Unusual occurrences of fishes along the Northeast Atlantic: new biological and distributional data

BAÑÓN RAFAEL
-Servizo de Planificación, Consellería do Mar, Xunta de Galicia, Rua dos Irmandiños s/n, 15701 Santiago de Compostela -Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas, IIM-CSIC, c/ Eduardo Cabello 6, 36208 Vigo, Pontevedra

TEJERINA RAQUEL
Oceanic Observatory of Madeira, Edificio Madeira Tecnopolo, piso 0, Caminho da Penteada, 9020-105 Funchal, Madeira

MORALES XESÚS
Pereíró nº24-5ºB, 36210 Vigo

ALONSO-FERNÁNDEZ ALEXANDRE
-Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas, IIM-CSIC, c/ Eduardo Cabello 6, 36208 Vigo, Pontevedra -Asociation Ecoloxía Azul – Blue Ecology. c/Herreros 28, 36002 Pontevedra

BARROS-GARCÍA DAVID
Programa de doctorado en metodología y aplicaciones en ciencias de la vida, Universidade de Vigo – Campus Lagoas Marcesende, Vigo

DE CARLOS ALEJANDRO
Alejandro de Carlos, Departamento de Bioquímica, Xenética e Inmunoloxía, Facultade de Bioloxía, Universidade de Vigo, Rúa Fonte das Abelleiras s/n, 36310 Vigo

https://doi.org/10.12681/mms.19307
To cite this article:

Unusual occurrences of fishes along the Northeast Atlantic: new biological and distributional data

Rafael BAÑÓN1,2, Raquel TEJERINA3, Xesús MORALES4, Alexandre ALONSO-FERNÁNDEZ5,6, and Alejandro DE CARLOS7

1 Servizo de Planificación, Consellería do Mar, Xunta de Galicia, Rua dos Irmandiños s/n, 15701 Santiago de Compostela, Spain
2 Marine Research Institute, Consejo Superior de Investigaciones Científicas, IIM-CSIC, c/ Eduardo Cabello 6, 36208 Vigo, Pontevedra, Spain
3 Oceanic Observatory of Madeira, Edifício Madeira Tecnopolo, piso 0, Caminho da Penteada, 9020-105 Funchal, Madeira, Portugal
4 Pereiró nº24-5ºB, 36210 Vigo, Spain
5 Association Ecoloxía Azul – Blue Ecology, c/Herreros 28, 36002 Pontevedra, Spain.
6 Methodology and Applications in Life Sciences Program. University of Vigo, - Campus Lagoas Marcosende, Vigo, Spain
7 Department of Biochemistry, Genetics and Immunology. Faculty of Biology, University of Vigo, Vigo, Spain

Corresponding author: anoplogaster@yahoo.es

Handling Editor: Argyro ZENETOS

Received: 11 December 2018; Accepted: 23 January 2019; Published on line: 30 April 2019

Abstract

The occurrences of 13 specimens belonging to 9 species of little known marine fishes in the Northeast Atlantic in 2017 and 2018 are reported. Information about the morphology and new findings of Decapterus tabl and Decapterus macarellus (Carangidae), Kyphosus vaigiensis (Kyphosidae), Remora osteochir (Echeneidae), Antigonia capros (Caproidae), Hyperoglyphe perciformis (Centrolophidae), Halobatrachus didactylus (Batrachoididae), Parapristipoma octolineatum (Haemulidae) and Zucristatus (Trachypteridae) is reported from different locations, where they are categorized as unusual or rare. Morphometric and meristic parameters confirmed the identification to species level of each specimen, also supported by DNA barcoding. Histological examination of reproductive tissue was carried out in four specimens to determine the sex and reproductive stage. All species are known from other areas of the Atlantic Ocean, but these findings are an important contribution to understanding their biology and distribution. These include new northernmost records of Remora osteochir and Decapterus tabl in the eastern Atlantic and the first records of Antigonia capros, Hyperoglyphe perciformis, Halobatrachus didactylus and Parapristipoma octolineatum from Galician waters.

Keywords: Ichthyofauna; Teleostei; Distribution; Biogeography.

Introduction

The term “rare fishes” and analogous terms such as “unusual fishes”, “little-known fishes” and “odd fish” have been used for a long time in the ichthyological literature to describe the occurrence of new, unknown or scarcely known fishes in a given marine area (Phillips, 1926; Prokofiev, 2017). These reports allow us to either substantially expand their known distribution range or to refine information on morphological variation of the given species in the given area (Prokofiev, 2017). Information on species distributions is of value in support of obligations faced by regulatory authorities and those promoting conservation and biodiversity (Balduck & Kay, 2012).

The Northeast Atlantic is characterised by the presence of coastal upwelling regimes associated with high rates of primary production and important coastal fisheries. Knowledge of the fish biodiversity in this vast area can be generally considered good, given the existence of many ichthyological studies and identification guides (Whitehead et al., 1986; Quéro et al., 2003; Carpenter & De Angelis, 2016). However, at present, there are many rapid human-induced changes in fish species composition related to overfishing, introduction of alien species and climate change (Afonso et al., 2013; Bañón et al., 2018a).

A continuous assessment of local marine fish biodiversity is necessary to improve our understanding of the variety and distribution of the marine fish community (Bañón et al., 2018b). Effective conservation requires the routine monitoring of coastal waters (e.g. under the EU Marine Strategy Framework Directive); monitoring spe-
cies distribution for climate change; tracking potentially invasive species and the collection of baseline data on ecology and distribution (Baldock & Kay, 2012).

The purpose of this research is to provide new records of rare fish caught over a wide area of the Northeast Atlantic, stretching from the Madeira Islands in the south to the south of Ireland in the north, many of them in the vicinity of or at the edge of their distribution range.

Materials and Methods

The specimens were caught by fisheries observers on board commercial and oceanographic vessels or by spearfishermen at different locations in the Northeast Atlantic, and frozen afterwards. In the laboratory specimens were defrosted at room temperature and identified at species level, mainly following Quéro et al. (2003) and Lloris & Esteban (2015). The main morphometric and meristic characters were recorded according to the literature as follows: Total length (TL), Standard length (SL), Fork length (FL); Head length (HL); Pre-orbital length (PO); Eye diameter (ED); Post orbital Length (POL); Inter-orbital length (IO); Predorsal length (PD1); Pre-first dorsal length (PD1); Pre-second dorsal length (PD2); Prepectoral length (PP); Pre-anal length (PA); First dorsal fin base length (DB1); Second dorsal fin base length (DB2); Anal fin base length (AB); Disc length (DL); Prepectoral fin length (PP); Pre-pelvic length (PV); Pectoral fin length (PL); Pelvic fin length (VL); Maximum body depth (BD); Caudal peduncle length (CP); Number of rays in first dorsal fin (D1); Number of rays in second dorsal fin (D2); Number of rays in pectoral fin (P); Number of rays in anal fin (A); Number of rays in caudal fin (C); Branchiostegal rays (BR); Gill-rakers (GR); Number of disc laminae (LN).

With the exception of TL and SL, measurements are distances perpendicular to the length of the fish measured with a digital calliper to the nearest mm. All measurements are expressed as the percentage of standard length (%SL). Descriptive data are reported individually for species represented by one or two individuals and ranges are reported when there are three.

A muscle sample from each specimen was collected in order to extract DNA and sequence the standard 5′-barcoding region of the mitochondrial COI gene, following procedures described elsewhere (Baillon et al., 2016). The identity of most barcodes was confirmed by comparison with those deposited in the Barcode of Life Database (BOLD; www.boldsystems.org) by means of the Identification System (IDS) tool, which returns species-level identification when one is possible. In the case of the Remora osteochir (Cuvier, 1829) specimens, identification was carried out separately by constructing a Neighbor-Joining (NJ) tree (Saitou & Nei, 1987) with p-distances (Nei & Kumar, 2000) and using a bootstrap resampling procedure (Felsenstein, 1985). Voucher specimens were deposited in the Museo de Historia Natural da Universidade de Santiago de Compostela (MHNUSC, Santiago de Compostela, Spain). All information regarding these specimens as well as their barcodes, images, places of capture and other complementary data are available in the projects “Marine Fishes from Galicia” (code FIGAL) and “Unusual Atlantic Fishes” (code UNAFI), both in the BOLD database.

Only the gonads of four specimens corresponding to four species could be examined. After morphometric measurements were taken, the gonads were removed and fixed immediately in 10% formalin buffered with Na2HPO4·2H2O (0.046 M, molar concentration) and NaH2PO4·H2O (0.029 M). One central section from the gonad of each specimen was extracted, dehydrated, embedded in paraffin, sectioned at 3 μm and stained with haematoxylin-eosin for histological examination. The specimen was sexed and classified within its corresponding maturity phase using histological criteria when possible (Grier, 1981; Brown-Peterson et al., 2011). In two additional specimens belonging to Kyphosus vaigiensis (Quoy & Gaimard, 1825) and Hyperoglyphe perciformis (Mitchell, 1818), sex was determined based on macroscopic criteria. It should be mentioned that the gonad samples had been previously frozen, which affected the quality of the histological slide. Therefore, in some cases it was not possible to ascertain the reproductive stage.

Results

Unusual fish species

A total of 13 specimens belonging to nine species and eight families were found in a wide area of the Northeast Atlantic (Fig. 1).

Decapterus tabl Berry, 1968 (Fig. 2a)

Material examined: MHNUSC 25116-1, 162 g, 261 mm TL, 240 mm FL, 227 mm SL, 6th July 2017, Madeira islands, 32.631°N, -17.036°W, 135 m depth; MHNUSC 25116-2, 202 g, 277 mm TL, 253 mm FL, 242 mm SL, 25th July 2017, Madeira islands, 32.618°N, -17.023°W, 227 mm FL, 214 mm SL, 9th October 2017, Madeira Islands, 32.617°N, -17.023°W, 150 m depth. Morphology: HL: 26.0-27.1; PO: 8.4-9.1; POL: 11.0-11.2; ED: 6.2-7.0; IO: 6.2-7.4; PD1: 32.2-34.1; PD2: 49.2-52.3; A: 36.0-38.3; PA: 55.1-58.4; AB: 28.5-33.0; PP: 23.3-26.4; PV: 27.3-29.0; PL: 17.2-18.2; VL: 9.7-11.6; BH: 17.8-19.8; DB1: 8.2-9.3; DB2: I+31-34; A: II+I+24-26; P: 22-23; V: I+5; BR: 6; GR: 10-12+30-31. Distribution: Amphiatlantic, in the western Atlantic from Bermuda and North Carolina to Venezuela whereas in the eastern Atlantic it is only known in Ascension and St Helena islands (Smith-Vaniz, 2016); also in the Indian Ocean and the Indo-West Pacific to Hawaii.

Decapterus macarellus (Cuvier, 1833) (Fig. 2b)

Material examined: MHNUSC 25117, 53.7 g, 190 mm TL, 175 mm FL, 165 mm SL, 9th October 2017, Madeira Islands, 32.617°N, -17.028°W, 150 m depth. Morphology: HL: 23.6; PO: 7.3; POL: 10.3; ED: 6.1; IO: 5.5; PD1: 32.1; PD2: 49.7; DB2: 38.2; PA: 53.3; AB:
Distribution: Circumtropical; although its distribution in the eastern Atlantic is not well known, it is reported from the Azores, Madeira, Canary (rare), Cape Verde, Ascension and St Helena islands, and the Gulf of Guinea (Smith-Vaniz, 2016).

Kyphosus vaigiensis (Quoy & Gaimard, 1825) (Fig. 3c)

Material examined: MHNUMC 25118-1, ♀, 2480 g, 519 mm TL, 463 mm FL, 416 mm SL; 23rd May 2017, Galician waters, 42.148 °N, -8.860 °W, 5 m depth; MHNUMC 25118-2, ♂, 1434 g, 450 mm TL, 405 mm FL, 372 mm SL; 20th March 2018, Galician waters, 42.292 °N, -8.839 °W, 7 m depth. Morphology: HL: 24.0, 24.2; D: XI+13, XI+14; A: III+12, III+13; P: 19; V: I+5; BR: 7; GR: 9+20, 8+20. PO: 6.5, 7.3; POL: 12.7, 12.1; ED: 4.8; IO: 11.5-9.9; PD: 33.7, 32.5; DB: 50.2, 49.7; PA: 59.9-58.3; AB: 25.5, 23.9; PP: 23.1, 23.9; PV: 29.8, 31.7; PL: 18.0, 15.9; VL: 14.7, 12.9; BH: 40.1, 39.8. Distribution:
Widely distributed in the Pacific, Indian and Atlantic Oceans, and also in the Mediterranean Sea (Knudsen & Clements, 2013). In the eastern Atlantic it is distributed from Galicia (Northwest Spain) to Angola (Sakai & Nakabo, 2016; Bañón et al., 2017b). Reproduction: The bigger specimen of 519 mm TL, with an ovary weight of 8.23 g, was a female probably in immature phase, as the presence of only primary growth oocytes indicates (Fig. 3a). The 450 mm TL specimen was classified macroscopically as a male.

Remora osteochir (Cuvier, 1829) (Fig. 2d)
Material examined: Two specimens over a Xiphias gladius Linnaeus, 1758 of 121 cm TL; MHNUSC 25119-1, 8.4 g, 114 mm TL, 98 mm SL; 24th September 2017, Galician waters, 43.302 ºN, -9.294 ºW, 169 m depth; MHNUSC 25119-2, 6.2 g, 106 mm TL, 91 mm SL; 24th September 2017, Galician waters, 43.302 ºN, -9.294 ºW, 169 m depth. Morphology: HL: 22.4, 22.0; PO: 10.2, 8.8; POL: 9.2, 9.9; ED: 3.1, 3.3; IO: 12.2-12.1; PD: 61.2, 58.2; DB: 34.7, 36.3; PA: 59.2-58.2; AB: 34.7, 36.3; DL: 41.8, 37.4; PP: 24.5, 23.1; PV: 28.6; PL: 17.3, 16.5; VL: 13.3, 13.2; BH: 10.2, 9.9; D: 23, 22; A: 23, 20; P: 21, 20; V: 1-5; BR: 8; GR: 1-12, 2-12; LN: 17, 18. Distribution: Epipelagic, worldwide in all warm seas (Collette, 2016).

Antigonia capros Lowe, 1843 (Fig. 2e)
Material examined: MHNUSC 25120, 39.6 g, 102 mm TL, 79 mm SL; 11th May 2018, Galician waters, 42.679 ºN, -9.399 ºW, 170 m depth. Morphology: HL: 38.0; PO: 10.1; POL: 12.7; ED: 15.2; IO: 10.1; PD: 51.9; PB: 43.0; PA: 57.0; AB: 39.2; PP: 36.7; PV: 46.8; PL: 35.4; VL: 29.1; BH: 125.3; D: VII+33; A: III+33; P: 13; V: 1-5; BR: 6; GR: 6+14. Distribution: Worldwide in subtropical and tropical oceans except the eastern Pacific. In the eastern Atlantic Ocean occurs from France to Namibia, including the Azores Archipelago and Madeira Islands (Zidowitz & von Westernhagen, 2004).

Hyperoglyphe perciformis (Mitchill, 1818) (Fig. 2f)
Material examined: MHNUSC 25121, 504 g, 376 mm TL, 339 mm FL, 296 mm SL; 07th July 2018, Galician waters, 42.510 ºN, -10.133 ºW, depth unknown. Morphology: HL: 29.4; PO: 6.5; POL: 11.3; ED: 7.1; IO: 6.5; PD: 23.5; DB: 40.0; PA: 50.6; AB: 9.0; PV: 25.5; PP: 23.9; VL: 17.4; PL: 19.4; CP: 8.7; BH: 25.5; D: XIII+14; A: III+7; P: 17; V: 1-5; BR: 6; GR: 6+14. Distribution: Worldwide in subtropical and tropical oceans except the eastern Pacific. In the western Atlantic Ocean occurs from France to Namibia, including the Azores Archipelago and Madeira Islands (Zidowitz & von Westernhagen, 2004).

Halobatrachus didactylus (Bloch & Schneider 1801) (Fig. 2g)
Material examined: MHNUSC 25122, 308 g, 293 mm TL, 310 mm SL; 11th July 2018, Galician waters, 42.151 ºN, -8.868 ºW, 20 m depth. Morphology: HL: 35.2; PO: 9.7; POL: 21.6; ED: 3.9; IO: 15.5; PD: 31.6; PD2: 46.1; DB1: 5.5; DB2: 46.1; PA: 58.1; AB: 31.3; PV: 25.2; PP: 33.9; VL: 19.0; PL: 21.0; CP: 8.4; BH: 16.8; D1: III; D2: 20; A: 15; P: 24; V: 1-2; BR: 6. Distribution: Eastern Atlantic, from Portugal to the South to at least Ghana and perhaps as far as Nigeria, and western Mediterranean. However, some authors extend it northwards to south of the Bay of Biscay and there is an old northern record from the Kattegat, in Norway (Roux, 1986), conserved in the Lund Museum of Zoology (MZLU: L820/3004). Reproduction: The specimen was classified as a mature male, likely to be in spawning capable phase (Fig. 3b).

Parapristipoma ocellotineum (Valenciennes, 1833) (Fig. 2h)
Material examined: MHNUSC 25124, 508 g, 293 mm TL, 235 mm SL; 21th July 2018, Galician waters, 42.415 ºN, -8.887 ºW, 7 m depth. Morphology: HL: 31.9; PO: 6.5; POL: 11.3; ED: 7.1; IO: 6.5; PD: 23.5; DB: 40.0; PA: 50.6; AB: 9.0; PV: 25.5; PP: 23.9; VL: 17.4; PL: 19.4; CP: 8.7; BH: 25.5; D: XIII+14; A: III+7; P: 17; V: 1-5; BR: 6; GR: 4+24. Distribution: Eastern Atlantic, from Angola northwards to the South of Spain and Portugal, including Cape Verde, Madeira and Canary Islands, and the western Mediterranean (Carpenter & Johnson, 2016); one specimen was recently observed in situ for the first time on the French coast of the Bay of Biscay (Casamajor, 2016). Reproduction: The specimen, with an ovary weight of 3.8 g, was classified as a developing female, by the presence of cortical alveoli oocytes in the ovary (Fig. 3c).

Zu cristatus (Bonelli, 1819) (Fig. 2i)
Material examined: MHNUSC 25123, 1109 mm TL, 983 mm SL; 29th January 2018, south of Ireland, 48.716 ºN, -10.133 ºW, depth unknown. Morphology: HL: 17.7; PO: 3.1; POL: 8.0; ED: 6.6; IO: 3.0; PD: 12.4; DB: 85.7; PV: 16.6; PL: 6.9; BH: 19.5; D: 126; P: 11; V: 1-5; BR: 6; GR: 3+9. Distribution: Mesopelagic, circumglobal in tropical and temperate waters. In the eastern Atlantic it is occasionally found from the North Sea to South Africa and also in the Mediterranean (Olney & Hartel, 2016). Reproduction: The status of preservation and fixation of the reproductive tissue of this specimen hamper the classification of the maturity phase; however there was evidence of female reproductive tissue (Fig. 3d).

Molecular Identification
A COI sequence was obtained from each of the morphologically identified specimens. These sequences were used as queries in the IDS tool. Table 1 shows the results summary after searching the Species Level Barcode Records database, which included 3,205,173 sequences, 193,748 species and 78,906 interim species. The return consists of every COI barcode record with a species level identification and a minimum sequence length of 500 bp. This includes many species represented by only one or two specimens as well as all species with interim taxonomy. Most of the COI sequences obtained a maximum
identity value of 100% with voucher specimens of the same species present in the database, and also give the same result in the morphological examination.

Regarding the *R. osteochir* specimens, a species level match could not be made and the queried sequences were likely to be either *R. osteochir* or *Remora brachyptera* (Lowe, 1839); therefore, they were initially named as *Remora* sp. In order to obtain an unambiguous molecular identification, an alignment of barcode sequences was created, including those obtained from the captured specimens and others of public access in the BOLD repository belonging to several species of the *Remora* genus. Figure 4 shows a NJ tree in which the two *R. osteochir* sequences of the specimens are grouped with others of the same species. Both nucleotide sequences are equal to each other except for a single position.

Discussion

Morphological data, including meristic and biometric measures, are in agreement with previous diagnosis of each species, with the molecular identification based on DNA barcodes supporting the reliability of the morphological one. DNA barcoding is recognized as an important new tool that can be usefully applied to help resolve taxonomic issues in fishes (Ward et al., 2009), based on the development of a reference library of barcode sequences from vouchered specimens. The molecular identification by means of IDS agrees with the same nominal species in all cases excepting three specimens. The *K. vaigiensis* barcode FIGAL003-18 is identified at 100% with a *Kyphosus incisor* (Cuvier, 1831), but this species has been recently synonymized with *K. vaigiensis* (Knudsen & Clements, 2013). The two *R. osteochir* sequences were not identified at species level by the IDS, but this could be due to the use of restricted access (non-public) barcodes from incorrectly identified or pending validation. However, a NJ analysis grouped these two sequences in one highly supported cluster with other nine previously assigned to *R. osteochir* voucher specimens and well differentiated from other clusters.

The observation of new species in a new area represents the first, and sometimes the only opportunity to follow and study the dynamics of colonization. Monitoring the spread is crucial to understand how a new species arrives, what are its movements and developments and the impact that it may have (Azzurro, 2010). Unusual occurrences may testify to substantial extensions of geographical ranges of tropical species which are moving to northern and colder sectors of the eastern Atlantic.

<table>
<thead>
<tr>
<th>Morphology ID</th>
<th>Query ID</th>
<th>Best ID (100% identity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antigonia capros</td>
<td>FIGAL006-18</td>
<td>Antigonia capros</td>
</tr>
<tr>
<td>Decapterus macarellus</td>
<td>UNAFI004-18</td>
<td>Decapterus macarellus</td>
</tr>
<tr>
<td>Decapterus tabl</td>
<td>UNAFI001-18</td>
<td>Decapterus tabl</td>
</tr>
<tr>
<td>Decapterus tabl</td>
<td>UNAFI002-18</td>
<td>Decapterus tabl</td>
</tr>
<tr>
<td>Decapterus tabl</td>
<td>UNAFI003-18</td>
<td>Decapterus tabl</td>
</tr>
<tr>
<td>Halobatrachus didactylus</td>
<td>FIGAL008-18</td>
<td>Halobatrachus didactylus</td>
</tr>
<tr>
<td>Hyperoglyphe perciformis</td>
<td>FIGAL007-18</td>
<td>Hyperoglyphe perciformis</td>
</tr>
<tr>
<td>Kyphosus vaigiensis</td>
<td>FIGAL002-18</td>
<td>Kyphosus vaigiensis</td>
</tr>
<tr>
<td>Kyphosus vaigiensis</td>
<td>FIGAL003-18</td>
<td>Kyphosus incisor</td>
</tr>
<tr>
<td>Parapristipoma octolineatum</td>
<td>FIGAL009-18</td>
<td>Parapristipoma octolineatum</td>
</tr>
<tr>
<td>Remora osteochir</td>
<td>FIGAL004-18</td>
<td>Remora sp.</td>
</tr>
<tr>
<td>Remora osteochir</td>
<td>FIGAL005-18</td>
<td>Remora sp.</td>
</tr>
<tr>
<td>Zu cristatus</td>
<td>UNAFI005-18</td>
<td>Zu cristatus</td>
</tr>
</tbody>
</table>

1Query barcode sequences identified with BOLD Process ID codes

Fig. 3: Histological slides. a: female reproductive tissue of *K. vaigiensis*; b: male reproductive tissue of *H. didactylus*; c: female reproductive tissue of *P. octolineatum* and d female reproductive tissue of *Z. cristatus*. PG=Primary growth oocyte, CA=cortical alveoli.
In the case of mesopelagic fishes such as H. perciformes and Z. crassatus, they are rarely caught because mesopelagic habitats are poorly sampled, so it is difficult to relate their presence to changes in geographical distribution. The difficulty of sampling many marine habitats could cause fish to be considered rare when in fact they could be common or abundant (Swaby & Potts, 1990). However, the occurrence of coastal and tropical species such as K. vaigiensis or P. octolineatum would more probably be related to a northward displacement related to global warming (see Bañón et al., 2017b for K. vaigiensis).

The records reported here add new biological information and interesting biogeographic locations for the eastern Atlantic. Regarding Decapterus fishes, only two species are known in the Madeira Islands: Decapterus punctatus (Cuvier 1829) and D. macarellus (Wirz et al., 2008). These results confirm the presence of D. macarellus and add D. talus as a new species for the Madeira Islands. The current records of K. vaigiensis confirm its increasingly frequent presence in Galician waters, at their northern limit of distribution in the eastern Atlantic.

These are also the first confirmed records of R. osteochir, A. capros, H. perciformis, H. didactylus and P. octolineatum from Galician waters. The location mark of A. capros drawing in front of Galicia by Quéro (1986) really corresponds to an unspecified Portuguese record (Quéro & Duron, 1980). The H. perciformis length, 339 mm FL, agrees well with the general size composition reported in the eastern Atlantic, composed of young specimens up to 410 mm FL (Filer & Sedberry, 2008). The size of H. didactylus, 367 mm TL, is greater than the maximum previously reported (Collette & Greenfield, 2016) of 277 mm TL, but in range with Roux (1986), up to 500 mm SL. Moreover, according to two of the biometric measures (ED 3.9% SL, IO 15.5% SL), the specimen of H. didactylus belongs to the small-eyed European morphotype, characterized by ED 5.3–7.9% SL and IO 12.2–16.1% SL, which could represent a separate species of the large-eyed African morphotype, with ED 7.8–11.1% SL and IO 8.8–12.1% SL (Collette et al., 2006). The location of P. octolineatum constitutes the second northernmost record for the East Atlantic. The most northerly species found so far was photographed but not analysed in the South of the Bay of Biscay (Casamajor, 2016). Zu crassatus is a very rare species in the Atlantic European waters and here constitutes the second northernmost record from the eastern Atlantic, only surpassed by a specimen recorded in the Rockall Bank, at 56°N (Quigley & Henderson, 2014).

Regarding the two R. osteochir specimens, both were very similar in size, colour and morphological data to a previous specimen of R. brachyptera (MF038134) also reported in Galician waters (Bañón et al., 2017a). Both species can be differentiated mainly by the lower number of dorsal fin rays and a greater disc length in R. osteochir respect to R. brachyptera (Collette, 2016). In the eastern Atlantic, R. osteochir is distributed northwards off the mainland of Portugal and the Azores Islands (Carneiro et al., 2014). The Galician records suppose therefore a new northernmost limit for the eastern Atlantic.

All these findings allow us a more detailed knowledge of the spatial distribution of these species. This is necessary to know its changes linked to anthropological, physical or oceanographic factors, such as global warming and tropicalization processes. In the concrete case of H. didactylus, this species shows some difficulties in the dispersal and colonisation of new territories due to its ecological characteristics: low fecundity, presence of benthic eggs and larvae, parental care of the offspring and marked sedentary lifestyle of the adults (Costa et al., 2003). However, there are some old vagrant specimens found beyond its northern limit sited in the Tagus River: a specimen in Norway (Nilsen, 1832), a doubtful record (Quéro pers. communication) from the Loire estuary (Desvaux, 1843) and an unpublished record in Galician waters. This latter was a specimen of H. didactylus found in the fish collection of the Museo Natural de Ciencias Naturales de Madrid, in Spain (MNCN ICSTO 13294), labelled as “caught off the coast of Galicia” in June 1926, without any further information. As far as we know, there are no records further north until now since this last year, which seems to support the low dispersal ability of this species.

Of the four individuals sampled to collect reproductive tissue, only H. didactylus was a male, which seemed to be in spawning capable condition, in agreement with previous studies (Palazón-Fernández et al., 2001). Regarding females, K. vaigiensis were classified as immature, with all the oocytes in primary growth stage. However, previous reports of this species revealed smaller maturation lengths, for instance, 42.8 cm TL in the Caribbean (Mora, 2013) or 36 cm TL in Papua New Guinea (Longenecker et al., 2012). The regenerating phase can be a source of misclassification, even using histological techniques, and more samples would be convenient to validate current classification (Brown-Peterson et al., 2011). Ovaries of K. vaigiensis confirm its in-
P. octolineatum presented cortical alveoli oocytes, which are evidence of developing maturity phase, so, it was classified as a mature female. Fish in the reproductive cycle and gonadal growth become gonadotropin dependent, and will reproduce the coming spawning season.

The study of reproductive biology can provide clues about the key factors that determine the seasonal occurrence of unusual species (Bañón et al., 2008). It can also be particularly informative in early settled populations, as a means of knowing if colonizers attain final gonad maturation stages and have the potential for successful reproduction (Azzurro, 2010). Due to the small number of samples and the poor condition of some of them, we cannot draw clear conclusions on the reproductive aspects and more sampling effort is needed.

Acknowledgements

The authors would like to thank Jose Manuel González Juste (vessel “M Jose”) for kindly donating the specimen of *H. didactylus*. The specimens of *R. osteochir* were obtained during the “Demersales 2017” bottom trawl surveys and therefore Alberto Serrano and Marián Blanco (Instituto Español de Oceanografía, C.O. de Santander) are thanked. Also thanks to the spear fishermen of the Federación Galega de Actividades Subacuáticas and especially to Abraham Padín for providing various specimens here reported. Also thanks to Lucia Sánchez-Ruíloha (IM-CSIC) for the help with the fish photographic composition. This study was partially financed by the agreement between CSIC and Xunta de Galicia to analyse fisheries-dependent data from the monitoring program of small-scale fisheries in Galicia (Agreement No. 070401150009). RT was financially supported by the Oceanic Observatory of Madeira Project (M1420-01-0145-FEDER-000001-Observatório Oceânico da Madeira-OOM).

References

