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Abstract 

The comprehension of molecular recognition phenomena demands the understanding of the 
energetic and kinetic processes involved. General equations valid for the thermodynamic 
analysis of any observable that is assessed as a function of the concentration of the involved 
compounds are described, together with their implementation in the AFFINImeter software. 
Here, a maximum of three different molecular species that can interact with each other to 
form an enormous variety of supramolecular complexes are considered. The corrections 
currently employed to take into account the effects of dilution, volume displacement, 
concentration errors and those due to external factors, especially in the case of ITC 
measurements, are included. The methods used to fit the model parameters to the 
experimental data, and to generate the uncertainties are described in detail. A simulation tool 
and the so called kinITC analysis to get kinetic information from calorimetric experiments are 
also presented. An example of how to take advantage of the AFFINImeter software for the 
global multi-temperature analysis of a system exhibiting cooperative 1:2 interactions is 
presented and the results are compared with data previously published. Some useful 
recommendations for the analysis of experiments aimed at studying molecular interactions are 
provided.  
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1.- Introduction 

The understanding of the underlying mechanisms involved in molecular recognition 
processes requires the knowledge of the structural, energetic and kinetic features associated 
with these events. This in turn allows the rational design or optimization of chemical and 
biochemical compounds for specific applications. Examples of processes that can be studied in 
solution are protein-ligand association, the dissociation/association of protein oligomers, the 
encapsulation of small molecules in hydrophobic cavities or in molecular aggregates formed by 
amphiphilic compounds, step-wise binding of small molecules to a large polymer, spontaneous 
aggregation of molecules into larger self-organized structures, micelle formation/dissociation, 
and adsorption of molecules onto solid interfaces [1-2]. 

For the quantitative characterization of these processes we need to apply a 
thermodynamic model to a set of experimentally obtained data of an observable property that 
is sensitive to the amount of free and bound species in the system [3-5]. For recognition or 
binding processes between any two molecules (M and A) at a given temperature and pressure, 
the representation of such an observable as a function of the total concentration of M or A (or, 
alternatively, as a function of the concentration ratio [M]/[A] or [A]/[M]) is typically referred to 
as “equilibrium isotherm” or “saturation binding curve”. From this curve, quantitative 
information on the thermodynamic properties of the studied process (equilibrium constant, 
Gibbs energy, enthalpy, entropy, heat capacity) can be obtained. This equilibrium 
thermodynamic information can in turn be used to interpret the data at molecular level, 
together with information from other experiments and/or models (X-ray diffraction, NMR, 
molecular dynamics simulations, statistical thermodynamics, etc). Additionally, when the 
observable is also monitored as a function of time for different M or A concentrations, a 
kinetic characterization of the binding event is also possible [6]. 

Different experimental techniques are available to study molecular recognition. The 
most commonly used methods are Isothermal Titration Calorimetry (ITC), Nuclear Magnetic 
Resonance (NMR), Surface Plasmon Resonance (SPR), Microscale Thermophoresis (MST) and a 
variety of spectroscopic methods including fluorescence, circular dichroism, IR and UV-vis. The 
thermodynamic information obtained from any of these techniques for a given process must in 
principle be the same. However, differences are expected when the experimental setup is not 
identical, e.g. the use of different sample volume and concentrations in order to maximize the 
signal-to-noise ratio, the immobilization of the target compound to a substrate or the use of an 
external marker (e.g. a fluorescent tag). Particularly in the cases of immobilized or labelled 
reactants the system is expected to behave differently from experiments where free, 
unlabelled molecules are present in solution. Different techniques may also differ in the way 
the system is perturbed and the observed signal is measured. For instance, ITC is based on 
sequential perturbations of equilibrium states followed by return to equilibrium. The 
measured signal is the heat released or absorbed upon small concentration changes due to 
several factors: dilution, aggregation/dissociation or the transformation between 
supramolecular complexes of different stoichiometry. Therefore, the kinetics of the binding 
process may affect the results obtained for the thermodynamic parameters obtained from ITC, 
mainly for slow-binding ligands. In contrast, most of the techniques designed for the study of 
intermolecular interactions register an observable signal of well equilibrated samples, i.e., the 
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samples are not perturbed during the experiment. Nevertheless, even under the same 
conditions and techniques, different values for the thermodynamic parameters are found in 
the literature. There are a large number of reasons for these discrepancies to occur, ranging 
from uncertainties in sample concentration, incorrect instrument calibration, technical 
difficulties to obtain a good signal-to-noise ratio, and finally differences arising from the data 
fitting. A detailed discussion of the relevance of each of the factors leading to the 
inconsistencies between the thermodynamic parameters obtained from different techniques is 
indeed outside the scope of the present work. However, it should be noted that efforts are 
being made towards the standardization of results obtained from different biophysical 
techniques [7]. 

In order to improve the characterization of a large variety of molecular processes that are 
often involved in fundamental or applied research, several companies are continuously making 
efforts to optimize the sensitivity and performance of the instruments, as well as improving 
the hardware and software aimed at collecting the primary data (raw signal). Concurrently, 
complementary software is needed to properly analyze experimental information of different 
degrees of complexity and retrieve the thermodynamic constants that characterize the 
processes under study. For this, the selection of a proper binding model, the correct 
estimation of the involved parameters, avoiding local minima and over-parameterization, as 
well as getting a good estimation of uncertainties, are of paramount importance. AFFINImeter 
was designed in order to fulfil these aims. This software offers the traditional binding models, 
but more importantly, it makes possible to develop user-tailored models in a very simple way, 
a possibility not publicly available in any other analysis software. Furthermore, during the 
processing of the raw signal useful information is sometimes discarded, as it has been the case 
for ITC measurements –a technique that has been traditionally employed mainly to get 
thermodynamic data– where the kinetic information has remained mostly unaddressed. 
AFFINImeter allows users to obtain valuable kinetic information from the raw ITC data, with no 
additional effort nor sample consumption, using a particular development called kinITC [8]. At 
present, AFFINImeter can analyse binding curves from ITC, from NMR, and from spectroscopy 
data. These different AFFINImeter applications are referred to as AFF-ITC, AFF-NMR and AFF-
Spectroscopy. In the present work, we describe the main features and technical details of this 
software, with special emphasis on the implementation of thermodynamic binding models 
that represent a large variety of binding and molecular recognition events and mechanisms. 

 

2.- Software description 

The software currently available for the analysis of binding events from experimental 
measurements has different origins: (i) software attached to a specific instrument, typically 
developed and provided by the equipment manufacturers; (ii) third-party software specialized 
in a single technique for several instrument brands; and (iii) third-party software for a range of 
techniques and instrument brands. The last two are usually developed by private companies or 
academic groups.  

AFFINImeter is currently a shareware software belonging to the last group, thus aiming at 
having special applications to different techniques. The AFFINImeter branch for ITC (AFF-ITC) is 
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currently more complete than those for NMR and other spectroscopies (AFF-NMR and AFF-
Spectroscopy) since the former includes the analysis of the raw data for ITC instruments 
commercialized by the main manufacturers. The raw data analysis for NMR measurements is 
externally performed by MNova (http://mestrelab.com/software/mnova/binding/), which 
works jointly with AFF-NMR. The analysis of raw data for other spectroscopies will be 
implemented in AFFINImeter in the future. Belonging to group (iii), the models, fitting engines 
and algorithms, as well as the treatment of uncertainties and local minima -the core of 
AFFINImeter- are common for AFF-ITC, AFF-NMR and AFF-Spectroscopy. In what follows, the 
main features of AFFINImeter are illustrated through their application to ITC data. 

The main features of the AFFINImeter software are briefly described here. They are explained 
in detail in the following sections. 

• Fully automated integration of the ITC raw data, including noise removal, baseline 
correction and calculation of the uncertainty for each data point of the equilibrium 
isotherm; 

• Complete flexibility in the design of models for the thermodynamic analysis, defined 
by the user in a comprehensive and simple form. Examples of possible events/models 
are self-association, multi-site binding, competitive interactions, formation of ternary 
complexes (consisting of any stoichiometric combination of 3 different molecules) and 
coupling between several processes (e.g. self-association + 1:1 binding); 

• Kinetic analysis using the kinITC method [9] applied to the ITC raw data corresponding 
to 1:1 and 1:n interactions. This method allows obtaining the rate constants (kon and 
koff) with no extra effort, using the same titration experiment data employed for the 
thermodynamic analysis; 

• Fitting parameters that allow correction for the concentration of active (i.e. competent 
to form complexes) titrant (syringe) and titrate (calorimetric cell); 

• No need to provide numerical starting values for the fitted parameters; 
• Dynamic mathematical/logical relationships between parameters and their 

maximum/minimum boundaries. This is useful mainly when including hybrid models 
and also to prevent over-parameterization; 

• Powerful analysis of local minima and final parameter uncertainties; 
• Global analysis of several measurements, including direct + reverse experiments, 

repeats of the same experiment or multi-temperature experiments, by sharing fitting 
parameters when convenient; 

• Powerful simulation tool using an unlimited number of models; 
• Results supplied in detail, including species distribution plot. The automated report of 

the obtained results is generated in html and pdf formats. The values represented in 
each plot can also be downloaded in csv format for further treatment by the users; 

• In addition to standard user accounts, administrator accounts are also available to 
manage user accounts. Administrator accounts have access to the data of their 
associated users; 

• Accessibility from any device with internet connection. 
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2.1.- Treatment of raw data to obtain the equilibrium isotherm 

The processing of the raw data to generate the equilibrium isotherm is a very important step 
in the analysis of the experimental data. AFF-NMR does not directly analyze the NMR raw data, 
but takes the equilibrium isotherm from the MNova Software [http://mestrelab.com/]. For 
AFF-Spectroscopy it is currently assumed that the raw data has been externally processed. In 
contrast, AFF-ITC uses the raw data from the most common ITC instruments (Malvern-
MicroCal and TA Instruments) generating the equilibrium isotherm and the equilibration time 
curve (ETC) used to yield kinetic information from the ITC experiment (see section 2.8 for 
details). The basis of the raw data treatment and data management in AFF-ITC and kinITC has 
been reported in [10-11]. Here we describe only the relevant parts in data treatment that 
allow comprehension of the thermodynamic parameters’ retrieval.  

The raw data of a power-compensation ITC instrument consists of a two column file 
containing the power supplied to the sample cell to keep the temperature constant and the 
corresponding time. During a typical experiment, the power supplied signal changes due to 
small perturbations during baseline periods (stirring, small environmental temperature 
changes, etc.) and also due to the larger perturbation produced by the injection of small 
aliquots of the solution contained in the syringe into a solution located in the sample cell 
(injection-recovering period). After the system in the cell has returned to equilibrium, a stable 
baseline is recovered. Thus, the signal corresponding to the injection-recovering period is 
recorded as a power vs time peak. To perform the thermodynamic analysis, the peaks of a 
complete titration have to be integrated. For this, the software automatically generates a 
baseline for each injection, which is subtracted from the raw signal. These individual baselines 
are obtained by fitting a smooth function joining the first point of the signal injection -just 
before the perturbation begins- to the trend of the last part of the signal, i.e. excluding the 
perturbed region. The employed function for this fitting is a linear combination of orthogonal 
functions (Legendre polynomials of first, second and third order). Finally, the noise is reduced 
producing a corrected titration curve that can be directly visualized. The noise removal is 
based on analysis of local deviations to the signal trend. Several controls are available to the 
user in order to manipulate the level of noise to be removed as well as to choose the time 
period between peaks to be considered as baseline. Thereafter the peaks are integrated, 
generating the equilibrium isotherm, and the associated uncertainties per point, s, are 
calculated. The process is fully automated by default, but the user can easily modify the 
integration limits. The integral of each peak represents the heat released or absorbed due to 
the events (binding for example) that take place in the sample cell as a result of each injection. 
This energy is normalized by the number of moles of the injected compound (or number of 
moles of reactant in the cell), leading to the molar enthalpy change. The corresponding 
uncertainty for each point in the isotherm is the sum of three contributions [10]: (i) that due to 
the signal’s noise, determined as the product of its standard deviation in the baseline region 
times the duration of the signal perturbation upon injection; (ii) that emerging from possible 
outliers in the perturbed region, that is evaluated as the difference between the area obtained 
by numerical integration of the experimental peak and the area corresponding to the 
integration of a mathematical function fitted to the same data (the employed mathematical 
function is a truncated series expansion of peak functions, with the number of terms used 
being chosen by a F-test for statistical significance); and (iii) that arising from the dispersion of 
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the points constituting the isotherm, estimated from the difference between the interpolation 
or extrapolation of first and second order polynomials to groups of sequential three and four 
points in the equilibrium isotherm. The software performs several rounds of interpolations and 
extrapolations taking the points from lower to higher titrant concentrations and in the 
opposite direction. The minimum difference between the experimental value and the 
extrapolated/interpolated point found among all these rounds is taken as a contribution to the 
final uncertainty. The calculation of this contribution is clearly described by Keller et al [12]. 
Our implementation is an adaptation of the method described by these authors. The total 
uncertainty is determined as the square root of the sum of squares of all contributions. This 
allows assigning an uncertainty to every experimental point in the equilibrium isotherm. This is 
possible even for points where the signal abruptly changes, provided that the dispersion 
between the two regions (i.e. before and after the abrupt change) is small, as typically occurs 
for very strong interactions. 

An example for the automatic treatment of ITC raw data is shown in Figure 1. By default, the 
binding isotherm and the so called Equilibration Time Curve (the curve obtained by plotting 
the time required for each injection to recover the baseline vs the corresponding 
concentration ratio, see Figure 1 and section 2.8) are analysed assuming a simple 1:1 
interaction. An F-test is employed to decide if corrections due to the dilution of the titrant 
and/or to the concentration of active reactants are required. The analysis for a single 
experiment typically takes a few seconds and it is fully automated for the simplest interactions. 
A maximum of 10 experiments can be simultaneously uploaded and processed. This is useful 
to simultaneously process multi-temperature experiments where the software employs the 
van’t Hoff and Eyring equations. If the interaction model is more complex, then the user can 
specifically design a reaction scheme using the model builder tool to analyse the experimental 
data (see Figure 2 and this video: https://www.youtube.com/watch?v=dhfW-PQ-qVA ). 
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Figure 1. Graphs automatically displayed in AFFINImeter-ITC upon raw data upload and 
processing. A) ITC data preview, which shows the raw thermogram; B) processed thermogram 
after baseline correction and noise removal; C) binding isotherm, resulting from the peak-by-
peak integration of the processed thermogram as a function of At/Mt (titrant to titrate molar 
ratio) with the error bars determined as explained in the text; D) Equilibration time curve (ETC) 
resulting from the equilibration time for each injection as a function of the stoichiometric ratio 
At/Mt (the error bars of the ETC are determined using only the third contribution explained in 
the text and the time resolution of the experiment, typically 1 second). Solid red lines in C and 
D are the results of the fittings to a 1:1 binding model and to equation 8 in [11], respectively. 

2.2.- The use of generalized equations to build interaction models 

There is a wide variety of software available for the analysis of intermolecular interactions 
from data obtained with specific biophysical techniques/applications (i.e. Origin, Nanoanalyze 
and HypCa for ITC, Scrubber for SPR, Titan for NMR, and Sedphat for a number of techniques 
including AUC, ITC and DLS) as well as generic analysis software of binding curves (i.e. 
GraphPad, SigmaPlot and DynaFit). Generally, these computational programs can be classified 
as software that only offers a list of predefined models that are independently implemented, 
or as software that permits the implementation of new models. In the latter case, generation 
and validation of new models is not straightforward and requires a good knowledge of 
equilibrium thermodynamics, mathematics, and algorithms, and possibly also computational 
programming. Further, for some instruments it is necessary to be familiar with technical details 
that could affect the equations to be programmed. It is worth to mention that the validation of 
new models is not trivial mainly because typically no reference results are available. For these 
reasons, only experienced users are able to use these advanced tools to create models. 

AFFINImeter has solved these problems by adopting a different strategy –the use of 
generalized equations for the two main families of binding models, namely “stoichiometric 
equilibria” (SE) and “independent sites” (IS) models (see below). Since the equations are 
generalized, the amount of available models for each family is virtually unlimited. The 
validation is also much more simple and robust, since any error present in relatively simple 
models (easy to detect) should also be present in more complex models. Thus, the 
mathematical induction method can be employed to demonstrate the validity of non-trivial 
models (typically difficult and in many cases impossible mainly due to the lack of appropriate 
data) from the results obtained with simple ones. Predictions based on simulation of 
experiments upon variation of the different parameters can also be used to check for the 
consistency of the results. Note that AFFINImeter allows the simulation of experiments 
corresponding to any of these two model families. 

The SE models are based on stoichiometric (or macroscopic) equilibrium constants and they 
are typically applied to low stoichiometry interactions where the different binding sites can be 
coupled to each other. The IS models are based on site-specific (or microscopic) equilibrium 
constants where the different binding sites do not interact with each other, although they can 
be grouped in sets where the sites have identical affinity and enthalpy of interaction with the 
involved species. The main features of the SE and IS models are summarized in Table 1, and 
both models are described in detail in the following sections. Standard available software for 
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the study of intermolecular interactions includes just a few predefined SE models, as well as 
non-competitive IS models for one-set and two-sets of independent sites. This translates into a 
number of limitations, namely (i) competitive IS interactions are not implemented; (ii) no SE 
competitive models, other than for 1:1 interactions, are available; (iii) hybrid binding models 
such as coupled dissociation/binding and those that represent non-standard experiments (e.g. 
those where there is an “extra” compound or cosolute simultaneously present in both the 
syringe and cell in the ITC instrument) are missing; (iv) fitting parameters that account for 
potential deviations between nominal and true active concentration of the compounds 
participating in the binding event can only be considered for 1:1 interactions; and (v) the 
enthalpic contribution of the dilution of the titrant to the total signal in ITC instruments is not 
properly modelled (or not modelled at all), thus requiring complementary experiments in 
many cases. These five limitations have been surpassed in AFFINImeter, as described and 
discussed in what follows. 

Table 1.- Main features of Stoichiometric Equilibria and Independent Sites models as 
implemented in AFFINImeter. A detailed description of both types of models together with 
some examples are provided in sections 2.2.3 and 2.2.4. 

Stoichiometric Equilibria models Independent Sites models 
Consist of a set of connected equilibria 
(reaction scheme) between stoichiometric 
species, written in chemical language. The 
stoichiometric equilibria can be established 
between free species (uncomplexed initial 
compounds) and a complex of defined 
stoichiometry or between two different 
complexes.  

Consist of one or more sets of sites. Each set 
is characterized by a number of independent 
sites that are thermodynamically equivalent. 
Sites of the same set will bind the ligand with 
the same binding affinity and enthalpy 
change. Sites of different sets are not 
equivalent. All sites are independent to each 
other. 

Allow the thermodynamic characterization of 
equilibria between stoichiometric species. 

Allow the thermodynamic characterization of 
binding equilibria between the ligand and the 
receptor site(s) and defines the stoichiometry 
of the ligand-receptor complex. 

Considers the possibility that binding of one 
ligand may influence the binding of other 
ligand(s), i.e. cooperative binding in multi-site 
binding events. 

Assume that binding sites are independent, 
and therefore it is not applicable to the 
characterization of cooperative interactions. 

Each equilibrium considered is characterized 
by the corresponding stoichiometric (or 
macroscopic) equilibrium constant and 
enthalpy change.  

The binding sites are grouped in sets with 
identical site (or microscopic) equilibrium 
constant and enthalpy, thus allowing the 
interaction of a macromolecule with a large 
number of ligand molecules, without 
increasing the number of fitting parameters 

Competitive ligands can be considered Competitive ligands can be considered 
  
 

2.2.1.- Nomenclature and experimental setups in ITC experiments 

General binding models that involve the participation of 1, 2 or 3 different molecules have 
been implemented in AFFINImeter for both model families (SE and IS). In a standard ITC 
experiment there is a target molecule -typically a macromolecule located in the sample cell- 
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to which one ligand candidate -initially located in the syringe at a higher concentration- can 
bind. However, several factors like the possible low solubility of the ligand or limitations in the 
amounts of the compound available, lead to exchange the reactants in the syringe and cell, 
performing the often called reverse experiment. From the thermodynamic point of view direct 
and reverse experiments are symmetrical, i.e. the thermodynamic equations and parameters 
describing the interaction between two molecules are the same, irrespective of the 
experiment’s design. AFFINImeter denotes the main solute in the sample cell as M (as a 
reference to “macromolecule”, the most typical setup) and the main solute in the syringe as A 
regardless the position of the reactants. A third compound participating in the interaction, B, 
may be present in both the sample cell and the syringe, only in the sample cell, or only in the 
syringe. Additionally, dilution experiments where only the compound A is initially located in 
the syringe and the sample cell is filled with the solvent can be convenient to test for any 
potential self-association/aggregation of compound A. Dilution experiments are also used to 
study the dissociation of protein oligomers, polymer aggregates or de-micellization. The ITC 
experimental setups that can be considered in AFF-ITC are depicted in Figure 2. 

A)     

I) 

 

II) 

 

III) 

 

IV) 

 

V) 

 

 

B) 

    

1:1 model 

 

1:2 model, one step 

 

1:2 model, stepwise 

 

 
  

1:1 Competitive 

 

Self-association (monomer – dimer) 

 

Ternary complex, stepwise 
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Figure 2. A) Schematic representation of ITC experimental setups and nomenclature used in 
AFFINImeter showing: I) standard titration of A into M; titration of A into M in the presence of 
II) B in the cell and in the syringe; III) B mixed with M in the cell; IV) B mixed with A in the 
syringe; V) dilution experiment of A, in syringe, into solvent in the cell. B) A few illustrative 
examples of AFFINImeter binding models. Note that the possible presence of a co-solute (B) in 
the syringe, in the cell or in both locations significantly expands the variety of models that can 
be applied, including displacement experiments or the formation of relatively complex 
chemical species consisting of more than two molecules. 

 

2.2.2.- Equilibrium constants – stoichiometric vs site models 

SE models consider the equilibria between stoichiometric species regardless the location of the 
ligand in a specific site of the receptor, while IS models explicitly assumes binding of the ligand 
to specific sites. Therefore, the equilibrium constants in each model family have a different 
meaning, although they are in fact related. 

Let’s consider the interaction of a ligand (A) with a divalent macromolecule (M) as depicted in 
Figure 3. Using the SE approach two stoichiometric species can be formed, M1A1 and M1A2, and 
the following stepwise chemical reactions can be written: 

 M + A « M1A1          and          M1A1 + A « M1A2 (1) 

with the corresponding stepwise stoichiometric equilibrium constants being: 

 K11 = [M1A1]/([M]·[A])          and          K12 = [M1A2]/([M1A1]·[A]) (2) 

where [M], [A], [M1A1] and [M1A2] denote the molar concentrations of free M and A species 
and of complexes of stoichiometry 1:1 and 1:2, respectively. K11 is the binding constant 
characterizing the formation of the complex M1A1 from the free species, regardless of the 
binding site, while K12 characterizes the formation of the complex M1A2 from M1A1 and a 
second A molecule. 

 

 

Figure 3. Schematic diagram of binding equilibria based on stoichiometric constants, for the 
interaction between a bivalent receptor, M, with a monovalent ligand, A, is represented. 

 

The formation of the M1A2 complex can also be written as a single step process: 

 M + 2·A « M1A2 (3) 
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leading to the global stoichiometric equilibrium constant: 

 b11 = [M1A2]/([M]·[A]2) (4) 

The global and stepwise constants are related as b11 = K11·K12 and thus the units of the global 
and stepwise equilibrium constants are different. Note that the change in free energy for the 
formation of a given complex is determined as the natural logarithm of the product of the 
corresponding equilibrium constant by the ratio of standard state concentrations of reactants 
and products, raised to the appropriate powers. Thus, the argument of the logarithm is 
dimensionless, as required. The values of global and stepwise constants cannot be directly 
compared and differ, typically, by several orders of magnitude. AFFINImeter uses stepwise 
equilibrium constants and so they are always denoted by K, even though the equilibria 
consisting any model can skip specific stoichiometric species, i.e. the difference of the sum of 
the stoichiometric coefficients of a given chemical species upon a reaction can be higher than 
1. For instance, for the reaction scheme M + A « M1A1 + 2·A « M1A3 the complex M1A2 is not 
present and the difference between the stoichiometric coefficient of M1A1 and M1A3 is 2. The 
values of K for different orders of association cannot be directly compared. The best way to 
compare the weight of two reactions is to observe the species distribution plots (see below). 

On the other hand, for the same system, i.e. for a monovalent ligand A binding to a divalent 
macromolecule M, the two involved sites can be considered to be distinguishable (see Figure 
4). The explicit consideration of specific binding sites involves the incorporation of four 
complexes and four equilibria into the model: 

M + A « Ms1A1  M + A « Ms2A1  Ms1A1 + A « M1A2 Ms2A1 + A « M1A2 

where Ms1A1 is the 1:1 complex with site 1 occupied by A, while Ms2A1 is the 1:1 complex with 
the site 2 occupied. This reaction scheme implies a larger number of parameters, as a different 
equilibrium constant is needed for each site: 

 Ks1 = [Ms1A1] / ([M]·[A])          and         Ks2 = [Ms2A1] / ([M]·[A]) (5) 

and two additional constants for the saturation of M, depending on which site was first 
occupied: 

 Ks1s2 = [M1A2] / ([Ms1A1]·[A])          and         Ks2s1 = [M1A2] / ([Ms2A1]·[A]) (6) 

Thus in this case we are dealing with the so called microscopic, or ‘site specific’ binding 
constants. 
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Figure 4. Schematic diagram of binding equilibria based on site constants, for the interaction 
between a bivalent receptor, M, with a monovalent ligand, A. The site equilibrium constant 
and the change in Gibbs energy associated to each reaction is defined next to each arrow. 

 

Since the stoichiometric species M1A1 in the SE model represents the sum of possible 
complexes of 1:1 stoichiometry formed between M and A, then M1A1 = Ms1A1 + Ms2A1. 
Therefore, the relationship between stoichiometric and site-specific equilibrium constants is: 

 K11 = Ks1 + Ks2          and          K12 = (Ks1s2·Ks2s1) / (Ks1s2 + Ks2s1) (7) 

From the above descriptions and definitions it is clear that site equilibrium constants are more 
informative than stoichiometric constants, but the number of site equilibrium constants is, in 
this particular case, twice that of stoichiometric constants. The problem is simplified by the 
fact that, in this case, the 1:2 complex is the same regardless the pathway employed to reach 
it, so the reactions represented in Figure 4 are not independent: DG1+DG12=DG2+DG21. This 
introduces a connection between the constants given by equations (5) and (6): Ks1/Ks2 = 
Ks2s1/Ks1s2. Anyway, for more complex interactions, of higher order stoichiometry, the number 
of required thermodynamic parameters would make the problem using site constants 
unapproachable. The situation can be simplified if: 

K s2s1 = Ks1      and    Ks1s2 = Ks2 (8)  

This simplification means that the sites are considered independent from each other, i.e. 
binding of A to site 2 does not influence the binding of a second molecule of A to site 1, and 
vice-versa. The relationship between stoichiometric (macroscopic) and site-specific 
(microscopic) constants then becomes: 

 K11 = Ks1 + Ks2          and          K12 = (Ks1·Ks2) / (Ks1 + Ks2) (9) 

Furthermore, if sites are independent and equivalent, all site constants will be equal: 

 Ks1 = Ks2 = Ks1s2 = Ks2s1 (10)  

and then, 

 K11 = 2·Ks1          and          K12 = Ks1 / 2 (11) 

Thus, finally we can write for the system under consideration 
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 K12 =K11 / 4 (12) 

An equivalent derivation of this equation can be found in [3]. It is worth to mention that 
equation (12) fulfils for a divalent interaction with two independent and equivalent sites. 
However, fulfilment of the previous equations does not necessarily imply that the interactions 
are divalent, since when dealing with an experimental data set arising from a different type of 
mechanism –perhaps even more complex than a divalent interaction- the system might also 
be well described by those same equations. For example, apparently complex three-steps 
mechanisms can be described exactly by a trivial one-step mechanism. This is the case for a 
macromolecule exhibiting an equilibrium between two conformational states with different 
affinities and enthalpies for a given ligand. Such a composite mechanism requires one set of 
equilibrium constant and enthalpic terms for the interconversion step and two additional sets 
for the two association/dissociation steps. However, as far as thermodynamics is concerned, 
the same system can be rigorously described by a simple one-step mechanism with a single set 
of apparent equilibrium constant and enthalpy terms that can be expressed as functions of the 
original three sets of equilibrium constants and enthalpies [4]. 

2.2.3.- Stoichiometric Equilibrium (SE) models  

Equations 1-4 can be generalized to describe the interaction between three molecules M, A 
and B, forming complexes of any stoichiometry. Since the reaction scheme leading to a 
complex of certain stoichiometry in terms of stepwise reactions is not unique, it is convenient 
to write the equations in terms of global equilibrium constants (it is worth to remind again that 
AFFINImeter uses stepwise constants and that the global and the stepwise equilibrium 
constants can be easily related): 

 m·M + a·A + b·B « MmAaBb          and          bmab = [MmAaBb] / ([M]m·[A]a·[B]b) (13) 

Thus, if a particular observable X (e.g. molar enthalpy of complex formation) is sensitive to the 
presence of MmAaBb, the observed signal is the sum of population-weighted contributions of 
free and bound species, and the averaged signal contained in a volume V would be given by 
eq. (14). It is worth to note that some experimental observables require signal average based 
on different concentration units such as mole fraction (e.g. chemical shift) or mole fraction of 
total intensity (e.g. fluorescence anisotropy. 

 X = ∑ 	𝑋$%& · [𝑀$𝐴%𝐵&] · 𝑉.,0,1
$,%,&23  (14) 

where Xsjk is the molar contribution of MsAjBk to the observable X  and 

 [MsAjBk] = bsjk·[M]s·[A]j·[B]k
 (15) 

where bsjk is the global stoichiometric equilibrium constant corresponding to the formation of 
MsAjBk and the total concentration of each compound ([M]T, [A]T and [B]T) is distributed 
between the existing free and complexed forms: 

 [M]T = ∑ 		𝑠 · [𝑀$𝐴%𝐵&].,0,1
$,%,&23  (16) 

 [A]T = ∑ 		𝑗 · [𝑀$𝐴%𝐵&].,0,1
$,%,&23  (17) 
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 [B]T = ∑ 		𝑘 · [𝑀$𝐴%𝐵&].,0,1
$,%,&23  (18) 

where the factors s, j and k in equations 16-18 account for the number of M, A and B 
molecules within each MsAjBk complex, respectively. Note that Equations 16-18 include in the 
sums the possibility of self-association of a single compound (Ms, Aj, or Bk), as well as the 
formation of various combinations of hetero-complexes formed by two compounds (MsAj, AjBk 
or MsBk). 

Equations (14-18) include two parameters for each chemical species: Xsjk and bsjk. The values 
for those parameters can be numerically obtained by fitting the equation (14) to the 
experimental data, i.e. to the observable X as a function of the total concentration of the 
involved compounds. For each set of {Xsjk, bsjk} values used during the iterative fitting 
procedure, the concentration of the different chemical species can also be numerically 
determined using equations (16-18), provided that the total concentration of the three 
compounds is known. For the final values of {Xsjk, bsjk}, the concentration of each complex, as 
well as its contribution to the averaged signal, can be determined for every concentration of 
the three compounds. These equations can be directly used to obtain stoichiometric 
equilibrium constants from the analysis of binding curves obtained by NMR titrations and 
general spectrometric measurements (available in AFF-NMR and AFF-Spectroscopy). For ITC 
their use is not straightforward when the experiments are performed in instruments of the 
”filled type” (i.e., Malvern MicroCal or TA instruments) as (i) due to instrument’s design, upon 
each injection an equivalent volume of solution is expelled from the effective cell volume, 
implying that the concentration of the compounds in the cell is changed after each injection in 
a way in which calculation might depends on various assumptions; (ii) the measured heat does 
not correspond to a specific concentration, but rather to the heat absorbed or delivered during 
the concentration change, i.e. the shape of the equilibrium isotherm may depend on the 
volume and speed of the injections, as well as on stirring speed; and (iii) the total signal may 
contain the contributions of the heat of dilution, mainly those of the injected compounds. 
Thus, for filled type ITCs it is necessary to consider the calculation of the concentration change 
in the cell after each injection, as well as the corresponding corrections to the detected heat. 
Additionally, the contribution of the dilution effect to the signal should be subtracted. This last 
effect can be done after the experiment if separate dilution experiments are performed, or can 
be included in the equations if modelled. Both options can be applied with AFFINImeter, 
although the last one is usually more practical and no less accurate. Including all the above 
mentioned terms, the final equation used in AFFINImeter for the analysis of ITC data under the 
stoichiometric equilibrium scheme is: 

 DQi = {-Qsyr,i + (Qi+1 – Qi) + Qcorr,i + DHdil·([Asyr] – [A]T,i) + Qdb} / ([Asyr]·vinj,i) (19) 

where DQi is the heat absorbed or delivered per mole of A added during the injection i. Note 
that the presence of M and B in any experiment is optional (see Figure 2), but it is compulsory 
that compound A be present at some concentration in the syringe. Qsyr,i is the total heat 
required to form all chemical species present in the injected volume (vinj,i). It can be calculated 
as: 

 Qsyr,i = ∑ 	DH$%& · [𝑀$𝐴%𝐵&] · vinj,i.,0,1
$,%,&23  (20) 
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with DHsjk being the molar enthalpy change corresponding to the formation of the complex 
𝑀$𝐴%𝐵& from the free species (equivalent to 𝑋$%& in eq. 14). Similarly, Qi is the total heat 
required to form all chemical species present in the cell, and is given by: 

 Qi = ∑ 	DH$%& · [𝑀$𝐴%𝐵&]i · Vi.,0,1
$,%,&23  (21) 

One should note that whereas for Qsyr,i the concentration of each chemical species does not 
depend on the injection since the concentration of the syringe is constant, in the case of Qi the 
concentration of the complexes depends on the total concentration of each species in the cell, 
so it is expected to be different for each injection. In eq. 21 the index i was included for the 
total volume of the solution in the cell (Vi), although for Malvern MicroCal or TA ITC 
instruments it is a constant. In equation (19), Qcorr,i is the heat contribution associated with the 
sample that is displaced (removed from the section of cell where the sensors are located) 
during the injection. Since the concentration changes after each injection, and the 
contributions Qsyr and Qi are calculated using the concentrations in the cell after i and i+1 
injections, Qcorr,i is taken as the average between the heat delivered or absorbed corresponding 
to a volume vinj,i that leaves the cell upon injection: 

 Qcorr,i = [(Qi + Qi+1) / 2] · vinj.i / Vi (22) 

In contrast to other software for the analysis of ITC measurements, in AFFINImeter the dilution 
contribution is calculated as the product of the dilution molar enthalpy (DHdil) and the 
difference between the concentration of A in the syringe [Asyr] and that in the sample cell after 
each injection [A]T,i (see eq. 19). As expected, this term is maximum for the first injection and 
decreases as the concentration of A in the cell approaches that in the syringe. Finally, in 
Equation (19) there is an additional term (Qdb) that represents a constant correction for a 
potential baseline shift, generally due to external (not specific for the studied system) physical 
phenomena such as mechanical mixing of two fluid samples, temperature equilibration due to 
temperature gradient along the injection syringe, composition mismatches between syringe 
and cell solutions, electrical noise or temperature fluctuations, both in the room where the 
instrument is located, etc. 

In summary, the generalization of the stoichiometric equilibrium equations as implemented in 
AFFINImeter allows an easy application of many models to the experimental ITC data, involving 
a maximum of three different compounds. Although in AFFINImeter all the stoichiometric 
equilibrium constants are considered as stepwise (and hence denoted as K), global 
stoichiometric binding constants can also be used provided all the reactions introduced by the 
user in the model builder (https://www.youtube.com/watch?v=dhfW-PQ-qVA) use the free 
species as unique reactants to form all the involved complexes. As stated at the beginning of 
this section, we only indicated here the equations corresponding to the global equilibrium 
constants because the equations based on stepwise constants depend on the specific reaction 
scheme or reaction pathway chosen for the studied system. However, these equations are 
easy to derive from the above given expressions (see previous section). The sequential 
equilibrium models implemented in AFFINImeter have been employed in a number of studies 
including proteins, DNA and other heterogeneous systems [13-17]. 

2.2.4.- Implementation of Independent Sites (IS) models  
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General site equilibrium constants were introduced in section 2.2.2. It was shown that when 
the sites are independent and equivalent, all the site equilibrium constants are identical. This is 
a useful model for the study of many multivalent interactions where these conditions are 
fulfilled. In this model, the equilibrium constant and the enthalpy change for the interaction 
can be obtained for each site, together with the number of binding sites, considered a fitting 
parameter. One-set-of-independent-sites and two-sets-of-independent-sites models are 
available in several programs for the analysis of ITC data. In these models, all binding sites 
within each set are independent and equivalent to each other. The sites of different sets are 
also independent, but they have different affinity and enthalpy of interaction. To our 
knowledge, the equations for competitive IS models, i.e. considering two competitive ligands 
for each site, are not publicly available yet. AFFINImeter implemented the generalization of IS 
models for multiple sets of independent and equivalent sites for each set, with two possible 
ligands (A and B) competing with different affinity and enthalpy of interaction for all the sites. 
Some publications taking advantage of these functionalities have been recently reviewed in 
[18]. The equations of this general model are described next. From a kinetic point of view: 

 va
As = 	ka

As	(ns	-	〈A〉s-	〈B〉s)·[A]          and          vd
As = 	 kd

As	〈A〉s (23) 

where va
As and vd

As are the rate of association and dissociation of the molecule A to the set s of 

a given macromolecule M, ka
As and kd

As are the kinetic constants for the same process, ns is the 
total number of sites for the considered set, 〈A〉s and 〈B〉s are the average number of A and B 
molecules per mol of M in the set s, and [A] is the concentration of free A in the solution. 
Under equilibrium conditions the rates of adsorption and desorption match: 

 ka
As	(ns	-	〈A〉s-	〈B〉s)·[A] = 	kd

As	〈A〉s (24) 

thus, 

 KAs·[A] = 	𝜃As/K1	-	𝜃As-	𝜃BsM (25) 

where the microscopic equilibrium constant for the binding of A to any site of the set s in M is 

defined as KAs = ka
As	/	kd

As and the fraction of occupied sites are defined by 𝜃As = 	 〈A〉s	/	ns 
and 𝜃Bs = 	 〈B〉s	/	ns. The same equations can be written for B: 

 ka
Bs	(ns	-	〈A〉s-	〈B〉s)·[B] = 	kd

Bs 	〈B〉s (26) 

 KBs·[B] = 	 𝜃Bs/K1	-	𝜃As-	𝜃BsM (27) 

Combining eqs (23) and (25) and solving for 𝜃As  and 𝜃Bs: 

 𝜃As	=	KAs·[A]	/	K1	+	KAs·[A]+	KBs·[B]M (28) 

 𝜃Bs 	=	KBs·[B]	/	K1	+	KAs·[A]+	KBs·[B]M (29) 

Considering that the sites are completely independent regardless of whether they belong to 
the same or to different sets. They do compete with each other to capture the molecules of 
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the ligands A and B. The total concentration of each compound is distributed between the 
different sets as: 

 [M]T = [M] + [M]T · ∑ ns ·s K𝜃As+	𝜃BsM (30) 

 [A]T = [A] + [M]T · ∑ ns ·s 𝜃As (31) 

 [B]T = [B] + [M]T · ∑ ns ·s 𝜃Bs  (32) 

Note that, in contrast to the stoichiometric equilibrium scheme, the equations for M are 
different from those for A and B. This is because the sites are assumed to be located in M and 
the model is not symmetrical in this sense. Thus, the application of this model using 
AFFINImeter requires the presence of at least a macromolecule M in the sample cell and a 
ligand A in the syringe. 

Again, the model can be applied to any property that is sensitive to the fraction of occupied 
sites for the different sets. For the specific case of ITC, the equation equivalent to eq. 19 in this 
interaction scheme is: 

 DQi = {(Qi+1 – Qi) + DQcorr,i + DHdil·([Asyr] – [A]T,i) + Qdb} / ([Asyr]· vinj,i) (33) 

The term Qsyr,i was removed since in its current version for this model the macromolecule M 
cannot be in the syringe and the model does not consider the possibility of binding between A 
and B or their self-association. All the terms in equation 33 are identical to those in eq. 19 
except Qi and Qi+1, which are given by: 

 Qi = [M]T,i·	Vi· N∑ ns·s OKθAsMi·	DHAs+	KθBsMi·	DHBsRS (34) 

This model is well suited mainly for the study of molecular interactions with macromolecules 
with multiple binding sites under the assumption that they are independent to each other. 
Notably, with our implementation, it is possible to study competitive binding in this kind of 
systems, and to consider also multiple sets of binding sites. Actually, an IS model is defined by 
the number of sets available for binding. For each new set there are, in principle, three new 
parameters (the number of sites, the site equilibrium constant and the associated enthalpy). 
As in the case of stoichiometric equilibrium models, the dilution enthalpy and Qdb could also be 
globally fitted. Some examples of the application of the IS family of models using AFFINImeter 
can be found in references [19-21]. 

2.2.5.- Concentration correction 

The determination of equilibrium constants is based on the concentrations of the different 
chemical species present in the sample. Such concentrations are calculated from the nominal 
concentrations of the participating compounds. Mismatch between nominal and true active 
concentrations (due to i.e. chemical degradation, aggregation or conformational changes that 
prevent the binding of a fraction of the reactant present) have a serious impact in the results. 
In order to quantitatively consider these events, we have introduced a correction factor for 
each compound: rM, rA and rB; that are equivalent to the ratio between active concentration 
and nominal concentration of M, A or B, respectively. The introduction in the equations is 
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simple since the concentration of each compound is replaced by its product with the 
corresponding factor. The only additional consideration is the determination of DQi when rA is 
different from unity. By convention, DQi is the heat absorbed or delivered per mole of A added 
during the injection i. The values of the experimental binding isotherm are calculated using the 
concentration of nominal A, without any correction. Accordingly, the value of Asyr in the 
denominator of equations 19 and 33 is not corrected, allowing the comparison between the 
fitted and the experimental values. 

Thus the equations 19 and 33 corresponding to the SE and IS models, respectively, became: 

 DQi = {-Qsyr,i + (Qi+1 – Qi) + Qcorr,i + DHdil·([Asyr] – [A]T,i) + Qdb} / ([Asyr]nominal ·vinj,i) (35) 

 DQi = {(Qi+1 – Qi) + DQcorr,i + DHdil·([Asyr] – [AT]i) + Qdb} / ([Asyr]nominal · vinj,i) (36) 

were [Asyr]nominal is the nominal, non-corrected concentration of A. 

2.2.6.- Non-fitted parameters and hybrid SE/IS models 

In the previous sections, we have described in detail how the SE and the IS models are 
implemented in AFFINImeter. For SE models we have 2 fitting parameters for each chemical 
reaction while for IS models there are 3 additional fitting parameters per set of sites. 
Additionally the DHdil, Qdb and the rM, rA and rB values can be fitted for each equilibrium 
isotherm. Often, it is convenient to keep constant some of these parameters, to avoid 
overparameterization while enough degrees of freedom in the fitting should be taken to make 
it valuable. For instance, if the concentrations are well known, the three correction factors 
introduced for this aim must be set to 1 and not allowed to vary. It is also experimentally 
found that in most cases, the “external” heat contributions considered by Qdb can be 
dismissed, and sometimes the DHdil is not significant and can be neglected. This can be easily 
tested by performing the fitting allowing their variation or keeping them fixed. Additionally, 
the value of any other parameter might be known from other experimental or theoretical 
source, and thus be introduced as a fixed parameter. On the other hand, AFFINImeter allows 
mathematical and logical relationships between parameters. This is a powerful functionality 
for parameters that we wish to restraint as a combination of values of other parameters, i.e. 
they are not fitted nor kept constants but dynamically changed during the iterative 
minimization. This kind of dynamical restrictions can also be set for the upper and lower 
bounds of parameters that are fitted. By using such relationships it is possible to introduce 
hybrid models in AFFINImeter, i.e. models that combine independent and stoichiometric 
binding sites. For instance, we could have a macromolecule with four binding sites where only 
two of them are independent and equivalent. If the non-independent sites cannot be occupied 
before the saturation of the independent ones, we could use a SE model with only two 
parameters for the first two sites, by using eq. 12 to connect the stepwise stoichiometric 
binding constants and matching the enthalpies for the first two reactions. The dynamical 
relationships between fitting parameters can be employed to introduce a large variety of 
restrictions that minimize the number of fitting parameters. Such functionality is usually 
employed when specific experimental information is available to connect the parameters on a 
rational basis. Another application would be the fitting of data corresponding to the same 
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system at different temperatures, by using the van’t Hoff equation to connect the equilibrium 
constants (see section 3). 

2.3.- Minimization procedure 

For ITC data, the fitting parameters for each model are numerically determined by minimizing 
the objective function: 

 c2 =  1
p
	∑ KDQi

exp	-	DQiM
2

si
2

p
1  (37) 

where p is the total number of points, (DQi
exp) the values of the experimental equilibrium 

isotherm, DQi is given by eqs 19 or 33 (depending on the model), and si is the uncertainty of 
each point (see [10] and section 2.1.). In order to optimize the quality and the speed of 
convergence, the Simulated Annealing and Levenberg-Marquardt algorithms are sequentially 
used [22]. In addition, for each combination of proposed fitting parameters during the iterative 
process, a damped Newton-Raphson algorithm using the Armijo rule [23] was employed to 
obtain the concentration of free M, A and B compounds from equations 16-18 or 30-32. This 
latter calculation is individually performed for every point in the equilibrium isotherm, 
although global controls, such as backpropagation fittings based on the homogeneous 
increasing/decreasing of the free concentrations as the total concentration of M, A and B 
change, were introduced in the code to guarantee the consistency of the results. 

From eq. 37 it is clear that the lower the c2 value the better the fitting. Ideally, for a 
combination of reasonably good experimental measurements, fair estimation of uncertainties, 
and right selection of the interaction model, the c2 value should approach the unity, which 
means that the differences between the DQi

exp and the 	DQi are essentially accounted for by 
the uncertainties sY. Actually, the estimation of the uncertainties is not a trivial task. Thus, 
good fittings with c2 significantly larger than 1 are expected if the s values are unrealistically 
low and vice versa (equation 37). Although in general the uncertainties in AFFINImeter seem to 
be fairly determined, we have detected some trend towards underestimated uncertainty 
values for each individual titration point (used as weighting factors in equation 37). 

In theory, if the uncertainties are well estimated, the c2 distribution gives us the probability of 
obtaining a value of the c2 above, or below, some threshold. However, in practice, the value of 
c2 may be difficult to translate into an informative measure of the quality of the fitting that 
guides the user in the selection of the right model to analyze the data. In general, c2 values 
around unity correspond to good fittings, but the absolute value of this parameter depends 
too much on the uncertainties of the points and its value is not bounded, so it is difficult to say 
whether or not a value of c2 around 5, 10 or 20 is acceptable. So we have implemented a 
Goodness of Fit (GoF) estimation, defined as the probability of finding the fitted value of each 
experimental point within a normal distribution with half-width equal to the corresponding 
uncertainty. This parameter is basically a normalization of c2 expressed in percentage units. 
The GoF of a given curve is determined as the mean GoF of all its points. Ideally, the GoF value 
of a perfect fit would be 100%. The advantage of this descriptor is that it is bounded between 
0 and 100, so it is easy to interpret. Nevertheless, one should not forget that it still depends 
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too much on the uncertainties of the experimental points. Improvements of this parameter to 
solve this problem are expected to be included in AFFINImeter in the future. 

2.4.- Seeds and local minima 

Non-trivial models may have a large number of fitting parameters, increasing the probability of 
reaching and being stuck at local minima. In order to identify the presence of such results, we 
have implemented the possibility of repeating the fittings starting from different seeds/initial 
values for the parameters. By default, 20 different independent minimizations are performed 
using 20 different sets of random seeds. The number of independent sets can be changed by 
the user. Unless the user modifies the default options, the seeds are always randomly chosen 
between the lower and upper bounds allowed for each fitting parameter. By default, constant 
values are provided for such bounds ([1, 108] M-1 for the equilibrium constants and [-105, 105] 
J/mol for the enthalpies). The results for each independent fitting are shown at the bottom of 
the results’ window, and they can be downloaded in csv format for further treatment. Several 
minima with low c2 values different from each other likely indicate that the model is 
overparameterized. Ideally, all the minimizations should converge to the same result 
regardless of the employed initial value, but in some cases local minima can be identified. This 
can be used as a consistency test. A fitting where the lowest c2 only appears once is an 
evidence of convergence problems. When this happens, the number of independent 
minimizations should be increased. A maximum of 1000 repeats is allowed in AFFINImeter. 
Obviously, the larger the number of repeats, the longer the time taken to achieve the results. 

2.5.- Uncertainties 

Uncertainties are part of the results in any quantitative scientific experiment. We have made 
an effort to provide reliable estimation of uncertainties for the fitting parameters by 
determining them in two different ways, named in AFFINImeter as standard and statistical 
errors. The standard errors are determined as the square root of the diagonal elements of the 
variance-covariance matrix, obtained as the inverse of the Hessian matrix (the matrix of the 
second partial derivatives 𝜕[𝜒[/𝜕𝑝Y𝜕𝑝%  of the objective function with respect to the fitting 
parameters). These uncertainties are determined on the flight, since the Hessian matrix is 
already required for the Levenberg-Marquardt method used for the minimization; therefore 
no expensive extra calculations are required. Since our implementation of the models is fully 
general, as described in the previous sections, we do not use explicit analytical derivatives and 
the elements of the Hessian matrix are numerically obtained. The uncertainties determined in 
this way are less reliable than those obtained from analytical derivatives. Thus, we decided to 
implement a non-parametric bootstrap method to obtain what we call in AFFINImeter 
statistical errors: the Jackknife resampling method [24,25]. These uncertainties are more 
reliable, since they are determined from the standard deviations of the parameters obtained 
by repeating the fitting as many times as experimental points are available in the target 
experiment, each time ignoring one point in these extra fittings. For instance, in an equilibrium 
isotherm consisting of 30 points, all of them are employed in the main minimization process. 
The resulting parameters are used as seeds for 30 independent fittings (of 29 points each) 
where the data points are sequentially removed, one at a time. In this case, AFFINImeter gets 
30 independent solutions for each parameter (in addition to the one provided by the main 
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fitting). Then, the standard deviation for each parameter, using the values obtained in these 30 
independent fittings, is obtained and taken as “statistical uncertainty”. The removal of the 
points with a high weight in the fittings induces a significant change in the parameters and so 
increases the standard deviations. By default, the statistical uncertainties are activated in 
AFFINImeter, but the user can also access to the standard errors by clicking on the 
corresponding option. 

2.6.- Global analysis 

In the previous sections we have described how AFFINImeter works to fit the parameters of a 
model to the molar enthalpies obtained from an ITC experiment. Note that a single experiment 
in any technique is rarely conclusive. One always needs to perform several repeats of the same 
assay and to fit all the results either together or individually using the same or complementary 
models. AFFINImeter allows global fitting of multiple experiments for this aim. 

Further, in cases of competitive binding studies of two different ligands A and B to a given 
macromolecule M, several experiments can be designed to study the interactions between 
these molecules: the titration of A or B separately into a solution of M, the titration of both A 
and B together into the same solution, the titration of A into a solution of M+B, and the 
titration of B into a solution of M+A. Additionally this can be done at different concentrations 
of each compound. AFFINImeter allows analyzing all these experiments together, by optionally 
sharing the fitting parameters. Other example is the case where the same system is studied at 
several temperatures. In that case, the equilibrium constants can be connected to each other 
by using the van’t Hoff equation and the enthalpies can also be restrained by assuming a linear 
or quadratic dependence involving the heat capacity change upon binding (see section 3). 
Similar situations can be proposed for many other interactions. The results obtained in this 
way are expected to be much more robust than fitting individual experiments separately. 

2.7.- Fitting results, simulation tool and report 

In the previous sections we have explained how the SE and IS models have been implemented 
in AFFINImeter, including parameters to consider the ratio or percentage of active compounds 
in the solution, corrections for volume displacement, external contributions to the heat signal, 
and dilution of the injected compound. Those equations can be used to fit experiments as well 
as to perform simulations. The simulations are useful in order to design experiments -if the 
user has an estimation of the expected parameters-, to understand the sensitivity of the 
isotherm to the different parameters, and also to understand better the interaction 
mechanisms. As explained above, the evaluation of the equations 19 and 33 require the 
determination of the concentration of free species, as well as the concentration of every 
complex present in the solution (or fraction of occupied sites in the case of IS models). This 
allows determining the contribution of each chemical species to the total molar heat. The 
combination of the three plots (total molar heat, species distribution, and different 
contributions to the total signal, together with the value of the model parameters) indicate 
which stoichiometry or binding site dominates at specific concentration ranges, and it is useful 
both for optimizing new experiments and to understand complex interaction mechanisms. An 
example is shown in Figure 5. All this information is provided in csv (numerical data for further 
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external treatment), html or pdf formats, and can be freely shared by e-mail from the 
AFFINImeter software. 

 

Figure 5. Example of plots generated in AFFINImeter after data analysis. A) Binding isotherm 
and fitting result; B) Species distribution plot; C) Contribution of complexes formation to the 
overall signal. In this example the data analyzed were for a titration where a receptor M is 
titrated with a mixture of ligands in syringe (A + B). The competitive model MA ↔ FS ↔ MB 
was used. 

 

2.8.- The evaluation of kinetic constants using kinITC  

ITC raw data have intrinsically kinetic information, as they are heat power as a function of 
time. Traditionally, the perturbations in this signal caused by the injection of small aliquots of 
one titrant solution into a titrate solution are integrated thus leading to an energy (heat) 
profile as a function of the stoichiometric ratio. Such processed data can be employed for the 
application of thermodynamic models, thus contributing to elucidate interaction mechanisms 
as well as the entropic and enthalpic contributions to the Gibbs energy change corresponding 
to the formation of the different chemical species. This classical treatment, however, results in 
the loss of useful kinetic information. Although the possibility of obtaining kinetic information 
from ITC experiments has long been known, strangely it was not at all used in biology and even 
considered as impossible by many users. A few years ago, the ITC community was re-
awakened to this possibility [8] the method was named kinITC. A simplification of this method 
that considers the variation of the time of return to equilibrium at each injection [26] has been 
implemented into AFFINImeter [9]. It is worth mentioning that ordinary titration data with 
reasonable values of the Wiseman parameter are often amenable to this analysis. Thus, even 
old ITC data can be directly reanalysed to extract potential kinetic information. In a recent 
review, a compilation of kinITC studies using AFFINImeter has been summarized [18]. Also a 
paper was recently published by Zihlmann et al. [27], who retrieved the kinetic constants of 29 
mannosides binding to the bacterial adhesion FimH using the kinITC method implemented in 
AFFINImeter and performed a thoughtful validation of results with SPR data. The kinITC 
method provides results that are in excellent agreement with those obtained by SPR for a wide 
range of Kd values. 

2.9.- Accessibility and management of lab projects 
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The default version of AFFINImeter is a cloud software with user accounts protected by 
password. This means that it can be accessed from the web browser of any device with 
internet connection. The calculations required to fit experimental data often require a 
significant computational cost that is performed using the AFFINImeter servers. Local 
installations of AFFINImeter are also available upon request. Once the user access to his/her 
account, all the past projects are available and they can be read or edited. They can also be 
organized in folders and the results of complete fitting or simulation projects can be shared 
with other people by introducing the corresponding e-mail address. 

3.- Example of how to use AFFINImeter to analyze complex interactions with multiple ITC 
measurements 

Although AFFINImeter has been made public recently, many research groups from academia, 
research institutes and pharmaceutical companies have already benefited from the advanced 
tools of analysis that the software offers. Indeed, a number of research papers have been 
published that manifest the value of AFFINImeter for the robust thermodynamic and kinetic 
analysis of ITC data. Referencing all these works is out of the scope of this paper but a rather 
comprehensive review is provided in a recent literature review article [18]. A book chapter has 
also been recently published with a detailed analysis on a number of heparin derivatives [29]. 
As illustrative examples we would like to highlight the work performed by Shiu-Hin Chan et al. 
[17] and the work performed by Marques-Carvalho et al [28] where advanced stoichiometric 
models were used in the thermodynamic and mechanistic characterization of complex 
interactions. Besides, the excellent work performed by Zihlmann et al. focused on testing the 
reliability of KinITC-ETC to retrieve kinetic information [27]. 

In this section we will show that AFFINImeter is well suited to analyze complex intermolecular 
mechanisms, without the need of developing and validating new code, thus saving time and 
effort. To this end, we show now a global multitemperature analysis –using the van’t Hoff 
equation to connect the equilibrium constants and the change in heat capacity to linearly 
constrain the corresponding enthalpies at different temperatures– for a set of measurements 
of a system exhibiting cooperative 1:2 interactions (a similar analysis has been published in 
[8]). First we provide a description of the system, which is required to understand the 
interaction mechanism, and then the analysis method using AFFINImeter is explained in detail. 
Finally, the obtained results following such methodology are shown. 

3.1.- Description of the system and analysis performed in the literature 

NQO1 NAD(P)H (NADH, nicotinamide adenine dinucleotide) quinone dehydrogenase 1 (EC 
1.6.5.2) is a cytosolic FAD-binding (FAD, flavin adenine dinucleotide) homodimeric protein 
responsible for the two-electron reduction of quinones to hydroquinones, with preference for 
short-chain acceptor quinones, thus preventing the one-electron reduction of radical species, 
intervening in detoxification processes and activation of antitumor quinone-related prodrugs 
[30]. NQO1 stabilizes and protects tumor suppressor p53 from degradation. Thus, decreased 
expression of NQO1 is associated with decreased p53 stability, as well as chemoresistance 
stemming from diminished prodrug bioactivation [30]. P187S is a widespread polymorphism in 
NQO1 associated with different types of cancer and low efficacy of anticancer drugs. P187S 
causes lowered structural stability and activity. NQO1-FAD is an excellent biological system to 
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study 1:2 protein:ligand interaction: 1) NQO1 is able to bind two FAD molecules per dimer; 2) 
the binding of the two FAD molecules is cooperative (homotropic interaction); 3) FAD binding 
and FAD homotropy are highly temperature dependent; and 4) mutations or polymorphisms in 
NQO1, in particular P187S associated with cancer susceptibility, result in considerable 
distortion of the cooperativity of binding. Therefore, NQO1-FAD interaction is an appropriate 
system to perform a global analysis of calorimetric titrations conducted at different 
temperatures applying a 1:2 model with homotropic binding cooperativity and variable 
temperature (considering the extended van’t Hoff equation with non-zero binding heat 
capacity) in order to estimate the intrinsic FAD binding parameters and the cooperative FAD 
binding parameters. At particular temperatures each variant (wild-type and P187S NQO1) 
shows an apparent non-cooperative binding behaviour (because of the temperature-
dependency of the cooperativity binding parameters); therefore, in biological systems with 
stoichiometry higher than 1 it is always advisable to perform titrations at different 
temperatures in order to confirm whether or not the binding is cooperative. It was 
hypothesized that the apparent binding cooperativity features observed in NQO1-FAD 
titrations were in fact the manifestation of a significant percentage of aggregated protein in 
the calorimetric cell, and, consequently, reverse titrations (FAD in cell and NQO1 in syringe) 
were more appropriate. However, it was later demonstrated that there is true binding 
cooperativity in NQO1-FAD interaction, that NQO1 potential aggregation has no influence on 
the titration features (different from reducing the fraction of active binding-competent 
protein), and that direct and reverse titrations provided a common set of estimated intrinsic 
and cooperative parameters [30] applying the same 1:2 model with binding cooperativity.  

3.2.- Analysis with AFFINImeter 

The calorimetric titrations for FAD binding to wild-type and P187S NQO1 were reanalysed 
using AFFINImeter. We used the model builder tool 
(https://www.youtube.com/watch?v=dhfW-PQ-qVA) to apply the model described in the 
original reference [30] (Fig. 6). 

 

Figure 6. Equilibrium equation describing the interaction model applied for FAD binding to 
wild-type and P187S NQO1. Dummy reactions were also introduced in the model builder tool 
in order to account for the global parameters employed in the model (using the “enthalpy” as 
a global parameter and setting the corresponding equilibrium constant to zero). 

The binding constants corresponding to the formation of the complexes with stoichiometries 
1:1 and 1:2 were connected by a cooperativity constant. The model assumes that there are 
two identical binding sites with cooperativity. There are two sets of binding parameters: Ka, 
DH, and DCP are the association constant, the binding enthalpy, and the binding heat capacity 
for each the two identical binding sites; a, Dh, and DcP are the cooperativity interaction 
constant, the cooperativity binding enthalpy, and the cooperativity binding heat capacity for 
the binding of the second ligand. Thus, the first ligand binds with binding parameters: Ka, DH, 
and DCP; and the second ligand binds with binding parameters: Kaa, DH+Dh, and DCP+DcP. 
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Because experiments were performed at different temperatures, the van’t Hoff relationship 
was employed to establish the temperature dependency of the equilibrium constants (Ka and 
a) as a function of the enthalpies and heat capacities (DH, DCP, Dh, and DcP), and the 
enthalpies were assumed to vary linearly with temperature. Thus, the estimated parameters 
are those at 25°C. 

The equations describing the temperature dependence of the enthalpy, overall equilibrium 
constants and cooperativity constant can be found in the original reference [30]. The 
introduction of those equations into AFFINImeter was performed by using the following 
procedure: i) using the model builder, a dummy reaction was added to the model for each 
global parameter (a, DCp, Dh and Dcp); ii) for each dummy reaction (let’s say the formation of 
A2 from free species) we set an equilibrium constant equal to zero and we use the 
corresponding “enthalpy” as a global parameter that can be introduced in the equations to 
connect the equilibrium constants or the enthalpies. Using this procedure, the variety of 
models that can be applied with AFFINImeter is significantly expanded since any kind of global 
parameters and restrictions between the actual chemical reactions describing the system can 
be introduced, including heat capacity changes and cooperativity constants. In particular, the 
equations describing the model applied in [30] are easily implemented in the model builder. 
The results of the analysis using AFFINImeter are shown in Figures 7-8 and in Table 1. It can be 
seen that the global fitting of the two sets of data is good and that the parameters compare 
well with those published in the main paper (Table 1). Differences can be ascribed mainly to 
the fact that the analysis performed with AFFINImeter is done by weighting the uncertainties 
of the molar heat values (see Figures 7 and 8). It is worth to comment that the analysis applied 
here is not directly implemented in any public software. For its application in the original paper 
[30] it was necessary to develop specific computational code. In AFFINImeter, the model is 
easily constructed using the model builder tool. The introduction of the global fitting 
parameters connecting equilibrium constants and enthalpies is done by adding dummy 
reactions in the model builder, with the corresponding mathematical relationships in the “fit 
setting” form.  
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Figure 7. Experimental binding isotherms obtained for the interaction between FAD and the 
wild type NQO1 at 288.15, 293.15, and 298.15 K, together with the curves obtained by a global 
fitting of the three experiments together to the model described in [30] using AFFINImeter, as 
explained in the text. 
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Figure 8. Experimental binding isotherms obtained for the interaction between FAD and the 
P187S NQO1 mutant at 288.15, 292.15, 295.15 and 298.15 K, together with the curves 
obtained by a global fitting of the four experiments together to the model described in [30] 
using AFFINImeter, as explained in the text. 

 

Table 2.- Values of the parameters obtained from the fitting of the data shown in Figures 7 and 
8 to the model described in [30] using AFFINImeter, as described in the text. 

  
Ka (107) 
(M-1) 

ΔH  
(kcal mol-1) 

ΔCp  
(kcal mol-1 K-1) α Δh 

(kcal mol-1) 
Δcp 

(kcal mol-1 K-1) 

WT AFFINImeter 5.8 ± 3.7 -20.69 ± 0.12 -0.699 ± 0.033 0.585 ± 0.092 -11.38 ± 0.32 -0.98 ± 0.23 

Ref. [30] 8.8 ± 0.9 -22.2 ± 0.5 -0. 8 ± 0.1 0.53 ± 0.04 -12.0 ± 0.6 -1.1 ± 0.2 

P187S AFFINImeter 1.13 ± 0.48 -17.22 ± 0.35 -0.798 ± 0.047 0.35 ± 0.17 2.40 ± 0.87 0.34 ± 0.14 

Ref. [30] 0.81 ± 0.09 -17.6 ± 0.5 -0.9 ± 0.1 0.62 ± 0.05 3.1 ± 0.4 0.6 ± 0.2 
These binding parameters are related to those introduced in previous sections: 
Ka is equal to Ks1 and Ks2 (two identical binding sites) and equal to K11/2. 
Kaa is equal to Ks1s2 and Ks2s1 and equal to 2K12 
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4.- Best-practice recommendations for analysis of molecular interactions 

A number of recommendations, of global use are appropriate at this stage, to improve the 
quality of the retrieved results. 

• Raw data processing. 

In a first step, AFFINImeter performs the automatic processing of the raw data and 
automatic thermodynamic and kinetic analysis using a 1:1 simple model. Although this 
automated process is already optimized, in some cases manual refinement could be 
convenient, especially when the data are of poor quality. For this, it is important to 
verify peak by peak the processed thermogram to assess that the processing (baseline 
correction, noise removal, peak integration and molar heat uncertainty) is adequate. 

• Generating and using tailored binding models. 

When creating a new binding model, use the minimum amount of complex species 
that are expected to be present in the binding event, although including all the species 
that are assumed to be formed. The application of a wrong model is an important 
source of error in the analysis of intermolecular interactions, so the model to perform 
the final analysis should be reasonably and carefully validated. 

• Global analysis. 

Performing global analysis is always recommended, as well as its comparison to 
individual fitting. Even for the characterization of a 1:1 interaction, where it is 
advisable to perform at least 2-3 repeats. For the characterization of complex binding 
systems with models involving more than one equilibrium, global analysis is typically a 
requirement in order to reduce the number of degrees of freedom in the fitting 
process. In these cases, it is recommended to perform several titration experiments 
using different experimental setups i.e. direct and reverse experiments, and/or 
modification of titrant and/or titrate concentrations. Global analysis of this dataset will 
give much more robust results and will prevent over-parameterized fittings. The 
determination of uncertainties for global analysis of several experiments is exactly the 
same as for the single experiments (see below). 

• Use or error bars. 

AFFINImeter automatically includes the uncertainty associated to the integral 
calculation of each peak in the binding isotherm (error bars). By default, the software 
takes into account these uncertainties throughout the fitting to yield a more reliable 
result. However, the unweighted fitting (disregarding the error bars) can also be 
performed. 

• Use of the parameter Qdil to account for the heat of dilution. 

Blank experiments are useful in order to investigate self-association or aggregation in 
the titrant solution. Self-association and some kind of aggregation can be considered in 
AFFINImeter by stoichiometric equilibrium models. Non-specific dilution effects can be 
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modeled using the Qdil parameter. In many cases, the use of this parameter is a very 
convenient option that can replace the blank subtraction operation (although it is 
always convenient to perform the blank experiment in order to test for possible 
extraneous heat effects and to have an experimental estimate of the dilution heat). 

• Validation tools. 
- Visual inspection: use it to determine if differences between the experimental data 

and theoretical curve are random or systematic. In the second case, it can be an 
indication that the model employed is not appropriate. 

- GoF: use it to compare the goodness of fit between different analyses of the same 
isotherm with the same number of fitting parameters. 

- Uncertainty associated to a parameter value: very large uncertainties (larger than 
the nominal value itself) are a sign of over-parameterized fitting. 

- List of local minima: use it to check for potential over-parameterization. 
- Parameter saturation: check that the result obtained for all the fitting parameters 

are not equal to the maximum or minimum allowed value. If that is the case that 
parameter should be kept as a constant or, alternatively, modify the fitting range 
the parameter can access during the fitting process. By default, such range is fixed 
to several orders of magnitude for each fitting parameter but it can be manually 
modified by the user. 

• Statistical & standard errors 

As explained in the main text, AFFINImeter provides both statistical and standard 
errors. By default, the statistical errors are activated, since we consider they are a 
more reliable estimation of the parameter uncertainties. However the user has also 
access to the standard errors. For highly involved models it could be convenient to ask 
for many independent fitting repeats (a maximum of 1000 repeats can be performed 
in AFFINImeter) to then perform a statistical study of the results (all the independent 
minima can be downloaded in csv format from the results window). 

• Visualization and fitting of ETC. 

The ETC curve represents the duration of the different peaks throughout the titrations 
as a function of the concentration ratio ([A]/[M]). Typically the high concentration 
region of standard sigmoidal isotherms where saturation is reached ([A]/[M] 
significantly larger than 1) is noisy (low heat effects) and does not provide much 
kinetic information. Thus, by default, AFFINImeter sets only uses the concentration 
region where the ETC curve contains useful information. However all the data range is 
accessible by just activating the corresponding option below the ETC plot. The duration 
of the experiments in the ETC curve is automatically detected, but it can also be 
modified by the user. 
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5.- Perspectives 

The current version of AFFINImeter for the analysis of ITC measurements offers an unlimited 
number of thermodynamic models that can be freely designed by the user. Although this 
software is relatively new and its potential is still far from being fully exploited, a number of 
groups have already took advantage of its original functionalities and analysis methods (see 
[27-30] and references therein). New experiments can now be designed, performed and 
properly analysed, leading to characterization of non-trivial interactions (see for instance those 
shown in the Appendix). In the present manuscript we aimed at describing in detail the theory 
behind the software in order to facilitate its correct use by the scientific community interested 
in the characterization of intermolecular interactions using experimental techniques, in the 
present case mainly ITC. Optimization of available instruments regarding automation, 
reduction of sample consumption, sensitivity, implementation of simultaneous channels for 
measurements under the same conditions (for reproducibility or statistics) or different one 
(such as concentrations or temperature, to be used in global analysis), would allow the 
community to even take more advantage of AFFINImeter. We foresee that there is also room 
for improvement and development in the software along the following lines: (i) the removal of 
unnecessary assumptions in the employed equations; (ii) the improvement of algorithms for 
better or/and faster convergence; (iii) the expansion of functionalities; and (iv) the inclusion of 
new applications to other experimental techniques. As an example of developments in 
progress, more rigorous equations for the analysis of ITC data [31] are being incorporated 
-these include exact concentration corrections due to the displacement of volume and exact 
equations for the effect of dilution in the molar heat resulting from the titration. One major 
problem that is solved by these exact equations is the erroneous asymptotic heat value 
obtained at large molar ratios [Mt]/[At]. The implementation of these results will allow 
obtaining equilibrium constant and enthalpic terms not affected by this up-to-now erroneous 
basic estimate. AFFINImeter is also continuously evolving by taking advantage of new 
algorithms and more powerful computational resources. The expansion of functionalities will 
be reflected mainly in a redesign of the software to facilitate the multi-temperature and global 
analysis, amongst a number of specific interaction models. Finally, the recent release of AFF-
NMR and AFF-Spectroscopy shows that the strategy of the AFFINImeter´s Scientific and 
Development team is to develop a multi-technique software for the orthogonal analysis of 
intermolecular interactions within the same platform. 
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Appendix : The use of the AFFINImeter simulation tool. 
 
Using two examples, we illustrate the employment of the AFFINImeter simulation tool to 
determine the binding isotherms of the possible ITC experiments and the corresponding 
species distributions.  
 
First we considered a system consisting of a ligand L with a protein P that is already bound to 
another ligand L’. The first ligand L is assumed to self-associate forming dimers, but only the 
monomeric species can interact with the protein. In the notation employed in AFFINImeter, 
the main compounds in the syringe and in the cell are A and M, respectively. An additional 
compound B can be in the sample cell, in the syringe or in both. The chosen system can be 
studied by using the protein as titrant or as a titrate. This system will be simulated using an 
equilibrium stoichiometry (SE) model. Thus, using the model builder tool 
(https://www.youtube.com/watch?v=dhfW-PQ-qVA), the reaction schemes required to 
simulate both the direct and the reverse experiments are shown in Figure I.1. In one case the 
protein and L’ are in the syringe at the same concentration forming 1:1 complexes, while L is in 
the sample cell with both monomers and dimers in equilibrium. When the protein is titrated to 
the cell, the PL’ complex and the L2 dimers dissociate to form the PL complex and free L’ 
molecules. This occurs because the equilibrium constant corresponding to the formation of PL 
has been chosen to be much higher than those corresponding to the formation of PL’ and L2 
(see Table I.1.). Once all the L molecules reacted with P, the PL’ complexes remain formed 
upon injection because there are no free L molecules to compete with L’ for the interaction 
with P (Figure I.1, top). In the second case, i.e. when the dimer L2 is injected from the syringe, 
it dissociates forming monomers that then interact with P. Again, L competes with L’ for the 
interaction with P. Once the protein is saturated with L, all the L’ molecules are free in the cell. 
Beyond that injection, L remains in dimeric form when injected from the syringe (Figure I.1, 
bottom). 
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Figure I.1. Simulated binding isotherms (▲; left axes) for the reaction schemes showed on the 
right of each plot, together with the concentration in the sample cell of the different chemical 
species (see labels in the plots; right axes). The two reaction schemes describe exactly the 
same molecular interactions for the direct and reverse experiments (see main text). The 
concentrations employed for these simulation are: {[M] = [L] = 1 mM; [Asyr] = [P] = 5 mM; [Bsyr] 
= [L’] = 5 mM} for the top plot and {[M] = [P] = 0.5 mM; [Asyr] = [L] = 3 mM; [Bcell] = [L’] = 0.5 
mM} for the bottom plot. The employed thermodynamic parameters are in Table I.1. In all 
cases 40 injections of 2 µl each in a sample cell of 0.2 ml were performed. 

Table I.1. Thermodynamic parameters employed for the 
simulation of the curves shown in Figure I.1. 

 K DH 
FS« L2 105 -103 
FS«PL 107 3·103 

FS«PL’ 5·104 -4·103 

 

Clearly, the simulation tool is useful to understand the behaviour of a molecular system for a 
given set of thermodynamic parameters. Additionally, it is also useful to design the ITC 
experiments. In this example, the fitting of the model to the experiment corresponding to the 
first simulation (Figure I.1, top) will probably be overparameterized since it requires at least 6 
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parameters to describe a smooth curve. However, the binding isotherm corresponding to the 
second simulation (Figure I.1, bottom) present stronger curvature changes and more 
parameters would be statistically justified. Of course, if the two experiments are performed 
the global fitting of both binding isotherms would provide more reliable values for the 
parameters. 

 

The second simulation corresponds to the interaction of a hypothetical nanoparticle (NP) 
initially located in the sample cell at 0.5 mM with two competitor ligands initially at 40 mM in 
the syringe (A) and at 5 mM or 10 mM in the sample cell (B). NP is assumed to have two 
different interaction regions with 20 and 5 sites, respectively. It is also assumed that all the 
interaction sites in both regions are independent from each other. This system is well suited 
for an IS model. The employed site affinity constants and enthalpies for each ligand and site 
are given in Table I.2. 

Table I.2. Thermodynamic parameters employed for the 
simulation of the curves shown in Figure I.2. 

 Region 1; n = 20 Region 2; n = 5 
 A B A B 

K 108 106 107 104 
DH -5·103 -103 103 5·103 
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Figure I.2. Simulated binding isotherms (▲; left axes) for the interaction of a hypothetical 
nanoparticle with two competitor ligands (see main text), together with the fraction of 
occupied sites (see labels in the plots; right axes) for the two interaction regions (subscripts 1 
and 2). The two binding isotherms reflect the same molecular interactions at slightly different 
concentrations of B in the sample cell (5 mM for the top plot and 10 mM for the bottom plot).  

At the beginning of the experiment the concentration of A in the cell is null and the 
concentration of B (5 mM) is not enough to saturate both regions of NP. In the first experiment 
the first region (with n=20) is half saturated of B while the second region is empty, as expected 
from the corresponding equilibrium constants. The addition of A displaces B from the first 
region and it starts to populate the second region (see the small maximum at At/Mt~16). Then 
A also displaces B from the second region. At the end of the experiment, the whole NP is 
saturated by molecules of A (QA1 = QA2 = 1) while B remains free in solution (QB1 = QB2 = 0). The 
second experiments (B concentration 10 mM) behaves similarly but it begins at a larger 
concentration of B, enough to saturate the first region and to partially populate the second 
one. Note that the binding isotherms are quite different for each of these two hypothetical 
experiments and hence they would be well suited to perform a global fitting and obtain a good 
thermodynamic characterization. 


