
(p, q)-REGULAR OPERATORS BETWEEN BANACH LATTICES

ENRIQUE A. SÁNCHEZ PÉREZ AND PEDRO TRADACETE

Abstract. We study the class of (p, q)-regular operators between quasi-Banach

lattices. In particular, a representation of this class as the dual of a certain
tensor norm for Banach lattices is given. We also provide some factorization

results for (p, q)-regular operators yielding new Marcinkiewicz-Zygmund type
inequalities for Banach function spaces. An extension theorem for (q,∞)-

regular operators defined on a subspace of Lq is also given.

1. Introduction

This paper is devoted to study operators between Banach or quasi-Banach lat-
tices satisfying estimates of the form∥∥∥∥( n∑

i=1

|Txi|p
) 1
p
∥∥∥∥ ≤ K∥∥∥∥( n∑

i=1

|xi|q
) 1
q
∥∥∥∥,

for every choice of vectors {xi}ni=1. The operators for which this inequality holds
are called (p, q)-regular, and as far as we know were introduced by A. Bukhvalov in
[2] in connection with the interpolation of Banach lattices (see also [3]). The aim
of this note is to make a systematic study of the class of (p, q)-regular operators.

It should be noted that the notion of regular operator has different usages in
the literature: these can refer to operators that can be written as a difference
of positive operators (cf. [1]), or for the terminology used in [20], these refer to
operators T : X → Y for which there is K > 0 such that∥∥∥∥ n∨

i=1

|Txi|
∥∥∥∥ ≤ K∥∥∥∥ n∨

i=1

|xi|
∥∥∥∥

for every {xi}ni=1 ⊂ X. The latter correspond in the current terminology to (∞,∞)-
regular operators.

There has been a considerable interest in the literature to determine conditions
under which every operator between two Banach lattices is (r, r)-regular (or for
brevity r-regular). In particular, an application of Grothendieck’s inequality due to
J. L. Krivine [14] (see also [17, Theorem 1.f.14]) yields that for any Banach lattices
X,Y , every bounded linear operator T : X → Y is 2-regular. This fact has been
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later extended by N. J. Kalton to a quite large family of quasi-Banach lattices [13],
and is also related to the complexification constants of an operator (cf. [10]). On
the other hand, it is also known that positive operators between Banach lattices are
always (p, q)-regular for q ≤ p. The case of (∞, 1)-regular operators, which contain
all (p, q)-regular operators, have been recently shown to have good interpolation
properties with respect to the Calderón-Lozanovskii construction [23].

In the particular case of operators between Lp spaces, the question whether
every operator is r-regular can be traced back to classical works of R. Paley, J.
Marcinkiewicz, A. Zygmund and S. Kwapien, and has been completely settled by
A. Defant and M. Junge in [9] (see also the references therein). In particular, in
that paper, the authors characterize the triples (p, q, r) for which every operator
T : Lp → Lq is r-regular, even providing quantitative versions and asymptotic
estimates of the constants involved in some cases. In this paper, we will analyze
the analogous situation concerning (p, q)-regular operators.

It goes without saying that there is also a natural interplay between (p, q)-
regularity and summability properties. This connection stems from the fact that
for a Banach lattice X and {xi}ni=1 ⊂ X it holds that

sup
x∗∈BX∗

(∑
|〈xi, x∗〉|p

)1/p

≤
∥∥∥(∑ |xi|p

)1/p∥∥∥
X
.

In particular, the above inequality yields that every lattice (p, q)-summing operator
is (p, q)-regular (see [5, 18] concerning lattice summing operators). The natural
connection with convexity and concavity will also be explored.

The paper is organized as follows: after Section 2, where a preliminary discussion
about the basics on (p, q)-regular operators is given, in Section 3 we present several
facts for this class of operators in the framework of Lapresté tensor norms (see [7]).
In particular, this allows to represent the class of (p, q)-regular operators as the dual
of a certain tensor product in a standard way. It must be noted though that this
point of view has been historically considered for Banach spaces, or locally convex
vector spaces, but it is not so common for the case of Banach lattices. This approach
is not to be confused with that of Banach lattice tensor norms, which studies the
conditions under which a particular topology in a tensor product of Banach lattices
becomes itself a Banach lattice (see the founding paper of D. Fremlin [12] and
related recent work of A. Schep in [24]).

Next part of the paper, Section 4, is devoted to the peculiarities of (p, q)-regular
operators between Lr spaces. We first study the factorization properties of these
operators in terms of the Maurey-Rosenthal theory (see Theorems 4.1 and 4.4) in
order to provide a characterization of a specific class of operators factoring through
Lr-spaces. As a main result of this section, we give a new class of Marcinkiewicz-
Zygmund inequalities involving norms of general Banach function lattices.

The paper is finished by showing the extension properties of the (∞, q)-regular
operators defined on a subspace of a Banach lattice (Theorem 5.2), which provide
a version of a result of G. Pisier on extension of ∞-regular operators (see [20]).

We use standard terminology from Banach spaces, Banach lattices and operator
theory. For any unexplained notion the reader is referred to the monographs [1, 7,
17].



(p, q)-REGULAR OPERATORS 3

2. Definitions and preliminaries

Suppose X is a quasi-Banach lattice of measurable functions on a measure
space (Ω,Σ, µ). Given {xi}ni=1 ⊂ X and p ∈ (0,∞), expressions of the form
(
∑n
i=1 |xi|p)1/p can be defined pointwise (µ-almost everywhere). Although Kriv-

ine’s functional calculus ([17, Theorem 1.d.1], see also [22] for the non-locally convex
setting) gives a meaning to this kind of expressions for abstract quasi-Banach lat-
tices, for most applications we will only be concerned with the case of measurable
functions.

Definition 2.1. Given quasi-Banach lattices X,Y , and 0 < p, q < ∞ a linear
map T : X → Y is (p, q)-regular if there is a constant K > 0 such that for every
{xi}ni=1 ⊂ X, ∥∥∥∥( n∑

i=1

|Txi|p
) 1
p
∥∥∥∥ ≤ K∥∥∥∥( n∑

i=1

|xi|q
) 1
q
∥∥∥∥.

Similarly, T is (p,∞)-regular (respectively, (∞, q)-regular) when∥∥∥∥( n∑
i=1

|Txi|p
) 1
p
∥∥∥∥ ≤ K∥∥∥∥ n∨

i=1

|xi|
∥∥∥∥.

(
resp.

∥∥∥∥ n∨
i=1

|Txi|
∥∥∥∥ ≤ K∥∥∥∥( n∑

i=1

|xi|q
) 1
q
∥∥∥∥.
)

For simplicity, when p = q we will say that T is p-regular. With this notation,
the well-known notion of regular operator (cf. [20]) corresponds to the case of
∞-regular operator.

We will write Rp,q(X,Y ) for the space of (p, q)-regular operators between X
and Y . We will denote by ρp,q(T ) the smallest K > 0 for which the inequalities
appearing in Definition 2.1 hold for arbitrary elements in X. The following facts
are straightforward:

Proposition 2.2.

(1) Every (p, q)-regular linear map T is bounded with ‖T‖ ≤ ρp,q(T ).
(2) Let p1 ≥ p and q1 ≤ q. If T is (p, q)-regular, then T is (p1, q1)-regular with

ρp1,q1(T ) ≤ ρp,q(T ).

Given {xi}ni=1 ⊂ X, for p ≥ 1, taking 1/p+ 1/p′ = 1 we can write( n∑
i=1

|xi|p
) 1
p

= sup

{ n∑
i=1

aixi :

n∑
i=1

|ai|p
′
≤ 1

}
,

(the supremum being taken in the sense of order in the lattice X). In particular
when T is a positive operator, we have the inequalities( n∑
i=1

|Txi|p
) 1
p

= sup
n∑
i=1
|ai|p′≤1

T
( n∑
i=1

aixi

)
≤ T

(
sup

n∑
i=1
|ai|p′≤1

n∑
i=1

aixi

)
= T

[( n∑
i=1

|xi|p
) 1
p

]

More generally, if the modulus of an operator T : X → Y exists (cf. [1, Chapter
1]), then it is p-regular for every 1 ≤ p ≤ ∞, and ρp,p(T ) ≤ ‖|T |‖. In particular,
this happens when Y is a Dedekind complete Banach lattice and T can be written
as a difference of two positive operators. Conversely, suppose Y is complemented
by a positive projection in its topological bidual Y ∗∗, then every 1-regular operator
T : X → Y can be written as a difference of two positive operators [15, p. 307].
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The definition of a (p, q)-regular operator suggests a connection with convexity
and concavity. Indeed, recall that an operator T : X → Y is (p, q)-concave (cf. [11,
p. 330]) whenever there is a constant C > 0 such that for every {xi}ni=1 ⊂ X( n∑

i=1

‖Txi‖p
) 1
p

≤ C
∥∥∥∥( n∑

i=1

|xi|q
) 1
q
∥∥∥∥.

Similarly, T : X → Y is (p, q)-convex whenever there is a constant C > 0 such that
for every {xi}ni=1 ⊂ X ∥∥∥∥( n∑

i=1

|Txi|p
) 1
p
∥∥∥∥ ≤ C( n∑

i=1

‖xi‖q
) 1
q

.

In particular, a Banach lattice is called p-concave, respectively p-convex, when the
identity is (p, p)-concave, respectively (p, p)-convex. It is straightforward to check
that, for p ≥ q, if T : X → Y is (p, q)-concave and S : Y → Z is p-convex, then
ST is (p, q)-regular with ρp,q(ST ) ≤M (p)(S)Kp,q(T ) (where, M (p)(S) and Kp,q(T )
denote, respectively, the p-convexity constant of S and the (p, q)-concavity constant
of T , cf. [17, 1.d.3]).

We will also make use of the concavification of a Banach lattice (cf. [17, 1.d]).
Namely, if X is a p-convex Banach lattice of measurable functions over some mea-
sure space (Ω,Σ, µ), we define its p-concavification X[p] which consists of those

measurable functions f such that |f |
1
p ∈ X, endowed with the norm

‖f‖X[p]
= ‖|f |

1
p ‖pX .

We mentioned above that for a large class of quasi-Banach lattices every bounded
linear operator is 2-regular. In fact, an application of Grothendieck’s inequality due
to J. L. Krivine [14] (see also [17, Theorem 1.f.14]) yields that for Banach lattices
X,Y , every bounded linear operator T : X → Y is 2-regular with ρ2,2(T ) ≤ KG‖T‖,
where KG denotes Grothendieck’s constant.

This fact was extended by N. J. Kalton to L-convex quasi-Banach lattices [13].
Recall that a quasi-Banach lattice X is L-convex whenever its order intervals are
uniformly locally convex, that is, whenever there exists 0 < ε < 1 so that if u ∈ X+

with ‖u‖ = 1 and 0 ≤ xi ≤ u (for i = 1, . . . , n) satisfy

1

n
(x1 + . . .+ xn) ≥ (1− ε)u,

then

max
1≤i≤n

‖xi‖ ≥ ε.

This class includes every quasi-Banach lattice which is the p-concavification of a
Banach lattice (for instance, Lp, Λ(W,p) and Lp,∞ for 0 < p <∞). Kalton’s result
states that if Y is an L-convex quasi-Banach lattice, then for every quasi-Banach
lattice X, every operator T : X → Y is 2-regular [13, Theorem 3.3].

Proposition 2.3. Given quasi-Banach lattices X,Y and 0 < p, q ≤ ∞, the space
(Rp,q(X,Y ), ρp,q(·)) is a quasi-Banach space.

Proof. This is straightforward. For completeness, just note that ‖T‖ ≤ ρp,q(T ). �

Proposition 2.4. Let X,Y be quasi-Banach lattices.

(i) Let 0 < p < q ≤ ∞. Then Rp,q(X,Y ) = {0}.



(p, q)-REGULAR OPERATORS 5

(ii) Suppose Y is L-convex, then for every p ≥ 2 ≥ q we have Rp,q(X,Y ) =
L(X,Y ).

(iii) For 0 < q ≤ p, if X is q-concave and Y is p-convex, then Rp,q(X,Y ) =
L(X,Y ).

Proof. (i) Let T ∈ Rp,q(X,Y ). Suppose there is x ∈ X such that Tx 6= 0. Then for
each n ∈ N,

n
1
p ‖Tx‖ = ‖(

n∑
i=1

|Tx|p)
1
p ‖ ≤ ρp,q(T )‖(

n∑
i=1

|x|q)
1
q ‖ = ρp,q(T )n

1
q ‖x‖.

Since this is impossible for large n, we have that T = 0.
(ii) This follows from [13, Theorem 3.3] and Proposition 2.2.
(iii) Let T : X → Y be an operator. For (xi)

n
i=1 ⊂ X we have

‖(
n∑
i=1

|Txi|p)
1
p ‖ ≤M (p)(Y )(

n∑
i=1

‖Txi‖p)
1
p ≤M (p)(Y )(

n∑
i=1

‖Txi‖q)
1
q

≤M (p)(Y )‖T‖ (

n∑
i=1

‖xi‖q)
1
q ≤M (p)(Y )‖T‖M(q)(X) ‖(

n∑
i=1

|xi|q)
1
q ‖.

�

In the rest of the section we characterize (p, q)-regularity of operators in terms
of the bilinear maps defined by them. Some of the results presented here are well-
known; but we include them here in a unified way and with complete proofs for the
aim of completeness. We first analyze a special type of duality in Köthe-Bochner
spaces, which will be done in what follows.

Recall that for a Banach lattice X and 1 ≤ p <∞, X(`p) is the closed subspace
of sequences x = (xn)n∈N ⊂ X for which

‖x‖X(`p) = sup
k

∥∥∥( k∑
n=1

|xn|p
) 1
p
∥∥∥ <∞,

and which is spanned by the eventually null sequences. Similarly, X(`∞) corre-
sponds to the space of those sequences with

‖x‖X(`∞) = sup
k

∥∥∥ k∨
n=1

|xn|
∥∥∥ <∞.

These are the natural generalization of Bochner (or Köthe-Bochner) spaces for ab-
stract Banach lattices. Indeed, let X be an order continuous quasi-Banach function
space over the measure space (Ω,Σ, µ) and let 0 < r ≤ ∞. The Köthe-Bochner
space X(Ω,Σ, µ; `r) is defined to be the space of strongly Σ-measurable functions
φ : Ω→ `r with the quasi-norm given by

‖φ‖X(Ω,Σ,µ;`r) :=
∥∥φ‖·‖r∥∥X ,

where φ‖·‖r : Ω→ R is given by ω ∈ Ω 7→ ‖φ(ω)‖`r .

Lemma 2.5. Let X be an order continuous quasi-Banach function space over
(Ω,Σ, µ), 1 ≤ r ≤ ∞ and let (ei)i∈N denote the unit basis of `r. For any (xi)

n
i=1 ⊂

X we have
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(i) the function φ : Ω→ `r given by φ(ω) =
∑n
i=1 xi(ω)ei belongs to X(Ω,Σ, µ; `r)

with

‖φ‖X(Ω,Σ,µ;`r) :=
∥∥( n∑

i=1

|xi|r
) 1
r
∥∥
X
,

(ii) the set X(Ω,Σ, µ; `r)0 of all the functions defined in this way is dense in
X(Ω,Σ, µ; `r).

Proof. (i) Since X is order continuous, each function xi can be approximated by
simple functions. Therefore, as the sequence is finite, a direct calculation shows
that there is a sequence of `r-valued simple functions converging in the quasi-norm
of X(Ω,Σ, µ; `r) to φ, and also that there is a subsequence of it that converges
µ-almost everywhere. Therefore, φ is strongly measurable. The formula for the
quasi-norm is just the definition of the quasi-norm in the Köthe-Bochner space.

(ii) By the order continuity of X, it can be easily seen using also that the
functions are strongly measurable that vector valued simple functions are dense
in X(Ω,Σ, µ; `r).

Indeed, take a sequence of simple functions (xi) converging µ-a.e. to a function
x ∈ X(Ω,Σ, µ; `r). We can choose a sequence (yi) such that for every i, ‖x(w) −
yi+1(w)‖X ≤ ‖x(w) − yi(w)‖X holds µ-a.e. In order to see this, just take x1 = y1

and consider the measurable set A2 := {w|‖x(w)−x1(w)‖ ≤ ‖x(w)−x2(w)‖}, and
define the simple function y2 = y1χA2

+ x2χAc2 . Now, define y3 in the same way
using y2 and x3, and so on. The resulting sequence satisfies the requirement. Now,
we have that the real valued functions τi(w) = ‖x(w) − yi(w)‖ are non-negative,
decreasing and converge to 0 µ-a.e. The order continuity of X(µ) gives then that
limi τi = 0 in the norm of X(µ), that is, limi yi = x in X(Ω,Σ, µ; `r).

So it is enough to prove that there is a sequence of functions as in (i) converging to
every simple function like ψ =

∑m
i=1 uiχAi in X(Ω,Σ, µ; `r), with ui =

∑
j λi,jej ∈

`r. In order to see that, note that for every k we can write ψ as

ψ =

m∑
i=1

(

k∑
j=1

λi,jej) · χAi +

m∑
i=1

(
∑
j>k

λi,jej) · χAi .

Clearly, the first member in this sum, say ψk =
∑m
i=1(

∑k
j=1 λi,jej) · χAi , belongs

to the above family. Thus, it is enough to check that the second member in the
sum converges to 0 in the quasi-norm, and so ψk →k ψ. Indeed,∥∥ m∑

i=1

(
∑
j>k

λi,jej) · χAi
∥∥
X(Ω,Σ,µ;`r)

≤
m∑
i=1

(

∞∑
j=k+1

|λi,j |r)
1
r ‖χAi‖X →k 0.

�

Let 1 ≤ r, p, s ≤ ∞ such that 1/r = 1/p + 1/s, and X a Banach lattice with
dual X∗. A similar argument as that of [17, Proposition 1.d.2] yields that for any
{xi}ni=1 ⊂ X, {x∗i }ni=1 ⊂ X∗ it holds that

(1)
( n∑
i=1

|〈x∗i , xi〉|r
) 1
r ≤

〈( n∑
i=1

|x∗i |s
) 1
s

,
( n∑
i=1

|xi|p
) 1
p
〉
.

For r = 1 this inequality is sharp, in the sense of [15, 7.2.2 (2)]. For r > 1 this
need not be the case, but in the Köthe-Bochner setting there is an improvement
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which will be the key for our purposes. This can be understood as the consequence
of some “duality in the range” between norms of vector valued function spaces.

We will consider the (µ-almost everywhere) pointwise product of vector valued
functions as follows: for φ ∈ X(Ω,Σ, µ; `p) and ψ ∈ X∗(Ω,Σ, µ; `s),

(2) (φ · ψ) (ω) :=

∞∑
i=1

〈φ(ω), ei〉〈ψ(ω), ei〉 ei.

Hölder’s inequality in the range of the function yields that that (φ · ψ) (w) ∈ `r
µ-almost everywhere. In fact we have the following:

Lemma 2.6. (Hölder’s inequality for `r-valued Köthe-Bochner functions) Let X
be an order continuous Banach function space over (Ω,Σ, µ), and 1 ≤ r ≤ p, s ≤ ∞
such that 1/r = 1/p+ 1/s. If φ ∈ X(Ω,Σ, µ; `p) and ψ ∈ X∗(Ω,Σ, µ; `s), then∥∥φ · ψ∥∥

L1(Ω,Σ,µ;`r)
≤
∥∥φ∥∥

X(Ω,Σ,µ;`p)
·
∥∥ψ∥∥

X∗(Ω,Σ,µ;`s)
.

Proof. The order continuity of X gives the representation of the duality by means
of the integral with respect to µ, which can be taken as a probability measure (cf.
[17, Theorem 1.b.14]. Let φ and ψ as in the statement. Then

‖φ · ψ‖L1(Ω,Σ,µ;`r) =

∫ ( ∞∑
i=1

|〈φ(w), ei〉〈ψ(w), ei〉|r
) 1
r dµ

≤
∫ ( ∞∑

i=1

|〈φ(w), ei〉|p
) 1
p ·
( ∞∑
i=1

|〈ψ(w), ei〉|s
) 1
s dµ

=

∫ ∥∥φ(w)
∥∥
`p
·
∥∥ψ(w)

∥∥
`s
dµ

≤
∥∥φ∥∥

X(Ω,Σ,µ;`p)
·
∥∥ψ∥∥

X∗(Ω,Σ,µ;`s)
.

�

Lemma 2.7. Let X be an order continuous Banach function space over (Ω,Σ, µ)
and consider 1 ≤ r ≤ p, s ≤ ∞ satisfying that 1/r = 1/p+ 1/s. Given {xi}ni=1 ⊂ X
let φ =

∑n
i=1 xiei ∈ X(Ω,Σ, µ; `p). Then

‖φ‖X(Ω,Σ,µ;`p) = sup
ψ∈BX∗(Ω,Σ,µ;`s)

∥∥φ · ψ∥∥
L1(Ω,Σ,µ;`r)

.

Actually, the functions in BX∗(µ,`s) for the computation of the norm can be taken

of the form
∑n
i=1 x

∗
i ei ∈ X∗(Ω,Σ, µ; `s), that is

∥∥( n∑
i=1

|xi|p
) 1
p
∥∥
X

= sup
{∥∥( n∑

i=1

|xi · x∗i |r
) 1
r
∥∥
L1(µ)

:
∥∥( n∑

i=1

|x∗i |s
) 1
s
∥∥
X∗
≤ 1
}
.

Proof. The inequality “ ≥ ” is a consequence of Lemma 2.6. For the equality,
consider {xi}ni=1 ⊂ X. By the Hahn-Banach Theorem, we can take x∗ ∈ BX∗ such
that ∥∥( n∑

i=1

|xi|p
) 1
p
∥∥
X

= 〈x∗,
( n∑
i=1

|xi|p
) 1
p 〉.
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For i = 1, . . . , n let

x∗i (ω) =


|xi(ω)|(p−r)/r x∗(ω)( n∑

i=1
|xi(ω)|p

)1/s if
∑n
i=1 |xi(ω)|p 6= 0,

0 otherwise.

Note that since

|xi(ω)|(p−r)/r ≤
( n∑
i=1

|xi(ω)|p
) 1
s ,

it follows that x∗i ∈ X∗ for i = 1, . . . , n. Note also that∫ ( n∑
i=1

|xi · x∗i |r
) 1
r dµ =

∫ ( n∑
i=1

|xi|p
) 1
px∗dµ =

∥∥( n∑
i=1

|xi|p
) 1
p
∥∥
X
.

Moreover, taking into account that(p− r
r

)
s =

sp

r
− s = p+ s− s = p,

we obtain ( n∑
i=1

|x∗i |s
) 1
s =

( n∑
i=1

∣∣∣ |xi|(p−r)/r x∗(∑n
i=1 |xi|p

) 1
s

∣∣∣s) 1
s

= x∗ ∈ B(X(µ))∗ .

This proves the result. �

Consider a pair of Banach function spaces X, Y over (Ω,Σ, µ) and (Ω′,Σ′, ν)
respectively, such that X and Y ∗ are order continuous. If we take a linear operator
T : X → Y and 1/r ≤ 1/q + 1/s, we can define a bilinear operator

PT : X(Ω,Σ, µ; `q)0 × Y ∗(Ω′,Σ′, ν; `s)0 → L1(ν, `r)

by means of the product defined in (2) for vector valued functions, as follows:

PT (

n∑
i=1

xiei,

n∑
i=1

y∗i ei)(ω
′) := (

n∑
i=1

[Txi](ω
′)ei)·(

n∑
i=1

y∗i (ω′)ei) =

n∑
i=1

[Txi](ω
′)·y∗i (ω′)ei.

The continuity of such a bilinear map is equivalent to the existence of a constant
C > 0 such that∥∥ n∑

i=1

Txi y
∗
i ei
∥∥
L1(µ,`r)

≤ C
∥∥ n∑
i=1

xiei
∥∥
X(Ω,Σ,µ;`q)

·
∥∥ n∑
i=1

y∗i ei
∥∥
Y ∗(Ω′,Σ′,ν;`s)

.

In this case, by Lemma 2.5, PT uniquely extends to a continuous bilinear map on
the space X(Ω,Σ, µ; `q)× Y ∗(Ω′,Σ′, ν; `s).

Proposition 2.8. Let X, Y be Banach function spaces over (Ω,Σ, µ) and (Ω′,Σ′, ν)
respectively, such that X and Y ∗ are order continuous. Consider an operator T :
X → Y . Let 1/r = 1/p+ 1/s and q ≤ p. The following assertions are equivalent.

(i) T is (p, q)-regular.
(ii) The bilinear map PT is continuous from X(Ω,Σ, µ; `q)0×Y ∗((Ω′,Σ′, ν; `s)0

to L1(ν, `r).

Moreover, the continuity constant of the bilinear map PT equals ρp,q(T ).
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Proof. (i) ⇒ (ii): Let {xi}ni=1 ⊂ X and {y∗i } ⊂ Y ∗. By Lemma 2.6 we have∫ ( n∑
i=1

|Txiy∗i |r
) 1
r dν ≤

∥∥( n∑
i=1

|Txi|p
) 1
p
∥∥
Y

∥∥( n∑
i=1

|y∗i |s
) 1
s
∥∥
Y ∗

≤ ρp,q(T )
∥∥( n∑

i=1

|xi|q
) 1
q
∥∥
X

∥∥( n∑
i=1

|y∗i |s
) 1
s
∥∥
Y ∗
.

This gives (ii), with C ≤ ρp,q(T ).
(ii) ⇒ (i): Suppose there is C > 0 such that∫ ( n∑

i=1

|Txiy∗i |r
) 1
r dν ≤ C

∥∥( n∑
i=1

|xi|q
) 1
q
∥∥
X

∥∥( n∑
i=1

|y∗i |s
) 1
s
∥∥
Y ∗

for every {xi}ni=1 ⊂ X and {y∗i } ⊂ Y ∗. By Lemma 2.7, it follows that∥∥( n∑
i=1

|Txi|p
) 1
p
∥∥
Y

= sup
{∥∥( n∑

i=1

|Txi · y∗i |r
) 1
r
∥∥
L1(ν)

:
∥∥( n∑

i=1

|y∗i |s
) 1
s
∥∥
Y ∗
≤ 1
}

≤ C
∥∥( n∑

i=1

|xi|q
) 1
q
∥∥
X
.

This also gives that ρp,q(T ) ≤ C. �

3. Lattice tensor norms and duality for (p, q)-regular operators

In this section we introduce some specific topologies for tensor products of Ba-
nach lattices, following a similar procedure as in the case of the Lapresté tensor
norms [7]. This approach allows us to relate (p, q)-regular operators with other
classical operator ideals by using standard tensor product duality.

Let us start by recalling the definitions and notation of well-known tensor norms.
Given Banach spaces X and Y , for z ∈ X ⊗ Y and 1 ≤ p ≤ ∞ set

ε(z) = sup
{
x∗ ⊗ y∗(z) : x∗ ∈ BX∗ , y∗ ∈ BY ∗

}
,

π(z) = inf
z=

∑
xi⊗yi

{∑
‖xi‖‖yi‖

}
,

gp(z) = inf
z=

∑
xi⊗yi

{(∑
‖xi‖p

)1/p

· sup
y∗∈BY ∗

(∑
|〈yi, y∗〉|p

′
)1/p′}

,

dp(z) = inf
z=

∑
xi⊗yi

{
sup

x∗∈BX∗

(∑
|〈xi, x∗〉|p

′
)1/p′

·
(∑

‖yi‖p
)1/p}

,

wp(z) = inf
z=

∑
xi⊗yi

{
sup

x∗∈BX∗

(∑
|〈xi, x∗〉|p

)1/p

· sup
y∗∈BY ∗

(∑
|〈yi, y∗〉|p

′
)1/p′}

.

These are the injective, projective and some particular cases of the Lapresté tensor
norms (Chevet-Saphar tensor norms, see [7, 12.5]).

Definition 3.1. Let X, Y be Banach lattices and 1 ≤ q ≤ p ≤ ∞. For z ∈ X ⊗Y ,
let us define the positively homogeneous function

φp,q(z) := inf
{∥∥(∑ |xi|q

)1/q∥∥
X
·
∥∥(∑ |yi|p

′)1/p′∥∥
Y

: z =

n∑
i=1

xi ⊗ yi
}
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and the seminorm

rp,q(z) := inf
{ m∑
j=1

φp,q(zj) : z =

m∑
j=1

zj

}
.

Proposition 3.2. Let 1 ≤ q ≤ p ≤ ∞, X and Y Banach lattices.

(1) For z ∈ X ⊗ Y , ε(z) ≤ rp,q(z) ≤ π(z). Consequently, rp,q is a norm.

(2) If X is q-convex and Y is p′-convex (with M (q)(X) = 1 = M (p′)(Y )),

then φp,q is a quasi-norm with constant 2
1
t−1 where 1/t = 1/q + 1/p′. In

particular, for p = q, rp,p = φp,p is a norm.

Proof. (1) For the inequality ε(z) ≤ rp,q(z) it is enough to prove that ε(z) ≤ φp,q(z)
for every z ∈ X ⊗ Y. For every representation z =

∑n
i=1 xi ⊗ yi and x∗ ∈ BX∗ ,

y∗ ∈ BY ∗ , we have

n∑
i=1

〈xi, x∗〉〈yi, y∗〉 ≤ (

n∑
i=1

|〈xi, x∗〉|p)1/p · (
n∑
i=1

|〈yi, y∗〉|p
′
)1/p′

≤ (

n∑
i=1

|〈xi, x∗〉|q)1/q · (
n∑
i=1

|〈yi, y∗〉|p
′
)1/p′

≤
∥∥(∑ |xi|q

)1/q∥∥
X
·
∥∥(∑ |yi|p

′)1/p′∥∥
Y
.

This gives ε(z) ≤ rp,q(z). For rp,q(z) ≤ π(z), just note that for each representation
z =

∑m
j=1 xj ⊗ yj ,

rp,q(z) ≤
m∑
j=1

φp,q(xj ⊗ yj) ≤
m∑
j=1

‖xj‖X ‖yj‖Y .

(2) Let 1/t = 1/q + 1/p′, and note that t ≤ 1. Given z1, z2 ∈ X ⊗ Y and ε > 0,
let z1 =

∑n
i=1 x

1
i ⊗ y1

i and z2 =
∑n
i=1 x

2
i ⊗ y2

i such that

∥∥ n∑
i=1

|x1
i |q
∥∥1/q

X[q]
=
∥∥( n∑

i=1

|x1
i |q
)1/q∥∥

X
≤ (φp,q(z1) + ε)t/q,

∥∥ n∑
i=1

|y1
i |p
′∥∥1/p′

Y[p′]
=
∥∥( n∑

i=1

|y1
i |p
′)1/p′∥∥

Y
≤ (φp,q(z1) + ε)t/p

′
,

and ∥∥ n∑
i=1

|x2
i |q
∥∥1/q

X[q]
=
∥∥( n∑

i=1

|x2
i |q
)1/q∥∥

X
≤ (φp,q(z2) + ε)t/q,

∥∥ n∑
i=1

|y2
i |p
′∥∥1/p′

Y[p′]
=
∥∥( n∑

i=1

|y2
i |p
′)1/p′∥∥

Y
≤ (φp,q(z2) + ε)t/p

′
.



(p, q)-REGULAR OPERATORS 11

Then

φp,q(z1 + z2) ≤
∥∥∥∥( n∑

i=1

|x1
i |q +

n∑
i=1

|x2
i |q
)1/q∥∥∥∥

X

∥∥∥∥( n∑
i=1

|y1
i |p
′
+

n∑
i=1

|y2
i |p
′)1/p′∥∥∥∥

Y

=

∥∥∥∥ n∑
i=1

|x1
i |q +

n∑
i=1

|x2
i |q
∥∥∥∥1/q

X[q]

∥∥∥∥ n∑
i=1

|y1
i |p
′
+

n∑
i=1

|y2
i |p
′
∥∥∥∥1/p′

Y[p′]

≤
(∥∥ n∑

i=1

|x1
i |q
∥∥
X[q]

+
∥∥ n∑
i=1

|x2
i |q
∥∥
X[q]

)1/q(∥∥ n∑
i=1

|y1
i |p
′∥∥
Y[p′]

+ ‖
n∑
i=1

|y2
i |p
′∥∥
Y[p′]

)1/p′

≤
(

(φp,q(z1) + ε)t + (φp,q(z2) + ε)t
)1/q(

(φp,q(z1) + ε)t + (φp,q(z2) + ε)t
)1/p′

≤
(

21−t(φp,q(z1) + φp,q(z2) + 2ε)t
)1/q(

21−t(φp,q(z1) + φp,q(z2) + 2ε)t
)1/p′

= 2
1
t−1(φp,q(z1) + φp,q(z2) + 2ε).

As ε > 0 was arbitrary, it follows that φp,q(z1 + z2) ≤ 2
1
t−1(φp,q(z1) + φp,q(z2)) as

claimed. �

Now we can provide the representation theorem for (p, q)-regular operators. Re-
call that the trace duality allows us to identify (X ⊗ Y ∗)∗ with a certain subspace
of L(X,Y ∗∗): for ϕ ∈ (X ⊗ Y ∗)∗, take Tϕ : X → Y ∗∗ given by

〈Tϕ(x), y∗〉 = ϕ(x⊗ y∗)
for x ∈ X and y∗ ∈ Y ∗.

Theorem 3.3. Let 1 ≤ q ≤ p ≤ ∞. Then

Rp,q(X,Y ) =
(
X ⊗rp,q Y ∗

)∗
∩ L(X,Y ).

isometrically.

Proof. To see the inclusion ⊆ just take a (p, q)-regular operator T : X → Y and

consider the trace duality with a tensor z =
∑m
j=1

∑n
i=1 x

j
i ⊗ y

j∗
i ∈ X ⊗ Y ∗. We

have by Proposition 2.8 for r = 1 (and so s = p′) that

〈T, z〉 =

m∑
j=1

n∑
i=1

〈T (xji ), y
j∗
i 〉 ≤

m∑
j=1

n∑
i=1

|〈T (xji ), y
j∗
i 〉|

≤
m∑
j=1

ρp,q(T )
∥∥(∑ |xji |

q
)1/q∥∥

X
·
∥∥(∑ |yj∗i |

p′
)1/p′∥∥

Y ∗
.

Since this holds for all representations of z, it follows that the functional ϕT defined
by T as ϕT (x⊗ y∗) = 〈T (x), y∗〉 satisfies that

‖ϕT ‖ ≤ ρp,q(T ).

For the converse inclusion, take a functional ϕ : X ⊗rp,q Y ∗ → R and define the
operator Tϕ : X → Y by 〈Tϕ(x), y∗〉 = ϕ(x ⊗ y∗). Let {xi}ni=1 ⊂ X. For every

ε > 0, there is a tensor z =
∑n
i=1 x

∗
i ⊗ y0∗

i with ‖(
∑n
i=1 |y0∗

i |p
′
)

1
p′ ‖Y ∗ ≤ 1 such that

sup

{ n∑
i=1

〈Tϕ(xi), y
∗
i 〉 :

∥∥( n∑
i=1

|y∗i |p
′) 1
p′
∥∥
Y ∗
≤ 1

}
≤

n∑
i=1

〈Tϕ(xi), y
0∗
i 〉+ ε.
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By Proposition 2.8 for r = 1, it follows that∥∥∥∥( n∑
i=1

|Tϕ(xi)|p
) 1
p
∥∥∥∥− ε ≤ n∑

i=1

〈Tϕ(xi), y
0∗
i 〉 = ϕ

( n∑
i=1

xi ⊗ y0∗
i

)
≤ ‖ϕ‖rp,q(z)

≤ ‖ϕ‖
∥∥(

n∑
i=1

|xi|q)1/q
∥∥
X

∥∥(

n∑
i=1

|y0∗
i |p

′
)

1
p′
∥∥
Y ∗

≤ ‖ϕ‖
∥∥(

n∑
i=1

|xi|q)1/q
∥∥
X
.

Therefore, Tϕ is (p, q)-regular and ρp,q(Tϕ) ≤ ‖ϕ‖. This finishes the proof. �

This approach fits actually with a more general framework, in which analogous
tensor product representations are also possible for the case of p-convex and p-
concave operators. In order to compare these with classical operator ideals, we
introduce the following.

Definition 3.4. Let 1 ≤ q ≤ p ≤ ∞, and X, Y Banach lattices. For z ∈ X ⊗ Y ,
define the positively homogeneous functions

δp,q(z) := inf
{(∑

‖xi‖qX
)1/q∥∥(∑ |yi|p

′)1/p′∥∥
Y

: z =

n∑
i=1

xji ⊗ y
j
i

}

ιp,q(z) := inf
{∥∥(∑ |xi|q

)1/q∥∥
X

(∑
‖yi‖p

′

Y

)1/p′
: z =

n∑
i=1

xji ⊗ y
j
i

}
,

and the corresponding seminorms

hp,q(z) := inf
{ m∑
j=1

δp,q(zj) : z =

m∑
j=1

zj

}
.

kp,q(z) := inf
{ m∑
j=1

ιp,q(zj) : z =

m∑
j=1

zj

}
.

Let us write CX p.q(X,Y ) for the space of (p, q)-convex operators from the Banach
space X to the Banach lattice Y , and CCp.q(X,Y ) for the space of (p, q)-concave
operators from the Banach lattice X to the Banach space Y . The following facts
can be proved arguing as in Proposition 3.2 and Theorem 3.3.

Proposition 3.5. Let 1 ≤ q ≤ p ≤ ∞, X and Y Banach lattices.

(1) For z ∈ X ⊗ Y , ε(z) ≤ hp,q(z) ≤ π(z) and ε(z) ≤ kp,q(z) ≤ π(z). Conse-
quently, hp,q and kp.q are norms.

(2) If Y is p′-convex (constant 1), then δp,q is a quasi-norm with constant 21−t

where 1/t = 1/q + 1/p′. In particular, hp,p = δp,p is a norm.
(3) If X is q-convex (constant 1), then ιp,q is a quasi-norm with constant 21−t

where 1/t = 1/q + 1/p′. In particular, kp,p = ιp,p.

Theorem 3.6. Let 1 ≤ q ≤ p ≤ ∞. Then we have the following isometric identi-
ties:

(1) CX p,q(X,Y ) =
(
X ⊗hp,q Y ∗

)∗
∩ L(X,Y ),

(2) CCp,q(X,Y ) =
(
X ⊗kp,q Y ∗

)∗
∩ L(X,Y ).
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This point of view allows us to state the relations among (p, q)-regular, (p, q)-
convex and (p, q)-concave operators in a straightforward way by comparing the
norms appearing in the corresponding representations.

Proposition 3.7. Let 1 ≤ q ≤ p ≤ ∞. Then we have the following relations.

(1) (i) If X is q-convex, then Rp,q(X,Y ) ⊆ CX p,q(X,Y ).
(ii) If X is q-concave, then CX p,q(X,Y ) ⊆ Rp,q(X,Y ).

(iii) If X is an Lq-space, then Rp,q(X,Y ) = CX p,q(X,Y ).

(2) (i) If Y is p-concave, then Rp,q(X,Y ) ⊆ CCp,q(X,Y ).
(ii) If Y is p-convex, then CCp,q(X,Y ) ⊆ Rp,q(X,Y ).
(iii) If Y is an Lp-space, then Rp,q(X,Y ) = CCp,q(X,Y ).

(3) L(Lq, Lp) = Rp,q(Lq, Lp) = CCp,q(Lq, Lp) = CX p,q(Lq, Lp).

Proof. The proofs of (1) and (2) are direct consequences of the previous results
and duality arguments. For the proof of (3) just note that p′ ≤ q′ and for every
representation of a tensor as z =

∑n
i=1 xi ⊗ y∗i we have

π(z) ≤
n∑
i=1

‖xi‖ ‖y∗i ‖ ≤
( n∑
i=1

‖xi‖q
)1/q( n∑

i=1

‖y∗i ‖q
′
)1/q′

≤
( n∑
i=1

‖xi‖q
)1/q( n∑

i=1

‖y∗i ‖p
′
)1/p′

.

�

Besides this, more can be said about the coincidence of (p.q)-regular operators
between Lr-spaces. This will be addressed in Section 4.

Some direct consequences of the general theory of summability of Banach lattices
can also be stated in this framework. Using the representation theorem for maximal
operator ideals (see [7, p.203]) and the tensor norms associated to the ideals of p-
summing and p-dominated operators, we obtain the following:

Proposition 3.8. Let X, Y be Banach lattices and 1 ≤ p ≤ ∞. The following
relations hold:

(i) wp ≤ rp,p and Dp(X,Y ) ⊆ Rp,p(X,Y ), where Dp is the ideal of p-dominated
operators.

(ii) gp ≤ hp,p and Π∗p′(X,Y ) ⊆ CX p,p(X,Y ), where Π∗p′(X,Y ) is the adjoint to

the ideal of p′-summing operators.
(iii) dp ≤ kp′,p′ and so Πp′(X,Y ) ⊆ CCp′,p′(X,Y ).

Proof. For (i), use wp = wtp′ ([7, p.152]) and the fact that the ideal of p′-dominated

operators is associated to the norm w∗p. Then (w∗p)′ = wp′ . A direct calculation
using that for x1, . . . , xn ∈ X,

sup
x∗∈BX∗

(∑
|〈xi, x∗〉|p

)1/p

≤
∥∥∥(∑ |xi|p

)1/p∥∥∥,
gives wp′ ≤ rp′,p′ . Thus the above comments give the required inclusion.

For (ii), use that Π∗p′ is associated to g′p ([7, p.211] and [7, §.17.9]). The inequality

gp ≤ hp,p is given by using the same inequality as in (i). Similar arguments show
(iii). �
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In the particular case when we deal with Lp spaces, the so called Chevet-Persson-
Saphar inequalities (see [7, 15.10]), provide a useful tool for relating the tensor
norms we just introduced with other classical tensor norms:

d∗p′(z) ≤ dp(z) ≤ ∆p(z) ≤ g∗p′(z) ≤ gp(z), z ∈ Lp ⊗ Y.

Moreover, in the case when Y is also an Lp-space, we actually get

(3) d∗p′(z) = dp(z) = ∆p(z) = g∗p′(z) = gp(z), z ∈ Lp(µ)⊗ Lp(ν)

for arbitrary measures µ and ν.
Let us now focus on the topological properties of the tensor product Lp(µ) ⊗

Lp
′
(ν) endowed with the rp,p-norm, and compare them with other classical topolo-

gies. We will comment on p = 2 and the general case separately:

(1) For p = 2, the equalities given in (3) show that L2(µ)⊗α L2(ν) cannot be
isomorphic to L2(µ)⊗r2,2 L2(ν) for α = d∗2 = d2 = ∆2 = g∗2 = g2, since by
Corollary 3.10, we have that r2,2 is equivalent to π in this tensor product.

(2) However, we can easily see that r2,2 is equivalent to d2 on the tensor product
X ⊗ `2 for X = `∞ or X = `1. This is a direct consequence of the so called
Little Grothendieck Theorem (see [7, 17.14]) and Corollary 3.10.

(3) Similarly, d∞ is also equivalent to r2,2, in this case as a consequence of
Grothendieck Theorem (see [7, 17.14]) and Corollary 3.10.

For the general case (p 6= 2), the Chevet-Persson-Saphar inequalities yield some
positive results about (s, q)-regularity for certain well-known operators. The fol-
lowing are just a sample.

(1) For every Banach lattice Y , d∗p′ ≤ dp ≤ ∆p ≤ g∗p′ ≤ gp ≤ rs,q for every

1 ≤ q ≤ p ≤ s in the tensor product Lp(µ)⊗Y . This is a direct consequence
of the p-concavity of Lp.

(2) The norm ∆p concerns spaces of Bochner integrable functions, and can
also be related to operators T : Lp(µ) → Y defined as Y -valued inte-
gral by means of the formula f 7→

∫
φ f dµ ∈ Y for a certain function

φ ∈ Lp′(µ, Y ) ↪→ (Lp(µ) ⊗∆p
Y ∗)∗. Thus, the comparison of ∆p and rs,q

provides also some meaningful results.

Using the tensor product representation of maximal operator ideals as dual
spaces of topological tensor products (see [7, 17.5]), the above arguments yield
the following.

Corollary 3.9. Let Y be a Banach lattice, 1 ≤ q ≤ r ≤ p and T : Lp(µ)→ Y .

(1) Every r-integral and r-summing operator from Lr(µ) to Y , as well as op-
erators belonging to their associated dual ideals, are (p, q)-regular.

(2) Every operator T : Lr(µ) → Y defined as the Y -valued integral T (·) =∫
φ (·) dµ for a function φ ∈ Lr′(µ, Y ) is (p, q)-regular.

Let us recall that an equivalent form of Grothendieck’s Theorem can be given in
terms of tensor products of C(K)-spaces [21, Theorem 3.1]: for each pair of compact
Hausdorff spaces K1 and K2 and every z =

∑n
i=1 xi⊗yi ∈ C(K1)⊗C(K2), it holds

that

π(z) ≤ KG ‖(
n∑
i=1

|xi|2)1/2‖C(K1) · ‖(
n∑
i=1

|yi|2)1/2‖C(K2),

where KG is Grothendieck’s constant.
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Krivine’s version of Grothendieck’s Theorem (cf. [17, Theorem 1.f.14]) states
that R2,2(X,Y ) = L(X,Y ), and the corresponding constants are related as ‖T‖ ≤
ρ2,2(T ) ≤ KG‖T‖. The following result is the pre-dual version of this fact, and so
is also equivalent to Grothendieck’s Theorem.

Corollary 3.10. Let X and Y be Banach lattices. Then π ≤ KG r2,2 ≤ KG π on
X ⊗ Y .

Proof. Take a tensor z =
∑n
i=1 xi⊗yi ∈ X⊗Y, and consider x0 = (

∑n
i=1 |xi|2)1/2 ∈

X and y0 = (
∑n
i=1 |yi|2)1/2 ∈ Y . Take the ideals I(x0) and I(y0) generated by these

elements in the corresponding lattices, and endow both of them with AM -norms:

‖x‖X,∞ = inf
{
λ : |x| ≤ λ x0

‖x0‖

}
and ‖y‖Y,∞ = inf

{
λ : |y| ≤ λ y0

‖y0‖

}
.

Note that ‖x‖X ≤ ‖x‖X,∞ and ‖y‖Y ≤ ‖y‖Y,∞, and so the inclusion maps JX :

I(x0) → X and JY : I(y0) → Y acting in the closure of these ideals satisfy that
‖JX‖ ≤ 1 and ‖JY ‖ ≤ 1, respectively. By Kakutani’s theorem these can be consid-
ered as C(K) spaces (cf. [17, Theorem 1.b.6]. Note also that

‖x0‖X,∞ = ‖x0‖X = ‖(
n∑
i=1

|xi|2)1/2‖X and ‖y0‖Y,∞ = ‖y0‖Y = ‖(
n∑
i=1

|yi|2)1/2‖Y .

Since π satisfies the metric mapping property (see for example [7, 3.2]), we have
that ∥∥JX ⊗ JY : I(x0)⊗π I(y0)→ X ⊗π Y

∥∥ ≤ ‖JX‖ · ‖JY ‖ ≤ 1.

Now, we apply Grothendieck’s Theorem for tensor products of C(K) spaces to
obtain

π(

n∑
i=1

xi ⊗ yi) = π(

n∑
i=1

JX(xi)⊗ JY (yi)) ≤ KG

∥∥(

n∑
i=1

|xi|2)1/2
∥∥
X,∞ ·

∥∥(

n∑
i=1

|yi|2)1/2
∥∥
Y,∞

= KG

∥∥(

n∑
i=1

|xi|2)1/2
∥∥
X
·
∥∥(

n∑
i=1

|yi|2)1/2
∥∥
Y
.

The result follows by convexity. �

4. (p, q)-regular operators between Lr-spaces and
Marcinkiewicz-Zygmund inequalities

In this section we will center our attention in the case of operators defined
between Lr-spaces, in relation with the Marcinkiewicz-Zygmund type inequalities
presented by A. Defant and M. Junge in [9]. By means of the so called Maurey-
Rosenthal factorization theory (see for instance [6, 8]), we will be able to extend
these results to the case of operators acting in r-convex function lattices and with
values in r-concave Banach function lattices. In particular, we study the require-
ments to reduce the study of (p, q)-regular operators between Banach lattices to
the properties of such operators between Lr-spaces.

For the case p = q, a Maurey-Rosenthal factorization theorem for p-regular
operators holds under the usual convexity/concavity requirements. The following
result is similar to Theorem 3.1 in [8]. However, the reader must notice that the
requirements on the operator T are different. We sketch the proof showing the
argument; see the proof of Theorem 3.2 in [8] for more details.



16 E. A. SÁNCHEZ PÉREZ AND P. TRADACETE

Theorem 4.1. Let 1 ≤ s ≤ p <∞. Let X be a p-convex order continuous Banach
function space over (Ω,Σ, µ) and Y be an s-concave Banach function space over
(Ω′,Σ′, ν) with Y ∗ order continuous. Let T : X → Y be a p-regular operator. Then
T factors as

X
T //

Mf

��

Y

Lp(µ)
T̂ // Ls(ν)

Mg

OO

for suitable functions f and g. Here, T̂ is a linear and continuous operator.

Proof. Note first that 1/p + 1/s′ ≤ 1. Take r ≥ 1 such that 1/r = 1/p + 1/s′.
For the aim of simplicity we assume that the p-convexity and s-concavity constants
involved are equal to 1; note that, being s-concave, Y is order continuous. For
{xi}ni=1 ⊂ X and {y∗i }ni=1 ⊂ Y ∗, using the generalized Hölder inequality (1) and
the fact that T is p-regular, it holds that( n∑

i=1

‖Txiy∗i ‖rL1(ν)

) 1
r ≤

∫ ( n∑
i=1

|Txi|p
) 1
p
( n∑
i=1

|y∗i |s
′
) 1
s′
dν

≤ C
∥∥( n∑

i=1

|xi|p
) 1
p
∥∥
X

∥∥( n∑
i=1

|y∗i |s
′) 1
s′
∥∥
Y ∗
.

Since X is p-convex and Y ∗ is s′-convex, by Young’s inequality, it follows that

n∑
i=1

‖Txiy∗i ‖rL1(ν) ≤ C
r
∥∥ n∑
i=1

|xi|p
∥∥ rp
X[p]

∥∥ n∑
i=1

|y∗i |s
′∥∥ r

s′
(Y ∗)[s′]

≤ Cr
(r
p

∥∥ n∑
i=1

|xi|p
∥∥
X[p]

+
r

s′
∥∥ n∑
i=1

|y∗i |s
′∥∥

(Y ∗)[s′]

)
.

We now make a standard application of Ky Fan’s Lemma (see for example [19,
E.4;p.40] for the Lemma and the requirements to apply it, and [6, Theorem 1] for
a proof similar to the one presented here). It provides functions f0 ∈ (X(µ)[p])

∗ =
M(X(µ), Lp(µ))[p] (where M denotes the space of multiplication operators), and

g0 ∈
(
(Y (ν)∗)[s′]

)∗
=M(Y (ν)∗, Ls

′
(ν))[s′] such that∫

|Tx y∗|dν ≤ C
(∫
|x|pf0 dµ

)1/p (∫
|y∗|s

′
g0 dν

)1/s′

.

This gives the inequality(∫ ∣∣∣ Tx
g

1/s′

0

∣∣∣sdν)1/s

≤ C
(∫
|x|pf0 dµ

)1/p

for all x ∈ X(µ). This provides the desired factorization, using the associated

multiplication operators and T to define the operator T̂ (see the argument given in
[8, Th.3.2]). The decomposition of the operator is given by

M
g

1/s′
0

◦ g−1/s′

0 T (·/f1/p
0 ) ◦M

f
1/p
0

= T,

that is, f = f
1/p
0 , T̂ = g

−1/s′

0 T (·/f1/p
0 ) and g = g

1/s′

0 . �
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Remark 4.2. The statement of the previous result excludes the fundamental case
in which Y = L1, since the dual of such space is not order continuous. It must
be mentioned here that this was one of the most relevant instances of the original
factorization of Maurey and provides some of its main applications, for example
regarding the structure of reflexive subspaces of L1-spaces (see II.H.13 in [25]). We
will not consider this case for the aim of simplicity. However, the result is expected
to be true also in this case, since the separation argument can be extended for this
case using a nowadays well-known procedure that is explained in [6].

Remark 4.3. The result above assures that the operator factors through an op-
erator T̂ : Lp(µ) → Ls(ν) for 1 < s ≤ p < ∞. However, as can be seen in [9,
Corollary on page 282], not every operator from Lp to Ls is p-regular. In fact,
regarding operators between Lp-spaces, we trivially have the following: Every op-
erator T : Lr(µ)→ Lt(ν), for 1 ≤ r ≤ t ≤ ∞, is (t, r)-regular.

Indeed, let {xi}ni=1 ⊂ Lr(µ).∥∥∥( n∑
i=1

|Txi|t
)1/t∥∥∥

Lt(ν)
=
( n∑
i=1

∥∥Txi∥∥tLt(ν)

)1/t ≤ ‖T‖( n∑
i=1

∥∥xi∥∥tLr(ν)

)1/t
≤ ‖T‖

( n∑
i=1

∥∥xi∥∥rLr(ν)

)1/r
= ‖T‖

∥∥∥( n∑
i=1

|xi|r
)1/r∥∥∥

Lr(ν)
.

In the rest of this section we will analyze what happens when r = t (s = p above).

Theorem 4.1 does not give a priori any information on the regularity properties
of T̂ ; of course, T need not be positive, otherwise the results regarding this property
are trivial. Next result characterizes the existence of a factorization for (p, q)-regular
operators through Lr-spaces preserving the property of being (p, q)-regular. The
requirements are formally more restrictive than the ones needed in Theorem 4.1,
and they involve a new vector norm inequality that suggests some mixed norms for
Banach function spaces.

Theorem 4.4. Let X be an r-convex Banach function space over (Ω,Σ, µ), and
let Y be an r-concave Banach function space over (Ω′,Σ′, ν) such that X and Y ∗

are order continuous. Let T : X → Y be an operator. The following are equivalent.

(i) There is a constant K > 0 such that for each pair of matrices of elements
(xi,j)

n,m
i=1,j=1 and (y∗i,j)

n,m
i=1,j=1 in X and Y ∗, respectively, the following in-

equality holds.

n∑
i=1

m∑
j=1

∣∣〈Txi,j y∗i,j〉∣∣ ≤ K ∥∥∥( n∑
i=1

( m∑
j=1

|xi,j |q
) r
q
) 1
r

∥∥∥
X

∥∥∥( n∑
i=1

( m∑
j=1

|y∗i,j |p
′) r′
p′
) 1
r′
∥∥∥
Y ∗

(ii) There is a constant K > 0 such that for each matrix of elements (xi,j)
n,m
i=1,j=1

in X, the following inequality holds.∥∥∥( n∑
i=1

( m∑
j=1

|Txi,j |p
) r
p
) 1
r

∥∥∥
Y
≤ K

∥∥∥( n∑
i=1

( m∑
j=1

|xi,j |q
) r
q
) 1
r

∥∥∥
X

(iii) There are functions f and g such that T factors as
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X
T //

Mf

��

Y

Lr(µ)
T̂ // Lr(ν)

Mg

OO

where T̂ is (p, q)-regular.

Proof. It can be seen as a consequence of the lemmata of the introductory sections
that (i) and (ii) are equivalent. Let us prove that (i) ⇒ (iii). The argument is
similar to the one in the proof of Theorem 4.1. Since Y ∗ is also r′-convex (with
constant 1), and writting the inequalities in (i) in the form

n,m∑
i,j=1

∥∥Txi,j y∗i,j∥∥L1(ν)
−K r

p

∥∥∥ n∑
i=1

( m∑
j=1

|xi,j |q
) r
q

∥∥∥
X[r]

−Kr

q

∥∥∥ n∑
i=1

( m∑
j=1

|y∗i,j |p
′) r′
p′
∥∥∥

(Y ∗)[r′]

≤ 0,

we can define a set of functions φ : B(X[r])∗ ×B((Y ∗)[r′])
∗ → R as

φ(f, g) :=

n∑
i=1

m∑
j=1

∥∥Txi,j y∗i,j∥∥L1(ν)
− K

r

p

∫ ( n∑
i=1

( m∑
j=1

|xi,j |q
) r
q
)
f dµ

− K
r

q

∫ ( n∑
i=1

( m∑
j=1

|y∗i,j |p
′) r′
p′
)
g dν.

We can apply Ky Fan’s Lemma now. The arguments are similar to the ones that
can be found in the proofs of Theorem 1 and Theorem 2 in [6]. The requirements,
which can be found in [19, E.4;p.40], are that the set of functions must be concave
(see the definition in [19, E.4.1.2], the functions themselves must be convex and
(lower semi-)continuous for the product of the weak* topologies, and the required
inequality must be satisfied in a (maybe different) point for each function. Indeed,
the above defined functions are continuous when the product of the weak* topologies
is defined in the product B(X[r])∗ ×B((Y ∗)[r′])

∗ , and convex. A simple computation

shows that the family of all the functions (defined for each couple of finite matrices
(xi,j)

n,m
i=1,j=1 and (y∗i,j)

n,m
i=1,j=1), is concave. So, by Ky Fan’s Lemma we find two

functions f0 ∈ B(X[r])∗ and g0 ∈ B((Y ∗)[r′])
∗ such that, in particular,

∥∥ m∑
j=1

|Txj y∗j |
∥∥
L1(ν)

≤ K
r

p

∫ ( m∑
j=1

|xj |q
) r
q f0 dµ+ K

r

q

∫ ( m∑
j=1

|y∗j |p
′) r′
p′ g0 dν.

Taking into account the homogeneity of this expression, multiplying by positive
constants α and β such that α · β = 1 —see for example the proof in [7, 19.2]—,
we can find a minimum in this sum in order we get the inequality

∥∥ m∑
j=1

|Txj y∗j |
∥∥
L1(ν)

≤ K
(∫ ( m∑

j=1

|xj |q
) r
q f0 dµ

) 1
r ·
(∫ ( m∑

j=1

|y∗j |p
′) r′
p′ g0 dν

) 1
r′
.
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By duality, and using Lemma 2.7, we find the inequality∥∥∥( m∑
j=1

|Txj
g1
|p
) 1
p

∥∥∥
Lr(ν)

≤ K
(∫ ( m∑

j=1

|xj |q
) r
q f1 dµ

) 1
r

= K
∥∥∥( m∑

j=1

|xj |q
) 1
q f1

∥∥∥
Lr(µ)

for functions f1 and g1 defined as adequate powers of f0 and g0. This gives the
factorization —obtained for the case when the inequality is considered just for
m = 1 and all possible vectors x— and also the (p, q)-regularity of operator T̂ from
Lr(µ) to Lr(ν).

The converse is straightforward, and so the proof is finished. �

A factorization for T as the one given in (iii) of Theorem 4.4 is usually called a
strong factorization of T through Lr-spaces.

The characterization of Marcinkiewicz-Zygmund type inequalities given in [9]
provides the following.

Corollary 4.5. Assume that 1 ≤ r1, r2, p, q ≤ ∞. Then Rp,q(Lr1 , Lr2) = L(Lr1 , Lr2)
in the following cases.

• If q ≤ r1 = r2 ≤ p.
• If r1 = r2 = 1 and 1 ≤ q ≤ p ≤ ∞.
• If r1 = r2 =∞ and 1 ≤ q ≤ p ≤ ∞.
• If 1 ≤ r2 ≤ r1 < 2 and there exists t such that q ≤ t ≤ p and r1 < t ≤ 2.
• If 2 < r2 ≤ r1 ≤ ∞ and there exists t such that q ≤ t ≤ p and 2 ≤ t < r2.
• If 1 ≤ r2 ≤ 2 ≤ r1 ≤ ∞ and q ≤ 2 ≤ p.

For r1 = r2 = r and using Theorem 4.4, we obtain the following result.

Corollary 4.6. Assume that 1 ≤ p, q ≤ ∞. Let 1 < r < ∞ and let X be an r-
convex Banach function space over (Ω,Σ, µ), and Y an r-concave Banach function
space over (Ω′,Σ′, ν) such that X and Y ∗ are order continuous. Let T : X → Y be
an operator. Suppose that

[q, p] ∩ [min{r, 2},max{r, 2}] 6= ∅.

Then the following assertions are equivalent.

(i) There is a constant K > 0 such that for each matrix of elements (xi,j)
n,m
i=1,j=1

in X, the following inequality holds.∥∥∥( n∑
i=1

( m∑
j=1

|Txi,j |p
) r
p
) 1
r

∥∥∥
Y
≤ K

∥∥∥( n∑
i=1

( m∑
j=1

|xi,j |q
) r
q
) 1
r

∥∥∥
X
.

(ii) There is a strong factorization of T through Lr-spaces.

Together with Theorem 4.1, this corollary provides an equivalence among (p, q)-
regular-type properties for the operator T , that may be understood as a general-
ization of Marcinkiewicz-Zygmund inequalities. Let us finish the section with this
result.

Corollary 4.7. Under the assumptions on p, q, r, X and Y in Corollary 4.6, with

[q, p] ∩ [min{r, 2},max{r, 2}] 6= ∅.
The following statements are equivalent.

(i) The operator T : X → Y is r-regular.
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(ii) There is a constant K > 0 such that for each matrix of elements (xi,j)
n,m
i=1,j=1

in X, respectively, the following inequality holds.∥∥∥( n∑
i=1

( m∑
j=1

|Txi,j |p
) r
p
) 1
r

∥∥∥
Y
≤ K

∥∥∥( n∑
i=1

( m∑
j=1

|xi,j |q
) r
q
) 1
r

∥∥∥
X
.

5. Extension properties

The definition of (p, q)-regular operator makes also sense for operators defined
on a subspace of a Banach lattice: Given X, Y Banach lattices, and X0 ⊂ X a
closed subspace, an operator T : X0 → Y is (p, q)-regular if there is K > 0 such
that ∥∥∥∥( n∑

i=1

|Txi|p
) 1
p
∥∥∥∥ ≤ K∥∥∥∥( n∑

i=1

|xi|q
) 1
q
∥∥∥∥,

for every (xi)
n
i=1 ⊂ X0 (with the obvious modification when p or q are infinite).

In [20, Theorem 4] it is shown that every∞-regular operator defined on a closed
subspace of a Banach lattice with values in another Banach lattice extends to a∞-
regular operator on the whole Banach lattice. This extension property also holds
for (∞, q)-regular operators as the following shows.

Before the proof, let us recall the Calderón product construction (cf. [4]): for

Banach lattices X0, X1 and θ ∈ (0, 1) let X1−θ
0 Xθ

1 the space of elements f for which
there exist f0 ∈ X0, f1 ∈ X1 such that |f | ≤ |f0|1−θ|f1|θ and let

‖f‖X1−θ
0 Xθ1

= inf{‖f0‖1−θ‖f1‖θ : |f | ≤ |f0|1−θ|f1|θ, with fi ∈ Xi}.

This expression defines a norm when X0 and X1 are Dedekind complete Banach
lattices (see [4]). In particular, this is the case for Banach lattices of measurable
functions satisfying some convexity assumptions, which are those of interest in this
section.

Lemma 5.1. Let 1 ≤ q ≤ ∞, let X be a q-convex Banach lattice of measurable
functions on (Ω,Σ, µ) (with q-convexity constant equal to one) and let X0 ⊂ X be
a closed subspace. Every (∞, q)-regular operator T : X0 → `nq has an (∞, q)-regular

extension T̃ : X → `nq with ρ∞,q(T̃ ) ≤ ρ∞,q(T ).

Proof. We follow a similar approach to that of [20, Theorem 4]. Let Z be the tensor
product `nq′ ⊗X, where 1

q + 1
q′ = 1, endowed with

‖v‖Z = inf
{( n∑

i=1

|ai|q
′
) 1
q′
∥∥∥( n∑

i=1

|xi|q
) 1
q
∥∥∥
X

: v =

n∑
i=1

aiei ⊗ xi
}
.

Let us see that ‖ · ‖Z indeed defines a norm.
Let E0 be the space of n-tuples of functions of L∞(µ) endowed with the norm

‖(gi)ni=1‖E0 =

n∑
i=1

‖gi‖∞.

Let E1 be the space of n-tuples of measurable functions (hi)
n
i=1 ⊂ L0(µ) such

that |hi|
1
q ∈ X for i = 1, . . . , n, equipped with

‖(hi)ni=1‖E1
=
∥∥∥( n∑

i=1

|hi|
) 1
q
∥∥∥q
X
.
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This is indeed a norm since X is q-convex with constant 1.
We claim that ‖ · ‖Z coincides with the norm of the space E1−θ

0 Eθ1 for θ = 1
q

under the identification mapping (fi)
n
i=1 ∈ E

1−θ
0 Eθ1 to

∑n
i=1 ei ⊗ fi ∈ `nq′ ⊗X.

Indeed, note first that for 1 ≤ i ≤ n, there exist gi ∈ L∞(µ) and hi ∈ L0(µ)

with |hi|θ = |hi|
1
q ∈ X, such that |fi| ≤ |gi|1−θ|hi|θ, which yield that fi ∈ X for

1 ≤ i ≤ n, and in particular
∑n
i=1 ei ⊗ fi ∈ `nq′ ⊗X. Now, given ε > 0, let (gi)

n
i=1

and (hi)
n
i=1 as above so that

‖f‖E1−θ
0 Eθ1

≥
( n∑
i=1

‖gi‖∞
) 1
q′
∥∥∥( n∑

i=1

|hi|
) 1
q
∥∥∥
X
− ε.

Set ai = ‖gi‖
1
q′
∞ , and Ai = {ω ∈ Ω : gi(ω) 6= 0}. Since fi = fiχAi , it follows that

|hi| ≥
|fi|q

|gi|
q
q′
χAi .

Hence,

∥∥∥( n∑
i=1

|hi|
) 1
q
∥∥∥
X
≥
∥∥∥( n∑

i=1

|fi|q

|gi|
q
q′
χAi

) 1
q
∥∥∥
X
≥
∥∥∥( n∑

i=1

|fi|q

aqi

) 1
q
∥∥∥
X
.

Thus,

‖f‖E1−θ
0 Eθ1

+ε ≥
( n∑
i=1

aq
′

i

) 1
q′
∥∥∥( n∑

i=1

∣∣∣fi
ai

∣∣∣q) 1
q
∥∥∥
X
≥
∥∥∥ n∑
i=1

aiei⊗
fi
ai

∥∥∥
Z

=
∥∥∥ n∑
i=1

ei⊗fi
∥∥∥
Z
,

and as ε > 0 is arbitrary, the inequality

‖f‖E1−θ
0 Eθ1

≥
∥∥∥ n∑
i=1

ei ⊗ fi
∥∥∥
Z

follows. For the converse inequality, let ε > 0 and f =
∑n
i=1 aiei ⊗ xi with

‖f‖Z + ε ≥
( n∑
i=1

|ai|q
′
) 1
q′
∥∥∥( n∑

i=1

|xi|q
) 1
q
∥∥∥
X
.

Let hi = |xi|q and gi = |ai|q
′
χΩ. Hence, as |fi| = |aixi| ≤ (|ai|q

′
)

1
q′ (|hi|)

1
q =

|gi|1−θ|hi|θ, it follows that

‖f‖Z+ε ≥
( n∑
i=1

‖gi‖∞
) 1
q′
∥∥∥( n∑

i=1

|hi|
) 1
q
∥∥∥
X
≥ ‖(gi)ni=1‖1−θE0

‖(hi)ni=1‖θE1
≥ ‖f‖E1−θ

0 Eθ1
.

As ε > 0 is arbitrary, the claim follows.
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Now, we claim that Z∗ = R∞,q(X, `
n
q ) isometrically. Indeed, given u : X → `nq

we have

ρ∞,q(u) = sup

{∥∥∥ m∨
i=1

|uxi|
∥∥∥
`nq

:
∥∥∥( m∑

i=1

|xi|q
) 1
q
∥∥∥
X
≤ 1, m ∈ N

}

= sup

{∥∥∥ n∑
k=1

( m∨
i=1

|〈e∗k, uxi〉|
)
ek

∥∥∥
`nq

:
∥∥∥( m∑

i=1

|xi|q
) 1
q
∥∥∥
X
≤ 1, m ∈ N

}

= sup

{ n∑
k=1

ak

m∨
i=1

|〈e∗k, uxi〉| :
∥∥∥ n∑
k=1

ake
∗
k

∥∥∥
`n
q′

,
∥∥∥( m∑

i=1

|xi|q
) 1
q
∥∥∥
X
≤ 1, m ∈ N

}

= sup

{∣∣∣ n∑
k=1

ak〈e∗k, uxik〉
∣∣∣ :
( n∑
k=1

|ak|q
′
) 1
q′
,
∥∥∥( n∑

k=1

|xik |q
) 1
q
∥∥∥
X
≤ 1, (ik)nk=1 ⊂ [1,m]

}
= sup{|〈u, v〉| : ‖v‖Z ≤ 1} = ‖u‖Z∗ .

Finally, consider the subspace M ⊂ Z formed by all v =
∑n
k=1 akek ⊗ xk such

that xk ∈ X0 for k = 1, . . . , n. Let T : X0 → Y be a (∞, q)-regular operator. Given
v ∈M , and ε > 0, take scalars ak and xk ∈ X0 such that( n∑

k=1

|ak|q
′
) 1
q′
∥∥∥( n∑

k=1

|xk|q
) 1
q
∥∥∥ ≤ ‖v‖Z + ε.

By [17, Proposition 1.d.2.], we have

|〈T, v〉| =
∣∣∣ n∑
k=1

〈T (xk), akek〉
∣∣∣

≤ 〈
n∨
k=1

|T (xk)|,
n∑
k=1

|ak|ek〉

≤
∥∥∥ n∨
k=1

|T (xk)|
∥∥∥
`nq

∥∥∥ n∑
k=1

|ak|ek
∥∥∥
`n
q′

≤ ρ∞,q(T )(‖v‖Z + ε).

Since ε > 0 is arbitrary, it follows that for every v ∈M we get |〈T, v〉| ≤ ρ∞,q(T ).
Hence, we can consider a Hahn-Banach extension of v ∈M 7→ 〈T, v〉 with norm not

exceeding ρ∞,q(T ). This extension is clearly of the form v ∈ Z 7→ 〈T̃ , v〉 for some

operator T̃ : X → `nq with the required properties. �

Theorem 5.2. Let 1 < q ≤ ∞, and measure spaces (Ω,Σ, µ), (Ω′,Σ′, ν). Given a
closed subspace X0 ⊂ Lq(µ) and an (∞, q)-regular operator T : X0 → Lq(ν), there

is an (∞, q)-regular extension T̃ : Lq(µ)→ Lq(ν) with ρ∞,q(T̃ ) = ρ∞,q(T ).

Proof. For simplicity, assume Ω = Ω′ = [0, 1] endowed with Lebesgue measure. The
proof can be easily carried over to general measure spaces. For every n ∈ N, let
Pn : Lq → `2

n

q be given by

Pnf = 2
n
q′

2n∑
i=1

∫ i
2n

i−1
2n

fdν · ei.
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Notice that the norm of Pn is less or equal than one. Also, let Jn : `2
n

q → Lq be
given by

Jnei = 2
n
q χ[ i−1

2n ,
i

2n ],

for 1 ≤ i ≤ 2n and extended linearly. Its norm is equal to one: in fact it is an
isometry.

Given a closed subspace X0 ⊂ Lq(µ) and an (∞, q)-regular operator T : X0 →
Lq(ν), for each n ∈ N, consider Tn = PnT : X0 → `2

n

q . Since Pn is positive, we

clearly have ρ∞,q(Tn) ≤ ρ∞,q(T ), so by Lemma 5.1, there is an extension T̃n : Lq →
`2
n

q with ρ∞,q(T̃n) ≤ ρ∞,q(T ).

Given f ∈ Lq(µ), the sequence (JnT̃nf)n∈N is bounded in Lq-norm. Since 1 <
q ≤ ∞, balls in Lq are weak-∗ compact. Let U be a free ultrafilter in N and for
each f ∈ Lq(µ), let

T̃ f = lim
n∈U

JnT̃nf,

the limit taken in the weak-∗ topology along the ultrafilter U .
It is clear that T̃ defines a bounded linear operator on Lq. We claim that T̃ is

the required extension.
Indeed, for f ∈ X0, note that

JnT̃nf = JnPnTf −→
n→∞

Tf,

which implies in particular that T̃ f = Tf for every f ∈ X0.
Moreover, for every (fi)

m
i=1 and every g ∈ Lq′ with ‖g‖q′ ≤ 1 we have〈 m∨

i=1

|T̃ fi|, g
〉

= lim
n∈U

〈 m∨
i=1

|JnT̃n(fi)|, g
〉

≤ lim
n∈U

∥∥∥ m∨
i=1

|JnT̃n(fi)|
∥∥∥
q

≤ lim
n∈U

∥∥∥Jn( m∨
i=1

|T̃n(fi)|
)∥∥∥

q

≤ lim
n∈U

∥∥∥ m∨
i=1

|T̃n(fi)|
∥∥∥
q

≤ ρ∞,q(T )
∥∥∥( m∑

i=1

|fi|q
) 1
q
∥∥∥.

Thus, ∥∥∥ m∨
i=1

|T̃ fi|
∥∥∥ ≤ ρ∞,q(T )

∥∥∥( m∑
i=1

|fi|q
) 1
q
∥∥∥.

�

Remark 5.3. The analogous results for extension properties of regular operators
on subspaces of L1 and L∞ can be found in [16, 20]. However, note that by Corollary
4.5, every operator T : Lq → Lq is (∞, q)-regular, while the projection onto the
span of the Rademacher sequence in Lq is not ∞-regular.
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