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Active quantum error correction has been identified as a crucial ingredient of future quantum computers,
motivating the recent experimental efforts to encode logical quantum bits using small topological codes. In
addition to the demonstration of the beneficial role of the encoding, a break-even point in the progress towards
large-scale quantum computers will be the implementation of a universal set of gates. This midterm challenge
will soon be faced by various quantum technologies, which urges the need of realistic assessments of their
prospects. In this work, we pursue this goal by assessing the capability of current trapped-ion architectures in
facing one of the most demanding parts of this quest: the implementation of an entangling controlled-NOT
(CNOT) gate between encoded logical qubits. We present a detailed comparative study of two alternative
strategies for trapped-ion topological color codes, either a transversal or a lattice-surgery approach, characterized
by a detailed microscopic modeling of both current technological capabilities and experimental sources of noise
afflicting the different operations. Our careful fault-tolerant design, together with a low-resource optimization,
allows us to determine via exhaustive numerical simulations the experimental regimes where each of the
approaches becomes favorable. We hope that our study thereby contributes to guiding the future development of
trapped-ion quantum computers.
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I. INTRODUCTION

The development of quantum mechanics during the previ-
ous century has provided us with a framework to understand
the behavior of microscopic systems in Nature. It is within this
framework that scientists have developed various strategies to
control the distinctive features of these systems according to
the laws of quantum mechanics. Nowadays, the experimental
control of these techniques has matured to such a degree
that scientists are exploiting them to develop new technolo-
gies with disruptive quantum functionalities. Among these
so-called quantum technologies, quantum computers, i.e.,
devices that exploit quantum parallelism and entanglement
to process information, promise to surpass the capabilities
of current computers [1,2] and have two facets. Building a
large-scale quantum computer is arguably the biggest quest
in the quantum-technology roadmap [3] since it would allow
us to solve a variety of problems with a tremendous impact
on society. Therefore, it is important to assess the required
technological developments that must take place in the future
by means of practical and realistic studies.

Current technological capabilities have already enabled the
construction of prototype quantum computers with different
architectures, and the execution of small quantum algorithms
on them [2]. Despite the remarkable level of isolation and
exquisite experimental control that has already been achieved,
environmental decoherence and the accumulation of small
errors have, so far, not allowed one to perform computations
of larger complexity that would demonstrate the supremacy

of quantum computers with respect to their classical counter-
parts. In order to overcome this difficulty, error suppression
techniques in combination with active mechanisms that pre-
vent the accumulation of errors must be applied repeatedly
during these computations. An important breakthrough in
quantum information processing (QIP) has been the devel-
opment of strategies [4–6] to correct such errors without
affecting the quantum-mechanical features of the devices: the
theory of quantum error correction (QEC) [7]. By encoding
the information of a logical quantum bit (i.e., qubit) redun-
dantly in an enlarged register composed by several entangled
qubits, it becomes possible to detect the occurrence of errors
by performing collective measurements, and revert their effect
without compromising the quantum-mechanical features of
the computation. An additional challenge arises from the
fact that all operations required for these error detection and
correction steps can be faulty themselves. Remarkably, these
errors can also be overcome by appropriate designs of the
underlying quantum circuits, which prevent the uncontrolled
propagation of errors through the hardware. For sufficiently
low error rates of all components, the threshold theorem of
fault-tolerant quantum computing (FTQC) [8,9] predicts that
reliable quantum computations of arbitrary sizes and length
will become feasible. In this way, FTQC approaches manage
to preserve the reversible unitary evolution in a subspace of
a larger quantum register, which is undergoing irreversible
nonunitary dynamics due to the external noise and the mea-
surements required for the detection and correction of errors.
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Some of the important challenges in the near-term and
midterm horizon of FTQC are (QEC-I) to demonstrate the
beneficial role of a QEC cycle in an experiment (i.e., the
resilience of an encoded logical qubit improves even when
the required operations are imperfect); (QEC-II) to show that
the performance of a logical qubit surpasses that of a bare
unencoded qubit; and (QEC-III) to demonstrate that one can
perform a universal set of gates with one and two encoded
logical qubits. In order to address various key questions in
this respect, e.g., the performance of a particular coding
strategy, the demonstration of fault-tolerant designs, or the
minimal resources and control accuracy required to reach
the above break-even points, it is important to perform a
detailed study of the specific platform where the QEC code
is to be implemented. In particular, it is important to pay
special attention to the dominant sources of noise that will
afflict the computation in that particular platform, and to take
into account realistic limitations in current and anticipated
technological capabilities.

Today, significant efforts to realize robust QIP based on
a plethora of physical platforms are underway, including
trapped ions [10,11], neutral atoms [12,13], photons [14],
and superconducting circuits [15]. Starting with the semi-
nal theoretical proposal [16], laser-cooled crystals of atomic
ions stored in radio-frequency Paul traps inside ultrahigh-
vacuum chambers have proved to be a particularly promising
architecture for QIP [10,11]. The possibility of finding an
optical cycling transition in certain atomic species, such as
the alkaline-earth ions Be+ and Ca+, or the transition-metal
ion Yb+, is crucial for QIP operations such as qubit initial-
ization by optical pumping, or qubit readout by state-selective
fluorescence. Two typical qubit choices select either a pair of
hyperfine levels from the ground-state manifold, as occurs for
9Be+ or 171Yb+ (i.e., hyperfine qubits), or a ground state and
a metastable excited state, as occurs for 40Ca+ (i.e., optical
qubits). In both cases, the closed cycling transitions allow for
an extremely accurate readout with errors that can be as low as
10−4–10−3 [17,18] and comparable initialization accuracies.
Single-qubit gates with errors in the range of 10−6–10−4

have also been demonstrated for hyperfine qubits [19–21],
and errors in the 10−5–10−4 range have been reported for
optical qubits [22]. A distinctive achievement of this QIP
platform is the demonstration of high-fidelity multiqubit en-
tangling gates, which are mediated by the phonons of the
ion crystal and driven by laser-induced state-dependent dipole
forces following the schemes [23–25]. Starting from the initial
high-fidelity entangling gates for optical qubits [26], recent
experiments with hyperfine qubits have reached errors as low
as 10−3 [21,27]. Similar numbers have also been recently
achieved for optical qubits [22]. Let us note that experimental
efforts are also being devoted into the increase of single-
and two-qubit gate speeds [28–30], and into the development
of optical addressing of selected pairs of ions from a larger
crystal to implement an entangling gate [31].

Regarding trapped-ion-based QEC, initial experiments
have implemented the three-qubit repetition code [32,33],
which can detect and correct a single bit-flip classical error.
More recently, a four-qubit code that can detect any single-
qubit quantum error has also been realized [34]. More relevant
to this work is the experimental demonstration of the seven-

qubit Steane code [35], a QEC code that detects, but also
corrects, an arbitrary single-qubit quantum error. This seven-
qubit code can be considered as the smallest version of the
so-called triangular color codes [36], which are a type of
topological stabilizer QEC codes [37] with qubits arranged on
a two-dimensional (2D) lattice, where errors are detected by
local measurements that only involve groups of neighboring
qubits. Similar in spirit to the surface version [38] of Kitaev’s
toric code [39], the color-code logical qubits are encoded
redundantly in a collection of physical qubits showing long-
range entanglement. The code’s protection against decoher-
ence grows with increasing lattice sizes, based on certain topo-
logical aspects of the codes. Due to the locality of the required
quantum processing in this class of topological codes, and
their remarkable robustness against external noise [40–43],
topological QEC codes are currently considered as one of the
most promising and practical routes toward large-scale quan-
tum computing. Combined with the encouraging progress of
trapped-ion QIP and QEC, there is growing interest in the
community [44–49] in addressing the prospects of achieving
the quantum memory and processor goals (QEC-I)-(QEC-III)
using a scalable trapped-ion implementation of a topological
QEC code.

One of the practical challenges that must be faced is to
integrate all of the expertise in QIP operations mentioned
above, most of which has been obtained using a particular ion
species and a dedicated apparatus, into a single architecture
that can be scaled to larger system sizes. In this respect, there
is a clear need [50] to go beyond the small-ion chains in linear
Paul traps used in the majority of the above experimental
demonstrations. Two of the possible routes that are being
considered are the so-called quantum charge-coupled devices
(QCCD) [51], and the modular universal ion-trap quantum
computing (MUSIQC) [45]. The former is based on micro-
fabricated segmented traps where ions can be transported
between different storage or manipulation zones, such that
the QIP manipulations are only performed in small linear
crystals, and thus benefit from the aforementioned accura-
cies achieved to date. In addition to these operations, the
QCCD requires additional manipulations including a variety
of crystal reconfiguration techniques (ion shuttling and crystal
splitting/merging [52–55], crystal rotations [56], and transport
across junctions [58–60]) in order to achieve a 2D scalable
design. Additionally, due to the heating of the motional de-
grees of freedom of the ions during these operations, auxil-
iary ions from a different atomic species or isotope will be
required for sympathetic recooling of the crystal prior to the
entangling gates [61]. The other alternative approach being
considered in the community is the MUSIQC scheme, which
employs a collection of elementary local units, each of which
might consist of a small-ion crystal where QIP operations
can be implemented according to the previous schemes. In-
stead of transporting ions between different trap zones, this
scheme uses photonic interconnects to probabilistically gen-
erate entangled pairs between certain communication qubits
that belong to separated elementary units [62–64]. Whereas
the QCCD approach offers a scalable method to implement
the circuit model of QIP [1], the MUSIQC scheme can be
considered [45] as a hybrid between the circuit and the cluster-
state [65] model for QIP.
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FIG. 1. Schematics of high-optical access (HOA) segmented ion traps for topological QEC: Microfabricated segmented traps connected
through Y junctions forming a honeycomb lattice structure to manipulate mixed-species ion register for quantum information processing. We
note that the particular honeycomb tiling is a visual simplification of a larger-scale design, which will certainly require modifications to exploit
the high-optical access. (Inset) Each arm of the trap corresponds to an HOA-2 Sandia trap [66], which consists of a slotted linear section with
individually controllable electrodes used for crystal reconfiguration operations among three storage (S1,S2,S3) and two manipulation (M1,M2)
regions. These operations are schematically shown by black arrows with the following letters: (r) rotation of an ion crystal, (sh) shuttling of an
ion(s), (s) splitting an ion crystal, and (m) merging of sets of ions into a single crystal. The Y junctions contain additional electrodes that can
be used to (j) shuttle ion(s) between neighboring central regions. Additionally, in the manipulation zones, laser beams can propagate across the
surface, or normal to it via the slotted region, and can be focused onto the ions to manipulate their electronic and motional degrees of freedom
via (1) single-qubit gates, (2) two-qubit (multiqubit) entangling gates, and (c) sympathetic laser cooling of the ion crystal. These operations
form the toolbox for scalable QEC with trapped atomic ions that is considered in this paper.

In this article, we explore the QCCD approach toward
fault-tolerant color-code-based QEC, and focus on an imple-
mentation approach based on two-species ion crystals in high-
optical access segmented traps [66] embedded in a cryogenic
environment (see Fig. 1). In a recent work [48], a detailed
exposition of the capabilities of this setup has been put forth,
together with a thorough assessment of the planned experi-
mental progress towards the QEC goals (QEC-I)-(QEC-II).
Resource wise, once these goals are achieved, the next logical
step toward the completion of the QEC challenge (QEC-III)
is to aim at the experimental implementation of an entangling
controlled-NOT (CNOT) gate between two encoded logical
qubits. In this work, we perform a comparative study of two
resource-efficient (in terms of required physical qubits) strate-
gies to implement a logical CNOT gate between two logical
qubits encoded using the seven-qubit color code: a transver-
sal [36] and a lattice-surgery [67] CNOT gate. We present
detailed fault-tolerant schedules based on an extension of the
QEC trapped-ion toolbox described in [48]. In particular, we
put a focus on minimizing the required resources to achieve
fault tolerance [48] in the lattice-surgery protocol by lever-
aging the recently proposed flag-based readout schemes [68]
for fault-tolerant (FT) measurement of multiqubit stabilizers.
We will show that this approach leads to a considerable
simplification of the trapped-ion QEC routines, as compared
to the required complexity of the FT readout schemes [69–73]
discussed in [48]. With the specific schedules and a physi-
cally motivated error model, which includes various quantum
channels and multiple parameters characterizing the error of
the different trapped-ion operations, we perform a thorough
numerical analysis to compare the performance of the two

CNOT strategies based on a judicious application of an im-
portance sampler. We hope that our work, complemented with
a resource analysis, where we pay special attention to the
complexity of ion-trap junction crossings, provides a useful
study to guide future experimental efforts in trapped-ion QIP
to achieve the aforementioned goal (QEC-III) in the midterm,
and toward a large-scale FT quantum computer in the long
term.

This article is organized as follows: In Sec. II, we discuss
the 2D triangular color codes, FT flag-based stabilizer readout
procedures, and the two FT strategies to perform a logical
CNOT gate that have been studied in our work. Moreover,
we explain in detail the circuits and procedures needed to
perform the lattice-surgery scheme in a FT fashion. In Sec. III,
we describe the experimental toolbox of a trapped-ion QCCD
architecture, together with a physically motivated multipa-
rameter error model, and present the microscopic schedules
for the two alternative CNOT strategies. In Sec. IV, we discuss
our numerical approach by extending a so-called subset-based
Monte Carlo sampler to multiparameter noise models. In
Sec. V, we present our numerical results for the logical error
rates and resources for the two CNOT strategies. Finally, we
conclude and present an outlook in Sec. VI.

II. FAULT-TOLERANT QUANTUM COMPUTATION
WITH TRIANGULAR COLOR CODES

Let us start this section by reviewing some important prop-
erties of the triangular color code [36], which is a 2D stabilizer
QEC code with qubits arranged on the n vertices of a trivalent
three-colorable planar lattice with triangular boundaries. In
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FIG. 2. Triangular color codes on the 4.8.8 lattice: One logical
qubit is encoded into several data qubits forming a 2D triangular code
structure. The code space is defined in the usual way via S(p)

x and S(p)
z

stabilizer operators (1), each acting on a plaquette p that involves
either 4 or 8 data qubits. We represent instances of distance d =
3, 5, 7 triangular color codes on the 4.8.8. lattice, which allow one
to encode a single logical qubit with increasing levels of redundancy
and protection. Logical operators such as ZL = ⊗

i Zi, and similarly
the other logical single-qubit Clifford gate generators XL := ⊗

i Xi,
HL := ⊗

i Hi = ⊗
i

1√
2
(Xi + Zi ), and SL := ⊗

i S†
i = ⊗

i e−i π
4 (1−Zi ),

can be realized transversally, i.e., in a bitwise manner. In the lower
panel we show two examples of how the logical operators can be
deformed into strings of Pauli operators along the boundaries of the
triangular lattice, as expressed in Eq. (2).

particular, we will focus on the so-called 4.8.8 lattice, where
each vertex belongs to a square and two octagonal plaquettes
with three different colors (see Fig. 2). In analogy with the
surface code [38], triangular color codes only require local
quantum processing (i.e., only neighboring qubits need to
be coupled to each other), which is very attractive from an
implementation point of view. This locality becomes evident
through the definition of the stabilizer generators, which are
the following pair of operators per plaquette p, and have
a local support on the qubits located at the vertices of the
plaquette

S(p)
x =

⊗
i∈v(p)

Xi, S(p)
z =

⊗
i∈v(p)

Zi. (1)

Here, the product of Pauli matrices Xi = σ x
i and Z = σ z

i in-
volves all qubits that belong to the vertices of the correspond-
ing plaquette p, which are labeled by the set v(p). This set
of commuting operators can be used to define the code space,
a subspace within the larger Hilbert space of the n physical
qubits Vcode ⊂ H . This subspace is spanned by all stabilizer
eigenstates of eigenvalue +1, namely, Vcode = span{|ψ〉 ∈
H : S(p)

α |ψ〉 = |ψ〉 , ∀ α, p}, and can be used to encode k
logical qubits redundantly in the long-range entangled states
of the n data qubits. Accordingly, these codes only require

local quantum processing to measure these stabilizers (1),
which act as parity checks that allow one to detect when a set
of errors has brought the system out of the code space. A more
detailed explanation of stabilizer codes can be found in [7].

By cutting the lattice along a triangular boundary with
the same odd number of qubits d per side, these codes have
n = 1

2 d2 + d − 1
2 data qubits, and p ∈ {1, . . . , (n − 1)/2} pla-

quettes (see Fig. 2 for the corresponding codes with d =
3, 5, 7 and 3,8,15 plaquettes, respectively). Accordingly, the
number of stabilizer generators is s = 2(n − 1)/2 = n − 1,
such that the triangular codes encode a single logical qubit
k = n − s = 1 [37]. Color codes belong to the class of
Calderbank-Shor-Steane (CSS) stabilizer codes [5,6]. The
logical Pauli operators XL, ZL for the encoded qubit can be
chosen to be transversal, i.e., they can be obtained from the
product of the corresponding Pauli operators over all physical
qubits of the lattice XL = ⊗

i Xi, ZL = ⊗
i Zi. By multiplying

these logical operators by all the x-type (z-type) stabilizers of
the same color, the effect of the logical XL (ZL) within the
code space is the same as if the operator is deformed to lie
exclusively along an edge of the triangular lattice

XL =
⊗
i∈v(e)

Xi, ZL =
⊗

i∈v(e′ )

Zi, (2)

where the sets v(e), v(e′) label the vertices along two arbitrary
edges e, e′ of the triangle (see the lower panel of Fig. 2 for
an example). Accordingly, the code distance d coincides with
the odd number of qubits per side of the triangle d , and
thus scales with the size of the lattice. As occurs for other
topological codes, and in contrast to the local character of the
parity checks (1), the quantum information of the triangular
color codes depends on global features (2), yielding for low
enough error rates an increased robustness and protection of
the encoded logical qubit, when the lattice grows, as more
errors t = (d − 1)/2 are guaranteed to be correctable.

In addition, these triangular codes have the following use-
ful features: among the other possible three-colorable tilings
of the 2D plane [36], the 4.8.8. codes (a) require the minimal
number of data qubits n for a given code distance d and,
although not sufficient to achieve a universal gate set by topo-
logical means, (b) they are the ones that enable a transversal
implementation of the full Clifford group. Moreover, as occurs
for the other tilings as well, (c) these codes are CSS codes and
thus allow to measure and process the syndrome of phase- (Z)
and bit-flip (X ) errors separately. In particular, property (b)
simplifies considerably the achievement of fault-tolerant (FT)
quantum computation.

As mentioned above, the triangular color codes with an odd
number of qubits per triangle side d have the capability of
correcting up to at least t = (d − 1)/2 errors. However, the
circuits to implement the required QEC cycles or logical op-
erations will contain quantum gates that couple the qubits, or
quantum gates that follow a particular measurement outcome.
Such circuit elements can copy errors between various data
qubits, a situation that is generic for any QEC protocol, and
that can reduce, or in the worst case even entirely eliminate,
the correcting power of the code. The concept of fault-tolerant
(FT) quantum operations, which use a circuit design that
essentially forbids errors from cascading into multiple qubits
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during the QEC operations, is a crucial concept that underlies
one of the most relevant results of QEC: the FT threshold [69].
This results proves that, provided that the microscopic error
rates of a FT circuit are reduced below a certain threshold,
the QEC protocol yields an effective error rate for the logical
qubits that decreases exponentially with the code distance. At
the expense of a resource overhead (e.g., more redundancy by
code concatenation), arbitrarily accurate quantum computa-
tions are allowed even if one uses faulty operations, provided
that these errors are kept below the threshold level. In fact,
the practical interest of topological QEC codes lies in the high
values of the thresholds [40–43] as compared to other QEC
strategies such as code concatenation.

To optimally benefit from the high robustness against
errors offered by topological codes, which are defined on
increasingly bigger lattices with associated larger logical dis-
tances d , it is essential to optimize the circuit design for
stabilizer readout and, in particular, to work with FT designs
whenever possible. Working with non-FT syndrome readout
schemes can lead to effectively reduced code distances d ′,
d ′ < d , effectively reducing the protection of logical informa-
tion. We emphasize that this aspect is critical in particular for
the small-scale, low-distance topological codes that will be re-
alized experimentally in the short term and midterm; here, the
careful consideration of error cascading and the detailed im-
plementation of FT designs will be of paramount importance.

A. Fault-tolerant flag-based schemes for quantum
error correction (QEC)

One of the crucial operations in QEC is the readout of the
parity checks, e.g., the plaquette operators in Eq. (1) for the
color code. Since the data qubits cannot be directly measured,
the readout requires mapping the stabilizer information onto
a set of ancillary qubits that can be the projectively mea-
sured without compromising the logical quantum information
stored in the code space. There are well-known strategies for
the FT readout of the stabilizers [70–72], all of which use
additional ancillary qubits to map the stabilizer information
while avoiding a non-FT propagation of errors. Considering
the particular QCCD trapped-ion implementation where the
ion ancillary qubits can be shuttled between different trapping
zones and thus reutilized for various parity-check measure-
ments, one can minimize the required qubit resources [48]
by considering Shor-type FT readouts [70,73] where the an-
cillary qubits are prepared in an entangled GHZ-type state
(i.e., cat-state FT readout). However, the complexity of the
QEC schedules for the trapped-ion QCCD implementation is
already considerable for the d = 3 code [48], and increases
even further for a FT readout of higher-distance color codes
involving octogonal plaquettes that require the preparation
and validation of cat states of even larger number of qubits
(see Fig. 2).

In this section, we review a recent FT readout for d = 3
codes [68] that minimizes the qubit overhead by avoiding the
use of ancillary cat states. Instead, this scheme adds an extra
flag qubit to the syndrome qubit onto which the stabilizer
information is mapped. The ancillary flag qubit, in turn, is
used to ensure the FT character of the readout. We focus
from now onwards on the seven-qubit color code, although

we emphasize that this strategy can be generalized to larger-
distance color codes [74]. The main idea of the flag-based
FT readout is to use a single bare flag qubit, and couple
it to the syndrome qubit to gather information on whether
or not multiple errors have cascaded onto the data qubits
which, if unnoticed, would compromise fault tolerance of the
readout. The flag qubit by itself does not suffice to correct for
these correlated errors. However, if combined with subsequent
stabilizer measurements using the syndrome qubit, it can
be used to unequivocally identify and correct the correlated
errors achieving the desired fault tolerance.

To achieve this goal for the seven-qubit code of Fig. 2,
one first has to identify the non-FT propagations where a
single error on any of the ancillary qubits, or two-qubit
gates involved, does cascade into two errors in the data
qubits. We must thus consider the two types of parity-check
measurements of Fig. 3, where we depict these dangerous
propagations for bit-flip and phase-flip errors in the syndrome
qubit. To detect these events, the (f-1) CNOT gate between
the syndrome and flag qubits forces the corresponding X (Z)
error to cascade also into the flag qubit, such that it can
be detected by a measurement in the Z (X ) basis yielding
−1 instead of the expected +1 (i.e., flag triggering). Note
that the additional (f-2) CNOT gate of Fig. 3 is required to
correctly map the stabilizer information into the syndrome
qubit, given the action of the (f-1) CNOT gate. In the ab-
sence of (f-2), |+〉r |0〉f |ψ〉d would evolve into 1

2 |+〉r (|0〉f +
S(p)

x |1〉f ) |ψ〉d + 1
2 |−〉r (|0〉f − S(p)

x |1〉f ) |ψ〉d under the upper
circuit of Fig. 3. On the other hand, by applying the (f-2)
CNOT gate, one corrects the effect of (f-2) 1

2 |+〉r |0〉f (1 +
S(p)

x ) |ψ〉 + 1
2 |−〉r |0〉f (1 − S(p)

x ) |ψ〉d, and thus obtains the

desired mapping of the ±1 information of S(p)
x by mea-

suring the readout qubit in the X basis. A similar argu-
ment applies to the Z stabilizers of the lower circuit of
Fig. 3.

The important point of this scheme is that, whenever the
flag is triggered, we can ascertain that an error must have
occurred. In that case, we can identify which of the possible
one- or two-qubit errors, if any, has indeed propagated into
the data qubits by a subsequent measurement of all the X - or
Z-type stabilizers with unflagged circuits [i.e., using only the
bare readout qubit and switching off the (f-1) and (f-2) CNOT
gates]. At FT level t = 1, where one only considers events
with at most one faulty circuit element, Table I shows how
to correct any of the possible errors, including the dangerous
weight-2 errors. On the other hand, if the flag is not triggered
but the syndrome measurement signals a −1 stabilizer error,
we can be certain that an error has occurred without any
two-qubit error propagating into the data. This entitles us
again, at FT-1 level, to use the unflagged circuits to extract
the syndrome by measuring all stabilizers, and to correct the
possible single-qubit error using the same prescription as in
the standard FT QEC schemes, as detailed in Table I. In both
cases, the readout finishes after the unflagged measurements.
The last scenario is that neither the flag is triggered, nor the
syndrome qubit of the flagged circuit signals any stabilizer
error. In that case, we can ascertain that no single error has
occurred at all, and proceed to the flag readout of the next
stabilizer.
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S(p)
x

S(p)
zS(p)
z

syndrome

data {
X

X

X

(f-2) (f-1)
X

X

i1
i2

i3

i4

|+
|0

MX

MZ

MZ

MX

M

M

{
Z

Z

Z

(f-2) (f-1)
Z

Z

i1
i2

i3
i4

syndrome

data

|0
|+

FIG. 3. Flag-based FT readout of weight-4 stabilizers: (Upper
panel) Scheme for the parity-check measurement of S(p)

x =
Xi1 Xi2 Xi3 Xi4 by the sequential application of CNOT gates, represented
by a solid line with a filled and a crossed circle on the corresponding
qubits. This circuit maps the stabilizer information into the syndrome
qubit, which is measured in the X basis. The data-qubit indexes
{i1, i2, i3, i4} belonging to pth plaquette are sorted in ascending order
according to our choice in Fig. 2, which will be important for the
decoding described in the lookup Table I. A dangerous single bit-flip
error is depicted by a red X star at the middle of the circuit. This
error would propagate into a pair of bit-flip errors on two data qubits
(semitransparent red X stars), as can be seen by using the CNOT
gate conjugation identity U c,t

CNOTXc = XcXtU
c,t
CNOT between control c

and target t qubits. To identify this dangerous error, one introduces
the (f-1) CNOT gate between the syndrome and the extra flag qubit,
such that a bit-flip error also cascades into the flag (semitransparent
red X star), and can be captured by a −1 measurement in the
Z basis, signaling that this correlated error has indeed propagated
into the code. The (f-2) CNOT gate is required to map correctly
the stabilizer information into the syndrome qubit. (Lower panel)
Analogous scheme for the parity-check measurement corresponding
to stabilizer S(p)

z = Zi1 Zi2 Zi3 Zi4 , where we use the CNOT identity
U c,t

CNOTZt = ZcZtU
c,t
CNOT. Notice that an error after the first CNOT can

propagate three errors to the data qubits without triggering the flag.
This situation is not fatal since those three errors are equivalent to
a single error (up to the stabilizer being measured), which can be
corrected at a later stage.

In Sec. III, we will present detailed microscopic schedules
for the realization of this readout scheme using a QCCD
trapped-ion architecture. To minimize the complexity of the
trapped-ion procedures described in Sec. III C, the ordering
in the measurement of the different stabilizers is S(1)

x →
S(1)

z → S(2)
x → S(2)

z → S(3)
x → S(3)

z . As it will turn out, the

flag-based scheme simplifies considerably the trapped-ion cat-
based readout protocols described in [48] and is an important
improvement for the near-term achievements of the goals
(QEC-I)-(QEC-II). In the next subsection, we discuss how
to merge this scheme with FT implementations of a logical
CNOT gate, addressing thus part of the goal (QEC-III).

B. Fault-tolerant schemes for CNOT gates

As mentioned above, one of the interesting features of
triangular 4.8.8 color codes is that the full Clifford group
can be implemented at the logical level by applying the
corresponding operations in a bitwise manner, i.e., transver-
sally [36]. Although Clifford operations by themselves are
insufficient to achieve universality, their transversality is a
very convenient and practical property, as it allows a direct
and by construction fault-tolerant implementation of this set
of gate operations without additional resource overhead. In
contrast to the triangular 4.8.8 color codes, other codes such as
the surface code require nontransversal schemes to implement
not only non-Clifford operations, like the T gate, but also
Clifford operations, like the S gate. For single-qubit Clifford
gates, it suffices to apply the corresponding unitaries to all of
the n data qubits of a single code (see the caption of Fig. 2).
The remaining ingredient to implement the full Clifford group
is the two-qubit CNOT gate, and we review in this section two
possible strategies. We first describe its transversal realization
by applying CNOT gates between each pair of equivalent data
qubits belonging to the control and target blocks. As shown in
Sec. V below, this scheme leads to a trapped-ion schedule of
considerable complexity already for the smallest color code.
In particular, it has a relatively large overhead of manipula-
tions that shuttle the ions across junctions of the segmented
trap. It is likely that this overhead impedes its extensibility
to larger-distance codes. Therefore, we also discuss below an
alternative strategy based on lattice surgery [75] with color
codes [67]. Let us note that, although a resource-optimized
implementation of a logical CNOT does not capture the full
complexity required for a logical universal gate set, it is an
important practical step in that direction as it constitutes the
basic operation to couple logical qubits.

1. Transversal CNOT gate operation

The CNOT gate between the ith control and the i′th tar-
get qubits is U i,i′

CNOT = 1
2 (1 + Zi )1i′ + 1

2 (1 − Zi )Xi′ . A CNOT
gate between two logical qubits encoded into two different
sets of data qubits I = {1, 2, . . . } and I ′ = {1′, 2′, . . . }, with
|I| = |I ′| = n, can be constructed in a bitwise fashion as
follows: UCNOT = ∏n

i=1 U i,i′
CNOT. Using the transversal logical

operators, one can easily verify that the effect of this transver-
sal CNOT at the logical level is UCNOT(XL ⊗ I)UCNOT =
XL ⊗ XL, UCNOT(I ⊗ XL )UCNOT = I ⊗ XL, and UCNOT(I ⊗
ZL )UCNOT = ZL ⊗ ZL, UCNOT(ZL ⊗ I)UCNOT = ZL ⊗ I, which
realizes the required transformation of basis operators under
conjugation by the CNOT gate, and thus proves the validity of
the transversal construction. This transversal operation does
not take the state out of the code subspace, and by construction
enjoys a FT character. Even in the event of a two-qubit error
due to a faulty CNOT, or a single-qubit error that cascades into
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TABLE I. Lookup table for the decoding of the flag-based QEC with the d = 3 color code: If the flagged measurement of stabilizer S(p)
α for

α = {x, z} and plaquette p triggers the flag f = −1, the decoding depends on the subsequent unflagged measurements of all three conjugate
stabilizers {S(1)

β , S(2)
β , S(3)

β }, where β = {z, x} (i.e., columns 2, 3, and 4). In each of these columns, the subcolumn r = (r1, r2, r3) labels the
possible outcomes rp = ±1 of these β-type stabilizer readouts, whereas the subcolumn error lists the qubit indexes I of the most-likely
correction ⊗i∈Iσ

α
i . On the other hand, if the flag is not triggered f = +1 but a syndrome error in stabilizer α = {x, z} is detected, one should

use the three values of the same-type β = {x, z} stabilizers to identify the error (i.e., column 1). The combined values ( f , r) allow one to
identify either the most-likely measurement error (i.e., no error on the data qubits), weight-1 error, or dangerous weight-2 error of type α

that has cascaded into the data qubits, all of which are marked by gray cells. We assume that other possible stabilizer outcomes are due to a
weight-2 error stemming from a combination of a measurement error on the flag qubit and a single-qubit error on one of the data qubits. These
errors are denoted by a white cell.

No flag triggered f = +1 Flag S(1)
α triggered f = −1 Flag S(2)

α triggered f = −1 Flag S(3)
α triggered f = −1

Syndrome r Error Syndrome r Error Syndrome r Error Syndrome r Error

(+1,+1, +1) No error (+1, +1, +1) f (+1,+1, +1) f (+1,+1, +1) f
(+1,+1, −1) i = 7 (+1, +1, −1) i = 7, f (+1,+1, −1) i = 5, 6 (+1,+1, −1) i = 7

(+1,−1, +1) i = 5 (+1, −1, +1) i = 3, 4 (+1,−1, +1) i = 5, f (+1,−1, +1) i = 6, 7
(+1,−1, −1) i = 6 (+1, −1, −1) i = 6, f (+1,−1, −1) i = 6 (+1,−1, −1) i = 6, f

(−1,+1, +1) i = 1 (−1, +1, +1) i = 1 (−1,+1, +1) i = 1, f (−1,+1, +1) i = 1, f
(−1,+1, −1) i = 4 (−1, +1, −1) i = 4 (−1,+1, −1) i = 4, f (−1,+1, −1) i = 4, f

(−1,−1, +1) i = 2 (−1, −1, +1) i = 2, f (−1,−1, +1) i = 2 (−1,−1, +1) i = 2, f
(−1,−1, −1) i = 3 (−1, −1, −1) i = 3, f (−1,−1, −1) i = 3, f (−1,−1, −1) i = 3

a two-qubit error through the CNOT, these errors correspond
to different logical blocks, warranting thus the FT nature of
the scheme.

One can visualize this transversal operation by stack-
ing the two logical qubits on top of each other [40], and
coupling the respective equivalent data qubits via CNOT
gates (see the left panel of Fig. 4). Note, however, that

this stacked perspective is a mere visualization for the en-
visioned trapped-ion QCCD, where all logical qubits will
belong to the same 2D architecture. In order to bring the
physically equivalent qubits close to each other to implement
the corresponding physical CNOT gate operations, one must
apply a sequence of crystal reconfigurations, the complex-
ity of which increases rapidly as the distance of the code

FIG. 4. Transversal CNOT gate between two seven-qubit color codes: (Left panel) Two logical qubits are each embedded in seven data
qubits from a couple of triangular planar codes. The transverse CNOT operator can be visualized by stacking the two logical qubits forming
a bilayer, such that each pair of equivalent data qubits is coupled by a bare CNOT gate (yellow arrows). (Right panel) Transversal CNOT
circuit based on fully entangling two-qubit MS gates X 2

i, j defined below Eq. (3), and represented by a solid line with two filled circles (not to
be confused with a controlled-phase gate). Additionally, single-qubit rotations along the x and y axis, X (−π/2) and Y (±π/2), defined below
Eq. (5), are required to obtain the transversal CNOT. The shaded gray region, labeled by (b), includes a set of operations that will be used
repeatedly in the modular microscopic trapped-ion schedules of the following sections.
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FIG. 5. Teleportation-based circuit for implementing a CNOT
gate: MX X (MZZ ) corresponds to the measurement of the joint op-
erator X t X a (ZcZa). Intuitively, the MX X operation pushes a Z (|0〉)
state from the target to the control while the MZZ operation pushes a
X (|+〉) state from the control to the target. The stepwise evolution
of the canonical operators is presented explicitly on Table II. The
final measurement in the X basis, MX , is necessary to decouple
the ancillary qubit from the other two. Since the outcome of each
measurement operation is random, the final state must be corrected
conditionally upon these outcomes: a Z operation must be performed
on the control if the total parity of MX X and MX is odd. Likewise, an
X operation must be performed on the target if the parity of MZZ is
odd.

grows. Therefore, the transversal realization of the CNOT
gate compromises one of the central appealing features of
topological codes, namely, the requirement of local quantum
processing.

2. Lattice-surgery CNOT gate operation

In this section, we describe in detail a protocol to real-
ize a lattice-surgery CNOT gate between two d = 3 color-
code qubits by means of local operations [67]. We focus on
developing a careful new FT design for the lattice-surgery
approach, as well as on minimizing the required resources in
terms of data qubits and time steps of the protocol, together
with the optimization of the procedures in view of the trapped-
ion QCCD capabilities.

The generic teleportation-based circuit to perform such
a lattice-surgery CNOT is depicted in Fig. 5, where the
control and the target qubits start in an arbitrary state, while
an additional ancillary qubit is initialized in state |0〉. This
circuit is equivalent to a CNOT gate, up to conditional Pauli
corrections based on the outcomes of measurements of the
joint operators X aX t , ZcZa, and the single ancillary operator

X a, where the superscript denotes the qubit where the operator
is acting. This circuit identity can be verified, as mentioned
above for the transversal CNOT, by monitoring the evolution
of the canonical operators on the control (Zc and X c) and
target (Zt and X t ) qubits (see Table II). In the stabilizer
formalism, the effect of a CNOT can be visualized by how
the canonical operators transform: Zc → Zc, X c → X cX t ,
Zt → ZcZt , X t → X t . As seen in Table II, measuring the
operator X t X a has no effect on X t , but collapses Za and
turns Zt into Zt Za. The sign of the new stabilizer X t X a is
completely random (ε1 has equal probabilities of being +1
or −1.). In the next step, measuring the operator ZcZa has
no effect on Zc, but turns X c into X cX t X a. Likewise, the
sign of the new stabilizer ZcZa is completely random. Finally,
in the third step, measuring the operator X a decouples the
ancillary qubit from the other two. Just like in the previous
steps, the sign of the new stabilizer is completely random.
The total effect of the circuit is therefore Zc → Zc, X c →
ε1ε3X cX t , Zt → ε2ZcZt , X t → X t . For a very clear, short,
and self-contained explanation on the evolution of stabilizer
operators after unitaries and measurements, we recommend
Sec. II of [76].

The same circuit can be applied at the logical level with en-
coded qubits, which is particularly convenient for topological
codes where the logical Z and X operators can be expressed
as transversal chains of operators, respectively, acting on data
qubits that lie at any of the lattice boundaries (see lower
panel of Fig. 2). Therefore, by an appropriate choice of
the support of these logical operators, the measurement of
the joint operators X a

L X t
L, Zc

LZa
L only requires local quantum

processing between neighboring data qubits in the 2D layout
(see Fig. 6), overcoming the limitations of the transversal
CNOT gate. Note, however, that a direct measurement of
the joint logical operators quickly becomes unfeasible as the
code distance increases (e.g., for a distance-3 code, one would
have a weight-6 operator, requiring thus a 6-qubit cat state
to achieve a fault-tolerant readout). To avoid the associated
complexity, as pointed out also in Ref. [67], it is possible to
decompose the joint logical operator measurement into the
sequential readout of lower-weight operators, such that the
total combined parity of their outcomes yields the desired
FT measurement. As shown below, an additional important
simplification is that these lower-weight operators can be
measured fault tolerantly using a single bare qubit in the
case of the seven-qubit color code, avoiding the overhead of
cat-based or flag-based methods.

Despite the fact that these lower-weight operators anticom-
mute with some of the stabilizers of the code, which thus be-

TABLE II. Teleportation-based circuit and stabilizers: Evolution of the Z , X operators of the control and target qubits, and the Z operator
of the ancilla qubit throughout the different steps of the teleportation-based CNOT circuit of Fig. 5 (see the discussion in the main text). Here,
we have introduced ε1, ε2, ε3 denoting the ±1 results of the three consecutive measurements.

Time step 0 1 (i.e., MX X ) 2 (i.e., MZZ ) 3 (i.e., MX )

Control Zc Zc Zc Zc

X c X c = ε1X t X cX a ε1X t X cX a ε1X t X cX a = ε1ε3X cX t

Target Zt = Zt Za Zt Za Zt Za = ε2ZcZt ε2ZcZt

X t X t X t X t

Ancilla Za ε1X t X a ε2ZcZa ε3X a
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FIG. 6. Lattice-surgery-based CNOT gate between two d = 3
color-code logical qubits: scheme for the 2D arrangement of the three
logical qubits required for the realization of a logical CNOT between
the control and target qubit, via intermediate coupling to an ancillary
logical qubit. The gray-shaded two- and four-qubit operators with
dashed borders are measured in order to merge the ancilla qubit
with the target and control qubit, respectively. This yields the desired
measurements of the joint logical operators X a

L X t
L , Zc

LZa
L .

come temporarily undefined, the logical encoded information
is not lost. After measuring the low-weight operators depicted
as gray plaquettes in Fig. 6, the two logical qubits are tem-
porarily merged into a single logical qubit of an enlarged code.
Notice that for each merging process one stabilizer per logical
qubit involved becomes undefined. For the measurement of
the X t

LX a
L operator (merging of the target and ancillary logical

qubits), the S(3)
Z stabilizers, depicted in blue in Fig. 6, become

undefined. However, their product, which corresponds to an
operator of weight-8, is still a stabilizer since it commutes
with the merging operators. Subsequently, the original stabi-
lizers of the two logical qubits must be measured to split this
code into the original two codes hosting the logical qubits.
It is precisely this merging and splitting process which gives
the name of lattice surgery to the implementation of the
teleportation-based circuit of Fig. 5 at the logical level. The
evolution of the important operators throughout the merging
and splitting process is summarized in Table III.

We would like to emphasize that the requirements to con-
vert this circuit into a fault-tolerant procedure are not trivial,
and have not been addressed in sufficient detail previously.
Although we focus on optimizing the implementation for
distance-3 color codes, the steps to achieve fault tolerance
discussed below can be used as modular building blocks to
achieve fault tolerance in larger-distance codes.

Figure 7 depicts the full FT circuit for the lattice-based
logical CNOT between two distance-3 color code qubits. In
step 0, the ancillary logical qubit is prepared in the state |0〉L

by a flag-based measurement of the X stabilizers one time.
The next two steps of the joint operator measurements of
Fig. 5 must be composed of three substeps: merging, splitting,
and hook-error detection. The splitting substep consists of

TABLE III. Evolution of the relevant stabilizers during the MX X

step. The third Z stabilizers are the only ones that collapse during the
merging process, but their product (S(3)

t,z S(3)
a,z ) remains well defined.

The splitting process recovers these two stabilizers. Since they were
temporarily undefined, after measuring them again, their eigenvalues
are random but equal, at least in an error-free scenario where the
eigenvalue of their product remains +1. The new eigenvalues are
given by ε3. We denote the outcomes of the weight-2 and weight-4
merging operators by ε2 and ε4, respectively.

Time step 0 Merging in MX X Splitting in MX X

Target S(3)
t,z = S(3)

t,z S(3)
a,z S(3)

t,z S(3)
a,z S(3)

t,z S(3)
a,z = ε3S(3)

c,z

Zt
L = Zt

LZa
L Zt

LZa
L Zt

LZa
L

X t
L X t

L X t
L

Ancilla S(3)
a,z ε4X4 ε3S(3)

a,z

Za
L ε2X2 = ε2ε4X2X4 ε2ε4X2X4 = ε2ε4X t

LX a
L

flagged-based measurements of the conjugate stabilizers. The
third substep is conditional, as it is only required whenever
a flag is triggered during the splitting substep, such that
additional stabilizer measurements are required to detect the
weight-2 errors (so-called hook errors). Finally, the last step
consists of measuring the seven physical qubits of the ancil-
lary logical qubit in the X basis, and performing classical error
correction.

In order to reduce the resource requirements, our philoso-
phy will be that, as soon as an error is detected at some point
in the circuit, the remaining steps can be performed without
the same FT constraints, since we only require the whole
protocol to be resilient to a single-error event (i.e., FT level
t = 1). We note that even if maintaining FT constructions
after an error has been detected might lead to lower logical
error rates, this is not strictly necessary to achieve a logical
error rate whose leading order in the physical noise parameters
is quadratic. Furthermore, in a trapped-ion shuttling-based
scheme, switching to non-FT circuits once an error has been
detected offers a great advantage with respect to the com-
plexity of the microscopic operations. We believe that this
low-resource philosophy will be useful for the relatively short
QEC protocols and FT logical gates that will be experimen-
tally tested in the near future. It might also prove useful within
individual subunits of larger QIP protocols. However, for
sufficiently long protocols, the advantage of the low-resource
philosophy disappears. In this case, maintaining frequent FT
QEC steps will certainly be vital to prevent the accumulation
of errors [74]. Let us now explain the FT requirements for the
merging and splitting substeps.

(i) Merging. The circuit used to measure the joint logical
operator X t

LX a
L fault tolerantly is shown in Fig. 8. As explained

previously, the central point of the merging process is the mea-
surement of weight-2 and weight-4 operators on the boundary
of two logical qubits (cf. Fig. 6). Following our low-resource
philosophy, if an error has been detected previously in the
circuit, then, from that point forward, the rest of the circuit
is performed in a non-FT fashion. In this case, it is enough to
measure each operator once. If an error has not been detected
previously on the circuit, the full FT machinery is necessary.
In the first place, to account for measurement errors, both the
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FIG. 7. Full FT circuit for the lattice-surgery-based CNOT: The ancillary logical qubit is initialized in the product state |0〉⊗7. A round of
X -type stabilizer measurement QEC1

X is first performed to project the ancilla state to |0〉L . It is safe to do this by only a single round of X
stabilizer measurements since single-qubit X errors can be caught at a later stage. The fault-tolerant implementation of the merging process
MX X (MZZ ) is shown in detail in Fig. 8. Notice that during the splitting process the error syndromes for each logical qubit involved in the gate
must be shared via classical communication to ensure that the procedure is fault tolerant. Also, since the stabilizers during the splitting process
are measured using flags, it might be necessary to measure the conjugate stabilizers in the event of a flag being triggered (hook-error detection
substep). The red dashed regions denote that the operations inside them are only conditionally applied. The superscripts denote the number
of times the stabilizers need to be measured. During the hook-error detection stage, the stabilizers can be measured only once and the circuit
construction does not require the previous FT constraints. In the trapped-ion realization, as detailed in sections below, we use a single ancillary
qubit and two five-qubit entangling gates in order to minimize the complexity of the microscopic schedules. This still ensures that the overall
protocol is FT at level t = 1 since these operations will be performed only if an error has already occurred [68].

weight-2 and the weight-4 operators must be measured twice.
We start with the weight-2 operator. If the outcomes of the
first and second measurements differ, the operator is measured
a third time. This implies that an error has occurred and it
is safe to switch to non-FT circuits from there on, including
measuring the weight-4 operator only once. In contrast, if
the two outcomes coincide, the operator is not measured a
third time. The same procedure is performed for the weight-4
operator, which can be measured fault tolerantly by using a
single bare ancillary qubit. As shown in Fig. 9, this can be

achieved by alternating the CNOT gates between the two log-
ical qubits to prevent a single error cascading into two errors
in the same logical qubit. A similar scheduling underlies the
FT readout using bare ancillary qubits in the d = 3 surface-17
code [46,75].

After measuring the weight-2 and weight-4 operators, it is
crucial to measure the X stabilizers of both logical qubits,
in case we are measuring the X t

LX a
L operator. When we are

measuring the Zc
LZa

L operator, then we must measure the Z
stabilizers. Note that this does not cause a splitting of the two

FIG. 8. FT circuit to measure the joint logical operator X t
LX a

L : Mx(w−2) and Mx(w−4) refer to the measurement of the merging operators of
weight-2 and weight-4 depicted in Fig. 6. QEC2

X denotes two rounds of X -type stabilizers, which are necessary to distinguish between Z errors
that occurred before and after the measurement of the merging operators, as explained in the main text and illustrated in Fig. 10. The merging
operators have to be measured at least twice to account for detection errors. For each operator, if the two first measurement outcomes coincide,
we trust them. Otherwise, if the two outcomes disagree, the operator is measured a third time (the red dashed regions denote that the operations
inside them are only conditionally applied). This scheme is tolerant to a single detection fault. Notice that measuring X stabilizers does not
affect the merging action of the Mx(w−2) and Mx(w−4) operators since they all commute. Splitting is only caused by measuring the Z stabilizers.
For the Z-type joint logical operator Za

LZc
L , one uses an analogous FT circuit with the roles of the X and Z basis interchanged. Measuring the

X -type stabilizers must be done in a FT fashion, which requires at least two rounds. In the first round, the stabilizers are measured with the
flag-based readout depicted in Fig. 3. If no error is detected during the first round, we stop and trust the result. Otherwise, we measure the
stabilizers a second time to account for detection errors and trust the outcomes of the second round. Following our low-resource philosophy,
since an error has already occurred, during the second round the stabilizers are measured without the previous FT constraints. If a flag is
triggered during the first round of stabilizer measurements, implying that an X error might have propagated from the ancilla, this information
is passed on to the splitting substep, where the Z stabilizers are measured, in order to correctly interpret the syndrome.
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weight-4 X-type readout for lattice merging

readout 

target {
X

X

X|+ MX

ancilla {a1

a2

t2

t1

X

weight-4 Z-type readout for lattice merging

readout

control
Z

Z

Z
ancilla {a1

a2

{

MZ|0

c1

c2

MZMZ

FIG. 9. Circuit for the FT readout of the weight-4 operator:
(Upper panel) By sequencing the CNOT gates for the measurement
of Xa1 Xa2 Xt1 Xt2 , a single X error on the readout qubit after the
second CNOT will propagate into a single bit-flip error on the logical
ancillary qubit and a single bit-flip error on the logical target qubit,
both of which are correctable. All other single-qubit errors propagate
to form single-qubit errors, up to the operator Xa1 Xa2 Xt1 Xt2 itself.
(Lower panel) For the measurement of weight-4 of Za1 Za2 Zc1 Zc2

operators, one would use instead a circuit that inverts the sense of
the CNOT gates, and a readout qubit that is initialized in |0〉 and
measured in the Z basis.

logical qubits, as the X stabilizers do not collapse during this
merging process (i.e., splitting occurs only after we measure
the Z stabilizers). Measuring the X (Z) stabilizers is necessary
to distinguish between Z (X ) errors that occurred before or
after the measurement of the joint operator X t

LX a
L (Zc

LZa
L).

Even though a single Z (X ) error taking place before the
measurement will eventually be caught, performing the tradi-
tional correction step assumes that the error did occur after the
measurement, such that the correction will result in a logical
Zc

L (X t
L) error on the control (target) qubit. To illustrate this

subtlety, consider the error event depicted in Fig 10. Imagine
we measure the weight-2 operator twice and the outcomes
coincide. We then measure the weight-4 operator twice and
the outcomes also coincide. We then proceed to measure the
X stabilizers on each logical qubit and the second stabilizer
(light green in Fig 10) returns a −1 eigenvalue, implying that
a Z occurred on qubit 5 of the target logical qubit. Since the
two outcomes of the weight-4 boundary operator coincide,
there are only two options: either the Z occurred after the
second measurement of the weight-4 operator or before the
first measurement. These two cases result in different eigen-
values of the joint logical operator X t

LX a
L . Let us focus on the

eigenvalues of the target qubit stabilizer S(2)
x,t on the second

plaquette, and the joint logical operator X t
LX a

L :
(i) Case 1: If the Z error occurred after the measurement

of the weight-4 boundary operator, the resulting stabilizers

FIG. 10. Dangerous boundary error in the merging substep: Ex-
ample of a single error that might result in a logical Z error if not
handled properly. If the Z error occurs after the second measurement
of the weight-4 boundary operator, applying Zt

5 results in the right
correction. On the other hand, if the error occurs before the first
measurement of the weight-4 boundary operator, applying a Zt

5 will
result in a logical Z error. Instead, one should apply Zt

6Zt
7 (see the

main text for a more detailed explanation). If the Z error occurs on
any of the nonboundary qubits (d1–d4), the traditional correction
works because the error commutes with the joint logical operator on
the boundary.

would be −S(2)
x,t and −ε2ε4 X t

LX a
L , where ε2 (ε4) denotes the

eigenvalue of the weight-2 (weight-4) boundary operator.
Traditional error correction would imply applying a Z on
target qubit 5, transforming these stabilizers to +St

X2 and
+ε2ε4 X t

LX a
L .

(ii) Case 2: If, on the other hand, the Z error occurred
before the measurement of the weight-4 boundary operator,
the resulting stabilizers would be −S(2)

x,t and +ε2ε4 X t
LX a

L .
Therefore, the error does not change the sign of the weight-4
operator because it was not a stabilizer of the system when the
it occurred. Applying a Z on target qubit 5 transforms these
stabilizers to +S(2)

x,t and −ε2ε4 X t
LX a

L , and causes a logical Z
error. The right correction in this case should have been to
apply the operator Zt

6Zt
7, which flips the sign of S(2)

x,t but leaves
the joint operator unchanged.

Therefore, when the outcomes of the boundary operators
coincide and an error is detected on one of the boundary
qubits, it is critical to measure either the weight-2 or the
weight-4 boundary operator a third time (i.e., round 3 in
Fig. 8). If the third outcome differs from the previous two,
then Case 1 has occurred and we can apply traditional error
correction. If the third outcome coincides with the previous
two, then we are dealing with Case 2, we must apply the alter-
native error correction. We note that in this final conditional
step, it is only necessary to measure one operator: the weight-2
operator is remeasured if a Z error was detected on qubit 7,
whereas the weight-4 operator is remeasured if a Z error was
detected on qubits 5 or 6.

(ii) Splitting. After measuring the weight-2 and weight-4
X (Z) boundary operators, the next substep is the splitting
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process, where the Z (X ) stabilizers are measured to separate
the merged lattices (see Fig. 7). Notice that after the merging
process only 1 of the 6 stabilizers collapses. After the X t

LX a
L

merging, this corresponds to the third z-type stabilizer (blue
plaquettes in Fig. 6). After the Zc

LZa
L merging, this corresponds

to the second x-type stabilizer (green plaquettes in Fig. 6).
Therefore, in an error-free scenario, it is enough to measure
only these stabilizers in order to split the lattices. In our
low-resource philosophy, it is also enough to do this when
an error has already happened previously in the protocol. On
the other hand, if an error has not occurred yet, all Z (X )
stabilizers must be measured in a FT fashion in order to both
split the lattices and to correct for possible X (Z) errors.

As explained before, this splitting requires performing two
rounds of stabilizer measurements. In the first round, we
measure the stabilizers in a FT way using the flag-based
readout schemes depicted in Fig. 3. If no error is detected,
we stop and trust the outcomes. On the other hand, if an error
is detected, we measure the stabilizers a second time using
unflagged circuits. If one of the flags gets triggered during the
first round then, after the splitting, we must perform one round
of unflagged readout of the conjugate stabilizers to correctly
identify the potential hook error. Notice that it is not necessary
to perform the hook-error detection substep on the ancilla
logical qubit after the second splitting, as shown in Fig. 7, as
the potential X -type hook error would not affect the outcome
of the subsequent ancillary measurement in the X basis.

Finally, to correctly perform the error correction after the
splitting, the syndromes for each logical qubit must be shared.
Due to the fact that one of the Z (X ) stabilizers from each
logical qubit collapsed during the merging process, some
information about possible X (Z) errors that occurred before
the merging is lost. Therefore, the error syndromes from each
logical qubit are shared and if both indicate the presence
of errors, a search is performed to determine if the joint
syndromes are compatible with a lower weight error that
occurred before the merging.

III. TRAPPED-ION SCHEDULES FOR A LOGICAL CNOT
GATE WITH TRIANGULAR COLOR CODES

In the Introduction, we described the current fidelities for
state-of-the-art QIP operations that have been achieved in var-
ious trapped-ion laboratories. One of the practical challenges
for the demonstration of useful QEC is to combine all of
these ingredients in a single experimental platform. In this
work, we focus on the particular strategy explored in [48],
which discusses in detail a trapped-ion QCCD approach that
consists on segmented high-optical-access (HOA) ion traps
in a cryogenic environment (see Fig. 1), and describes cur-
rent and expected QIP operations on a mixed-species ion
crystal to address the challenges (QEC-I) and (QEC-II). In
particular, this approach focuses on 40Ca+ ions to host the
data qubits of an encoded color-code qubit, and use 88Sr+

ions for sympathetic recooling of the ion crystal prior to any
phonon-mediated entangling gate between ions residing in
the same trap segment. This recooling step is an essential
step to maintain the high fidelities of the entangling gates be-
tween ions that may have been separated, shuttled, rotated, or
merged by using high-speed crystal-reconfiguration protocols.

In Sec. III A, we describe the QEC correction toolbox used
in [48], and discuss the additional operations that are required
for the implementation of the logical CNOT gate to address
the (QEC-III) quantum processor challenge. In Sec. III B,
we describe a detailed multiparameter error model that incor-
porates the different error rates of the various QIP trapped-
ion operations. Together with the microscopic trapped-ion
schedules described in Secs. III C–III E, this error model can
be used to study numerically the actual performance of the
QEC schemes presented in the previous section.

A. Extended toolbox for quantum error correction

As discussed in [48], the quantum memory challenges
(QEC-I) and (QEC-II) can be addressed using a single arm
of the segmented ion trap in Fig. 1. In particular, cycles
of QEC can be implemented using cat-state FT schemes
for stabilizer readout [70,73] by redistributing sets of ions
between three storage and two manipulation zones, where
the qubits can be manipulated using a trapped-ion universal
set of gates [77–79]. This set of gates contains the so-called
Mølmer-Sørensen (MS) entangling operations [23,24], which
are driven by a bichromatic laser field that couples the qubits
to the center-of-mass mode of the longitudinal vibrations of
an ion string. The MS gate acts globally on the ions of the
same crystal that are illuminated by the laser according to

UMS,φ (θ ) = e−i θ
4 S2

φ , Sφ =
n∑

i=1

(cos φXi + sin φYi ), (3)

where θ is controlled by the laser intensity and pulse duration,
whereas φ depends on the laser phase. In the following
subsections, we will repeatedly use the (o1) fully entangling
two-qubit MS gate for θ = π/2, φ = 0, which we denote as
X 2

i j (π/2) = (I − iXiXj )/
√

2 and represent as a solid line with
two filled circles touching the corresponding qubits of indices
i and j in the circuit. We will also make use of the (o2)
fully entangling five-ion MS gate UMS,0(π/2) [UMS,0(−π/2)],
which will be represented by a solid line with five filled
(empty) circles touching the corresponding qubits.

Additionally, this gate set contains global rotations around
the Bloch sphere

UR,φ (θ ) = e−i θ
2 Sφ , (4)

controlled by the intensity, phase, and pulse duration of the
lasers, as well as ac Stark shifts on individual qubits

UR j ,z(θ ) = e−i θ
2 Z j , (5)

where θ is controlled by the intensity of the off-resonant
laser beam, its detuning, and the pulse duration. In par-
ticular, we will make extensive use of (o3) single-qubit
rotations around the x, y, and z axis on a single isolated
ion, which we denote by Xi(θ ) = cos(θ/2)Ii − i sin(θ/2)Xi,
Yi(θ ) = cos(θ/2)Ii − i sin(θ/2)Yi, and Zi(θ ) = cos(θ/2)Ii −
i sin(θ/2)Zi, which can be obtained from the above gate set us-
ing refocusing techniques. As mentioned in the Introduction,
the closed cycling transition allows also for very accurate (o4)
measurements of trapped-ion qubits in the z basis MZ by state-
dependent fluorescence imaging, and (o5) qubit initialization
and reset into |0〉 by optical pumping.
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TABLE IV. Trapped-ion QEC toolbox. Description of current
and future trapped-ion capabilities for a QCCD approach to FT QEC.
We include the duration and infidelity of operations dealing with
the internal degrees of freedom, and the duration and final mean
number of phonons in the longitudinal center-of-mass mode for the
operations dealing with the external degrees of freedom.

Current Current Anticipated Anticipated
Operation duration infidelity duration Infidelity

(o1) Two-qubit MS 40 μs 1 × 10−2 15 μs 2 × 10−4

gate
(o2) Five-qubit MS 60 μs 5 × 10−2 15 μs 1 × 10−3

gate
(o3) One-qubit gate 5 μs 5 × 10−5 1 μs 1 × 10−5

(o4) Measurement 400 μs 1 × 10−3 30 μs 1 × 10−4

(o5) Qubit reset 50 μs 5 × 10−3 10 μs 5 × 10−3

(o6) Recooling 400 μs n̄ < 0.1 100 μs n̄ < 0.1
(o7) Ion shuttling 5 μs n̄ < 0.1 5 μs n̄ < 0.1
(o8) Ion split and merge 80 μs n̄ < 6 30 μs n̄ < 1
(o9) Ion rotation 42 μs n̄ < 0.3 20 μs n̄ < 0.2
(o10) Junction 100 μs n̄ < 3 200 μs
crossing (per ion)

In addition to the above tools (o1)–(o5) to manipulate
the internal electronic degrees of freedom of the trapped-ion
qubits, we will also exploit additional techniques to control
the external and motional degrees of freedom of the ion
crystals. In particular, we consider using an additional ion
species for (o6) recooling of the ion crystal using sympathetic
laser-cooling techniques; together with a a set of crystal
reconfiguration techniques that have been already demon-
strated experimentally. In particular, we consider fast (o7)
ion shuttling of single [53,54] or small crystals of ions across
different segments of a single arm of the trap; fast (o8) ion
splitting and merging of ion crystals [54,55]; and fast (o9)
ion rotations that swap pairs of ions [56] and rotate small-ion
crystals. Finally, the shuttling-based toolbox of [48] must be
extended to include (o10) junction crossing whereby ions are
transported across junctions [58–60] that connect different
arms of the segmented trap (see Fig. 1). This last operation
will be an essential tool for the extensibility of the trapped-ion
QCCD approach to QEC in 2D.

Altogether, the operations (o1)–(o10) form our trapped-
ion toolbox for QEC. In Table IV, we summarize the state-
of-the-art characteristics for this ion-trap toolbox considering
current experimental results on the above QCCD platform.
We also describe the improvement of each operation that is
expected to be achieved experimentally in the near term [48].

B. Microscopic multiparameter error model

In the assessment of the QEC capabilities of a particular
code in a certain architecture, it is of paramount importance
to have a realistic microscopic modeling of the noise that
afflicts the different operations. Oversimplified noise models
may overestimate the correcting power of a particular ap-
proach, such that the current state-of-the-art or envisioned
technological improvements might turn out to be insufficient
to achieve the aforementioned goals (QEC-I)–(QEC-III) in

the experiments. Therefore, it is crucial to use a realistic
microscopic modeling of the relevant sources of noise in our
trapped-ion architecture, as emphasized in [48]. In this work,
we employ the same error model with minor modifications
which, contrary to the majority of error models in the litera-
ture, uses different noise channels for different operations that
rest on a detailed microscopic modeling of the trapped-ion
hardware.

The model consists of various stochastic channels of Pauli
errors with six independent noise parameters to account for
leading experimental imperfections:

(1) Imperfect qubit initialization and measurement: mod-
eled as bit-flip (X ) errors after |0〉 state preparation, and
measurement in the Z basis, both with probability pm.

(2) Single-qubit gate errors: Pauli (X , Y , or Z) errors after
one-qubit rotations with the same probability p1q/3.

(3) Two-qubit MS gate errors: two-qubit Pauli errors after
two-qubit MS gates with the same probability p2q/15.

(4) Multiqubit MS gate errors: five-qubit Pauli errors after
five-qubit MS gates with the same probability p5q/1023.

(5) Dephasing: Pauli Z errors on all qubits during any
crystal-reconfiguration operation, and on idle qubits not in-
volved in an entangling gate with a probability pidle, to
account for the collective qubit dephasing. The parameter is
given by the equation pidle = [1 − exp(−t/T2)]/2, where t is
the duration of the operation and T2 is the standard parameter
quantifying the resilience of the qubit’s phase coherence.
We employ the anticipated experimental value of T2 = 2.2 s
for the trapped-ion optical qubit. Ion-shuttling experiments
on entanglement-based dc magnetometry as described in
Ref. [57] showed that this is an accurate approximation,
and that spatial effects resulting, e.g., from magnetic field
gradients are significantly smaller in shuttling operations over
several trap segments.

(6) Errors during cross-junction shuttling: Pauli Z errors
on all qubits during a crossing through the trap junction
with a probability pcross. Although the error during a junction
crossing is expected to be of the same form as the error
during any reordering operation (i.e., dephasing), we use an
independent parameter to be able to scan different junction
crossing durations while keeping pidle constant.

The duration of the different idle periods, and thus the
magnitude of pidle, can have a variety of values depending on
the particular trapped-ion schedule. To simplify the numerical
simulation, we fix their ratios to have the same values as
the anticipated experimental values, such that the dephasing
channel can be applied sequentially without the need of
enlarging the multiparameter set of error rates. To simplify
the simulations, we also set the duration of the two- and
five-qubit MS gates, measurements, and state preparations to
be the same as an ion crystal splitting and merging operation.
This is a pessimistic assumption, as can be seen from the
durations in Table IV. On the other hand, we treat one-qubit
rotations as instantaneous. As shown below, this is justified
because one-qubit rotations in our schedules typically occur
concurrently with an ion-crystal reconfiguration step of much
longer duration, so that the single-qubit rotations do not add
any extra time to the procedure.

A very important noise source during ion reconfigurations
and trap-junction crossings is heating of the ion crystals. To
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overcome its effects, which would deteriorate the fidelity of
subsequent entangling gates, we consider performing side-
band cooling (recooling in Table IV) before any entangling
gate. The relatively long duration of these recooling steps
(more than twice than that of any other operation) causes extra
dephasing on the qubits.

C. Schedules for the flag-based QEC

Let us first consider the trapped-ion circuit implementa-
tion of the flag-based readout described in Sec. II A, which
requires finding analogs of the CNOT-based circuits of Fig. 3
using the above universal set of gates (o1)–(o3).

In the upper panel of Fig. 11, we present the MS-based
circuits for the flag-based readout of both X - and Z-type
stabilizers of the seven-qubit color code (1). It is interesting
to note that the core structure of the MS-based circuit, as well
as the initialization and measurement of the ancillary flag and
syndrome qubits, is the same for both types of stabilizers.
The only difference is a collection of single-qubit rotations
around the y axis that must be applied conditional on the type
of stabilizer being measured. This contrasts the case of the
CNOT-based circuits in the upper and lower panels of Fig. 3.

Following the philosophy of the flag-based readout, we
also depict the occurrence of a dangerous phase-flip error
taking place at the middle of the circuit. This error cascades
into a correlated pair of bit-flip errors in the data qubits, and
has to be detected by our circuit. As detailed in the caption
of Fig. 11, due to the (f-1) MS gate, the error also propagates
onto the flag qubit, and can be detected by a −1 measurement
in the z basis, instead of the expected +1. As occurs for the
CNOT-based circuits, the role of the (f-2) MS gate between
syndrome and flag qubits is essential to correctly map the
stabilizer information into the syndrome qubit. Essentially,
the combination of the two fully entangling gates leads to a
product state for the bipartition between the data-syndrome
qubits and the flag qubit. Accordingly, even if we can detect
the events where a correlated error may have occurred by
inspecting the measurement outcome of the flag qubit, the
MS gates do not interfere with the mapping of the stabilizer
information into the syndrome qubit.

As described in detail in Sec. II A, whenever the flag is
triggered, one can identify which single-qubit or two-qubit
error has propagated into the data qubits by performing a
subsequent measurement of all the stabilizers (see Table I).
At FT-1 level, these measurements can be performed using
bare ancillas (i.e., unflagged circuits). This is particularly
interesting for the trapped-ion implementation, which allows
for multiqubit fully entangling gates (o2), and allow one
to simplify the unflagged measurements even further. As
depicted in the lower panel of Fig. 11, the stabilizer can be
mapped by a particular combination of two five-qubit MS
gates, instead of the sequence of four two-qubit MS gates.
This will simplify considerably the ion crystal reconfiguration
operations that are required to implement the above circuit
in the QCCD architecture, while preserving the desired fault
tolerance.

Once the MS-based circuits have been presented, let us
describe the microscopic schedules that can be followed to
implement the flag-based FT QEC in practice using our tool-
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FIG. 11. Trapped-ion flag-based FT readout of weight-4 stabiliz-
ers: (Upper panel) MS-based circuit for the parity-check measure-
ments based on the flag-readout schemes of Fig. 3. A dangerous
phase-flip error is depicted as a blue Z star at the middle of the
circuit, which would propagate into a pair of bit-flip error (red
stars) on the data qubits. This can be seen using the MS-gate prop-
agation identities ZiX 2

i, j (π/2) → X 2
i, j (π/2)YiXj , and YiX 2

i, j (π/2) →
X 2

i, j (π/2)ZiXj . To identify this dangerous error, the (f-1) MS gate
between the syndrome and an extra flag qubit is introduced, such
that a +1 measurement in the Z basis signals that this correlated error
may have occurred. The (f-2) MS gate is required to reverse the effect
of the (f-1) MS gate, such that the stabilizer is correctly mapped
into the syndrome qubit. Notice that it is possible to switch off
the (f-1) and (f-2) MS gates to recover the traditional single-ancilla
non-FT stabilizer measurement circuit. (Lower panel) The stabilizer
measurement with unflagged qubits can be implemented using a pair
of five-ion fully entangling MS gates UMS,0(π/2) [UMS,0(−π/2)],
hereby represented by a solid line with five filled (empty) circles. By
sandwiching a single-qubit Z rotation with the two MS gates [80],
the stabilizer information can be mapped onto the syndrome qubit
directly. Since this unflagged readout is only performed when an
error has already occurred, one preserves the FT nature of the
multiqubit readout to level t = 1.

box (o1)–(o10) for the mixed-species ion QCCD of Fig. 1.
For the seven-qubit color code, we will require seven data
qubits and two ancillary qubits (i.e., flag and syndrome), both
of which belong to the same atomic species. Additionally, we
will exploit one cooling ion of a different species or isotope
for sympathetic recooling of the ion crystal. The arrangement
of these ions within the central region of the segmented trap
is depicted in the inset of Fig. 1, where each arm of the trap
contains 10 ions and allows for parallel flag-based QEC for
one logical qubit in each arm of the trap. Accordingly, we
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FIG. 12. Schedule for the flag-based measurement of S(1)
x :

Data qubits d1, d2, d3, d4, d5, d6, d7 (blue circles) are distributed
among the storage zones S2 and S3, whereas the ancillary flag
f and syndrome s qubits (red circles) occupy the storage S1 and
manipulation M2 zones, respectively. A cooling ion of a different
species is cotrapped in region M2. The different lines represent the
scheduling of operations required to measure S(1)

x = X1X2X3X4 using
the flag-based circuit of Fig. 11. Black straight arrows joining two
different steps represent the splitting, shuttling, and merging of a set
of ions that are being transported between two different regions. Blue
curved arrows represent a rotation of the ion crystal, which is listed
as Rot in the rightmost column. Fully entangling MS gates between
the ith and jth ions X 2

i j (π/2) are represented by a red oval, prior
to which a sympathetic recooling of the ion crystal must be applied
(blue oval), and are listed as MS(i, j), and cool , in the rightmost
column. Finally, single-qubit gates listed as X±( j) = Xj (±π/2) in
the rightmost column act on an specific jth ion. The fluorescence
measurements, listed as Meas, of the flag and syndrome ions are
depicted by black detectors and are followed by a reset operation
via optical pumping.

focus on a single arm, and describe now in detail the required
microscopic schedule.

At the top of Fig. 12, we depict schematically the storage
and manipulation regions that conform the central region of
a single arm of the HOA-2 trap. The 10 ions are initially
distributed among the different zones as shown in the first
line, where we use the same colors and labels as in Fig. 1.
Each subsequent line represents a different step of the micro-
scopic schedule, and the columns describe the particular ion

occupation of each trap zone during such step. The operations
to be performed in that step are listed in the rightmost col-
umn, which describes which of the tools (o1)–(o10) must
be used. Additionally, we also use straight black arrows to
depict crystal splitting, shuttling, and merging, and curved
arrows to denote crystal rotations (see the caption for further
details). Figure 12 corresponds to the microscopic schedule
for the flag-based measurement of the first stabilizer S(1)

x =
X1X2X3X4 of the seven-qubit color code (Fig. 2). We have
also obtained similar schedules for the flagged and unflagged
measurements of the remaining stabilizers S(p)

α . We remark
that the complexity of these building blocks is considerably
smaller than the cat-based approaches explored in Ref. [48].
We thus believe that the flag-based approach will be a key el-
ement for the envisioned trapped-ion QCCD progress toward
fault-tolerant quantum computation with color codes.

These schedules should be applied according to the fol-
lowing procedure. One starts from the flagged schedule for
S(1)

x (Fig. 12). If an error is detected either in the flag or
syndrome qubits, one should measure all stabilizers {S(p)

α }
with the unflagged circuits using multiqubit MS gates, and
keep the outcomes as the final error syndrome. By applying
the decoding Table I, one can detect the most-likely error
and correct it actively, or by updating the Pauli frame. On
the other hand, if no error is detected, one should proceed
with the flagged schedule of S(1)

z , and apply a similar QEC
procedure. In case no error is detected, one should proceed
similarly moving to the next plaquette, and so on in case no
errors are ever detected.

D. Schedules for a transversal CNOT gate

Once the schedules for the flag-based QEC in each arm
of the HOA-2 trap have been introduced, we can proceed
with the trapped-ion implementation of a CNOT gate
between two logical qubits, which will require shuttling
ions across the Y junctions. We start by considering the
transversal realization of the CNOT gate, which can be
implemented with the universal set of gates (o1)–(o3)
according to the scheme shown in the right panel of
Fig. 4. This circuit is obtained by using the equivalence
of a CNOT gate, up to a global phase, with the sequence
of single-qubit and fully entangling MS gates U c,t

CNOT =
e−iπ/4Yc(−π/2)Xc(−π/2)Xt (π/2)X 2

c,t (π/2)Yc(π/2), which
corresponds to the shaded region (b) of Fig. 4.

We consider, for simplicity, the transversal CNOT gate
between two logical qubits hosted in neighboring arms of
the segmented HOA-2 trap, and thus connected through a Y
junction (see the upper panel of Fig. 13). Here, we present
the initial configuration with a 7 + 2 + 1 ion crystal (7 data, 2
ancillary, and 1 cooling ions) held in each arm of the trap.
As detailed in the caption, the zones M1, S1 in the upper
arm are vacated to simplify the required crystal reconfigura-
tions. The microscopic trapped-ion schedule with our toolbox
(o1)–(o10) is depicted in Fig. 14, where the columns only
show the zones relevant for the protocol. In the leftmost
column, we describe the operations that must be applied at
each time step, leading to the specific crystal configurations in
the next rows. In addition to the operations already introduced
for the flag-based QEC (see, e.g., Fig. 11), we also include
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FIG. 13. Ion layout for the logical CNOT in HOA-2 traps:
(Upper panel) The seven-qubit color codes for the control and target
logical qubits of a transversal CNOT are stored in the central regions
of the two lower arms using the 10-ion distribution of Fig. 1. The
storage and manipulation zones M1, S1 of the upper arm are vacated,
accommodating the ions of the corresponding logical qubit in the
remaining zones, which are mere spectators during the transversal
CNOT. Accordingly, the M1, S1 ones can be used to simplify the
required crystal reconfiguration operations following the schedule
described in the main text. (Lower panel) For a lattice-surgery CNOT,
the logical qubit stored in the upper arm is no longer a mere spectator,
but acts as the ancillary qubit in the teleportation-based circuit of
Fig. 5.

J cross to indicate when the ions must cross the Y junction.
Besides, we have compressed notation by suppressing the
ion circles, and by grouping sequential operations in a single
row. The ions where the sympathetic cooling is applied, or

where other crystal reconfiguration (e.g., rotations) take place,
can also be recovered from the current and subsequent ion
configurations.

As shown in Fig. 14, the whole routine can be divided
into four modules (a)–(d). Modules (a), (c), and (d) describe
reorderings of the ions that bring closer certain subsets of
physically equivalent qubits that belong to the control and tar-
get logical blocks. These modules contain all the overhead in
Y-junction crossings, while module (b) describes operations
on pairs of physically equivalent ions that can be implemented
within a single arm of the trap. This module is the core of
the transversal CNOT gate in the shaded region (b) of Fig. 4.
Since all physically equivalent ions are to be coupled to each
other, we remark that the complexity of the reorderings and
the amount of Y-junction crossings will increase considerably
as the distance of the code grows. The transversal approach
loses one of the appealing features of topological codes,
namely, the local nature of quantum processing. In the fol-
lowing section, we therefore describe microscopic schedules
for an alternative CNOT strategy that maintains this character,
and alleviates the increase in complexity for larger-distance
codes.

E. Schedules for a lattice-surgery CNOT gate

In this section, we introduce the microscopic schedules for
the lattice-surgery CNOT approach described in Sec. II B. In
particular, we describe the trapped-ion (o1)–(o10) operations
that allow one to implement the building blocks of the circuit
in Fig. 7. The interspersed QEC cycles of this figure can
be implemented following our description of Sec. III C. The
remaining parts correspond to the measurement of the joint
MXX , MZZ , and single MX logical operators. The measurement
of the ancillary logical X a

L operator can be achieved by mea-
suring all data qubits in the X basis.

According to Fig. 8, the FT measurement of the joint logi-
cal operations requires a sequential measurement of weight-2
and weight-4 operators that involve data qubits belonging to
the neighboring boundaries of the logical blocks (see Fig. 6).
In Fig. 15, we represent the trapped-ion schedule for the se-
quence of operations (o1)–(o10) that are required to measure
sequentially the weight-2 and weight-4 X -type operators. The
control, ancillary, and target qubits, each corresponding to
seven data ions with their corresponding flag, syndrome and
cooling ions, are distributed as depicted in Fig. 13 (lower
panel). For the MXX measurement, only the central regions
that trap the ancilla and target qubits need to be used, as
detailed in Fig. 15. The core modules to implement such
operations are described by the subsets of operations (XX )
and (XXXX ) of the rightmost column, whereas the remaining
operations correspond to the reconfiguration steps required
to bring the required ions close to each other, such that
these modules can be applied. A similar scheduling must be
used for the MZZ measurement, albeit focusing now on the
control and ancillary blocks (see Fig. 16). A direct comparison
with the transversal approach shows that the overhead in
crystal reconfigurations, especially Y-junction crossings, is
considerably reduced when the ordering of the operations
follows Fig. 8. We conclude that by exploiting the local quan-
tum processing of the lattice-surgery approach, where only
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FIG. 14. Schedule for the transversal CNOT gate between two seven-qubit color codes: A pair of logical qubits, each encoded into seven
ions, are distributed in two neighboring arms of the trap together with their corresponding ancillary and cooling ions. We use the same notation
as in Fig. 12, but eliminate the circles denoting the ions, and simply use their labels (i.e., data d1–d7, ancillary flag f, and syndrome s, and
cooling c) with a different font and coloring to denote the two logical blocks. We list the operations for the FT transverse CNOT routine
in the leftmost column which, in addition to those of Fig. 12, include Sp (split), Sh (shuttle), M (merge), J cross (junction crossing), and
Y± = Y (±π/2) (single-qubit rotations applied to the specific ion in the red oval). The remaining columns contain the real-space scheme of the
ion-crystal configurations in the different zones of the neighboring arms across a Y junction. On the rightmost column, we group operations
into four modules (a)–(d).
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FIG. 15. Schedule for the lattice-surgery measurement of low-weight operators for MX X : Three logical qubits (i.e., control ancilla and
target), each encoded into seven ions, are distributed in three neighboring arms of the trap together with their corresponding ancillary and
cooling ions. We use the same notation as in Figs. 12 and 14, with a different font and coloring to denote the three logical blocks. For the
measurement of the XaXt logical operator, we need to sequentially measure weight-2 Mx(w−2) and weight-4 Mx(w−4) operators.

neighboring boundary qubits must be coupled to each other,
and by a judicious design of the microscopic schedules, it
is possible to minimize the overhead in trapped-ion junc-
tions crossings, which may turn out in an improvement of
lattice-surgery methods with respect to transversal approaches
already for small-distance codes.

IV. NUMERICAL MONTE CARLO STABILIZER TOOLBOX
AND IMPORTANCE SAMPLING

In this section, we introduce the numerical Monte Carlo
toolbox used to assess the performance of the previously
developed QEC protocols. As our noise model only involves
Pauli operators, and the circuits consist of Pauli preparations
and measurements and Clifford unitaries, it is possible to
perform stabilizer simulations efficiently. In contrast to the
exponential scaling of full-wave-function numerical simula-
tions [81,82], using the stabilizer formalism yields a poly-
nomial scaling of the simulation time with the number of
qubits. Although several schemes allow a limited number
of nonstabilizer operations without turning the simulation
completely intractable [83,84], it is always possible to obtain
accurate and honest approximations of non-Clifford error
channels and operations while strictly remaining within the
stabilizer formalism [85,86]. In this scenario, the bottleneck

is no longer the system size (given by the number of physical
qubits and depth of the quantum QEC circuits simulated), but
rather the sampling of error configurations. To optimize this
point, we extend a recently developed subset-based sampling
scheme [87] to a multiparameter error model, which is of
ultimate relevance for the trapped-ion implementation.

A. Standard sampling and single-parameter subset sampler

The traditional sampler generates an error configuration
by traversing the whole circuit and deciding, after each gate,
whether or not to insert an error based on a physical error rate.
If we assume that the physical error rate is characterized by a
single parameter p, then, for each gate, a uniformly distributed
random number r between 0 and 1 is generated. If r < p, an
error is inserted after the gate.

This sampler is appropriate for relatively high error rates
and low-distance codes. However, as the error rate decreases,
the probability of actually not inserting any errors on the
circuit increases. Furthermore, for a fault-tolerant procedure
on a distance-3 code, any single fault is correctable, so error
configurations of weight-1 will never result in a logical error.
The probability of inserting two errors on the circuit scales
as p2, which means that the minimal number of samples to
obtain reliable statistics has to be on the order of 1/p2. For a
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FIG. 16. Schedule for the lattice-surgery measurement of low-weight operators for MZZ : Three logical qubits (i.e., control ancilla and
target), each encoded into seven ions, are distributed in three neighboring arms of the trap together with their corresponding ancillary and
cooling ions. We use the same notation as in Figs. 12 and 14 with a different font and coloring to denote the three logical blocks. For the
measurement of the ZcZa logical operator, we need to sequentially measure weight-2 Mz(w−2)and weight-4 Mz(w−4) operators. The core module
to implement such operations is described by the subsets of operations (ZZ ) and (ZZZZ ) in the rightmost column, whereas the remaining
operations correspond to the reconfiguration steps needed to bring the required ions close to each other, such that these modules can be
applied.

code of distance d , this scaling becomes 1/p(d+1)/2, such that
the sampling becomes very slow in the low-error regime. As
an example, for the fault-tolerant lattice-surgery-based CNOT
circuit, the time required to run 105 error configurations is
about 24 h on a desktop computer using four cores (Intel Core
i7-6700 CPU @ 3.40 GHz). Obtaining a logical error rate for
p = 10−4 would take around 1000 days.

In contrast, the subset-based sampler relies on dividing
all possible error configurations into subsets according to the
weight of the error configuration, as illustrated in Fig. 17.
Instead of performing a direct Monte Carlo sampling on the
whole set, this sampler focuses specifically on individual
subsets at a time. If the noise acting on the quantum circuit
is described by a single parameter p which quantifies the
probability of an error after each gate, then the probability of
having w errors is given by

Aw =
(

n

w

)
pw(1 − p)n−w, (6)

where n is the total number of gates in the circuit. The
logical error rate pL of the circuit (or in general the failure

probability) is then

pL =
n∑

w=0

Aw p(w)
L , (7)

where p(w)
L is the logical error rate of the weight-w subset.

The logical error rate for a given subset is multiplied by
its probability of occurrence (the combined probability of
occurrence of all the error configurations in the subset), which
is straightforward to calculate analytically.

The subset-based sampler procedure then consists of se-
lecting a small number of the most relevant subsets, sampling
each of them individually, and computing the contribution
of the subset to the total logical error rate. This becomes
very efficient if the physical error rate is small, such that the
probability of occurrence Aw of weight-w errors on the circuit
falls off quickly beyond a critical wmax, and the truncation to
a small number of relevant subset is accurate.

A convenient feature of the sampler is that it provides upper
and lower bounds to the exact logical error rate, based on
the total contribution of all subsets that were not considered.
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FIG. 17. Schematics of all subsets of microscopic error configurations: (Left panel) The individual boxes labeled as w − n correspond
to the set of error configurations of weight-n errors that may occur during the execution of one complete circuit. The area An of the subsets
is meant to indicate (not to scale) the relative probability of occurrence of each subset. In the limit of small physical error rates, the w − 0
subset dominates and all other subsets become vanishingly small. In this limit, the traditional sampler becomes inefficient, as it predominantly
samples from the zero-error subset. In contrast, the subset-based sampling strategy explores in a targeted way the specific subsets chosen
by the user, typically corresponding to the lowest-weight, noncorrectable error subsets. (Right panel) Multiparameter generalization of the
error subsets. Every noise parameter adds an extra dimension to the subset structure, which can be depicted as a hypercube (e.g., cube for a
three-parameter error model as shown in the picture). As in the single-parameter case, the hypervolume of each subset indicates (not to scale)
its relative probability of occurrence, which depends on the error rates vector �p.

A lower bound is obtained assuming (optimistically) that all
the subsets that are not sampled would result in a logical
error rate of 0 while an upper bound is obtained assuming
(pessimistically) the same error rate would be 1. Accordingly,
we can bound the logical error rate by

wmax∑
w=0

Aw p(w)
L � pL �

wmax∑
w=0

Aw p(w)
L +

n∑
w=wmax+1

Aw. (8)

Notice that p(0)
L = 0 since the weight-0 subset just corre-

sponds to the error-free circuit. For FT operations on distance-
3 codes, p(1)

L = 0 as well, and it suffices to start the sampling
at w = 2. For all of our circuits, we first sample the weight-1
subset exhaustively to check that every error in this subset is
correctable, and we have implemented the FT circuit correctly.

As anticipated above, the subset-based sampler is appro-
priate for low physical error rates, when the probability of
occurrence of large-weight subsets is vanishingly small. In
this regime, there is no practical difference between the two
bounds (8), and one can approximate the exact error with
great confidence. For higher error rates, it is always possible
to bound the uncertainty on our approximation to the exact
logical error rate by a constant δ. For a given circuit, noise
model, physical error rate p, and user-defined tolerance δ, the
sampling tools can identify all the subsets that need to be
sampled such that

wmax∑
w=0

Aw < 1 − δ. (9)

In practice, however, for high enough physical error rates
[typically, p > (10−3 − 10−2)], wmax becomes prohibitively
large, and the efficiency advantage of the subset-based over
the traditional sampler disappears. However, we note that

in view of the current trapped-ion fidelities introduced in
previous sections, the subset-based sampler is ideally suited
to assess QEC protocols in trapped-ion architectures.

B. Importance sampler for multiparameter Pauli noise

Let us now generalize the subset-based sampler to a multi-
parameter noise model. Let m be the number of independent
noise parameters. Now, each subset is labeled by a vector
of integers �w = (w1,w2, . . . ,wm), where each integer refers
to the number of errors associated with a particular noise
parameter. The probability of occurrence of subset �w is now
given by

A�w =
m∏

i=1

(
ni

wi

)
pwi

i (1 − pi )
ni−wi , (10)

where ni is the number of gates (or operations) associated
with the noise parameter i ∈ {1, . . . , m}. In our simulations,
since some of the noise sources depend on the duration of the
operation, we insert identity gates to account for waiting times
on idle qubits. Accordingly, every ion-crystal reconfiguration
operation is represented by a sequence of identity gates whose
number depends on the duration of the operation.

Under a single-parameter noise model, we calculate the
logical error rates in an error interval defined by pmin and pmax,
where pmin is typically 0. In a multiparameter noise model, we
now have an error interval [pmin,i, pmax,i] for each parameter i.
These error intervals together form a rectangular hypervolume
in parameter space. Just like for the single-parameter sampler,
it is always possible to bound the uncertainty of the logical
error rate by a constant δ. For a given circuit, noise model,
error vector �p, and user-defined tolerance δ, the sampling tools
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identify all the subsets �w that need to be sampled to guarantee

�wmax∑
�w=(0,...,0)

A�w < 1 − δ. (11)

However, it is not necessary to calculate this for every error
vector �p in the hypervolume of choice. The vertex correspond-
ing to the error parameter vector of largest length within the
hypervolume �pmax will determine the subsets that must be
sampled in order to guarantee that the difference between
the upper and the lower bounds is less than the tolerance δ.
For all error vectors �p in the hypervolume (|�p| � |�pmax|), the
probability of occurrence of the subsets not considered will be
even smaller than for �pmax, and so will the difference between
the bounds on the logical error rate be.

A very useful feature of the subset-based sampler is that
there is no need to perform Monte Carlo simulations for every
individual �p. To understand this, notice that the logical error
rate p(�w)

L of a subset �w does not depend on the physical error
rates given by �p. The only terms that depend on �p are the
probabilities of occurrence of the subsets A�w (represented by
the size of the boxes in Fig. 17), which are easily computed
analytically. Therefore, each required subset is sampled once
and for all. Then, the analytical nature of A�w allows us to
construct smooth functions for the dependence of the logical
error rate with respect to various microscopic error rates. Fur-
thermore, it also allows us to easily and exactly calculate the
scalings of the logical error rate with respect to the different
error combinations. For other kinds of simulations, including
Monte Carlo simulations with the traditional sampler and
exact wave-function simulations, extracting scalings involves
computing logical error rates for a sufficiently dense set of
points in the error vector hypervolume, and then fitting the
points along different directions to polynomials. Since the
volume (and hence number of points) of the hypervolume
scales exponentially with the dimension (number of noise pa-
rameters), this procedure quickly becomes unfeasible without
the subset-based sampler.

V. COMPARISON OF TRAPPED-ION CNOT STRATEGIES

We have now introduced and gathered all required ingre-
dients to perform a realistic comparative study of the perfor-
mance of transversal and lattice-surgery CNOT gates between
two color-code qubits in a trapped-ion QCCD architecture. To
identify the performance of the CNOT protocol separately, we
assume that the initial state is always perfectly prepared in
the logical product state |+〉L|0〉L in our simulations, which
is ideally mapped under the CNOT onto the logical, maxi-
mally entangled Bell state 1√

2
(|0〉L|0〉L + |1〉L|1〉L ). We then

evaluate numerically the performance of the faulty CNOT
gate to obtain the logical Bell pair. For the lattice-surgery
approach, we additionally assume that the ancilla logical
qubit starts in a perfectly prepared |0〉L state. Whereas the
preparation and characterization of a maximally entangled
logical state is an important key benchmark in an experimental
implementation of our protocol, it does clearly not provide a
complete performance characterization of the logical CNOT
gates. We note, however, that the gate protocols discussed in
this work, as well as single-qubit logical gates, are amenable

for a more exhaustive and efficient characterization by logical
randomized benchmarking, as recently proposed by Combes
et al. [88] as a generalization of well-known RB for physical
qubits. In the following sections, we present our numerical
results for the performance of both schemes, and introduce
a detailed resource analysis that helps us in their qualitative
understanding, and illustrates the technical complexity that
would be required in an experimental realization.

A. Performance of the transverse and lattice-surgery strategies

As described in the previous section, we use the multi-
parameter subset approach to perform the numerical Monte
Carlo sampling of the error configurations, and finally assess
the performance of the two logical CNOT strategies. For
the transversal circuit, we have sampled all subsets up to
weight w = 7. For the lattice-surgery circuit, given its higher
numerical complexity due to higher number of gates and
ion reordering operations, we have sampled all subsets up to
weight w = 5. This will be noticeable in the subsequent plots
in the form of the divergence between the upper and lower
bounds for the logical error rates setting in earlier (i.e., already
for lower physical error rates) for the lattice-surgery circuit as
compared to the transversal circuit. After the faulty CNOT
circuit, we perform one round of perfect QEC to project the
final state back to the code space and thereby account for the
logical failure rate only for uncorrectable errors. Once this is
done, we can compute both the probability for occurrence of
a logical X and a logical Z error independently.

Figure 18 shows the logical Z and X error rates for
the two alternative CNOT approaches as a function of the
error strength of the junction crossing (i.e., the dephasing
associated to the crossing time). Notice that for both logical
CNOT strategies, the logical Z error rate is considerably
higher than the logical X error rate, which agrees with the
fact that during the reordering and crossing operations, the
qubits only experience Z-type errors according to the er-
ror model outlined above. We remark that, while all other
operations in Table IV have been optimized considerably
over the last years, the transport of ions across junctions is
the most demanding reconfiguration, and still requires more
detailed experimental investigation in the current scalable trap
designs. It is therefore important to explore how critically
the performance and resources of two CNOT schemes will
behave depending on the quality with which such junction
crossings can be performed. We observe from the simulations,
for instance, that the transversal logical CNOT outperforms
even the physical CNOT for sufficiently low values of pcross

(see Fig. 18), i.e., in the regime where the junction crossings
can be done relatively fast and therefore associated with
low-qubit dephasing rates. On the other hand, even with the
anticipated values of experimental parameters, the lattice-
surgery logical CNOT cannot outperform the physical one.
This result is certainly not surprising given the extremely
high fidelities already achieved by trapped-ion gates, and
the overhead in the number of microscopic operations that
is required to implement the lattice-surgery method (see the
following subsection on the resource analysis). Instead, this
result reflects the expected fact that the additional advantage
of the QEC codes for logical lattice-surgery CNOT gates with
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FIG. 18. Comparison of the logical CNOT strategies as a function of the junction-crossing errors: Probability of a logical Z (left) and logical
X (right) error after the preparation of a logical Bell pair using two alternative CNOT strategies as a function of the error strength associated
with a trap-junction crossing. All the other error strengths and reordering durations are set to the anticipated experimental values. The horizontal
black curve corresponds to the probability of causing a physical Z or X error during the preparation of a physical Bell pair assuming the same
error model employed in the simulations. This error rate is 8 p2q/15 because of the possible 15 Pauli errors after a two-qubit gate, 8 cause a Z
error on a Bell pair (IY, IZ, XY, XZ,Y I,Y X, ZI, ZX ), and a different set of 8 causes an X error (IX, IY, XI, XZ,Y I,Y Z, ZX, ZY ). For each
logical error rate, the subset sampler returns a lower and an upper bound, which essentially coincide tightly at low physical error rates and start
to diverge at increasingly larger physical error rates where the importance of the error subsets, which have not been included in the sampling,
becomes important.

respect to the bare CNOT gates will only become appreciable
for larger-distance codes. What it is quite remarkable is that,
already for these low-distance codes, the transversal approach
could beat the bare CNOT provided that the junction crossing
is sufficiently efficient and the other experimental ingredients
reach the expected level of accuracy.

The point that we would like to stress in this paper is
that, in the event that the junction crossing in the new trap
designs cannot reach these high-quality levels, it might be
favorable to adopt the lattice-surgery scheme in detriment of
the transversal one despite its larger overhead in terms of the
required operations. This becomes clear from the crossing
of the blue and green lines in the left panel of Fig. 18, and
one can generally expect that will be more appreciable as the
distance of the code increases since the transversal approach
will require a higher number of faulty slow crossings. In
particular, considering the logical Z errors, when the error
associated with the junction crossing is above a certain value
(pcross > 5.2 × 10−4), the more local character of the lattice-
surgery CNOT approach, requiring only the coupling of qubits
on the lattice boundary of pairs of logical qubits, pays off
and allows it to outperform the transversal approach. With
the anticipated dephasing time T2 = 2.2 s, this pcross value
would correspond to a crossing time of tcross = 2 ms per ion.
A round-trip shuttling of a single 40Ca+ ion through a junction
on a surface trap has been reported to take between 0.96
and 3.6 ms [89]. This implies that a one-way shuttling step
could take approximately between 0.48 and 1.8 ms, slightly
less than our threshold value of 2 ms. Faster shuttling has also
been reported for 9Be+ ions through an X junction [58,59].
In this regime, it would be advisable to perform a logi-
cal CNOT between two distance-3 color-code qubits in a
transversal fashion. Whether the future QCCD experiments

with the HOA-2 trap are in one regime or the other will likely
determine the strategy that must be followed to achieve the
(QEC-III) goal.

Figure 19 presents the logical Z and X error rates for
the two alternative CNOT approaches as a function of the
error rate of the two-qubit MS gate, which is a critical key
parameter in the experimental implementation and the most
demanding operation on the internal degrees of freedom of
the ions. We have performed simulations for two regimes
of junction crossing, a low-overhead regime (pcross = 10−5,
denoted as low pcross in Figs. 20 and 21), and a high-overhead
regime (pcross = 10−3, denoted as high pcross). In the low-
crossing overhead regime, the transversal CNOT outperforms
the physical CNOT for a very wide range of MS error rates,
including the anticipated experimental value. This implies
that, if in fact the overhead associated with the junction
crossing is low, it would be feasible to perform a logical
entangling gate with a lower error rate than its physical bare
counterpart, a major experimental breakthrough. The advan-
tage is lost for p2q > 0.1, which can be considered the level-1
pseudothreshold for the transversal CNOT.

For pcross < 10−4, the other noise sources (phase flips
during ion reordering operations, state preparation, measure-
ment, and one-qubit gates errors) begin to dominate over
the two-qubit error rate and the advantage of the transversal
logical CNOT over its physical counterpart is lost again.
For the lattice-surgery logical CNOT, the large number of
gates and reordering operations cause the logical error rate
to stabilize around 5 × 10−3 in the low-p2q limit, thus never
outperforming the physical CNOT. This means that even with
the anticipated experimental values, we would be above the
level-1 pseudothreshold of the lattice-surgery logical CNOT.
On the other hand, in the high-overhead crossing regime,
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FIG. 19. Comparison of the logical CNOT strategies as a function of the entangling MS gate errors: Probability of a logical Z (left) and
a logical X (right) error after the preparation of a logical Bell pair using two alternative CNOT strategies as a function of the two-qubit MS
gate error strength. All the other error strengths and reordering durations are set to the anticipated experimental values. The error strength of
the five-qubit MS gate is set to be p5q = 5 p2q. As before, the black curve corresponds to the probability of causing a physical Z error (left) or
physical X error (right) during the preparation of a physical Bell pair, which is given by 8 p2q/15, as explained in Fig. 18.

while both logical strategies are above the pseudothreshold,
the relative advantage of the transversal scheme is lost and
it becomes better to perform the lattice-surgery scheme for
low enough values of p2q. For p2q > 1.2 × 10−3–2.6 × 10−3,
both strategies result in similar Z logical error rates. The
anticipated experimental value for the two-qubit MS fidelity
lies within this interval. As before, the X logical error rate is
lower than the Z logical error rate. The transversal protocol
is particularly resilient to logical X errors, given its lower
number of MS gates.

B. Resource analysis for the transverse
and lattice-surgery CNOT strategies

Once the performance of both strategies has been pre-
sented, we discuss in this section another important aspect
for their comparison, namely, a resource analysis quantifying
the complexity of the protocols. Let us note that, since the
lattice-surgery approach makes use of the active rounds of
flag-based QEC, the number of gates and overall duration
shall depend on the instants when the flag triggering occurs
and the measurement outcomes, such that the lattice-surgery
resource analysis will be more involved than the transversal
one.

In Fig. 20, we depict the average number of the various
gates and trap-junction crossings that would be required dur-
ing the lattice-surgery CNOT as a function of the strength
of two key error parameters, namely, the junction-crossing
error rate and the error rate of the two-qubit MS gates. In
contrast to the transversal strategy, which has a fixed number
of gates and reordering operations, the required resources
for the lattice-surgery CNOT will depend on the error rates.
There are two competing effects. On the one hand, within
a given step or substep of the protocol, errors will increase
the number of required gates. This can be exemplified with
the measurement of one of the merging operators. If an error
causes two subsequent measurement outcomes to differ, the

operator needs to be measured a third time, which increases
the total number of gates and reordering operations. On the
other hand, because of the low-resource philosophy that we
have adopted, for the protocol as a whole, the detection of an
error event will decrease the total number of gates and reorder-
ing operations because the remaining steps of the protocol will
involve the operationally simpler unflagged circuits.

In the error-free regime (limit of all physical error rates
approaching zero), where every step in the circuit is FT, the
total number of one-qubit gates would be 223. Interestingly,
considering the anticipated experimental rates as displayed
in Table IV, the number of one-qubit gates that would be
performed on average becomes lower than in the error-free
case as a consequence of the low-resource philosophy (i.e.,
unflagged circuit in the event of a detected error are less
resource intensive than the flagged ones). Moreover, this
number decreases with increasing error strength. This trend
is depicted in the two upper plots in the first row of Fig. 20,
where we show the average number of one-qubit rotations.
However, we note that, even at relatively high error rates,
the number of one-qubit gates is always considerably larger
than the one required by the transversal CNOT approach,
which is always limited to 28 one-qubit gates (resulting from
4 single-qubit rotations for each physical CNOT). The number
of required two-qubit MS gates follows a similar pattern,
decreasing from 120 for the error-free lattice-surgery circuit
to less than 100 for high error rates, as depicted in the plots of
the second row of Fig. 20. Once again, the transversal CNOT
strategy is less resource intensive, employing only seven two-
qubit MS gates. In the plots of the two lower rows of Fig. 20,
we show that the average number of five-qubit MS gates
and trap-junction crossings display an opposite trend, i.e.,
increasing as the microscopic error rate grows. In the error-
free circuit, a five-qubit MS gate would never be performed. In
the faulty circuit, the average number of five-qubit MS gates
performed goes from about 1 in the low-error limit to more
than 4 in the high-error limit.
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FIG. 20. Gate and junction-crossing resources in the lattice-surgery CNOT: Average number of one-qubit gates, two- and five-qubit MS
gates, and trap-junction crossings performed during the lattice-surgery CNOT as a function of two different error strengths, the one associated
with the trap-junction crossing pcross (left) and the error rate of the two-qubit MS gate (right). All the other error strengths and durations are
set to the anticipated experimental values. For the figures on the right, the error strength of the five-qubit MS gate is set to be p5q = 5 p2q. In
this case, for high-error crossing we set pcross = 10−3, while for the low-error crossing we set pcross = 10−5. The black curves correspond to an
error-free regime where every step in the protocol is FT because we never detect an error. In the realistic (faulty) setting, we instead switch to
non-FT circuits as soon as an error is detected. This decreases the total number of one-qubit rotations and two-qubit MS gates that we have to
perform on average. In contrast, it increases the number of non-FT five-qubit MS gates, which we use only after an error has been detected.
The total number of trap-junction crossings also increases, but only slightly.
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FIG. 21. Comparison of the durations of the transversal and lattice-surgery CNOT gates: Average duration of the two alternative CNOT
strategies as a function of two different error strengths. the one associated with the trap-junction crossing pcross (left) and the error rate of the
2-q MS gate (right). All the other error strengths and durations are set to the anticipated experimental values. For the figures on the right, the
error strength of the five-qubit MS gate is set to be p5q = 5 p2q. In this case, for high-error crossing we set pcross = 10−3, while for the low-error
crossing we set pcross = 10−5. The durations of every gate and reordering operation are taken from Table IV. The duration of the trap-junction
crossing is set to tcross = −T2 ln(1 − 2pcross ), and therefore increases with pcross.

Regarding the junction crossings, the need to measure
repeatedly the low-weight operators during the merging and
splitting steps in the event of errors requires some addi-
tional crystal reconfigurations which increase the number of
junction crossings. In the error-free circuit, the number of
trap-junction crossings is exactly 12: we first shuttle 3 ions
from the ancillary arm to the target arm, and back again to
the ancillary arm, in order to measure the X t

LX a
L operator, as

depicted in Fig 15. We then shuttle 3 ions from the control
to the ancillary arm, and back again to the control arm, to
measure the Zc

LZa
L operator, as depicted in Fig. 16. In the faulty

circuit the number of trap-junction crossings is slightly larger
than 12 because in some cases, after the round-trip shuttling
of the 3 ions from one arm to another, if the QEC detects an
error on one of the boundary qubits, either one of the boundary
operators will have to be measured again, which implies 2
(4) extra trap-junction crossings for the weight-2 (weight-4)
operator (see Fig. 8 for a reminder of the protocol to mea-
sure a joint logical operator). With our current schedule, the
transversal CNOT requires 32 trap-junction crossings. Notice
that, in principle, one can devise a schedule for the transversal
CNOT that only requires 14 trap-junction crossings, as we
only need to shuttle 7 ions from one arm to another and
back. However, such a schedule would increase considerably
the number of necessary intra-arm reconfiguration operations
(splitting, merging, and, more importantly, rotations). This
is the underlying reason for our choice of a microscopic
schedule for the transversal CNOT gate where some zones
of the ancillary arm are initially vacated, and used as a tem-
porary storage zone to simplify the crystal reconfigurations.
Notice that, even with the transversal-CNOT schedule that
minimizes the number of junction crossings (14), this is still
larger than the average number of junction crossings for the
lattice-surgery CNOT (see lower row of of Fig. 20), which
implies that there will always be a high-pcross regime where
the lattice-surgery method outperforms the transversal CNOT
scheme. This enhanced sensitivity to the junction-crossing
error will become higher as the code distance grows since the
transversal scheme requires transporting all data qubits across

the junction, and back, in order to couple the equivalent qubits
via CNOTs. Moreover, larger codes will certainly require
storing the data qubits of a single logical block within various
neighboring arms, such that the number of required junction
crossings will increase even further. Conversely, the required
crossings in the lattice-surgery approach increase less rapidly.
For instance, a judicious arrangement of the data qubits of
the control, target, and ancillary blocks in neighboring trap
arms can minimize the number of required crossings for the
measurement of the low-weight operators in the merging step.

Once we have calculated the number of required gates
and junction crossings, one understands the qualitative trends
of the performance of the two strategies shown in Figs. 18
and 19, namely, the lattice-surgery approach is favorable
for higher junction-crossing errors and lower entangling-gate
errors, while the transversal strategy should be adopted in the
complementary regime. Moreover, given the average num-
ber of gates, we can also calculate the average duration of
the transversal and the lattice-surgery CNOT strategies as a
function of the trap-junction crossing and the 2-q MS gate
error strengths (see Fig. 21). As explained Sec. III B, every
reordering operation has an associated dephasing error with
a strength given by pidle = [1 − exp(−t/T2)]/2, where t is
the duration of the operation. We therefore set the duration
of the trap-junction crossing to be tcross = −T2 ln(1 − 2pcross),
which implies that, even with the low-resource philosophy, the
total duration of both protocols will increase with pcross. We
observe a similar trend to the logical Z error rate of Fig. 18. In
the low-pcross regime, the transversal strategy is advantageous,
as its duration is about a tenth of the lattice-surgery CNOT du-
ration. On the other hand, in the high-pcross regime, the larger
number of trap-junction crossing steps required as compared
to the lattice-surgery method becomes a disadvantage and the
transversal approach is slower. Interestingly, the break-even
point between the two regimes occurs at pcross = 4.0 × 10−4,
very close to the break-even point for the logical Z error rate
of Fig. 18. This reinforces the observation that the main driver
behind the logical Z errors is simply the dephasing during
reordering operations, instead of errors associated to gates.
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The durations of the protocols do not change significantly
with the error strength of the two-qubit MS gate, as shown in
the right panel of Fig. 21. For the transversal CNOT, once we
fix the duration of the trap-junction crossing, the duration of
the entire protocol remains constant. These correspond to 2.68
and 129 ms in the low- and high-pcross regimes, respectively.
The durations of the lattice-surgery protocols decrease slightly
with increasing p2q, due to the low-resource philosophy. They
decrease from 78.4 to 76.3 ms for high pcross, and from 31.5
to 28.5 ms for low pcross.

Together with the conclusions from the above section on
the performance comparison, this resource analysis shows
that the future technological improvements in the junction-
crossing capabilities of trapped-ion QCCD architectures, to-
gether with further-improving fidelities of the entangling
gates, will be crucial achievements by the collaborative com-
munity efforts toward a functional fault-tolerant quantum
processor.

VI. CONCLUSIONS AND OUTLOOK

In this work, we have presented a detailed analysis of
the prospects of trapped-ion QCCD architectures for the
demonstration of a logical CNOT gate between two logical
qubits, here encoded in color-code qubits. Achieving such
logical entangling gate is the most demanding ingredient to
implement the whole encoded set of logical Clifford unitaries,
and a vital ingredient for noise-resilient quantum information
processing. The future accomplishment of this challenge with
current or next-generation trapped-ion processors, which will
still focus on low-distance topological codes, necessarily re-
quires a careful fault-tolerant design of all the required steps
in the protocols. In this respect, we leverage from the recently
proposed flag-based methods for stabilizer readout, and adapt
them to the particular trapped-ion setup. In this work, we have
proven that these flag-based methods offer a clear advantage
over other more resource-demanding FT schemes, and will
likely be of key importance for further developments in FT
trapped-ion QEC. In addition to the standard FT transversal
approach for the CNOT gate using color codes, we have also
described a careful FT design of the lattice-surgery strategy,
and discussed in detail the microscopic trapped-ion schedules
to realize both protocols using a realistic QEC toolbox with
state-of-the-art trapped-ion operations.

As noted in the main text, a correct assessment of the
performance of QEC in general, and these CNOT strategies
in particular, requires the use of a realistic and physically mo-
tivated error model for the architecture at hand, upgrading the
oversimplified device-independent models mostly used in the
literature. Toward that goal, one of the characteristic features
of our study is the use of a microscopic multiparameter error
model with different quantum channels describing the leading
effects of noise on the different trapped-ion operations, the
parameters of which are set by microscopic calculations and
experimental results. Equipped with the above FT designs,
microscopic schedules, and realistic error model, we have
presented a numerical comparison of both CNOT strategies in
view of current and envisioned experimental capabilities. The
development of an efficient multiparameter subset sampler

for the stabilizer formalism has been crucial to perform these
exhaustive simulations for Pauli noise processes efficiently.

Our numerical results can be used to identify the experi-
mental regimes where one strategy will be favorable over the
other, paying special attention to the roles of the errors during
the transport of ions across the trap junction, which is the most
demanding operation on the external degrees of freedom of
the ions, and the effect of infidelities in the phonon-mediated
entangling gates, which is still the most-demanding operation
on the internal degrees of freedom of the ions. We show that
depending on the error budget of these two operations, lattice
surgery might be preferred with respect to a transversal ap-
proach or vice versa. In general, the lattice-surgery approach
will be favorable in situations of a higher junction-crossing
error and lower entangling-gate errors, while the transversal
strategy should be adopted in case that the entangling-gate
error is higher but the junction crossing is less faulty. These
results can be understood from our resource analysis, and
will be likely more pronounced for larger-distance codes, and
they will hopefully guide the future experimental trapped-ion
progress in the field. We note that a detailed study of this point
for larger-distance codes is an important and open question for
future work.

As an outlook, we note that trapped-ion experiments and
other platforms have evaluated the performance of single-
qubit and entangling quantum gates at the physical qubit level
using randomized benchmarking [90] and other techniques,
such as gate set tomography [91]. Therefore, to assess the
performance of the logical CNOT operation, instead of com-
puting the error rate associated with the preparation of a
logical Bell pair, as explored in this work, it would be very
interesting and useful to extend this to a study of logical ran-
domized benchmarking [88] of the different strategies hereby
described.

Stimulated by the planned experimental developments in
the midterm horizon, it will be very interesting to perform
analogous studies for larger-distance codes promising higher
resilience against errors. As already noted in the main text,
in the QCCD architecture with the HOA-2 segmented trap
it will likely not be optimal to store whole logical blocks
within a single arm. It will therefore be important to develop
microscopic arrangements of the data qubits distributed over
neighboring arms, and work out detailed operational sched-
ules similar to the ones hereby presented that minimize the
required resources. With an optimized microscopic design,
and depending on how noisy the junction crossings turn out
to be in the laboratory, it is plausible that the advantage of
the lattice-surgery approach over the transversal CNOT gate
will become apparent earlier. This trend would constitute
a proof of the advantage of schemes with local quantum
processing in a practical and realistic scenario that could be
experimentally tested in the near future. Let us also mention
that, in this work, we have not considered another viable
strategy towards the FT implementation of a logical CNOT
gate: code deformation [75]. The reason for this omission is
that the resource requirements for this strategy are higher [92],
especially for the small-distance codes that will be available in
near-term experiments. However, as the trapped-ion technol-
ogy improves, and larger registers can be handled, it will be
very interesting to extend our comparison by including also a
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realistic and detailed study of a trapped-ion code deformation
strategy.

The FT design of the lattice-surgery methods, together with
the trapped-ion tools to implement them, can be considered
as generic building blocks that can also be useful for other
applications of lattice surgery, such as switching between
different codes (e.g., a surface code for information storage
and a color code for information processing by means of
transversal gate operations [93,94]) and logical multiqubit
CNOT gates [95,96]. It would also be interesting in the future
to assess the prospects of this trapped-ion architecture in the
realization of such schemes.
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