented framework is based on a combination of a General Purpose Processor and two reconfigurable FPGAs
based on SRAM technology (RFPGAs) [3–5]. The architecture of the module is depicted in figure 2 and consists
of a system controller, a system supervisor, the two reconfigurable FPGAs and a solid state mass memory for
intermediate data storage.
A radiation hard GR712RC processor ASIC based on the fault tolerant LEON3 architecture was chosen to im-
plement the system controller of the DPM. It controls the instrument and its processing and interfaces the DPM
to the spacecraft. It is connected to its own 256MiB of working memory as well as non-volatile memory for
storage of software and FPGA configuration bitstreams. The processor system is running at a clock frequency
of 50MHz.
Two reconfigurable Xilinx Virtex-4 FPGAs are used for dedicated processing tasks in a time-shared manner. For
buffering of image data, one of the reconfigurable FPGAs is connected to 1GiB of dynamic memory.
The processor system and the two reconfigurable FPGAs are connected by radiation-hard and one-time pro-
grammable RTAX2000 FPGA which acts as a system supervisor and configuration controller. It includes two
dedicated controllers responsible for safe configuration and permanent scrubbing of the two RFPGAs via JTAG.
It also connects the main components of the DPM via a dedicated SoCWire communication network. Further-
more, it includes a controller for a mezzanine 512GiB solid-state NAND-Flash memory board for intermediate
storage of image data [6].

Main Memory

Configuration
 Memory

LEON3-FT
(GR712)

Non-volatile
Image Data Storage

(Flash Memory)

Data Acquisition

Xilinx Virtex-4 QV

Preprocessing

Time Shared

ISS Control

RTE Inversion

Xilinx Virtex-4 QV

Time Shared
Microsemi RTAX FPGA

Configuration Controller,
System Supervisor

Fast Image
Memory Buffer

Fast Image
Memory Buffer

JTAG

Detector
Image Data

ISS Sensors &
Actuators

Power
Supply

Detectors
Cmd & HK

Spacecraft
SpW I/Fs

JTAG

System Controller
Main Interface

Red. Interface

SoCWire

SoCWire

IO-Bus

S
o
C

W
-I

/F

SoCW-Switch

NAND-Ctrl
...

Figure 2. Architecture of the PHI Data Processing Module (DPM)

Proc. of SPIE Vol. 11155 1115506-2
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 30 Mar 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

2. FLEXIBLE, HETEROGENEOUS IMAGE PROCESSING FRAMEWORK
In order to enable the flexible processing of image data which meets the performance requirements on the
presented hardware, a framework has been developed which allows the instrument software to control the data
flow inside the processing FPGA. Therefore, the framework consists of a set of specialized processing modules.
These modules include e.g. simple addition, subtraction and multiplication as well as a Fast Fourier Transform
(FFT) and median filtering. Each of these modules is connected to the multi-port SDRAM controller via simple
FIFO interfaces, allowing to access the 1GiB of SDRAM buffer memory. A dedicated SoCWire communication
protocol is used for control, status and data transmission purpose between the various components of the DPM
and the processing framework. The software layer enables the automatic detection and identification of processing
modules after reconfiguration of the FPGA. Each module is parametrized and executed by a set of registers.
These registers are controlled by the software layer which allows a seamless integration into the flow of the
on-board software. Reading and writing of data to and from the other components of the DPM is done by a
dedicated module which is included in each processing configuration.
In contrast to the acquisition of data, intermediate storage of data and the elliptical orbit of the spacecraft allow
off-line processing of the data. Thus, the FPGA configurations for processing are protected to a lesser extend
against single-event upsets within the space environment. Instead, faults are detected within the framework and
processing steps will be repeated if necessary. Therefore, the framework includes a software-based self-test which
makes use of small test vectors to detect malfunctioning processing modules. The tests run automatically after
the execution of each module which implies a constant run-time overhead.
To meet the performance requirements, the buffer memory is using a bus-width of 64 bit (96 bit gross, including
error correction). Because not all modules fit into a single FPGA configuration, the framework makes intense use
of dynamic reconfiguration of the SRAM-based processing FPGA at run-time. An excerpt of processing modules
arranged across three FPGA configuration bitstreams is shown in table 1. The principle of the processing
framework is depicted in figure 3. The pixels of an image are typically represented by 32 bit fixed-point values.
In the frequency domain, 64 bit complex floating-point format is used (32 bit, each for real and imaginary part)
to avoid scaling issues. The set of hardware modules as well as the external SDRAM memory is also running at
a clock frequency of 50MHz.
In order to allow automated testing of the implemented modules as well as rapid prototyping and evaluation of
more complex processing routines, the framework provides a set of libraries which enables to use the functions
on the DPM from within Python running on a host computer.

FIFO
FIFO

op3 FFT / IFFT

Data

Reg

Reg

Reg

RFPGA #2 - Pre-Processing
NAND-Flash Storage

RTAX2000
System Supervisor

GR712RC
System Controller

64 bit

FIFO
FIFO

FIFO
FIFO

FIFO

FIFO
FIFO

FIFO

op2 Division

/

op1

M
u
lt

ip
o
rt

 S
D

R
A

M
 C

o
n
tr

o
lle

r

S
D

R
A

M

Arithmetics

S
o
C

W
ir

e
 S

w
it

ch

+ - *

Memory
Read/Write
& Control

load(file, addr);

op1(raddr1, raddr2, waddr);

op2(raddr1, raddr2, waddr);

store(file, addr, len);

Software

Figure 3. Architecture of the processing framework

Proc. of SPIE Vol. 11155 1115506-3
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 30 Mar 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Table 1. Arrangement of needed processing modules within FPGA configuration bitstreams
Configuration 1

op_addsub Pixel-wise / scalar addition and subtraction
op_mult Pixel-wise / scalar multiplication
op_div Pixel-wise / scalar division
op_thold Thresholding less/equal/greater than with optional replace
op_shift Horizontal / vertical shift and roll of images
op_multisum Minimum / maximum determination, sum, mean value and least squares fitting
op_logic Scalar logic functions (and, or, xor, not)
...

Configuration 2
op_fp_cext conversion between fixed-point real ↔ floating-point complex
op_fp_fft Floating-point FFT/IFFT
op_fp_mult Pixel-wise / scalar (complex) floating-point multiplication
...

Configuration 3
op_log Calculation of logarithm
...

3. PROOF OF CONCEPT
Besides regular pre-processing of the acquired science data, the framework is also used for in-flight instrument
calibration [7]. Therefore, the framework shall be proven in terms of run-time and flexibility by means of the
image pre-processing as well as the determination of the flat field. While the pre-processing requires an execution
time of around 15 minutes per data set, the run-time of the calibration tasks is considered to be less critical.
Since the final sequence of the science data pre-processing depends on the commissioning phase of the instrument,
the basic processing pipeline is used as proof of concept.
For the determination of the flat field, no uniform light flux in front of the detector will be available during flight.
Therefore, the flat field calibration for the full-disk telescope has to be done using the algorithm according to
Kuhn, Lin and Loranz (KLL) [8]. The algorithm calculates the individual gain for each detector pixel using a
set of displaced images of the solar disk. Before this is carried out, the input images have to be transformed
to a logarithmic scale. The computation iterates through all possible combinations of the displaced images.
For the PHI instrument, a set of nine images is used, resulting in overall 36 combinations. The detector has
a size of 2048 × 2048 pixels, leading to an overall image size of 16MiB for real valued images and 32MiB for
complex images. Therefore, the calculation of the flat field using the KLL algorithm requires a sufficient amount
of processing power. In order to apply the KLL algorithm to the input images, the center position of the solar
disk within each image has to be determined in advance. This is done by using a circular Hough transform.
Instead of extending the presented processing framework by dedicated hardware modules, the two tasks can be
broken down into the subset of already implemented basic functions as listed in table 1.

3.1 SCIENCE DATA PROCESSING
The data flow of the exemplary image pre-processing as required by the PHI instrument is depicted in figure
4. In the first step (1), the acquired set of images has to be corrected with the dark field of the optics and the
flat field of the sensor. Therefore, intermediately stored acquisition data as well as dark and flat fields have to
be loaded from the NAND-Flash memory. The next step corrects the influence of the telescope’s Point-Spread
Function (PSF) by a deconvolution with a Wiener Filter which can be carried out in the frequency domain (2).
This also includes the necessary transfer of the prepared filter kernel from the NAND-Flash into the SDRAM
buffer memory. In each of the six different wavelengths around the FeI-6173 Å line, the instrument acquires
four intensities I0, I1, I2 and I3 at different polarization states. In order to allow further computation, these
intensities have to be converted (3) into the four Stokes parameters I,Q,U and V . Equation 1 shows that the
demodulation matrix D(x, y) is dependent on the image position. Therefore, the computation requires D in form
of a set of 16 individual images with an overall size of 256MiB. Before hand-over to the second FPGA for the
inversion of the RTE, the data has to be reordered and converted to floating-point format in accordance of the
operation mode of the RTE inversion (4).

Proc. of SPIE Vol. 11155 1115506-4
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 30 Mar 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Image
Acquisition

Dark & Flat
field

correction

Telescope PSF deconvolution

RTE
InversionFFT IFFT

Multiplication
with

Filter Mask

Polarization
Demodulation

Storage
in Flash
Memory

Minimal Image Pre-Processing

Reordering
&

Conversion
for RTE

1 2 3 4

Figure 4. Exemplary regular data processing

IS(x, y, λ) =


I(x, y, λ)
Q(x, y, λ)
U(x, y, λ)
V (x, y, λ)

 = D(x, y)Iraw(x, y, λ)

=


D0,0(x, y) D0,1(x, y) D0,2(x, y) D0,3(x, y)
D1,0(x, y) D1,1(x, y) D1,2(x, y) D1,3(x, y)
D2,0(x, y) D2,1(x, y) D2,2(x, y) D2,3(x, y)
D3,0(x, y) D3,1(x, y) D3,2(x, y) D3,3(x, y)

 ·


I0(x, y, λ)
I1(x, y, λ)
I2(x, y, λ)
I3(x, y, λ)


(1)

3.2 HOUGH TRANSFORM
The Hough transform is a well known technique in image processing used for the extraction of features [9, 10].
In case of the PHI instrument, a circular Hough transform is needed to find the center of the solar disk within
nine different images. After edge detection and the generation of a binary image, the circular Hough transform is
usually carried out by adding up a circle of given radius at the position of each valid pixel in the binarized image
into a separate accumulation buffer. Finally, the circular center can be determined by finding the maximum
value inside the accumulation buffer.
Because the transform is similar to a convolution, the accumulation might also be carried out in the frequency
domain under certain conditions [11, 12]. The principle of the circular Hough transform, only consisting of the
functions listed in table 1, is shown in figure 5. It includes the actual Hough transform in the frequency domain
as well as the edge detection and binarization. The circular filter kernel has to be precomputed and can be stored
within the DPM’s NAND-Flash storage.
The calculation shown in figure 5 uses the nine displaced images as needed for the KLL. To determine the correct
center position, circular kernels for five different radii are used. Because the transform into the frequency domain
of the kernel is done at run-time, multiple binary filter kernels with different radii can be stored into one single
image. The currently needed radius can be picked by the use of the logic function module.
After successful inverse Fourier Transform, the center can be determined by finding the overall maximum position
of the five output images for each of the nine input images. With the arrangement of configurations from table
1, the Hough transform only needs three reconfigurations of the processing FPGA.

Proc. of SPIE Vol. 11155 1115506-5
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 30 Mar 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

reconfigure 'bitstream 1'

store image
shift image horizontal

subtract horizontal part

multiply horizontal part

reconfigure 'bitstream 2'

add h. and v. part

store circular filter kernel
expand filter kernel to complex

FFT filter kernel horizontal

shift image vertical

subtract vertical part

multiply vertical part

threshold greater than

FFT filter kernel vertical

Edge
Detection

Prepare
Filter Kernels5x

9x

expand image to complex

FFT image horizontal
FFT image vertical

complex multiplication
IFFT result horizontal
IFFT result vertical
crop imaginary part

Hough
Transform

in Frequency
Domain5x

9x

reconfigure 'bitstream 1'

find max position in 5 results9x
Find

Center Positions

1

2

3

4

Figure 5. Hough transform

3.3 KUHN-LIN-LORANZ ITERATION
The actual iteration of the KLL works on the logarithmic representation Di of each corresponding input image
di. It can be described as a series by the following equation:

Gr+1(x) = K(x) +
1

n(x)

∑
i<j

[Gr(x− ai + aj) +Gr(x− aj + ai)] (2)

This includes constant K, which is defined by:

K(x) =
1

n(x)

∑
i<j

[[Di(x)−Dj(x− ai + aj)] + [Dj(x)−Di(x− aj + ai)]] (3)

The displacement is expressed by the vectors ai and aj , respectively. The algorithm sums up over all pos-
sible combinations of the input images (i < j). Pixels beneath a certain threshold will not be included in the
calculation. Thus, the result has to be scaled by 1

n(x) which is used to accumulate valid pixel positions. The
iteration starts with G0(x) = 0. For the simulated data of the PHI instrument, we assume that the algorithm
converges after five iterations.
Similar to the Hough transform, the KLL can be split up into basic function calls and processing modules which
are given in table 1. The KLL can be divided into five major tasks:
The preparation of the input data (1) loads the nine displaced images from the NAND-Flash memory and con-
verts them into a logarithmic scale. Furthermore, this steps generates binary masks which are necessary for the
accumulation of n(x). This is followed by the calculation of constant K(x) which also is the initial value G1(x)
of the iteration (2). The involved images have to be shifted to a common fiducial position. The step has to be
done for all 36 valid combinations of the nine input images. The calculation of G(x) is similar to the calculation
of K(x) but does not include the subtraction (3). This not only has to be done over the 36 valid combinations
of the nine displaced images but also for the five necessary iterations. Therefore, this step is highly computation
intense. The calculated G(x) is divided by 1

n(x) and corrected in terms of scaling after each of the five iterative
steps. Also invalid (NaN) results have to be replaced. This step has to be done for all the five iterations. Finally,
the resulting flat-field has to be scaled back by exponentiation. Because this only affects the final result, the
exponentiation is not calculated within a dedicated module but instead carried out in software within the system
controller.

Proc. of SPIE Vol. 11155 1115506-6
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 30 Mar 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

4. EVALUATION AND ANALYSIS
As mentioned in section 2, the framework includes a set of Python-based libraries to enable automated testing of
modules and rapid prototyping of complex processing pipelines from within an external computer. Furthermore,
this test software can be used for detailed evaluation of implemented algorithms. The detailed run-time of the
three presented processing pipelines is analyzed in table 2, 3 and 4.
As can be seen, the computation for all three given examples is done in reasonable time. While the less critical
flat field calibration (Hough transform and KLL) takes around 11 minutes, the run-time constrained minimal
pre-processing is executed within less than 4 minutes.
Since the reconfigurable FPGAs need a full reconfiguration in order to update the processing modules, the results
show that the overall time needed for FPGA reconfiguration is negligible related to the overall run-time of the
three pipeline examples. The individual module run-time strongly depends on the utilization of the memory
interface. Thus, functions which involve more pixel-wise operands are slower in execution. Another significant
factor is the out-of-order access across row boundaries of the SDRAM memory. This can be observed in partic-
ular on the vertical Fast Fourier Transform.
All the shown run-time measurements include the optional self-test after the execution of each function. Measure-
ments have shown a constant overhead of around 0.02 s. For functions with a slow execution time the overhead
is measured to be around 7% while the overhead for very fast functions can be up to 25%.
Furthermore, the analysis shows that the FFT/IFFT, multiplication as well as addition/subtraction each have a
significant share on the processing. Also the loading of acquired data sets and parameters is not to be neglected.
As a backup solution, a software version of the processing modules and the Hough transform is available to run
on the GR712 system controller. Although there is room for software improvements, the run-time of the minimal
pre-processing is carefully expected to take several hours. The software implementation of the Hough transform
was measured to take around 940 s for a single image. Thus, the complete set of nine images is estimated to take
more than two hours whereas the computation within the hardware accelerated framework takes between two
and three minutes.

5. SUMMARY AND CONCLUSION
In summary, the paper presented a flexible and heterogeneous framework for scientific on-board data processing.
It makes efficient use of the dynamic in-flight reconfigurability of the two used space-grade Xilinx Virtex-4 FPGAs
which only results in a negligible overhead to the overall execution time. The flexibility of the framework has
been proven by means of three different processing tasks needed for regular processing and calibration on the
Solar Orbiter PHI instrument. It has been shown that even complex processing tasks which at a first glance
demand for dedicated hardware acceleration and implementation, can be broken down into a subset of basic
hardware modules. The control flow is seamlessly integrated into the on-board software running on the GR712
system controller. Therefore, the processing can be easily adapted to mission specific changes without necessary
update of the FPGA bitstreams.
Furthermore, the framework is not only restricted to be used on the DPM of the PHI instrument. The used
SoCWire communication structure and the multi-port memory controller can be easily changed or adapted to
support different FPGA platforms and memory technologies. Another possible application of the framework is
the proposed PMI instrument on-board ESA’s Lagrange mission which would monitor space-weather conditions.
The instrument requires processing similar to PHI instrument but instead of intermediate storage, computation
has to be done in real-time.

Proc. of SPIE Vol. 11155 1115506-7
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 30 Mar 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Table 2. Run-time analysis of the implemented Hough
transform

(1) Edge Detection 29.7 s
1× Reconfiguration 2.2 s
9× Load Image 13.7 s
9× Shift 3.5 s

36× Addition/Subtraction 6.0 s
18× Multiplication 3.0 s
9× Threshold 1.3 s

(2) Preparation of Filter Kernels 10.5 s
1× Reconfiguration 2.2 s
1× Loading Filter Kernels 1.5 s
5× Expand to Floating-Point Complex 1.0 s
5× FFT Horizontal 1.6 s
5× FFT Vertical 4.2 s

(3) Hough Transform 87.9 s
9× Expand to Floating-Point Complex 1.8 s
9× FFT Horizontal 3.0 s
9× FFT Vertical 7.6 s

45× Complex Multiplication 14.0 s
45× IFFT Horizontal 37.9 s
45× IFFT Vertical 14.8 s
45× Conversion to Fixed-Point Real 8.8 s

(4) Detection of Center Positions 5.7 s
1× Reconfiguration 2.2 s

45× Finding Maximum Position 3.5 s
Overall Run-Time 133.8 s

Table 3. Run-time analysis of an exemplary pre-
processing

(1) Dark and Flat-Field Correction 90.6 s
1× Reconfiguration 2.2 s

49× Load Image 74.3 s
24× Subtraction 4.0 s
24× Division 4.1 s
49× Scalar Multiplication 6.0 s

(2) Deconvolution of the Telescope PSF 76.5 s
1× Reconfiguration 2.2 s
1× Loading Filter Kernel 1.5 s

24× Expand to Floating-Point Complex 4.9 s
24× FFT Horizontal 7.7 s
24× FFT Vertical 20.2 s
24× Complex Multiplication 7.4 s
24× IFFT Horizontal 7.7 s
24× IFFT Vertical 20.2 s
24× Conversion to Fixed-Point Real 4.7 s

(3) Polarization Demodulation 54.7 s
1× Reconfiguration 2.2 s

16× Load demodulation Matrix 24.3 s
96× Multiplication 16.1 s
72× Addition 12.1 s

(4) Preparation for RTE Inversion 7.2 s
1× Reconfiguration 2.2 s

24× RTE Reordering and Conversion 5.0 s
Overall Run-Time 229.0 s

Table 4. Run-time analysis of the Kuhn-Lin-Loranz it-
eration

(1) Preparation of Input 35.7 s
3× Reconfiguration 6.5 s
9× Load Image 13.7 s
9× Mask 1.3 s
9× Logarithm 12.9 s
9× Threshold and Replace 1.3 s

(2) Calculation of K(x) 90.5 s
144× Shift 27.8 s
144× Multiplication 24.2 s
37× Scalar Multiplication 4.6 s

180× Addition/Subtraction 30.2 s
12× Threshold and Replace 1.7 s
12× Divide 2.0 s

(3) Calculation of G(x) 320.5 s
720× Shift 139.0 s
360× Addition/Subtraction 60.5 s
720× Multiplication 121.0 s

(4) Correction of G(x) 9.4 s
10× Addition/Subtraction 1.7 s
5× Multiplication 0.8 s
5× Scalar Multiplication 0.6 s
5× Division 0.9 s
5× Square Root 0.6 s

15× Mean Value 1.2 s
25× Threshold and Replace 3.6 s

(5) Exponentiation (Software) 55.0 s
1× Data Transfer 5.0 s
1× Exponentiation 50.0 s

Overall Run-Time 511.1 s

Proc. of SPIE Vol. 11155 1115506-8
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 30 Mar 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

REFERENCES
[1] Solanki, S. K., del Toro Iniesta, and et al, “The Polarimetric and Helioseismic Imager on Solar Orbiter,”

arXiv e-prints , arXiv:1903.11061 (Mar 2019).
[2] Carrascosa, J. C., del Moral, B. A., Mas, J. R., Balaguer, M., Jiménez, A. L., and del Toro Iniesta, J.,

“The rte inversion on fpga aboard the solar orbiter phi instrument,” in [Software and Cyberinfrastructure
for Astronomy IV], 9913, 991342, International Society for Optics and Photonics (2016).

[3] Lange, T., Bubenhagen, F., Fiethe, B., Michel, H., and Michalik, H., “Fpga-based dynamically reconfigurable
processing module for the solar orbiter phi instrument,” in [SEE / MAPLD 2011 Conference], (April 2013).

[4] Fiethe, B., Bubenhagen, F., Lange, T., Michalik, H., Michel, H., Woch, J., and Hirzberger, J., “Adaptive
hardware by dynamic reconfiguration for the solar orbiter phi instrument,” in [Adaptive Hardware and
Systems (AHS), 2012 NASA/ESA Conference on], 31–37 (jun 2012).

[5] Lange, T., Fiethe, B., Michel, H., Michalik, H., Albert, K., and Hirzberger, J., “On-board processing using
reconfigurable hardware on the solar orbiter phi instrument,” in [2017 NASA/ESA Conference on Adaptive
Hardware and Systems (AHS)], 186–191 (July 2017).

[6] Lange, T., Michel, H., Fiethe, B., Walter, D., and Michalik, H., “Fault-tolerant nand-flash memory module
for next-generation scientific instruments,” Proc.SPIE 9646, 9646–9646–7 (2015).

[7] Albert, K., Hirzberger, J., Busse, D., Lange, T., Kolleck, M., Fiethe, B., Suárez, D. O., Woch, J., Schou,
J., Rodriguez, J. B., Gandorfer, A., Guan, Y., Carrascosa, J. P. C., Expósito, D. H., del Toro Iniesta,
J. C., Solanki, S. K., and Michalik, H., “Autonomous on-board data processing and instrument calibration
software for the so/phi,” Proc.SPIE 10707, 10707–10707–9 (2018).

[8] Kuhn, J. R., Lin, H., and Loranz, D., “Gain calibrating nonuniform image-array data using only the image
data,” Publications of the Astronomical Society of the Pacific 103(668), 1097 (1991).

[9] Hough, P. V., “Machine analysis of bubble chamber pictures,” in [Conf. Proc.], 590914, 554–558 (1959).
[10] Hough, P. V., “Method and means for recognizing complex patterns,” (Dec. 18 1962). US Patent 3,069,654.
[11] Hollitt, C., “Reduction of computational complexity of hough transforms using a convolution approach,”

in [Image and Vision Computing New Zealand, 2009. IVCNZ’09. 24th International Conference], 373–378,
IEEE (2009).

[12] Hollitt, C., “A convolution approach to the circle hough transform for arbitrary radius,” Machine Vision
and Applications 24, 683–694 (May 2013).

Proc. of SPIE Vol. 11155 1115506-9
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 30 Mar 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

