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1  | INTRODUC TION

The knowledge of the factors affecting the emergence patterns of 
weeds is not only interesting from a plant ecology perspective, but 
also in applied research, where the emergence of weeds is an import‐
ant phase of the population dynamics (González‐Andújar, 2008). This 

critical phase has important implications, either because of its effects 
on the determination of competition with the crop or because of the 
type and timing of the control tactics that must be used (Forcella, 
Benech‐Arnold, Sánchez, & Ghersa, 2000). Temperature and water 
potential have been identified as essential factors that control weed 
emergence (Forcella et al., 2000). Some indices (Hunter, Glasbey, & 
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Abstract
1.	 Weed scientists are usually interested in the study of the distribution and den‐

sity functions of the random variable that relates weed emergence with environ‐
mental indices like the hydrothermal time (HTT). However, in many situations, 
experimental data are presented in a grouped way and, therefore, the standard 
nonparametric kernel estimators cannot be computed.

2.	 Kernel estimators for the density and distribution functions for interval‐grouped 
data, as well as bootstrap confidence bands for these functions, have been pro‐
posed and implemented in the binnednp package. Analysis with different treat‐
ments can also be performed using a bootstrap approach and a Cramér‐von Mises 
type distance. Several bandwidth selection procedures were also implemented. 
This package also allows to estimate different emergence indices that measure 
the shape of the data distribution. The values of these indices are useful for the 
selection of the soil depth at which HTT should be measured which, in turn, would 
maximize the predictive power of the proposed methods.

3.	 This paper presents the functions of the package and provides an example using 
an emergence data set of Avena sterilis (wild oat).

4.	 The binnednp package provides investigators with a unique set of tools allowing 
the weed science research community to analyze interval‐grouped data.
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Naylor, 1984; Naylor, 1981) and modelling techniques (González‐
Andújar, Chantre, Morvillo, Blanco, & Forcella, 2016) are often used 
to predict weed emergence. In this context, thermal time (TT) mod‐
els and hydrothermal time (HTT) models are useful tools to describe 
weed emergence (Bradford, 2002; Grundy, 2003; Zambrano‐Navea, 
Bastida, & González‐Andújar, 2013). Parametric regression models 
for emergence are usually employed in this framework. They may 
offer the simplicity and flexibility required for practical decision sup‐
port (Grundy, 2003). However, due to the limitations of this approach, 
different modeling approaches have been proposed, including tech‐
niques that account for censoring (Onofri, Gresta, & Tei, 2010; Onofri, 
Mesgaran, Tei, & Cousens, 2011; Onofri, Piepho, & Kozak, 2019), 
genetic algorithms (Blanco et al., 2014; Haj Seyed‐Hadi & Gonzalez‐
Andujar, 2009), and artificial neural networks (Chantre et al., 2012). 
Alternatively, the problem of studying the relation between HTT and 
weed emergence has been dealt with through nonparametric esti‐
mation of the distribution and density functions of cumulative HTT 
(CHTT) at emergence (Cao, Francisco‐Fernández, Anand, Bastida, & 
González‐Andújar, 2013; Reyes, Francisco‐Fernández, & Cao, 2016). 
These nonparametric methods have been recently proven to outper‐
form the usual regression approaches in terms of prediction error 
(González‐Andújar, Francisco‐Fernández, et al., 2016).

In addition, when gathering experimental data, a different prob‐
lem arises due to the fact that seedlings are generally buried at dif‐
ferent depths and, therefore, the best depth at which HTT should 
be measured has to be selected. For this task, emergence indices 
have been defined and nonparametric estimators for them have 
been constructed (Cao, Francisco‐Fernández, Anand, Bastida, & 
González‐Andújar, 2011).

The techniques required for both, the nonparametric estimation 
of the density and distribution functions and the emergence indices, 
have been implemented in the binnednp Rcpp package (Barreiro 
et al., 2019).

2  | METHODS

2.1 | Density and distribution estimation

Let us suppose that modeling the emergence of a certain weed seedling, 
based on CHTT at emergence, is being investigated. Denote by n the 
number of seedlings that have emerged at the end of the monitoring 
process, and by X the random variable measuring the CHTT at emer‐
gence (with density function f and distribution function F). Since the 
inspections to count the number of emerged seedlings are performed 
at a limited number of instants, say k, the values X1, X2, …, Xn, measuring 
the CHTT at emergence of every single seedling, cannot be observed. 
However, what is observed is the total number of seedlings that have 
emerged in the intervals between consecutive inspection times, n1, 
n2, …, nk, or the corresponding sample proportions, w1, w2, …, wk, with 
wi = ni/n. In this sense, this type of data is called interval‐grouped data.

In this interval‐group framework, if the interest is to estimate 
the density function f, the standard kernel density estimator (Parzen, 
1962; Rosenblatt, 1956),

cannot be computed. An appropriate version of this estimator for in‐
terval‐grouped data has been proposed in Cao et al. (2011),

where ti, i  =  1, …, k, are the central values between every pair of 
consecutive observed CHTT. In Equation (1), the function K(·) is the 
kernel function, and h is the bandwidth or smoothing parameter, 
controlling the amount of smoothing.

Similarly, to estimate the distribution function F, a kernel distri‐
bution estimator adapted for interval‐grouped data, derived from (1), 
was proposed in Cao et al. (2013),

where �(u)= ∫ u
−∞

K(t)dt.

It has been proven that the selection of the kernel function, K(·), 
is of secondary importance in terms of efficiency. However, the se‐
lection of the bandwidth, h, is crucial in the behavior of estimators 
(1) and (2).

As pointed out in the Introduction, nonparametric estimators (1) 
and (2) are novel approaches to model weed emergence, presenting 
some advantages over the parametric regression techniques tradi‐
tionally used in this framework (Cao et al., 2013; González‐Andújar, 
Francisco‐Fernández, et al., 2016). These estimators, jointly with 
two types of bandwidth selectors, plug‐in and bootstrap, have been 
implemented in the binnednp package. Moreover, a new and suc‐
cessful method to select the pilot bandwidth for the bootstrap band‐
widths has been proposed and also implemented. Plug‐in bandwidth 
selectors estimate the unknown terms in the expression of the as‐
ymptotically optimal bandwidth, whereas bootstrap bandwidths try 
to directly estimate the optimal bandwidth by mimicking the sam‐
pling process through resampling.

The binnednp package also allows to compute bootstrap con‐
fidence bands for the density and distribution functions that can 
be used to assess the uncertainty of the corresponding estimates. 
Additionally, the binnednp package includes a function to evalu‐
ate the effect of a specific factor on weed emergence, for example, 
when considering different treatments. This procedure is based on a 
bootstrap approach properly designed to address the multiple test‐
ing problem (Westfall & Young, 1993). The idea of this approach is 
the following. (a) Split the data set into subsets according to the dif‐
ferent levels of the factor under study. (b) Compute the nonparamet‐
ric estimator of the emergence curve considering the pooled sample 
and, for each level, the nonparametric estimators of the emergence 
curves using the corresponding data subsets. (c) A reasonable statis‐
tic, D, to test the null hypothesis that the factor effect is not signifi‐
cant is defined based on a Cramér‐von Mises distance between the 
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nonparametric estimator with the pooled sample and the nonpara‐
metric estimators in the different groups. This distance is inspired in 
the generalization of the Cramér‐von Mises statistic to the problem 
of comparing k independent samples, proposed by Kiefer (1959). (d) 
To calibrate the test, a bootstrap procedure is used. For this, under 
the null hypothesis, B resamples for each one of the factor levels are 
generated, and the corresponding B bootstrap statistics, D∗

i
, i = 1, …, 

B, are computed. (e) Finally, given a significance level α, the null hy‐
pothesis is rejected if D is larger than the 1 − α quantile of {D∗

1
, …, D∗

B

}. The p‐value of this test can also be approximated by Monte Carlo. 
A more detailed description of this algorithm is given in Appendix 3.

Both bandwidth selection methods, plug‐in and bootstrap, for 
the nonparametric estimators (1) and (2) implemented in the cor‐
responding functions of the binnednp package are described in 
Appendix 1. Moreover, Appendix 2 contains the steps of the boot‐
strap algorithm used in the binnednp package to compute con‐
fidence bands for the distribution function. Finally, Appendix 3 
describes the statistical procedure implemented in the binnednp 
package to test whether a factor can be statistically significant.

2.2 | Emergence indices estimation

In this context, another interesting problem is that of finding the 
best soil depth at which to measure the HTT. For this, moment‐
based indices and probability density‐based indices were proposed 
in Cao et al. (2011), and estimates of them are also implemented in 
the binnednp package. Some of these index estimators are based 
on nonparametric methods and require the selection of a bandwidth. 
Different techniques to automatically obtain approximately optimal 
bandwidths have also been included in the package.

In order to maximize the predictive power of the weed emer‐
gence models considered, one should choose the depth such that 
the density function of X, measuring the CHTT at emergence, is as 
flatter as possible (or the distribution of X has as much spread as pos‐
sible). Taking this into account, two indices based on the moments 
of X, the coefficient of variation and the kurtosis of X, have been 
considered:

where �=�[X], �2=� [X], and m4=�[(X−�)4] are the mean, the vari‐
ance, and the fourth central moment of X, respectively. Large values 
for I1 and small values for I2 would be associated with a highly spread 
and light‐tailed distribution and, therefore, are desirable for good weed 
emergence prediction properties. Indices based on the density of X, 
namely.

have been also considered.
The indices J1 and J2 measure the curvature of the distribution 

and density functions of X, respectively. Therefore, small values for 
both J1 and J2 are desirable.

3  | PACK AGE ARCHITEC TURE

binnednp is an R package (R Development Core Team, 2019) de‐
signed for nonparametric estimation of both density and distribu‐
tion functions of interval‐grouped data. Although binnednp can be 
used for the analysis of any variable presented as grouped in inter‐
vals, the package and its structure were designed for its use by the 
weed science research community.

The package was developed using the Rcpp API (Eddelbuettel & 
François, 2011) which allows the integration of C++ code in R. The 
parts of the package code relative to bandwidth selection are quite 
consuming in terms of computation time, especially those that make 
use of bootstrapping. For this reason, writing portions of the pack‐
age in C++ was crucial since it allows obtaining numerical results in a 
very short time. Moreover, the runtime of some of the functions can 
be further reduced (up to 60%) by means of parallelism with sockets. 
This was observed in a simulation study (not shown here for the sake 
of brevity) performed to analyze the CPU time of the functions of 
the package, when the sample size increases, and the effect of using 
(or not) parallel computing.

Regarding the structure of the package, it consists of the four 
functions described below (Sections 3.1–3.4). A more complete 
description and additional examples can be found in the reference 
manual of the package (Barreiro et al., 2019). Next, the following no‐
tation is considered in the arguments of those functions:

1.	 n: Number of seedlings that have emerged at the end of the 
experiment. In general, it is the size of the unknown complete 
sample.

2.	 y: Vector with the measurements of the CHTT at each inspection 
time. In general, this vector contains the endpoints of the inter‐
vals where the data are grouped.

3.	 w (ni): Vector with the proportion (number) of seedlings that 
have emerged between each pair of consecutive CHTT. In gen‐
eral, each element of this vector indicates the proportion (num‐
ber) of observations lying within each of the intervals where the 
data are grouped.

3.1 | Density estimation

bw.dens.binned (n, y, w, ni, gboot, pilot.type = 3, hn = 100, 

plugin.type = "N", confband = FALSE, alpha = 0.05, B = 1000, 

plot = TRUE, print = TRUE, model, parallel = FALSE, 

pars = new.env())

I1=
�

�
,

I2=
m4

�4
,

J1=�
3 ∫ f�(x)2dx,

J2=�
5 ∫ f��(x)2dx,
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This function computes the plug‐in and bootstrap bandwidths for 
the density estimator (1). Regarding the plug‐in bandwidth, with the 
parameter plugin.type, the iterative process to estimate the band‐
width can be chosen. As for the bootstrap bandwidth, the parame‐
ter pilot.type allows the user to select the method to automatically 
compute the pilot bandwidth needed for the calculation of the boot‐
strap bandwidth, whereas the parameter gboot allows to manually 
select that pilot bandwidth. In most situations, it is recommended 
to employ the default values of these parameters. Additionally, the 
estimation process can be further personalized using parameters like 
hn, that determines the number of iterations done during the optimi‐
zation stage, or B, that indicates the number of bootstrap replicates 
used for the construction of confidence bands, in case that conf‐
band = TRUE. Furthermore, if parallel = TRUE, confidence bands are 
estimated using parallel computing. Finally, for the sake of compar‐
ison with (1), the parameter model allows to fit different parametric 
families of distributions to the grouped sample. The parameters of 
these distributions are estimated by maximum likelihood.

3.2 | Distribution estimation

bw.dist.binned(n, y, w, ni, gplugin, type = "N", 

confband = FALSE, 

B = 1000, alpha = 0.05, plot = TRUE, print = TRUE, 

model, 

parallel = FALSE, pars = new.env())

This function computes the plug‐in bandwidth for the distribu‐
tion estimator (2). The parameter type allows the user to choose the 
iterative process to be used to estimate the bandwidth, whereas 
with the parameter gplugin, the bandwidth used in the last itera‐
tion, when type = "A", can be manually selected. Due to the erratic 
behavior of the bandwidth selector with type = "A", it is strongly 
recommended to compute the plug‐in bandwidth using type = 

"N". Anyway, the bootstrap bandwidth selector, computed with the 
function described below, has shown a better performance than any 
of the plug‐in bandwidths in most scenarios. If confband = TRUE, 
bootstrap confidence bands are calculated considering B replicates 
and using parallel computing, in the case that parallel = TRUE.

Parameter model plays a similar role as in bw.dens.binned.
bw.dist.binned.boot(n, y, w, ni, g, pilot.type = 2, 

nit = 10, 

confband = FALSE, B = 1000, alpha = 0.05, print = 

TRUE, plot = TRUE, 

parallel = FALSE, pars = new.env())

This function computes the bootstrap bandwidth selector for 
the distribution estimator (2). The parameter pilot.type defines 
the method to select the pilot bandwidth used for the estimation 
of the final bandwidth, whereas the parameter g allows the user to 
manually select that pilot bandwidth. The parameter nit fixes the 
number of iterations to be done in the optimization stage. If con-
fband  =  TRUE, bootstrap confidence bands are estimated con‐
sidering B resamples and using parallel computing, in the case that 
parallel = TRUE.

3.3 | Emergence indices estimation

emergence.indices(n, y, w, ni, hseq, hn = 200, nmix = 

4, B = 500, 

method = "np", last.iter.np = F, confint = FALSE, 

B.conf = 1000, 

alpha = 0.05, print = TRUE, parallel = FALSE, pars = 

new.env())

This function computes estimates for grouped data of the mo‐
ment‐based and density‐based emergence indices presented in 
Section 2.2. In the case of the density‐based indices, with the pa‐
rameter method, the method to select the bandwidth used for 
their estimation can be chosen: if method = "plugin", a plug‐in 
approach is considered, whereas if method = "mix" or method 
= "np", a parametric or nonparametric bootstrap approach is con‐
sidered, respectively. If confint  =  TRUE, bootstrap confidence 
intervals are constructed considering B resamples and using parallel 
computing, in the case that parallel = TRUE.

3.4 | Analysis with different treatments

anv.binned(n, y, trt.w, abs.values = FALSE, B = 500)

This function allows to analyze whether a factor has a signifi‐
cant effect on the emergence curve. The idea behind this approach 
was briefly explained in Section 2.1, and it is described in detail in 
Appendix 3. It consists in using a bootstrap approach and a Cramér‐
von‐Mises type distance.

In this case, n is a vector composed of the sizes of the complete 
samples corresponding to each treatment, and trt.w is a matrix 
each of whose columns contains the proportion of observations 
lying within each of the intervals for the corresponding treatment. 
If instead of proportions the user wants to provide absolute values, 
the parameter abs.values must be set to TRUE. Furthermore, the 
user can choose the number of bootstrap resamples through the pa‐
rameter B. The function anv.binned returns the p‐value of the test.

4  | E X AMPLE

In this section, an unpublished data set of wild oat (Avena sterilis L.) 
emergence is considered to illustrate the use of the binnednp Rcpp 
package. These data were taken from an experiment performed dur‐
ing Winter–Spring 2006–2007 in Gibraleon (37°C 22′N, 6°C 54′W; 
altitude 26 m), located in the province of Huelva (Andalucia, South 
of Spain).

Briefly, the experiment consisted in four polyvinylchloride cyl‐
inders (250 mm diameter 50 mm height) placed 1 m apart. For each 
sample, 200 seeds of A. sterilis were mixed thoroughly with the soil 
and distributed over the 0–100  mm depth. Numbers of emerged 
weed seedlings were recorded once or twice a week and then re‐
moved by cutting seedling stems at ground level with minimum dis‐
turbance of the substrate. All the data for the cumulative numbers of 
seedling emergence from the field were converted to a square meter 
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basis. Additionally, following the same procedure as that described 
in Cao et al. (2011), the CHTT at emergence in the different inspec‐
tion days, at three depths (10, 20, and 50 mm), was calculated.

The observed emergence data are shown in Table 1. As it can 
be seen, the cumulative hydrothermal time at emergence cannot be 
observed for every individual seed, but just in an aggregated way.

In the first part of the study, we use the function anv.binned to 
evaluate whether a factor (in this case, “the cylinder factor") has a sig‐
nificant effect on the emergence curve, for any of the three depths. 
As pointed out in Section 2.1, the test implemented in the function 
anv.binned is based on a Cramér‐von Mises distance between the 
nonparametric estimator with the pooled sample and the nonpara‐
metric estimators in the different levels of the factor. For example, 
in the case of depth 10 mm, the distance between all these curves 
could be visually observed comparing Figures 1 and 3. Figure 1 con‐
tains the nonparametric emergence curve estimates with bootstrap 
bandwidths (jointly with the corresponding 95% bootstrap confi‐
dence bands) for each one of the four cylinders. Figure 3 depicts 
the emergence curve estimates using the nonparametric approach 
with the pooled sample. However, it is clear that a reliable and formal 
solution for this problem requires the application of a statistical test, 
such as that implemented in the function anv.binned.

Note that, in this case, the identical experimentation conditions 
carried out in the four cylinders seem to support the idea that the 

null hypothesis could be true and, for this, only a very strong evi‐
dence against it will lead us to reject the null hypothesis of “nonsig‐
nificant cylinder effect."

Denoting by y1, y2, and y3 the CHTT was calculated for 10, 
20, and 50 mm, respectively, and after applying the function anv.
binned for the three depths, using the following code:
# Observed values of CHTT for each depth 

y1 = c(100,160,218,265,352,405,459,509) 

y2 = c(92,146,199,217,261,340,421,505,571) 

y3 = c(67,105,143,155,185,199,204,232,287,343,421,538) 

 

# size of the complete sample for each treatment 

n = c(53,61,90,74) 

 

# nij: number of emerged seedlings for treatment 

i and depth j 

n11 = c(0,0,31,2,13,7,0) 

n21 = c(0,0,32,5,12,12,0) 

n31 = c(0,0,64,7,5,13,1) 

n41 = c(0,0,55,7,8,4,0) 

 

# wij: proportion of emerged seedlings for treat-

ment i and depth j 

w11 = n11/n[1] 

Date

CHTTT No. seedlings

Pooled

Depth Cylinder

10 mm 20 mm 50 mm 1 2 3 4

27 November 2006 100 92 67 0 0 0 0 0

4 December 2006 160 146 105 0 0 0 0 0

12 December 2006 218 199 143 2 6 8 3 19

14 December 2006 218 217 155 1 0 0 1 2

19 December 2006 218 217 185 2 1 1 3 7

22 December 2006 218 217 199 2 1 1 0 4

26 December 2006 218 217 204 1 1 0 0 2

28 December 2006 218 217 204 0 0 0 0 0

2 January 2007 218 217 204 0 0 0 0 0

5 January 2007 218 217 204 0 2 0 0 2

9 January 2007 218 217 204 2 2 9 2 15

12 January 2007 218 217 204 3 7 18 11 39

18 January 2007 218 217 204 12 7 19 22 60

25 January 2007 218 217 204 6 5 8 13 32

1 February 2007 265 261 232 2 5 7 7 21

9 February 2007 352 340 287 13 12 5 8 38

15 February 2007 405 421 343 7 12 13 4 36

23 February 2007 459 505 421 0 0 1 0 1

5 March 2007 509 571 538 0 0 0 0 0

19 March 2007 509 571 538 0 0 0 0 0

Num emerged 
seedlings

53 61 90 74 n = 278

TA B L E  1   Seedling emergence data of 
Avena sterilis
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w21 = n21/n[2] 

w31 = n31/n[3] 

w41 = n41/n[4] 

 

# Analysis with different treatments for 10 mm 

res1 = anv.binned(n,y1,cbind(w11,w21,w31,w41),B=1000) 

n12 = c(0,0,2,29,2,13,7,0) 

n22 = c(0,0,6,33,5,12,12,0) 

n32 = c(0,0,8,56,7,5,13,1) 

n42 = c(0,0,3,42,7,8,4,0) 

 

w12 = n12/n[1] 

w22 = n22/n[2] 

w32 = n32/n[3] 

w42 = n42/n[4] 

 

# Analysis with different treatments for 20 mm 

res2 = anv.binned(n,y2,cbind(w12,w22,w32,w42),B=1000) 

 

n13 = c(0,0,2,1,2,2,24,2,13,7,0) 

n23 = c(0,0,6,0,1,1,24,5,12,12,0) 

n33 = c(0,0,8,0,1,1,54,7,5,13,1) 

n43 = c(0,0,3,1,3,0,48,7,8,4,0) 

 

w13 = n13/n[1] 

w23 = n23/n[2] 

w33 = n33/n[3] 

w43 = n43/n[4] 

# Analysis with different treatments for 50 mm 

res3 = anv.binned(n,y3,cbind(w13,w23,w33,w43),B=1000) 

the results obtained are:
––––– Result of the application of anv.binned to the samples of 

the four cylinders –––––
> res1 

[1] 0.016 

 

> res2 

[1] 0.144 

 

> res3 

[1] 0.011

This indicates that, with a significance level of 0.01, the effect 
of the cylinders is not significant for any of the three depths. The 
strong certainty of the null hypothesis justifies the use of this signif‐
icance level (see, e.g. Cramer & Howit, 2004, p. 151, for a comment 
on the election of the significance level). Therefore, it makes sense 
to analyze the samples jointly and not separately.

Taking into account the result obtained after applying function 
anv.binned to the samples of the four cylinders, in the second part 
of the study, the data with the pooled number of emerged seedlings, 
given in the last column of Table 1, are considered. Note that the 
total sample size of emerged seedlings at the end of the experiment 
is n =278.

Given these weed emergence data, a first interesting issue is to 
find out what is the best depth, among the three possibilities avail‐
able in this case, 10, 20, and 50 mm, to measure the CHTT in order to 
have more prediction power. Denoting, as before, by y1, y2, and y3 
the CHTT calculated for 10, 20, and 50 mm, respectively, and by ni 

F I G U R E  1   Nonparametric estimates of the emergence curves using the samples in each of the four cylinders, jointly with the 
corresponding 95% bootstrap confidence bands
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the vector with pooled number of emerged seedlings, the function 
emergence.indices can be applied to (y1, ni), (y2, ni), and (y3, 
ni) to obtain estimates of the indices presented in Section 2.2.
ind1 <- emergence.indices(n, y1, ni) # emergence 

indices for 10 mm 

ind2 <- emergence.indices(n, y2, ni) # emergence 

indices for 20 mm 

ind3 <- emergence.indices(n, y3, ni) # emergence 

indices for 50 mm 

 

indices <- data.frame(I1=c(ind1$I1,ind2$I

1,ind3$I1), I2=c(ind1$I2,ind2$I2,ind3$I2), 

J1=c(ind1$J1,ind2$J1,ind3$J1), 

J2=c(ind1$J2,ind2$J2,ind3$J2))

Obtaining the results:

To maximize the predictive power a specific weed emergence 
model, the HTT should be measured at a depth producing a density 
function as flat as possible or, equivalently, a distribution function as 
dispersed as possible. Therefore, small values of J1 and J2 are pref‐
erable. On the other hand, CHTT samples with higher coefficient of 
variation (higher value of I1) and a lower kurtosis (lower value of I2) will 
improve weed emergence prediction. Consequently, 10 mm seems to 
be the best soil depth to predict weed emergence in terms of indices I1, 
I2, J1, and J2 and, therefore, only observations at 10 mm are considered 
in what follows.

Now, the function bw.dens.binned, described in Section 3.1, 
can be applied using the pooled sample and the CHTT at 10 mm to 
compute the plug‐in and bootstrap bandwidths for the kernel den‐
sity estimator (1).
# computing bandwidths for kernel density estimator 

dens <– bw.dens.binned (n, y, ni, plot = FALSE) # 

Bandwidths for density

Obtaining the results:
–––––Plug‐in and bootstrap bandwidths for the density 

estimator–––––
> dens 

$h _ plugin 

[1] 14.93051 

$h _ boot 

[1] 19.68239

Figure 2 shows, in the left panel, the kernel density estimates 
computed using (1) with the obtained plug‐in (green lines) and boot‐
strap (red lines) bandwidths. Moreover, the parameter model was 
used in bw.dens.binned to fit parametric logistic and Weibull 
densities to the emergence data. The right panel of Figure 2 shows 
the corresponding density estimators (green and blue lines for the 
Weibull and the logistic densities, respectively). Additionally, the 
nonparametric estimator computed with the bootstrap bandwidth 
is also included in this figure (red line) for the sake of comparison.

Next, using the functions bw.dist.binned and bw.dist.
binned.boot, described in Section 3.2, the plug‐in and bootstrap 
bandwidths for the kernel distribution estimator (2) are calculated.
# computing bandwidths for kernel distribution 

estimator
 
# Plug–in bandwidth

dist _ pi <– bw. dist. binned (n, y, ni, plot = 

FALSE) $h # Plug–in
 
# Bootstrap bandwidth

dist _ boot <– bw. dist. binned. boot (n, y, ni, 

plot = FALSE)$h # Bootstrap

Obtaining the results:
–––––Plug‐in and bootstrap bandwidths for the distribution 

estimator–––––
> dist _ pi$h 

[1] 9.833762 

> dist _ boot$h 

[1] 13.73533

F I G U R E  2   Left panel: kernel density 
estimates considering plug‐in (green line) 
and bootstrap (red line) bandwidths. Right 
panel: parametric Weibull (green line) and 
logistic (blue line) density estimates, and 
nonparametric kernel density estimate 
using the bootstrap bandwidth (red line)
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Figure 3 shows, in the left panel, the kernel distribution estimates 
computed using (2) with the obtained plug‐in (green line) and boot‐
strap (red line) bandwidths, that is, the estimates of the emergence 
curves using the nonparametric approach. In contrast to the density 
case, the effect that the bandwidth has on the behavior of the distri‐
bution estimator is less evident, since slightly different bandwidths 
produce very similar distribution estimates. As in the density case, 
the parameter model in the function bw.dist.binned was set 
to weibull and logistic to fit parametric regression functions 
following these models to describe seedling emergence. The corre‐
sponding fits are shown in the right panel of Figure 3, using a green 
line for the Weibull and a blue line for the logistic. The nonparamet‐
ric distribution estimator (2) is also included in this plot (red line). In 
both figures, the empirical distribution of the grouped sample data is 
represented with black lines.

5  | CONCLUSION

The binnednp R package gives the weed science research com‐
munity a simple tool to analyze interval‐grouped data. This is use‐
ful to study, for example, the CHTT at seedling emergence. Using 
nonparametric density and distribution estimation, the researcher 
can both visualize the underlying nature of the data and make pre‐
dictions without loosing flexibility or making inadequate assump‐
tions about the data. Moreover, estimation of emergence indices 
measures the adequacy of the depth chosen to register the values of 
CHTT. Additionally, analyses to test the effect of a specific factor on 
weed emergence can be also performed.
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APPENDIX 1
In this appendix, the plug‐in and bootstrap bandwidth selection 
methods implemented in the functions bw.dens.binned, bw.dist.
binned, and bw.dist.binned.boot are briefly described.

BANDWIDTH SELEC TION FOR THE DENSIT Y 
FUNC TION

The function bw.dens.binned of the binnednp package com‐
putes plug‐in and bootstrap bandwidths for the density estimator 
(1). Plug‐in bandwidths are obtained minimizing in h the expression 
of the asymptotic mean squared error (AMISE) of (1) and estimating 
the unknown quantities in the minimizer of the AMISE. Under suita‐
ble assumptions, asymptotic properties of (1) were obtained in Reyes 
et al. (2016). In that paper, it is obtained that the AMISE of (1) is:

where 𝜇2(K)= ∫ x2K(x)dx>0, A(K)= ∫ K2(x)dx and A(f��)= ∫ f��(x)2dx.
From (A1), it follows that the asymptotically optimal global band‐

width for (1) is
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Using (A2) and estimating the unknown quantity A(f′′), a plug‐in 
bandwidth for estimator (1) can be derived. In Cao et al. (2011), a 
nonparametric estimator for A(f′′), denoted by ̂Ag

𝜂, depending on an 
auxiliary smoothing parameter � was proposed. Plugging ̂Ag

𝜂 in (A2) 
gives the plug‐in bandwidth selector for f̂ g

h
:

In practice, to calculate ̂Ag
𝜂 a new bandwidth � has to be selected. 

This pilot smoothing parameter can be selected using again a plug‐
in procedure, appearing new auxiliary bandwidths, and so on. The 
usual strategy is to stop this iterative process after two steps and 
estimate the unknown quantities assuming that f is Gaussian.

As for the bootstrap bandwidth selector for (1) implemented in 
bw.dens.binned, this is obtained minimizing the bootstrap version 
of the mean integrated squared error (MISE) of f̂g

h
.

Using standard calculations, a closed form expression for the 
MISE of estimator (1) is given by:

where Kh(u)=
1

h
K
(

u

h

)

, pj = F(yj) − F(yj − 1), for j = 1, …, k, and symbol * 
stands for convolution.

The bootstrap version MISE* of the MISE is obtained as follows. 
Let

be the estimator (1) based on a pilot bandwidth �. Draw a bootstrap 
sample X∗

1
,X∗

2
, … ,X∗

n
 from f̂ g

𝜁
 and, given a bandwidth h, consider the 

analogue of the kernel density estimator, f̂ g∗
h

(x)=
∑k

i=1
w∗

i
Kh

�

x− ti
�

, 
where w∗

i
=F∗

n

(

yi−
)

−F∗
n

(

yi−1−
)

, with F∗
n
(y)=

1

n

∑n

i=1
1
{X∗

i ≤y}. Then

where �∗ denotes the bootstrap expectation (with respect to f̂g
𝜁
).

Using a parallel process to that followed to obtain (3), it is possible 
to derive a closed representation for (4). This expression is given by

Note that expression (A5) allows us to directly evaluate MISE* 
over a grid of values of h, without using Monte Carlo. The bootstrap 
bandwidth h∗

MISE
 is obtained minimizing (A5), that is,

To select the pilot bandwidth �, the method implemented in the 
binnednp package is inspired by the idea of smoothing splines, 
based on selecting the pilot parameter that minimizes the squared 
distance between the nonparametric density estimator, f̂g

h
, and the 

histogram of the grouped data, ̂H, plus a penalty term to avoid ob‐
taining very small bandwidths. The idea consists in finding the pa‐
rameter denoted by ��

hist
, such that,

where �≥0 determines the penalty degree over the global curvature of 
the nonparametric density estimator, defined in (1). To select an `̀ opti‐
mal'' penalty degree, �opt, we have used the rule of finding the penalty 
allowing to obtain a pilot bandwidth that best approximate the overall 
curvature of the population density, that is,

In practice, �opt can be estimated by

where f̂mix is a normal mixture model with a maximum number of r = 5 
components fitted with the grouped‐data sample. In practice, the ex‐
pectation–maximization (EM) method was used to estimate the param‐
eters of the mixture model, using the BIC criterion to select the best fit.

BANDWIDTH SELEC TION FOR THE DIS TRIBUTION 
FUNC TION

Following analogous arguments to those described for the case of 
the density function, plug‐in and bootstrap bandwidth selectors 
can be proposed for the nonparametric distribution estimator given 
in (2). They are implemented in the functions bw.dist.binned and 
bw.dist.binned.boot, respectively.

Regarding the plug‐in bandwidth, under some assumptions, it can 
be obtained that the AMISE of (2) is:
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From equation (A6), it is immediate to get an asymptotically opti‐
mal global bandwidth for ̂Fg

h
. Taking the first derivative of (A6), equat‐

ing to zero and solving for h, it is obtained

In equation (A7), an estimate of A(f′) is required to have a practi‐
cal bandwidth. Using a similar process to that described for the case 
of the density estimator, a practical plug‐in bandwidth selector for 
̂F
g

h
(x) is obtained:

where ̃Ag
𝜂 denotes an estimator of A(f′) depending on a pilot band‐

width�. A similar iterative procedure to that described in the case of 
the density function is used here.

On the other hand, the bootstrap bandwidth implemented in the 
function bw.dist.binned.boot is based on minimizing the bootstrap 
version of the MISE of ̂Fg

h
.

In this case, using standard calculations and assuming that F(yk) = 1 
and F(y0) = 0, it is easy to prove that the expectation and the variance 
of ̂Fg

h
(x) are, respectively,

and

From (A8) and (A9), it is straightforward to obtain a closed expres‐
sion for the MISE of the estimator defined in (2):

where,

denotes the integrated squared bias and

is the integrated variance.
To build a bootstrap version of MISE, we consider a pilot band‐

width, �, and construct the grouped‐data smooth estimator of F as 

defined in (2), but replacing h by �. The idea is to draw resamples 
from ̂Fg

𝜁
, to group the data and to compute the estimator ̂Fg

h
 with 

those bootstrap samples. The bootstrap resampling plan proceeds 
as follows.

1. Fix some pilot bandwidth, �, and consider the grouped‐data 
smooth cdf estimator, ̂Fg

𝜁
.

2. Draw (n∗
1
,… ,n∗

k
) from a multinomial distribution Mk(n;p̃

𝜁

1
,… ,p̃

𝜁

k
) 

with p̃𝜁i = ̂F
g

𝜁
(yi)−

̂F
g

𝜁
(yi−1), i=1,⋯ ,k, and define w∗

i
=n∗

i
∕n.

3. Compute the grouped‐data smooth cdf estimator based on this 
bootstrap resample:

4. Define the bootstrap version of MISE

where, �∗ denotes the bootstrap expectation (with respect to ̂Fg
𝜁
).

Therefore, defining

and substituting pi by p̂𝜁i  in (A8) and (A9), the bootstrap version of the 
MISE admits the following closed expression:

where

and

with

and

Finally, the bootstrap bandwidth is defined as the minimizer of 

MISE
∗

(

̂F
g∗

h

)

, in the smoothing parameter, h:

(A7)hdist
g

=

⎡

⎢

⎢

⎣

C0

�2

�

K
�2

A (f�) n

⎤

⎥

⎥

⎦

1

3

.

ĥdist
g

=

⎡

⎢

⎢

⎣

C0

𝜇2

�

K
�2 ̃A

g
𝜂n

⎤

⎥

⎥

⎦

1

3

,

(A8)�

[

̂F
g

h
(x)

]

=

k
∑

i=1

�

(

x− ti

h

)

pi

(A9)

�

[

̂F
g

h
(x)

]

=

1

n

k
∑

i=1

�
2

(

x− ti

h

)

pi
(

1−pi
)

−

2

n

∑

i<j

�

(

x− ti

h

)

�

(

x− tj

h

)

pipj.

MISE
(

̂F
g

h

)

=�

{

∫
[

̂F
g

h
(x)−F (x)

]2

dx

}

=B+V,

B=∫
{

�

[

̂F
g

h
(x)

]

−F (x)
}2

dx

V=∫ �

[

̂F
g

h
(x)

]

dx

̂F
g∗

h
(x)=

k
∑

i=1

w∗

i
�

(

x− ti

h

)

.

MISE
∗

(

̂F
g∗

h

)

=�
∗

{∫
[

̂F
g∗

h
(x)− ̂F

g

𝜁
(x)

]2

dx},

p̂𝜁
i
=

p̃
𝜁

i
∑k

j=1
p̃
𝜁

j

,i=1,2,… ,k,

MISE
∗

(

̂F
g∗

h

)

=�
∗

{∫
[

̂F
g∗

h
(x)− ̂F

g

𝜁
(x)

]2

dx}=B∗

+V∗,

B∗

= ∫ {�∗

[

̂F
g∗

h
(x)

]

−
̂F
g

𝜁
(x)}2dx

V∗

=∫ �
∗

[

̂F
g∗

h
(x)

]

dx,

�
∗

[

̂F
g∗

h
(x)

]

=

k
∑

i=1

�

(

x− ti

h

)

p̂𝜁
i

�
∗

[

̂F
g∗

h
(x)

]

=

1

n

k
∑

i=1

�
2

(

x− ti

h

)

p̂𝜁
i

(

1− p̂𝜁
i

)

−

2

n

∑

i<j

�

(

x− ti

h

)

�

(

x− tj

h

)
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i
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.

h∗
dist

= argmin
h>0

MISE
∗

(

̂F
g∗

h

)

.
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As in the case of the bootstrap bandwidth selector for the density 
function, an important step in this bootstrap procedure is that of 
selecting the pilot bandwidth �. The same type of procedure inspired 
by the idea of smoothing splines, but adapted for the distribution 
function, was employed. In this case, the idea consists in finding the 
parameter, denoted by ��

emp
, such that,

where �≥0 determines the penalty degree over the global slope 
of the nonparametric density estimator, defined in (2). To select an 
“optimal” penalty degree, �opt, we have used the rule of finding the 
penalty allowing to obtain a pilot bandwidth that best approximate 
the overall slope of the population density, that is,

In practice, �opt can be estimated by

where f̂′
𝜃
 represents a parametric estimator of the first derivative of 

the density function, fitted with the grouped‐data sample and flex‐
ible enough to capture, at least partially, the global slope of f. It was 
checked that fitting normal mixture models with a maximum num‐
ber of r = 5 components provided, in general, very good results. In 
practice, the expectation‐‐maximization (EM) method was used to 
estimate the parameters of these models, using the BIC criterion to 
select the best fit.

APPENDIX 2
As an option, the functions bw.dens.binneC, bw.dist.binned, 
and bw.dist.binned.boot allow to compute bootstrap confi‐
dence bands for the density and distribution functions, using the 
nonparametric estimators (1) and (2). This bands are designed 
to contain the whole function with a prescribed high probabil‐
ity, typically 95%, and can be employed, for example, to assess 
the uncertainty of the corresponding estimates or to perform 
analyses with different treatments. The procedures used for the 
density and the distribution functions follow the same steps, and 
therefore, for the sake of brevity, in this appendix, only the al‐
gorithm used in bw.dist.binned and bw.dist.binned.boot 
to compute the bootstrap confidence bands for the distribution 
function, F(t), is detailed.

First, given an initial confidence level, 1–α, for a small α (α = .01 or 
.05, typically), we start by constructing individual (1–α)‐confidence 
intervals, (�j, uj), for F, in the cumulative observed HTT at inspections, 
y1, y2, …, yk. The process is the following:

1.	 Fix a pilot bandwidth, g, and compute ̂Fg(x), the smooth cu‐
mulative distribution function estimation given in (2).

2.	 Draw B complete bootstrap resamples of size n from 
̂Fg(x):X

∗(j)

1
,X

∗(j)

2
,… ,X

∗(j)
n , j  =  1, 2, …, B. To do this, we first draw n 

observations from a discrete random variable, I, that takes the 
values 1, 2, …, k, with probabilities w1, w2, …, wk. Let us denote 
these observations by I(j)

1
,I
(j)

2
,… ,I

(j)
n . Now, for every i = 1, 2, …, n, we 

generate V(j)
i  with cdf � and define the bootstrap observations as 

X
∗(j)
i = t

I
(j)
j
+g ⋅V

(j)
i .

3.	 Consider the incomplete version of these bootstrap resamples: 
F
∗(j)
n (y0)≤F

∗(j)
n (y1)≤⋯≤F

∗(j)
n (yk) for j = 1, 2, …, B.

4.	 Compute the estimation given in (2) using the incomplete boot‐
strap resamples: ̂F∗(j)

h
(x), j = 1, 2, …, B.

5.	 Aproximate the sampling distribution of the stochastic pro‐
cess Dn (x)=

̂Fh(x)−F(x) by the bootstrap distribution of 
D∗

n
(x)= ̂F∗

h
(x)− ̂Fg(x).

6.	 Now, the �
2
 and 1− �

2
 quantiles of the bootstrap distribution are 

computed: D
∗

�

⌈

�

2
B
⌉

�

n (x) and D
∗

���

1−
�

2

�

B
��

n (x) ( ⌈�⌉ denotes the inte‐

ger part of �).
7.	 The final bootstrap confidence interval for F(x) is

Steps 4–7 are repeated for every x = yj, j = 1, …, k, and, therefore, 
k pointwise intervals (�j, uj), for each value F(yj), j = 1, …, k, are cal‐
culated. Individual confidence intervals have approximately the 
nominal coverage probability, 1–α, when they are considered sep‐
arately (for a particular grid point). However, the probability that 
the whole curve is included in the band depicted by the set of in‐
tervals is much smaller. This is known as the multiple range testing 
problem or the false discovery rate in high dimensional statistical 
problems.

A typical way to correct for multiple testing is the popular 
Bonferroni approach. In a hypothesis testing context, the idea be‐
hind this approach is to consider a new significance level, αBonf = α/k, 
and compute individual tests using this new level. The resulting mul‐
tiple test has a multiple level which is much closer to the desired α. 
However, it is well known that the Bonferroni approach is a conserv‐
ative procedure. In our context, this means that the joint coverage 
probability of the confidence "band," computed with the Bonferroni 
approach, would be larger than the desired 1–α.

Starting from the conservative Bonferroni approach and the an‐
ticonservative individual testing approach, the following algorithm 
finds an approximate (1–α) confidence interval, with a given approxi‐
mation error δ (δ is typically small in comparison with the nominal α, 
for instance �= �

10
):

1.	 Fix �(0)
low

=�Bonf=
�

k
 and �(0)

high
=�. Fix the iteration number, i  =  0.

2.	 Compute �(i)
mean=

�
(i)

low
+�

(i)

high

2
.

3.	 Use the bootstrap resamples to compute individual confidence 
intervals with 1−�

(i)

low
, 1−�

(i)
mean and1−�

(i)

high
 confidence levels.

𝜁
𝜆

emp
=argmin

h>0

k
∑

i=0

[

Fn(yi)−
̂F
g

h
(yi)

]2

+𝜆 ∫ f̂ g�h (x)2 dx,

𝜆opt=argmin
𝜆≥0

|

|
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|

|

A
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𝜆
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)

−A(f�)
|

|

|

|

|

.

𝜆̂opt=argmin
𝜆≥0

|

|

|
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|

A
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g�

𝜁
𝜆

emp

)
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𝜃
)
|
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|
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|

,

�

̂Fh(x)−D
∗

���

1− 𝛼

2

�

B
��

n (x) , ̂Fh(x)−D
∗

�

⌈

𝛼

2
B
⌉

�

n (x)
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.
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4.	 Compute, with the same bootstrap resamples, the pro‐
portion of bootstrap curves that are included in each 
of these confidence bands. These proportions satisfy 
p
(i)

low
≥p

(i)
mean≥p

(i)

high
and p

(i)

low
≥1−�≥p

(i)

high
.

5.	 If p
(i)
mean≥1−�, then define �

(i+1)

low
=�

(i)
mean and �

(i+1)

high
=�

(i)

high
. 

Otherwise define �(i+1)
low

=�
(i)

low
 and �(i+1)

high
=�

(i)
mean.

6.	 Stop at step i if ||
|

p
(i)
mean− (1−𝛼)

|

|

|

<𝛿. Otherwise increase i in one unit 
and repeat Steps 2–5.

The final approximate (1–α) simultaneous confidence intervals are 
those obtained for level 1−�

(i)
mean in the last iteration.

APPENDIX 3
In this appendix, the statistical procedure implemented in the func‐
tion anv.binned, presented in Section 3.4, is described in detail.

Consider an interval‐grouped sample of size n. This means that 
given a set of k intervals [yj–1, yj), j = 1, …, k, only the number of ob‐
servations (n1, …, nk) within each interval (instead of the value of 
every single observation) is known. Note that n  =  n1 + … +nk. For 
example, as described in Section 2.1, in the weed emergence prob‐
lem studied in this paper, the vector (y0, y1, …, yk) denotes the CHTT 
at emergence and the vector (n1, …, nk) represents the number of 
seedlings that have emerged in each interval. Additionally, consider 
that there exists a factor of interest, with G levels or treatments, and 
we want to test whether this factor has a significant effect in the 
emergence. Let us denote by Ni

j
 the number of observations in the 

interval j considering the treatment i, with j = 1, …, k and i = 1, …, G. 
Then, 

∑k

j=1
Ni
j
=Ni, where Ni denotes the number of observations as‐

sociated with treatment i, i = 1, …, G (n = N1+⋯ + NG), and 
∑G

i=1
Ni
j
=nj

, j = 1, …, k.
Denoting by Fi the emergence curve considering treatment i, i = 1, 

…, G, the problem of testing whether the factor has a significant ef‐
fect in the emergence can be formulated as:

A reasonable statistic to address this hypothesis testing is, for ex‐
ample, the following one, of Cramér‐von Mises type, based on the sta‐
tistic to compare k independent samples, proposed by Kiefer (1959):

where ̂Fgi ( ⋅ ) denotes the corresponding nonparametric estimator of 
Fi( ⋅ ), using (2), computed using Ni and (Ni

1
,… ,Ni

k
), for every i = 1, …, G, 

and where ̂Fg( ⋅ ) represents the nonparametric estimator (2) using the 
pooled sample n and (n1, …, nk).

Intuitively, the null hypothesis H0 will be accepted for small values 
of D and rejected for large values of D. To calibrate the test, a boot‐
strap procedure is employed to approximate the sampling distribu‐
tion of D. The specific steps are the following:

1.	 Using a bandwidth h (e.g., the one provided by bw.dist.
binned.boot), consider the grouped‐data nonparametric es‐
timator, ̂Fg

h
, using the pooled data set with n and (n1, …, nk).

2.	 For each treatment i, i = 1, …, G, draw (Ni∗

1
,… ,Ni∗

k
) from a multino‐

mial distribution Mk(Ni;p̂
h

1
,… ,p̂h

k
), with p̂h

j
=
̂F
g

h
(yj)−

̂F
g

h
(yj−1), j = 1, …, 

k, and define wi∗
j
=Ni∗

j
∕Ni.

3.	 Using the weights wi∗

1
,… ,wi∗

k
, compute the grouped‐data non‐

parametric estimator ̂Fg∗i , for each treatment i = 1, …, G, and the 
nonparametric estimator ̂Fg∗ using the pooled bootstrap resam‐
ple n and 

�

∑G

i=1
Ni∗

1
,… ,

∑G

i=1
Ni∗
k

�

. In all the cases, the bootstrap 
bandwidths obtained with bw.dist.binned.boot can be 
employed.

4.	 Define the bootstrap version of D:

5.	 Steps 2–4 are repeated a large number of times, B and, then, a 
sequence {D∗

1
,… ,D∗

B
} is obtained. Given a significance level α, the 

null hypothesis is rejected if

where ⌈⋅⌉ represents the integer part, and {D∗

(i)
}
B

i=1
 is the sample {D∗

i
}
B

i=1
 

arranged in increasing order of magnitude. Additionally, the p‐value of 
this test can be approximated by:

where �
{⋅}

 is the indicator function.
It is important to note that with the resampling process described in 
Step 2, the bootstrap resamples for each treatment are generated 
under the null hypothesis.

⎧

⎪

⎨

⎪

⎩

H0:Fi=Fj,∀i,j∈{1,… ,G}

H1: ∃i,j∈{1,… ,G}�
�

Fi≠Fj

D=

G
∑

i=1

Ni ∫
(

̂F
g
i (t)−

̂Fg(t)
)2

d ̂Fg(t),

D∗

=

G
∑

i=1

Ni ∫
(

̂F
g∗
i (t)−

̂Fg∗(t)
)2

d ̂Fg∗(t),

D>D∗

(
⌈
(1−𝛼)⋅B

⌉
)
,

p̂=
1

B

B
∑

i=1

�
{D∗

i >D}
,


