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Abstract

We propose speeding up a single ion heat pump based on a tapered ion trap. If a trapped ion is excited
in an oscillatory motion axially the radial degrees of freedom are cyclically expanded and compressed
such that heat can be pumped between two reservoirs coupled to the ion at the turning points of
oscillation. Through the use of invariant-based inverse engineering we can speed up the process
without sacrificing the efficiency of each heat pump cycle. This additional control can be supplied with
additional control electrodes or it can be encoded into the geometry of the radial trapping electrodes.
We present a novel insight into how speed up can be achieved through the use of inverted harmonic
potentials and verify the stability of such trapping conditions.

1. Introduction

Trapped ions are an established platform for realizing high-fidelity quantum information processing [1, 2],
quantum simulation [3, 4], and precision metrology experiments [5, 6]. Recently a single ion, trapped in a tapered
trap, was employed to realize a single ion heat engine [7, 8]. Due to the controllability of the environment this
system implements a formidable model experiment for studying thermodynamics at the single particle limit
towards the quantum regime. In this paper we study the reverse process, a single ion heat pump, and how this
process can be sped up through the shortcut to adiabaticity technique involving the use of invariant-based inverse
engineering [9, 10]. In the following, as in the single ion heat engine, the ion is confined in a harmonic potential and
the motional radial degrees of freedom serve as the working agent, where we consider temperature only in the
radial directions. A thermal state that is adiabatically transported along the taper (see figure 1) into a region with
lower trap frequency attains a lower temperature due to the reduced energy level spacing in the harmonic potential.
This mechanism could be used to couple to a reservoir, such as neighboring ions, to affect cooling by absorbing
heat. Thus, a subsequent adiabatic transport back to the starting position at higher confinement results in an
increased temperature. Dumping heat to another reservoir allows one to recool the working agent for starting a
new cycle of the heat pump. Speeding this procedure up to increase the heat pumping rate through the use of e.g.
bang-bang transport is typically limited by the condition of performing the change of the radial trapping frequency
adiabatically. In the following, we will describe how shortcuts to adiabaticity can be employed to go beyond this
limitation [11-15], in particular the invariant-based inverse engineering approach will allow the design of
protocols by controlling the radial trapping frequency with external electrode voltages. One possibility is to control
the radial trapping frequency by varying the radiofrequency amplitude which is symmetrically supplied to the
tapered electrodes of the ion trap. The speed up in this case is limited by the fact that the radial confinement should
be sustained. A further speed up would be possible if the trapping potential can be inverted. This is achieved by
switching off the radiofrequency confinement for a short period and using the radial DC potentials generated by
the end-cap electrodes to supply a specially designed time varying radial quadratic potential. Due to Laplace’s
equation, a confining potential in one direction leads necessarily torepelling potentials in the other two directions,
or vice versa. We present a shortcut of short duration, which helps both to achieve high cooling rates and avoid
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Figure 1. Tapered ion trap. The tapered electrodes are supplied symmetrically with radiofrequency voltage for the radial confinement.
Endcaps are used to supply axial confinement with DC voltages. During shortcut to adiabaticity protocol the radiofrequency is
switched off and the voltage on the endcaps is used to realize the axial confinement or anti-confinement, respectively. Due to the short
duration stable trapping conditions can be maintained.

losing the ion from the trap. For typical trapping frequency changes from 3 to 1 MHz, a shortcut duration of 20 ns
can be achieved, through the use of non-confining potentials. In order to avoid instability due to micro-motion, it is
necessary that the radiofrequency period is shorter than the shortcut duration”. Numerical simulations confirm
stable trapping conditions despite the inverted trapping potentials over short time periods. It is important to note
that the speed up is only limited by the maximal voltages and the currents which can be applied to the electrodes. The
single ion heat pump could be an important method for lowering temperatures in a trapped ion based quantum
information processor and the speed up described could help to compete against deleterious heating rates.

2. Invariant-based inverse engineering for mixed states
Closed quantum systems follow a unitary dynamics described by the Liouville equation of motion

in 92D _ 1), peo1, )
ot

where p(t) is the density matrix describing the system and H (¢) the Hamiltonian controlling its dynamics.
Related to any Hamiltonian there are dynamical invariants of motion [16]

0Lt NI

i % — AW, fen) =0, @)

with constant expectation values—i.e. quantities preserved by the dynamics generated by (1). The invariant
expands an orthonormal basis |¢, (¢)) with constant eigenvalues \,,,

I(®) = 3 216,0) A (B, (). ®3)
In this basis the density matrix elements p;, = (¢,()|p(t)|¢;(¢)) are calculated from [17]
pr() = i[<¢z(t) iﬁ% - Fl(t)l‘ ¢ (1) — (P (®) iﬁ% - H(t)l‘ ¢k(t)>)sz(t)

Prc(H) =0, (€]

where the populations remain constant and the off-diagonal elements depend on the difference of time
derivatives of two Lewis—Riesenfeld phases [16]. A simpler derivation of the Lewis—Riesenfeld relation for pure
states is done in appendix A. From equation (4) we observe that a system initialized in an eigenstate of the
invariant will remain in the same instantaneous eigenstate without transitions, imposing the so-called
frictionless conditions [H (0), [ (0)] = [H (738 I (tr)] = 0, weensure that the system starts and ends as an
eigenstate of the Hamiltonian without unwanted excitations. A perfect state transfer from H(O)to H (tp)is
designed by first choosing properly I (¢) and then reverse engineering the dynamics to deduce H (¢). In
particular, for an effectively 1D time-dependent harmonic potential

* Note that the switching should be synchronized to the radiofrequency phase.
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an associated dynamical invariant (2) reads [ 18]

2

A 1 : 1 q
I(t)y = —I[b(Hp — mb(t)qP + —muwg , 6
(®) 2m[()p mb(t)q] 200 (6)
where b(?) is a free function of time satisfying the Ermakov equation [19]
b6 + 0b(e) = -2 @)
b’

being wy the initial frequency of the oscillator at time t = 0. The frictionless conditions [H(t,) = [(t,)] = 0at
the boundary times t;, = 0, t; set

bO)=1, bO) =0, bO)=0
bt =7, blt) =0, bt)=0 ®)

with v = (wp/wy)/2. Any b(#) fulfilling the previous six boundary conditions will produce a perfect control, see
equation (7)

4w
bit)  b(t)
driving each Fock state |12(0)), to the corresponding Fock state | (;)) independently of the process time tz More

wi(t) =

€

details in appendix B can be found. Note that typically for ultra-fast processes, very short ¢, values, wi/b* < b/b
and the trapping parabola becomes a repeller potential. The stability and experimental implementation of such
scenario will be deeply analyzed in the following sections.

3. Reverse engineering of Gaussian states

3.1. Coherent states
The previous protocol (9) is not only valid to connect single | 1) to |12) Fock states but also coherent states [20]

= —|W|2/20O o . 10
la(t)) = e nz::o\/mln(t» (10)

These are pure states forming a linear superposition. As at initial time the frictionless conditions guarantee that
H and I share acommon basis |¢,(0)) = |#(0)) and according to equation (4), or simply (A.4) as the system is
pure, this initial state [¢)(0)) = |a(0)) will evolve to [21]

o]

o 5 a" -

(1)) = e80T 1002 57 —— 6, (1)) = laey)), (11)
n=0 ‘/F

with & = ae v and g = J:f dt’/p?. The condition [ﬁ(tf), f(tf)] = 0 guarantees |¢, (tf)) = |n(ts)), thus

the system ends as also a coherent state with frequency wy.

3.2. Thermal states

From the set of equations (4) we observe that any system that initially is diagonal in the basis expanded by the
eigenstates of the invariant will keep its populations constant during the whole process. Moreover, imposing

(I (1), H(t,)] = Oatt, = 0, ty the initial and final states will be also diagonal in the energy basis expanded by
H(0)and H (t), which is the case for thermal states. Considering the time-dependent harmonic oscillator (5)
and if initially the system is assumed to be the thermal state p(0) = exp(— BoH (0)) /Z, with Z a normalization
constant, initial inverse temperature Gy, and w(t = 0) = wy, by changing w(#) according to equations (8) and (9)
the system will evolve reaching the final thermal state p (tf) = exp(— BfI:I (tr) / 7', corresponding to a A (tr)
with frequency w(t;) = wyanda cooling/heating 3y = v*3,.

3.3. Quantum dynamical evolution of Gaussian states
Note that both coherent and thermal states are Gaussian states—i.e. the symmetric Wigner function

1 o0 N ;
W =W p)=— [ dylg+ylplg - y)e 20 (12)
wh J-x

is Gaussian, x = (g, p) corresponds to the eigenvalues of the quadrature operators & = (g, p). Consequently,
the density operator p has a one-to-one correspondence with the first and second-order statistical moments of
the state, p = p(X, V) [22]. The first moments are called the displacement vector, or simply the mean value

3
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% = (%) = Trl&p ()], (13)
and the second moment, called covariant matrix, with generic element
V= V= (A% A%)), (14)

where A%; = £; — (X;)and {A, B} = AB + BA.In particular, for coherent and thermal states of a harmonic
oscillator these moments X and V are constructed from the set of operators X = (4, p, 4% p*, 4p + pg)s

_ o n (@) — (@7 (ap + pq) — <ﬁ><é>)
= ( > )) V= An A A AN A A~ A~ (15)
X =@ (<q Ch - BND) ) — (B
and the Wigner function is reconstructed,
W) = exp[(x — )TV I(x — %) /2] (16)

2wy detV

with x”, the transpose of xand V™! the inverse matrix of V. In order to describe the dynamical evolution of p, or
equivalently W(x), it is enough to describe the evolution of the set of observables X to reconstruct the state using
equations (15) and (16), avoiding the use of wave packet propagation. This is done within the Heissenberg
representation

dX;(t)

e

with X;(t) = (X,) = Tr[X;p(¢)]. Note that the set of five operators X formaclosed Lie algebra, as the
Hamiltonian (5) of a harmonic oscillator is a linear combination of some X; elements, the dynamical equation of
motion (17)is also closed to the algebra. Consequently, the evolved state p (¢) remains Gaussian during the
whole evolution.

}i[ﬁ(n, X1, (17)

Finally, given two Gaussian states p, and p,, we can compute the fidelity F(p,, p,) = Tr(y/ /D P2~/ 1)
between these two states in terms of their respective moments X;, V; and X,, V; as

A a 5 1 _
F(py p2) = Fo(Wis Vz)eXP[—ng(\ﬁ + Vo) 15&] (18)

with 83 = % — X, and Fy(V;, V) having a closed analytical form [23].

4. Robustness improvements

The main source of imperfection in the experimental implementation of the shortcut is produced by the time
variation of the control w*(£). Controlling this by the pseudopotential through dynamic change of the amplitude
of the radiofrequency voltage has the disadvantage that non-confining potentials cannot be supplied. Amplitude
control of this voltage is technologically more involved and intrinsically limited by the period of the
radiofrequency. Thus the biggest speed up potential and controllability is obtained by controlling the DC
potentials by low-noise high-speed arbitrary waveform generators. If radiofrequency confinement is kept on
very accurate timing and high voltages are needed. In order to allow for a reliable control of the confinement, we
therefore switch off the radiofrequency drive during the control period. This can be efficiently achieved by a solid
state radiofrequency toggle switch [24] directly after a high voltage rf generator [25]. In many cases the high
voltage rf generator is replaced by a low voltage radiofrequency generator with a subsequent radiofrequency
amplifier with 50 2 impedance. Impedance matching is then achieved with a helical responators which
additionally transforms the radiofrequency voltages. In these cases an ultra low resistance toggle switch has to be
used directly after the helical resonator with one terminal connected with the trap electrodes and the other
connected with a circuit of equivalent impendance. Anharmonicities of the trapping potentials can be neglected
as the ion is kept at the extremal point of the harmonic confinement at all the time.

Thanks to the freedom in the construction of the shortcut protocol at intermediate time more constraints
such as minimizing dw?/dt = 9,(w?) due to experimental limits can be realized. This is originated from the slew
rate and bandwidth limit of digital analog converters and power amplifiers. The minimization of 9;(w?) can then
be performed by optimal control techniques but the boundary conditions for b could violated. Discontinuities
in b, b would be unfeasible due to the requirement of instantaneous jumps in the control voltages.

As an example, minimizing max|0,(w?)|, the maximum value of 9,(w?) in the interval ¢ € [0, /], will
reduce the power employed by the control protocol improving the heat extraction process. Defining
C(t) = w?(t), the extreme condition that minimizes dC/dt = 0 is satisfied by the useless control
C@) = w(z,pt (t) = const. The mean value theorem provides a useful bound for the instantaneous maximum

value of the control. Assuming that C is continuous in [0, 7] and differentiable in (0, t¢) such that C(0) = w?

4
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Figure 2. Radial confinement w? as a function of time for two different designs of the shortcut. (Green dashed line) Standard 6-order
polynomial fulfilling the frictionless conditions (8). (Black solid line) Improved design with extra-coefficients to control the value of
max|9;(w?)|. The inset shows |9,w?(¢)|/|9;w*(0)| for both designs. Here, wy /(27) = 3 MHz and wy/(2m) = 1 MHz.

and C(ty) = w% the maximum ofits derivative must be

2 wi — Wl
dw? > A (19)
dt tf

where the equality holds for the w?(t) = wi + (wfc — wht / t¢ control. However, the resulting b(t) deduced

from equation (7) does not satisfy the six frictionless boundary conditions (8). As result discontinuities in band
batt = 0Oand t¢ should be applied requiring instantaneous switches in the controls. In order to avoid
discontinuities hardly resolved experimentally we use the non-uniqueness of b(f) to add extra-parameters g; in
the interpolation of b(t) = 3_; a;¢* to ensure (8) and using equation (9) create controls w?(¢; a;) such that the
value of 9;(w?) is controlled through thee extra-parameters a; [17, 26]. By using gradient descent methods
w?(t; a;)is optimized. As an example, for an expansion process of 20 ns see figure 2, the addition of the extra-
max | &(wﬁm) |

max | 9,(w?) |
6-order interpolation, see appendix B. Additionally, this design also reduces the value of max|w?|, thus the
protocol improves both the slew rate and power of the required controls. Other sophisticated designs are also
possible due to the freedom to interpolate b(t) at intermediate times.

coefficient aqt® in the interpolation of b(¢) allows a reduction of ~ 0.78 in contrast with a standard

5. Proposed experimental implementation

In the following, we will consider the 3D-Hamiltonian corresponding to an ion trap symmetrically driven with
radiofrequency and end-cap geometry. In order to fulfill Laplace’s equation the Hamiltonian describing the
trapped ion becomes:

H() = i 2wz + aw + AOR? + ZQw) + Aw)Ps? (20)
m 2 2 2

with p = (f,, ﬁy, b,), w.(t) the frequency along the axial z-direction, and wy () = wy(t) = w, (1) =

Q(t) + A(t) the radial frequencies produced by the RF and DC voltages in conjunction”. This Hamiltonian has
asymmetric radial confinement in the x and y-directions that will be employed as working fluid to produce the
heat pump processes. In the following we disregard the effect of control voltages on the longitudinal confinement
because the ion is always kept at the extremal point of the longitudinal confinement and we use the longitudinal
degrees of freedom as a classical piston being driven. Under this prescription the radial Hamiltonian reads,

A2

N 1

Ao =2 4+ Lo + ), 1)
2m 2

with p = (p,, ﬁy). Defining 7| = (X, ) we observe that this radial Hamiltonian has the same structure as
equation (5), consequently the radial frequency can be modified from w; (0) = wy oto wi (tf) = w, fthrougha

> Note that the trapping frequency caused by the pseudopotential and the DC potentials cannot be simply added especially when large
voltages are involved (see equations (11) and (15) from [27] for details.)
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Figure 3. Radial confinement squared for a linear ramp (blue dotted line), smooth ramp (red dashed line) and the shortcut to
adiabaticity (black solid line), with (a) parameters chosen to avoid negative w?and (b) allowing negative w* for the shortcut. Here,
wo/(2m) = 3 MHzand wy/(2m) = 1 MHz. Inset: Adiabaticity parameter J2 &/ (8w?) for the three cases.
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Figure 4. Fidelity F(D (t/), Piyger) as a function of the expansion time #; for three different protocols, shortcut (black solid line), linear
ramp (blue dotted line), and smooth ramp (red dashed line). In (a) the initial state corresponds to a thermal state with temperature of
2mK. In (b) the initial state is a coherent state with a photon number oy = 1 + i. Parameters as in figure 3.

shortcut w? (t) = w? (/b — by /b with by satisfying the frictionless boundary conditions (8) with a radial
expansion/compression ratio v, = (wy o/ wa)l/ 2, the same for both the xand y axes.

The shortcut to adiabaticity will be implemented by common voltages on the end-cap electrodes of an ion
trap, while the dominant radiofrequency saddle potential has been momentarily turned off. The differential
voltage on the endcaps can be used to control the axial movement of the ion, but can be disregarded here. The
radial confinement caused by the radial frequency is only relevant at the turning points of the axial transport,
when the ion is coupled to the reservoirs. Alternatively, a linear trap design could be used without a taper, with
the radial frequency being switched to different amplitudes in between. The radial trapping potential during the
shortcut is applied by a common voltage on the end-cap electrodes, and needs to be matched to the initial and
final confinement provided by the pseudopotential. Laplace’s equation and the geometric symmetry specifies
that w” is inverted with half the magnitude. We have compared three expansion protocols; shortcut, linear and
smooth ramp w(t) = (wpe'™ + wr elt) / (e + eI'*) for the cooling of thermal and coherent states, see figure 3.

The initial thermal state is characterized by the statistical moments X;(0) = X,(0) = X5(0) = 0 and

X5(0) = I¢ coth (%) X4(0) = k2 coth (@) (22)

with Iy = /72 /(2muwy ) and kg = /m/aw o/2 correspondingtoa H (0)witha frequency wj (0) = wy gand

inverse temperature (3. The target state has similar statistical moments corresponding to a final frequency wy ¢
and inverse temperature 3y = ’yi Bo. In figure 4(a) we plot the fidelity (D (tf), Piyrger) Of the evolved state p(ty)
compared to the target thermal state D, corresponding to A (tr) having a frequency w; . We observe how the
shortcut by construction ensures fidelity one independently of the time employed to produce the expansion of
the harmonic trap whereas the linear and smooth ramp protocols fail as the process is no longer adiabatic, see

insets of figure 3.
Similarly, we analyze the three previous protocols for the expansion of a coherent state in the trapping

potential (20). The initial state has the statistical moments
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Figure 5. Experimental control sequence. The radial radiofrequency drive is switched off during the application of the shortcut to
adiabaticity protocol on the DC electrodes, the shortcut changes the radial confinement.
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Figure 6. Simulation of the classical radial trajectory of the ion including the micro-motion effect for the whole experimental control
sequence depicted in figure 5. The expansion time is 20 ns for both the shortcut (a) and the equivalent linear ramp (b). In both cases the
initial radial trapping frequencies are w , (0)/(27) = 3 MHzand w, (20 ns)/(2w) = 1 MHz. The radiofrequency drive was set to
wrp/(2m) = 100 MHz with the axial trapping frequency being w,/(2m) = 100 kHz. Rest of parameters: m = 40 amu.

X,(0) = 2lpRe(avg),  X5(0) = 2ko Im(arp),
X50) = X7(0) + I,  X4(0) = X3(0) + k5,  X5(0) = 4/ Re(avg) Im(cx) (23)

associated with H (0) and wy 0. At H (t7) the target state has similar statistical moments with w; (7)) = w s and

photon number oy = ayg e %o with g = J; v e / p*. As for the case of thermal states we observe in figure 4(b)
how the shortcut drives the initial system until the desired target state independently of the expansion time t.

Figure 5 shows the whole control sequence responsible for the shortcut to adiabaticity protocol which
includes anti-trapping potentials for short compression cycles. The radiofrequency is switched off during that
time such that the DC control potentials can be kept at lower voltages. By construction the protocol keeps the
fidelity at 1, but stable trapping conditions have to be maintained due to the anti-trapping potentials involved. In
figure 6 we have verified that indeed phase stable trapping can be maintained due to the shortness of the anti-
trapping potentials. We have included in the dynamics the whole experimental control sequence figure 5, where
the trapping potential is given by equation (20) and the micro-motion exerted on the ion due to the rf-driving
has been taken into account. To include this micro-motion, a simulation based on the velocity Verlet method
was performed. Both the radiofrequency drive wgg/(27) and the axial trapping w,/(27) frequencies were set to
100 kHz. In order to avoid instability due to micro-motion, the corresponding radiofrequency period is shorter
than the shortcut duration produced in 20 ns. For this expansion time (see figure 3(b)), the adiabaticity
parameter goes beyond the adiabatic regime for the linear and smooth ramps, thus making the shortcut
necessary to ensure a perfect driving. Note, due to the zero-crossings of w, the adiabaticity parameter diverges,
but this does not compromise the effectiveness of the shortcut. This is also apparent in figure 6(a), where one can
observe that a phase relation is maintained before and after the shortcut. In contrast, in figure 6(b), although the
ion remains trapped after the linear ramp the final evolved state is excited. The excitations modify the ion
oscillations rotating the axis of the ellipse with respect to the original direction that corresponds to the final
unexcited state.
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6. Discussion

Making use of shortcuts to adiabaticity we have improved the efficiency of a heat pump for a single ion. The
expansion protocol allows ultra-fast and high-fidelity processes through the use of transient non-confining
potentials. The stability of the potential has been analyzed and the experimental feasibility discussed. The
shortcut control has been improved according to experimental constrains, in particular minimizing the required
power and thus reducing the effect of noise produced by the controls. These improved controls could be useful
since efficient heat pump extraction protocols provide new cooling mechanisms and constitute the basis of
stroke heat engines/refrigerators [28] allowing us to test the laws of thermodynamics and get closer to the
absolute zero temperature [29] in the single particle domain. The possibility to design different refrigerators
based on the Otto cycle according to the performance of each stroke offers a new venue to design new heat pump
protocols. As example, not only optimizing the compression/expansion strokes but also designing efficient
trapping potentials at the isochores for the thermalization processes by controlling the trap frequencies w(?).
Additionally, using the temperature of the bath as a control could lead to new shortcut to adiabaticity such that
the optimal performance of the heat pump would be achieved. These extensions are of additional interest also to
different refrigerators types like the continuous refrigerator where the ion is in continuous contact with the bath
[30], which might be easier to implement experimentally.
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Appendix A. Invariant-based inverse engineering for pure states

Related to any Hamiltonian H (¢) there are invariants of motion [16]

i oI (t)

- [I:I(t)> j(t))] =0, (A1)
ot

with constant expectation values for any wave function satisfying the time-dependent Schrodinger equation
., 0 n
i/i = 1W(@0) = HON®). (A.2)

The invariant expands an orthonormal basis | ¢, (¢)) with constant eigenvalues \,,,

1) =Y 18,0) A (B, (D). (A.3)

These states can be used to express the dynamical wave function as a linear superposition of the ‘dynamical
modes’

W) =D cltu(®) with |1, (1)) = e D]g, (1)), (A4)

n

¢, being the constant time-independent coefficients of the expansion with the Lewis—Riesenfeld phases defined
as[16]
1 t
au(®) =+ [ d (g, )
7 Jo

., 0 (4! I
lﬁafH(t) 6, (t"). (A.5)

Suppose that we want to drive the system by changing a control parameter €(f) from an initial Hamiltonian
H(e(t = 0))with e (f = 0) = ¢y toafinal configuration governed by H(e(t = t)), where e (t = tf) = efin
such a way that the populations in the initial and final instantaneous basis are the same but transitions at
intermediate times are allowed’. Our aim is to deduce the time dependency of the control (f) that enables us to
perform this task. We assume that the structure of the Hamiltonian controlling the dynamics of the system is
known, i.e., the dependency of H = H (¢)asafunction of e is known but not the time dependency of € = €(¥),
which is our target. Once H (¢) is known, a related invariant can be found using equation (A.1) and subsequently
its eigenvectors |4, (¢))” and eigenvalues deduced. Then the state of the system at any time will be described by

6 . . . . ..
More controls ¢ (f),... €,(t) can be considered but a singe control is assumed for simplicity.

The relative phases between the eigenstates of the invariant allow different definitions of the |¢,) states; consequently the Lewis—Riesenfeld
phase (A.5) is non-unique.
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equations (A.4) and (A.5) evolving during the whole process as a linear combination of the dynamical modes.
Generally, notice that I (t = 0) does not commute with H (t = 0), then the eigenstates of the invariant do not
coincide with those of the Hamiltonian. A similar situation occurs at t = t: Imposing the frictionless conditions
[1(0), H(0)] = 0and [] (73} A (tr)] = 0 willallow us to deduce a control strategy € = ¢(t) that guarantees a
perfect state evolution without final excitations such that the initial and final states are compatible with the
initial/final Hamiltonians [9, 10].

Appendix B. Fast expansion and compression of a harmonic trap

In this section we will apply the general formalism to a particular case corresponding to the expansion/
compression of a time-dependent harmonic potential [9, 10, 12,17, 26, 31-33]. We consider a particle of mass m
trapped by an effectively 1D time-dependent harmonic potential
HUN:EKAFlmw%ﬂQ
g (B.1)
2m 2

with an initial frequency w(0) = wpand a final trapping configuration that corresponds to w(ff) = wy. For
Wy > wr (wWo < wy) the process corresponds to an expansion (compressmn) of the trap. Our goal is to find the
control w(?) so that the system evolves from any eigenstate |1(0)) of H (wo)att = 0tothe corresponding
eigenstate [n(t)) of H (wp)att = tp A dynamlcal invariant of the Hamiltonian (B.1) reads [18]

1 Q
I = b(t)p — mb(t : B.2
®) = [()P mb(t)q® + 2" ey (B.2)
where b(#) is a free function of time satisfying the Ermakov equation [19]

c2

b))’

b(t) + W2(Ob(t) = (B.3)

and for convenience we set the constant ¢ = wy. Defining # = bp — mbq which is the conjugate momentum of
4b, we notice that the invariant (B.2) has the structure of a harmonic oscillator with constant frequency ¢ = w,.

After computing the phases o, (t) = —(n + 1/2)wy j(; Lt /b%(t") and using equation (A.4) we found the wave

function of the system at any time. Considering a single mode with wj > 0

1/4 Li(m/2/)(b/b+iwo/b?)q?
R mwy e
U.(q, t) = (G|¥,(1)) =
(g, 1) <‘Z| ( )> ( 7 ) (2"n!b)!/2

« e—i(n+1/2)wuf(; dt’/thn[ m/;)o %]’ (B.4)

with H,, the n-order Hermite polynomial. The average energy for this state becomes [9]

. Qn+ 17 2
H®®)), = ——2| 57 (1) + w2 () b2(1) + B.5
(H(®) o [() w (D) b(1) bz()) (B.5)
having a zero average position, a standard deviation
Mgk = [ dagltg, 0P = ﬁb%t)(—” +1/2 ) (B.6)
— o0 muwy

that gives a physical meaning to b(t). To set I\Il(0)> and |[¥(ty)) as eigenstates of the initial and final Hamiltonians
we impose the frictionless conditions [ () = I (tp)] = Oat the boundary times #, = 0, #; that implies

b(0) =1, b(ty) =y = (wo/wf)l/z,and b(0) = b(tf) =b(0) = b(tf) = 0. These boundary conditions are
easily obtained making 1(0) = H(O)and [ (ty) = ~vH (t7)- The conditions for the second derivative follow from

equation (B.3) that holds at all time in order to impose I (¢) as a dynamical invariant of H (¢). Then any b(t)
fulfilling the previous six conditions at the extremes will produce the desired driving

wi b(t)
b'®) b
between the states of H (0) and H (tr) independently of the expansion/compression time ¢ In order to satisfy
(8) weinterpolate b(t) = Z?:o a;t with atleast the same number of coefficients a; as conditions over b. Solving
for the coefficients we find b(t) = 6(y — 1)s> — 15(y — 1)s* 4+ 10(y — 1)s> + 1where s := t/t;. Wecan
take advantage of the non-uniqueness of b(f) at intermediate times to design more sophisticated b(¢) functions
and additionally minimize or impose possible experimental constraints [17, 26, 34—36].

w3 (t) =

(B.7)

9
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