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Abstract

Photosynthesis is essential for life on earth as it, inter alia, determines the composition of the
atmosphere and is the driving mechanism of primary production. Photosynthesis is particularly
controlled by leaf pigments such as chlorophyll, carotenoids or anthocyanins. Incoming solar radiation
is mainly captured by chlorophyll, whereas plant organs are also protected from excess radiation by
carotenoids and anthocyanins. Current and upcoming optical earth observation sensors are sensitive
to these radiative processes and thus feature a high potential for mapping the spatial and temporal
variation of these photosynthetic pigments. In the context of remote sensing, leaf pigments are either
guantified as leaf area-based content [pg/cm?] or as leaf mass-based concentration [g/g or %].
However, these two metrics are fundamentally different, and until now there has been neither an in-
depth discussion nor a consensus on which metric to choose. This is notable considering the amount
of studies that do not explicitly differentiate between pigment content and concentration. We
therefore seek to outline the differences between both metrics and thus show that the remote sensing
of leaf pigment concentration [%] is unsubstantial. This is due to the fact that, firstly, pigment
concentration is likely to primarily reflect variation in leaf mass per area and not pigments itself.
Second, the radiative transfer in plant leaves is especially determined by the absolute content of
pigments in a leaf and not its relative concentration to other leaf constituents. And third, as a ratio,
pigment concentration is an ambiguous metric, which further complicates the quantification of leaf
pigments at the canopy scale. Given these issues related to the use of chlorophyll concentration, we

thus conclude that remote sensing of leaf pigments should be primarily performed on an area basis

[ug/cm?].

Keywords: pigments; chlorophylls; carotenoids; anthocyanins; radiative transfer; plant functioning;

plant health; content; concentration; remote sensing
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Introduction

Terrestrial plants are vital for the production of oxygen and organic matter through photosynthesis.
Photosynthesis is primarily controlled by pigments, which are important links to assess plant stress,
plant functioning, biological cycles, and biosphere-atmosphere interactions (Nelson & Yocum 2006;
Blackburn et al. 2007; Kattenborn et al. 2018). Photosynthesis is performed by chlorophylls and
carotenoids. Carotenoids, together with anthocyanins, protect chlorophylls and other plant material
from photodamage (excess and UV radiation). Anthocyanins are further important indicators for

pathogen defence (Lev-Yadun & Gould, Zarco-Tejada 2018).

These pigments primarily affect the radiative transfer in the visible spectrum, where solar radiation is
highest (400-700 nm), whereas incident radiation that is not absorbed by the canopy or the ground is
scattered. These scattered remnants constitute the basis for quantifying pigments such as chlorophylls,
carotenoids, or anthocyanins using optical remote sensing observations (Tucker 1986; Jacquemoud
1996; Blackburn 2006; Kattenborn et al. 2017; Zarco-Tejada et al. 2018). Commonly, pigments are
quantified using two different metrics - either as pigment content, i.e. pigment mass per leaf area
[ug/cm?] (hereafter referred as pigmentares) Or as pigment concentration, i.e. pigment mass per leaf
dry mass [g/g or %] (hereafter referred as pigmentma.s). Note that the terms content and
concentrations are often used interchangeably, while here we use content for per-area and
concentration for per-mass. The choice of quantification method in remote sensing appears to be
inconclusive, as both metrics are frequently referred to in the relevant literature (e.g. Jacquemoud et
al. 1996; Zarco-Tejada 2001; Asner & Martin 2009; Jetz et al. 2016). Here, we argue that quantifying
pigmentmass With remote sensing is unsubstantial as 1) this measure does not explicitly reflect variation
in pigments per se, but rather variation in leaf dry matter content, 2) pigmentmass is less accurately
retrieved than pigmentae. using optical remote sensing and 3) it is more difficult to scale-up
pigmentmass to the canopy scale. We conclude that quantifying pigmentsarea is more appropriate in
remote sensing due to its explicit relation to radiative transfer, enhanced scalability and as it is a more

direct expression of plant stress and functioning.

1) Pigment concentration primarily reflects leaf mass and not pigment variation itself

Put simply, pigmentmass [%] is the ratio of pigmentarea [g/cm?] and the Leaf Dry Mass per Area [g/cm?]
(LMA):

pigment,,,.s = pigment e, / LMA Eq.1
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Leaf dry mass is composed of carbohydrates (hemi-cellulose, cellulose, starch), proteins, lignin and
waxes, and it generally reflects differences in leaf lifespan resulting from adaptations to environmental
factors (Grime et al. 1997, Wright et al. 2004, Diaz et al. 2016). As evinced using global trait databases,
LMA has a higher variance than leaf traits related to photosynthesis, e.g. leaf nitrogen content
[mg/cm?] or photosynthetic capacity [umol/m?/sec] (see Wright et al. 2004; Osnas et al. 2013; Lloyd
et al. 2013). This is critical as leaf resource investments (e.g. LMA) and leaf traits relating to
photosynthesis are largely independent of one another (Osnas et al. 2013; Llyod et al. 2013; Osnas et
al.2018) and accordingly the division by LMA actually dominates the actual variation of pigments

content.

Here we demonstrate these relationships for leaf pigments using a dataset comprising LMA,
chlorophyllarea, carotenoidares, and anthocyaninaeea values from 45 herbaceous species retrieved in-situ
(see supporting information for details). The coefficient of variation of LMA (38.4 %) clearly exceeds
that of chlorophyllarea (24.8%), carotenoidares (15.0%), and anthocyaninarea (26.1%). Correspondingly, a
principal component analysis (Fig. 1) of LMA, pigmentsare. and pigmentsmass reveals that pigmentsmass
primarily reflect the LMA gradient (strong negative correlation). Gradients of pigments,re,, in contrast,
are largely orthogonal and thus uncorrelated with LMA. Thus, it can generally be expected that
gradients of pigmentsmass predominantly mirror the variation in LMA, which in turn overshadows the

actual variation of pigments;,rea.
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Figure 1: Principal component transformation of LMA, chlorophyll. e, carotenoidarea, anthocyaningrea,
chlorophyllyass, carotenoidmass, and anthocyaninm.ss. Pigments.re, are largely independent from LMA, whereas

pigmentsmass predominantly reflect the variation in LMA.
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2) Remote sensing of pigment content outperforms pigment concentration retrievals

As reported by previous authors, the retrieval of leaf constituents is more accurate for absolute
contents per area than for concentration per mass (Grossman et al. 1996; Jacquemoud et al. 1996;
Oppelt & Mauser 2004). This can be explained by the radiative transfer mechanisms: Leaf constituents
affect the reflectance properties of a plant canopy through absorption and scattering, whereas these
effects increase with increasing contents of the respective constituent (e.g. pigments). The spectral
signal is therefore determined by the absolute content of the constituent (e.g. pigmentsarea) and not
by its concentration relative to LMA. In other words, concentrations (pigmentmass) cannot represent
the absolute amount of matter interacting with electromagnetic radiation (also see Jacquemoud et al.
1996). For this reason, pigments in radiative transfer models are parametrized by specific absorption
coefficients on an area basis. Pigmentnass is the ratio of pigmentarea to LMA, which further implies that
remote sensing of pigmentm.ss (e.g. through statistical models) ideally requires the simultaneous
consideration of spectral features corresponding to both pigments (in the visible range) and LMA (in
the short wave infrared range), as illustrated using empirical canopy reflectance data in Fig. 2.
However, the retrieval of LMA using optical canopy reflectance is commonly challenging, as the
respective spectral features are overshadowed by water absorption (Jacquemoud et al. 1996,
Homolova et al. 2013). Moreover, and in contrast to visible and near infrared wavelengths, the short-
wave infrared information is generally affected by lower signal to noise ratios, increased spectral shifts,
and increased calibration uncertainties (Cocks et al. 1998, Bachmann et al. 2015). Uncertainties in the
retrieval of LMA spectral features propagate into errors of pigmentmass assessment. Thus, the retrieval
of pigmentsmass is substantially impaired as it requires spectral information of the short wave infrared
range (which is not always available) and the generally less accurate retrieval of the LMA variation. In

contrast, the retrieval of pigmentsarea Only relies on spectral features in the visible range (Fig. 2).
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Figure 2: Scaled Variable importance of partial least square regression models for the retrieval of a)
pigments, .. (top), pigmentsmass (center) and LMA (bottom) based on 2270 canopy spectra of 45 herbaceous
species (see supplementary information for details). The variable importance demonstrates that pigmentass
retrieval relies on VIS and SWIR information (pigments and LMA), whereas the retrieval of pigment,.. solely

relies on VIS information.

3) Pigment concentration is generally an inconclusive proxy with impaired scalability

Being a relative concentration, pigmentmass is generally an inconclusive metric: high pigmentnyass can
result from either high pigment,r.. and intermediate LMA or intermediate pigmentarea and low LMA. It
is therefore possible for two leaves or plant canopies to have equivalent pigmentmass, but differ greatly
in pigmentarea and LMA. Accordingly, pigmentmass does not explicitly indicate if a plant canopy actually

has low pigment content, e.g. due to stress or its inherent plant functional properties (compare Fig. 3).
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Figure 3: Scheme demonstrating equal pigment concentration despite varying LMA and pigment contents of

two samples (1,2).

This ambiguity similarly limits the scalability to the canopy level, which is pigment content per canopy
surface area [g/m?] (hereafter referred as pigmentcanopy). Pigmenteanopy relates to the absolute
photosynthesis of a vegetated area and is thus directly relevant for assessing productivity or
atmosphere-biosphere interactions (De Pury & Farquhar 1997; Peng et al. 2011). Here, we seek to
demonstrate the limited scalability of pigmentmass using a straightforward approach, i.e. upscaling leaf
constituents to the canopy scale by incorporating Leaf Area Index [m?/m?] (LAI). LAl is a proxy for the
total foliage area within the canopy area and can be retrieved from remote sensing data with
acceptable accuracy (Zarco-Tejada et al. 2001; Myneni et al. 2002; Schlerf et al. 2005). In case of
pigmentarea, Upscaling to pigmentcnopy Merely requires a multiplication with LAl (Eq. 2). In contrast,
scaling pigmentmass to pigmentcnopy requires prior knowledge on the absolute foliage mass in the entire

canopy surface area, i.e. the product of LAl and the LMA (Eq. 3).
pigment gnopy = Pigmentgreq + LAI Eq. 2
pigment gnopy = Pigmenty,gs * LAl - LMA Eq. 3

However, as described in section 2, the quantification of LMA requires SWIR information and is
generally limited using canopy reflectance (compare Homolova et al. 2013). Thus, scaling pigmentmass
to the canopy requires additional information on the weight of the foliage (LMA) and may be negatively

affected by error propagation of the LMA estimates.

Discussion and Concluding remarks

For monitoring vegetation photosynthesis and physiological status, from the above arguments, we

strongly advocate to focus on pigment content per area, rather than pigment mass concentration.

6
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Most studies currently reporting on pigmentmass (see supplementary data Tab. S-2) do so without a
precise justification on why they quantify pigments as concentration. We assume that the frequent
use of pigmentmass may primarily be adopted from plant ecology, where leaf nutrients (e.g. nitrogen or
phosphorus) are frequently quantified on a mass basis rather than an area basis (see Wright et al. 2004
or Diaz et al. 2016). A primary reasons for this might be that leaf nutrients are commonly measured
from plant powder (see e.g. Cornelissen et al. 2003), so normalizing the extracted constituent is trivial
on a mass basis. However, as indicated above and by Osnas et al. (2013), Lloyd et al. (2013) and Osnas
et al. (2018), normalizing traits describing photosynthetic functions on a mass basis introduces severe
statistical and conceptual issues, as the variance in leaf resource investments is naturally higher than
the variance of photosynthetic traits, and leaf resource investments are largely independent of
photosynthetic functions. The second reason why many studies assessed pigment concentration may
stem from a plant function perspective, where one might argue that there is a motivation to map
pigmentsmass Using remote sensing, as the latter possibly indicates the photosynthetic return per unit
of invested dry matter (compare Westoby et al. 2013). Following this logic, all things being equal, a
plant with low LMA receives higher photosynthetic returns per unit invested dry matter, than a plant
with high LMA. However, the fact that LMA is highly correlated with leaf lifespan implies that the
eventual return per unit invested LMA greatly depends on the time span in which the leaf performs
photosynthesis. Accordingly, pigmentmass at a given point in time does not explicitly reveal the

photosynthetic return per unit invested leaf dry matter.

Literature reviewed during the preparation of this manuscript revealed that with regard to pigment
guantification the terms content and concentration are frequently used interchangeably (in
approximately a third of studies assessed here, see supplementary information). Future studies should
explicitly state what metric is being used and why, with per-leaf area-content of pigment as the
standard. Moreover, some authors even compare their results for pigment concentration retrieval
with results obtained for pigment content, and vice-versa. Yet, as highlighted above, pigment content

and concentration are not directly comparable.

Based on the outlined rationale, we conclude that the quantification of plant pigments using remote
sensing and canopy reflectance should be performed on an area basis rather than a mass basis. We
assume that these rationales also apply for the remote sensing of leaf nitrogen, as pigments and

nitrogen are generally highly correlated in leaves.
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Supplementary Information

Materials and Methods

The trait data presented in Figure 1 was acquired for 45 species, including graminoids and forbs which
were grown in four repetitions (see Tab. S-1 for a list of the species). The plants were cultivated in pots
(0.3 * 0.3 m) in the botanical garden of the Karlsruher Institute of Technology (KIT). LMA [g/cm?] and
pigment contents [ug/cm?] (chlorophylls, carotenoids and anthocyanins) were retrieved on a weekly
basis from mature and non-senescent leaves. The pigment contents were retrieved using an inversion
of PROSPECT and leaf spectra acquired with an ASD FieldSpec Il equipped with a plant probe and leaf
clip. Further details on the experiment and the validation of the trait retrieval are given in (Kattenborn
et al. 2018). We calculated pigment concentrations (pigmentmass) by dividing pigment contents
(pigmentarea) with LMA. The species differed greatly in their functioning and therefore their life-span,
resulting in heterogeneous numbers of observations per species. In order to avoid a respective bias
introduced by the number of observations per species, we calculated medians of the traits of each
species. Traits were scaled to unit variance prior to the principal component transformation. The

principal component analysis was visualized using the first two components (see Fig. 1).

The variable importance of the partial least square regression (PLSR) models of pigmentmass and
pigmentaea Were based on canopy reflectance spectra acquired in the same plant experiment
described above. The canopy spectra were derived on a weekly basis from adolescence to senescence
using an ASD FieldSpec Il (ASD, Inc. Boulder, CO, USA) at an approximate height of 0.30 m above the
canopy. The ASD FieldSpec Il was calibrated using a reference panel (Spectralon) to acquire absolute
canopy reflectance spectra. For each cultivated pot, 9 spectra were acquired in nadir at different
positions and subsequently averaged, resulting in a total of 2270 canopy reflectance spectra. We de
noised the spectra using a Savitzky-Golay filter and removed spectral regions located in the water
absorption bands (1350-1470, 1780-1990, 2300-2500 nm). The number of components for the PLSR
models was set to 10. We calibrated the PLSR models using the caret package (Kuhn et al. 2008) and a
5-fold cross validation with 100 repetitions. After extracting the PLSR internal variable importance, we
scaled the variable importance between 0 -100% to aid the interpretability. Therefore we used the

following formular:

Variable Importance [%] = _xmin) _, 409 Eqg. S-1

max(x)—-min(x)

where x is the vector of the PLSR-based variable importance per wavelength.

10
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Table S-1. List of all cultivated species.

Graminoids

Forbs

Alopecurus geniculatus; Alopecurus pratensis;
Anthoxanthum odoratum; Agrostis capillaris;
Apera spica-venti; Arrhenatherum elatius;
Brachypodium sylvaticum; Bromus
hordeaceus; Calamagrostis epigejos;
Deschampsia cespitosa; Digitaria sanguinalis;
Festuca ovina; Holcus lanatus; Luzula
multiflora; Molinia caerulea; Nardus Stricta;
Phalaris arundinacea; Poa annua; Scirpus
sylvaticus; Trisetum flavescens;

dioica;

Aegopodium podagraria; Anthyllis vulneraria; Arctium
lappa; Centaurium erythraea; Cirsium arvense; Cirsium
acaule; Digitalis purpurea; Filipendula ulmaria; Geum
urbanum; Geranium pratense; Geranium robertianum;
Plantago major; Clinopodium vulgare; Campanula
rotundifolia; Lamium purpureum; Lapsana communis;
Medicago lupulina; Origanum vulgare; Pulicaria
dysenterica; Stellaria media; Succisa pratensis; Taraxacum
officinale; Thlaspi arvense; Trifolium pratense; Urtica

Table S-2. Consulted literature in preparation of the presented manuscript. Concise terminology indicates if
studies used pigment content and concentration interchangeability.

Publication

Pigmentmass
or
pigmentarea

Approach

Concise
terminology

Asner, G. P., Martin, R. E., Anderson, C. B., & Knapp, D. E.
(2015). Quantifying forest canopy traits: Imaging spectroscopy
versus field survey. Remote Sensing of Environment, 158, 15—
27. https://doi.org/10.1016/j.rse.2014.11.011

mass

empirical

Gitelson, A. A., & Merzlyak, M. N. (1996). Signature analysis of
leaf reflectance spectra: algorithm development for remote
sensing of chlorophyll. Journal of plant physiology, 148(3-4),
494-500.

area

index

no

Yoder, B. J., & Pettigrew-Crosby, R. E. (1995). Predicting
nitrogen and chlorophyll content and concentrations from
reflectance spectra (400-2500 nm) at leaf and canopy scales.
Remote Sensing of Environment, 53(3), 199-211.
https://doi.org/10.1016/0034-4257(95)00135-N

mass/area

empirical

Schlerf, M., Atzberger, C., Hill, J., Buddenbaum, H., Werner, W.,
& Schiiler, G. (2010). Retrieval of chlorophyll and nitrogen in
Norway spruce (Picea abies L. Karst.) using imaging
spectroscopy. International Journal of Applied Earth
Observation and Geoinformation, 12(1), 17-26.
https://doi.org/10.1016/].jag.2009.08.006

mass

empirical
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