SUPPORTING INFORMATION

Chiral Microneedles from an achiral Bis(BODIPY): Spontaneous Mirror Symmetry Breaking Leading to a Promising Photoluminescent Organic Material

Leire Gartzia-Rivero,† César Ray Leiva,‡ Esther M. Sánchez-Carnerero,‖ Jorge Bañuelos,⊥† Florencio Moreno,‡ Beatriz L. Maroto,‡ Inmaculada García Moreno,§ Lourdes Infantes,‖ Bianchi Mendez,⊥‖ Iñigo López Arbeloa,⊥ and Santiago de la Moya*†‡

†Dpto. Química Física, Universidad del País Vasco (UPV/EHU), 644, 48080 Bilbao, Spain.
‡Dpto. Química Orgánica, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
‖Dpt. of Chemistry and RECETOX, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic.
§Dpto. de Sistemas de Baja Dimensionalidad, Superficies y Materia Condensada, Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain.
⊥Dpto. de Cristalografía y Biología Estructural, Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain.
⊥⊥Dpto. de Física de Materiales, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
Figure S1. Computed preferred conformations and corresponding electron-density maps and permanent dipolar moments in CHCl$_3$ (B3LYP/6-31+G*) for meso 1 (left) and its chiral (R,R) stereoisomer (right). Note that achiral 1 adopts a pleated conformation, whereas its chiral diastereomer adopts an axially-chiral conformation with a preferred (M) helical configuration.

Figure S2. Transmission (a) and fluorescence images (b and c) of representative 1 needles under excitation with band-pass filter of 470/40 nm and monitoring the emission with a cut-off filter of 515 nm (b) and 580 nm (c).
Figure S3. Fluorescence images of the two different morphologies detected for 1: major totally-ripened crystalline needles obtained at higher dye concentrations (top); wires-enrolling fibers obtained at lower dye concentrations (bottom). Band-pass filter of 470/40 nm for the excitation; cut-off filter of 515 nm for recording the emission. 20-μm Scale-bar.

Figure S4. Fluorescence image of 1 needles showing energy migration towards the needle edges (a; 10-μm scale-bar) and emission-intensity profile across the width of a single needle (b).
Figure S5. Calculated energy-splitting values ($\Delta \nu$; Davydov splitting) from possible dipole couplings (R1-R4) between nearest neighbor dipyrrins in the crystal structure obtained by X-Ray diffraction (key distances and angles are also given). Red double-head arrow show the transition dipole moment (along the longitudinal axis of the dipyrrin).

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance (Å)</td>
<td>7.2</td>
<td>11.1</td>
<td>9.4</td>
<td>16.1</td>
</tr>
<tr>
<td>α (°)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Θ (°)</td>
<td>28.7</td>
<td>41.2</td>
<td>77.4</td>
<td>25.0</td>
</tr>
<tr>
<td>$\Delta \nu$ (cm$^{-1}$)</td>
<td>-509.1</td>
<td>-87.2</td>
<td>+100.6</td>
<td>-48.6</td>
</tr>
</tbody>
</table>

Figure S6. Examples of positive ECD spectra recorded from 1 needles dispersed in CHCl$_3$ at 1.4 10^{-4} M (top, left) and 6.9·10^{-5} M (top, right), and silent ECD spectra observed for individual 1 molecules at 6.9·10^{-6} M (bottom). Formations of chiral nanostructured fibers is detected at high enough concentrations (top) by switching on the silent ECD (bottom) observed at a low enough concentration (disaggregated state). Red line indicates the estimated smoothed spectrum from the corresponding recorded (black line) spectrum.