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Abstract
Wepropose speeding up a single ion heat pumpbased on a tapered ion trap. If a trapped ion is excited
in an oscillatorymotion axially the radial degrees of freedom are cyclically expanded and compressed
such that heat can be pumped between two reservoirs coupled to the ion at the turning points of
oscillation. Through the use of invariant-based inverse engineeringwe can speed up the process
without sacrificing the efficiency of each heat pump cycle. This additional control can be suppliedwith
additional control electrodes or it can be encoded into the geometry of the radial trapping electrodes.
We present a novel insight into how speed up can be achieved through the use of inverted harmonic
potentials and verify the stability of such trapping conditions.

1. Introduction

Trapped ions are an establishedplatform for realizing high-fidelity quantum information processing [1, 2],
quantumsimulation [3, 4], andprecisionmetrology experiments [5, 6]. Recently a single ion, trapped in a tapered
trap,was employed to realize a single ionheat engine [7, 8]. Due to the controllability of the environment this
system implements a formidablemodel experiment for studying thermodynamics at the single particle limit
towards the quantumregime. In this paperwe study the reverse process, a single ionheat pump, andhow this
process canbe spedup through the shortcut to adiabaticity technique involving theuse of invariant-based inverse
engineering [9, 10]. In the following, as in the single ion heat engine, the ion is confined in a harmonic potential and
themotional radial degrees of freedomserve as theworking agent, wherewe consider temperature only in the
radial directions.A thermal state that is adiabatically transported along the taper (seefigure 1) into a regionwith
lower trap frequency attains a lower temperature due to the reduced energy level spacing in theharmonic potential.
Thismechanismcouldbeused to couple to a reservoir, such as neighboring ions, to affect cooling by absorbing
heat. Thus, a subsequent adiabatic transport back to the starting position at higher confinement results in an
increased temperature.Dumping heat to another reservoir allows one to recool theworking agent for starting a
newcycle of the heat pump. Speeding this procedure up to increase the heat pumping rate through the use of e.g.
bang–bang transport is typically limitedby the condition of performing the change of the radial trapping frequency
adiabatically. In the following,wewill describe how shortcuts to adiabaticity can be employed to gobeyond this
limitation [11–15], in particular the invariant-based inverse engineering approachwill allow the design of
protocols by controlling the radial trapping frequencywith external electrode voltages.One possibility is to control
the radial trapping frequency by varying the radiofrequency amplitudewhich is symmetrically supplied to the
tapered electrodes of the ion trap. The speedup in this case is limitedby the fact that the radial confinement should
be sustained.A further speed upwouldbepossible if the trapping potential can be inverted. This is achieved by
switching off the radiofrequency confinement for a short period andusing the radialDCpotentials generated by
the end-cap electrodes to supply a specially designed time varying radial quadratic potential.Due toLaplace’s
equation, a confining potential inone direction leadsnecessarily torepelling potentials in the other twodirections,
or vice versa.Wepresent a shortcut of short duration,which helps both to achievehigh cooling rates and avoid
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losing the ion fromthe trap. For typical trapping frequency changes from3 to1MHz, a shortcut durationof 20 ns
canbe achieved, through theuse of non-confiningpotentials. In order to avoid instability due tomicro-motion, it is
necessary that the radiofrequencyperiod is shorter than the shortcut duration4.Numerical simulations confirm
stable trapping conditions despite the inverted trappingpotentials over short timeperiods. It is important tonote
that the speedup is only limited by themaximal voltages and the currentswhich canbe applied to the electrodes. The
single ionheat pumpcould be an importantmethod for lowering temperatures in a trapped ionbasedquantum
informationprocessor and the speedupdescribed couldhelp to compete against deleteriousheating rates.

2. Invariant-based inverse engineering formixed states

Closed quantum systems follow a unitary dynamics described by the Liouville equation ofmotion
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where tr̂ ( ) is the densitymatrix describing the system and H tˆ ( ) theHamiltonian controlling its dynamics.
Related to anyHamiltonian there are dynamical invariants ofmotion [16]
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where the populations remain constant and the off-diagonal elements depend on the difference of time
derivatives of two Lewis–Riesenfeld phases [16]. A simpler derivation of the Lewis–Riesenfeld relation for pure
states is done in appendix A. From equation (4)we observe that a system initialized in an eigenstate of the
invariant will remain in the same instantaneous eigenstate without transitions, imposing the so-called
frictionless conditions H I H t I t0 , 0 , 0f f= =[ ˆ ( ) ˆ ( )] [ ˆ ( ) ˆ ( )] , we ensure that the system starts and ends as an

eigenstate of theHamiltonianwithout unwanted excitations. A perfect state transfer from H 0ˆ ( ) to H tf
ˆ ( ) is

designed by first choosing properly I tˆ ( ) and then reverse engineering the dynamics to deduce H tˆ ( ). In
particular, for an effectively 1D time-dependent harmonic potential

Figure 1.Tapered ion trap. The tapered electrodes are supplied symmetrically with radiofrequency voltage for the radial confinement.
Endcaps are used to supply axial confinementwithDC voltages. During shortcut to adiabaticity protocol the radiofrequency is
switched off and the voltage on the endcaps is used to realize the axial confinement or anti-confinement, respectively. Due to the short
duration stable trapping conditions can bemaintained.

4
Note that the switching should be synchronized to the radiofrequency phase.
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an associated dynamical invariant (2) reads [18]
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where b(t) is a free function of time satisfying the Ermakov equation [19]
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beingω0 the initial frequency of the oscillator at time t=0. The frictionless conditions H t I t 0b b= =[ ˆ ( ) ˆ ( )] at
the boundary times tb=0, tf set
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with f0
1 2g w w= ( ) . Any b(t) fulfilling the previous six boundary conditions will produce a perfect control, see

equation (7)
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driving each Fock state n 0 ñ∣ ( ) , to the corresponding Fock state n tf ñ∣ ( ) independently of the process time tf.More

details in appendix B can be found.Note that typically for ultra-fast processes, very short tf values, b b b¨
0
2 4w <

and the trapping parabola becomes a repeller potential. The stability and experimental implementation of such
scenariowill be deeply analyzed in the following sections.

3. Reverse engineering ofGaussian states

3.1. Coherent states
The previous protocol (9) is not only valid to connect single nñ∣ to nñ∣ Fock states but also coherent states [20]
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These are pure states forming a linear superposition. As at initial time the frictionless conditions guarantee that
Ĥ and Î share a commonbasis n0 0nf ñ = ñ∣ ( ) ∣ ( ) and according to equation (4), or simply (A.4) as the system is
pure, this initial state 0 0y añ = ñ∣ ( ) ∣ ( ) will evolve to [21]
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ò r= ¢ . The condition H t I t, 0f f =[ ˆ ( ) ˆ ( )] guarantees t n tn f ff ñ = ñ∣ ( ) ∣ ( ) , thus
the system ends as also a coherent state with frequencyωf.

3.2. Thermal states
From the set of equations (4)we observe that any system that initially is diagonal in the basis expanded by the
eigenstates of the invariant will keep its populations constant during thewhole process.Moreover, imposing
I t H t, 0b b =[ ˆ ( ) ˆ ( )] at tb=0, tf the initial andfinal states will be also diagonal in the energy basis expanded by

H 0ˆ ( ) and H tf
ˆ ( ), which is the case for thermal states. Considering the time-dependent harmonic oscillator (5)

and if initially the system is assumed to be the thermal state H Z0 exp 00r b= -ˆ ( ) ( ˆ ( )) , withZ a normalization
constant, initial inverse temperatureβ0, and t 0 0w w= =( ) , by changingω(t) according to equations (8) and (9)
the systemwill evolve reaching the final thermal state t H t Zexpf f fr b= - ¢ˆ ( ) ( ˆ ( )) , corresponding to a H tf

ˆ ( )
with frequency tf fw w=( ) and a cooling/heating f

2
0b g b= .

3.3.Quantumdynamical evolution ofGaussian states
Note that both coherent and thermal states areGaussian states—i.e. the symmetricWigner function

W W q p y q y q yx ,
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is Gaussian, q px ,º ( ) corresponds to the eigenvalues of the quadrature operators q px ,ºˆ ( ˆ ˆ). Consequently,
the density operator r̂ has a one-to-one correspondence with the first and second-order statisticalmoments of
the state, x V,r rºˆ ˆ (¯ ) [22]. Thefirstmoments are called the displacement vector, or simply themean value

3
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and the secondmoment, called covariantmatrix, with generic element
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and theWigner function is reconstructed,
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with xT, the transpose of x andV−1 the inversematrix of V. In order to describe the dynamical evolution of r̂, or
equivalentlyW(x), it is enough to describe the evolution of the set of observables X̂ to reconstruct the state using
equations (15) and (16), avoiding the use of wave packet propagation. This is donewithin theHeissenberg
representation
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with t tX X XTri i irº á ñ =¯ ( ) ˆ [ ˆ ˆ ( )]. Note that the set offive operators X̂ form a closed Lie algebra, as the
Hamiltonian (5) of a harmonic oscillator is a linear combination of some X i

ˆ elements, the dynamical equation of
motion (17) is also closed to the algebra. Consequently, the evolved state tr̂ ( ) remainsGaussian during the
whole evolution.

Finally, given twoGaussian states 1r̂ and 2r̂ , we can compute the fidelity , Tr1 2 1 2 1 r r r r r=( ˆ ˆ ) ( ˆ ˆ ˆ )
between these two states in terms of their respectivemoments x V,1 1¯ and x V,2 2¯ as
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with x xx 2 1d = -¯ ¯¯ and V V,0 1 2 ( ˆ ˆ ) having a closed analytical form [23].

4. Robustness improvements

Themain source of imperfection in the experimental implementation of the shortcut is produced by the time
variation of the controlω2(t). Controlling this by the pseudopotential through dynamic change of the amplitude
of the radiofrequency voltage has the disadvantage that non-confining potentials cannot be supplied. Amplitude
control of this voltage is technologicallymore involved and intrinsically limited by the period of the
radiofrequency. Thus the biggest speed up potential and controllability is obtained by controlling theDC
potentials by low-noise high-speed arbitrary waveform generators. If radiofrequency confinement is kept on
very accurate timing and high voltages are needed. In order to allow for a reliable control of the confinement, we
therefore switch off the radiofrequency drive during the control period. This can be efficiently achieved by a solid
state radiofrequency toggle switch [24] directly after a high voltage rf generator [25]. Inmany cases the high
voltage rf generator is replaced by a low voltage radiofrequency generator with a subsequent radiofrequency
amplifierwith 50Ω impedance. Impedancematching is then achievedwith a helical responators which
additionally transforms the radiofrequency voltages. In these cases an ultra low resistance toggle switch has to be
used directly after the helical resonator with one terminal connectedwith the trap electrodes and the other
connectedwith a circuit of equivalent impendance. Anharmonicities of the trapping potentials can be neglected
as the ion is kept at the extremal point of the harmonic confinement at all the time.

Thanks to the freedom in the construction of the shortcut protocol at intermediate timemore constraints
such asminimizing td d t

2 2w wº ¶ ( ) due to experimental limits can be realized. This is originated from the slew
rate and bandwidth limit of digital analog converters and power amplifiers. Theminimization of t

2w¶ ( ) can then
be performed by optimal control techniques but the boundary conditions for b could violated. Discontinuities
in b b, ¨˙ would be unfeasible due to the requirement of instantaneous jumps in the control voltages.

As an example,minimizing max t
2w¶∣ ( )∣, themaximumvalue of t

2w¶ ( ) in the interval t t0, fÎ [ ], will
reduce the power employed by the control protocol improving the heat extraction process. Defining

t t2 w=( ) ( ), the extreme condition thatminimizes td d 0 = is satisfied by the useless control
t t constopt

2 w= =( ) ( ) . Themean value theoremprovides a useful bound for the instantaneousmaximum

value of the control. Assuming that  is continuous in t0, f[ ]and differentiable in t0, f( ) such that 0 0
2 w=( )
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from equation (7)does not satisfy the six frictionless boundary conditions (8). As result discontinuities in ḃ and
b̈ at t=0 and tf should be applied requiring instantaneous switches in the controls. In order to avoid
discontinuities hardly resolved experimentally we use the non-uniqueness of b(t) to add extra-parameters ai in
the interpolation of b t a ti i

i= å( ) to ensure (8) and using equation (9) create controls t a; i
2w ( ) such that the

value of t
2w¶ ( ) is controlled through thee extra-parameters ai [17, 26]. By using gradient descentmethods

t a; i
2w ( ) is optimized. As an example, for an expansion process of 20 ns see figure 2, the addition of the extra-

coefficient a t6
6 in the interpolation of b(t) allows a reduction of 0.78
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in contrast with a standard

6-order interpolation, see appendix B. Additionally, this design also reduces the value of max 2w∣ ∣, thus the
protocol improves both the slew rate and power of the required controls. Other sophisticated designs are also
possible due to the freedom to interpolate b(t) at intermediate times.

5. Proposed experimental implementation

In the following, wewill consider the 3D-Hamiltonian corresponding to an ion trap symmetrically drivenwith
radiofrequency and end-cap geometry. In order to fulfill Laplace’s equation theHamiltonian describing the
trapped ion becomes:

H t
m

m
t z

m
t t y

m
t t x

p

2 2 2 2
20z

2
2 2 2 2 2 2w= + + W + D + W + Dˆ ( ) ˆ ( ) ˆ [ ( ) ( )] ˆ [ ( ) ( ))] ˆ ( )

with p p pp , ,x y z=ˆ ( ˆ ˆ ˆ ),ωz(t) the frequency along the axial z-direction, and t txw w=^( ) ( ) tyw= =( )
t tW + D( ) ( ) the radial frequencies produced by the RF andDCvoltages in conjunction5. ThisHamiltonian has

a symmetric radial confinement in the x and y-directions thatwill be employed asworking fluid to produce the
heat pumpprocesses. In the followingwe disregard the effect of control voltages on the longitudinal confinement
because the ion is always kept at the extremal point of the longitudinal confinement andwe use the longitudinal
degrees of freedom as a classical piston being driven. Under this prescription the radial Hamiltonian reads,

H t
p

m
m t y x

2

1

2
, 21

2
2 2 2w= + +^

^
^

ˆ ( )
ˆ

( )( ˆ ˆ ) ( )

with p p p,x y=^̂ ( ˆ ˆ ). Defining r x y,=^̂ ( ˆ ˆ)we observe that this radialHamiltonian has the same structure as
equation (5), consequently the radial frequency can bemodified from 0 ,0w w=^ ^( ) to tf f,w w=^ ^( ) through a

Figure 2.Radial confinementω2 as a function of time for two different designs of the shortcut. (Green dashed line) Standard 6-order
polynomial fulfilling the frictionless conditions (8). (Black solid line) Improved designwith extra-coefficients to control the value of
max t

2w¶∣ ( )∣. The inset shows t 0t t
2 2w w¶ ¶∣ ( )∣ ∣ ( )∣ for both designs. Here, 2 3 MHz0w p =( ) andωf/(2π)=1 MHz.

5
Note that the trapping frequency caused by the pseudopotential and theDCpotentials cannot be simply added especially when large

voltages are involved (see equations (11) and (15) from [27] for details.)

5
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shortcut t b b b¨2
,0

2 4w w= -^ ^ ^ ^ ^( ) with b̂ satisfying the frictionless boundary conditions (8)with a radial
expansion/compression ratio f,0 ,

1 2g w w=^ ^ ^( ) , the same for both the x and y axes.
The shortcut to adiabaticity will be implemented by common voltages on the end-cap electrodes of an ion

trap, while the dominant radiofrequency saddle potential has beenmomentarily turned off. The differential
voltage on the endcaps can be used to control the axialmovement of the ion, but can be disregarded here. The
radial confinement caused by the radial frequency is only relevant at the turning points of the axial transport,
when the ion is coupled to the reservoirs. Alternatively, a linear trap design could be usedwithout a taper, with
the radial frequency being switched to different amplitudes in between. The radial trapping potential during the
shortcut is applied by a common voltage on the end-cap electrodes, and needs to bematched to the initial and
final confinement provided by the pseudopotential. Laplace’s equation and the geometric symmetry specifies
thatω2 is invertedwith half themagnitude.We have compared three expansion protocols; shortcut, linear and
smooth ramp t e e e et

f
t t t

0
0 0w w w= + +G G G G( ) ( ) ( ) for the cooling of thermal and coherent states, see figure 3.

The initial thermal state is characterized by the statisticalmoments X X X0 0 0 01 2 5= = =¯ ( ) ¯ ( ) ¯ ( ) and

l kX X0 coth
2
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2

, 223 0
2 0 ,0

4 0
2 0 ,0 b w b w
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⎝

⎞
⎠

⎛
⎝

⎞
⎠¯ ( ) ¯ ( ) ( )

with l m20 ,0 w= ^( ) and k m 20 ,0w= ^ corresponding to a H 0ˆ ( )with a frequency 0 ,0w w=^ ^( ) and
inverse temperatureβ0. The target state has similar statisticalmoments corresponding to afinal frequency f,ŵ
and inverse temperature f

2
0b g b= ^ . Infigure 4(a)we plot thefidelity t ,f target r r( ˆ ( ) ˆ ) of the evolved state tfr̂ ( )

compared to the target thermal state targetr̂ corresponding to H tf
ˆ ( ) having a frequency f,ŵ .We observe how the

shortcut by construction ensuresfidelity one independently of the time employed to produce the expansion of
the harmonic trapwhereas the linear and smooth ramp protocols fail as the process is no longer adiabatic, see
insets offigure 3.

Similarly, we analyze the three previous protocols for the expansion of a coherent state in the trapping
potential (20). The initial state has the statisticalmoments

Figure 3.Radial confinement squared for a linear ramp (blue dotted line), smooth ramp (red dashed line) and the shortcut to
adiabaticity (black solid line), with (a) parameters chosen to avoid negativeω2 and (b) allowing negativeω2 for the shortcut. Here,
ω0/(2π)=3 MHz andωf/(2π)=1 MHz. Inset: Adiabaticity parameter 2 8 2w w˙ ( ) for the three cases.

Figure 4. Fidelity t ,f target r r( ˆ ( ) ˆ ) as a function of the expansion time tffor three different protocols, shortcut (black solid line), linear
ramp (blue dotted line), and smooth ramp (red dashed line). In (a) the initial state corresponds to a thermal state with temperature of
2mK. In (b) the initial state is a coherent state with a photon numberα0=1+i. Parameters as in figure 3.

6
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associatedwith H 0ˆ ( ) and ,0ŵ . At H tf
ˆ ( ) the target state has similar statisticalmoments with tf f,w w=^ ^( ) and

photon number ef
g

0
i ,0a a= w- ^ with g td

t

0
2f

ò r= ¢ . As for the case of thermal states we observe infigure 4(b)
how the shortcut drives the initial systemuntil the desired target state independently of the expansion time tf.

Figure 5 shows thewhole control sequence responsible for the shortcut to adiabaticity protocol which
includes anti-trapping potentials for short compression cycles. The radiofrequency is switched off during that
time such that theDC control potentials can be kept at lower voltages. By construction the protocol keeps the
fidelity at 1, but stable trapping conditions have to bemaintained due to the anti-trapping potentials involved. In
figure 6we have verified that indeed phase stable trapping can bemaintained due to the shortness of the anti-
trapping potentials.We have included in the dynamics thewhole experimental control sequencefigure 5, where
the trapping potential is given by equation (20) and themicro-motion exerted on the ion due to the rf-driving
has been taken into account. To include thismicro-motion, a simulation based on the velocity Verletmethod
was performed. Both the radiofrequency driveωRF/(2π) and the axial trappingωz/(2π) frequencies were set to
100 kHz. In order to avoid instability due tomicro-motion, the corresponding radiofrequency period is shorter
than the shortcut duration produced in 20 ns. For this expansion time (see figure 3(b)), the adiabaticity
parameter goes beyond the adiabatic regime for the linear and smooth ramps, thusmaking the shortcut
necessary to ensure a perfect driving. Note, due to the zero-crossings ofω2, the adiabaticity parameter diverges,
but this does not compromise the effectiveness of the shortcut. This is also apparent infigure 6(a), where one can
observe that a phase relation ismaintained before and after the shortcut. In contrast, infigure 6(b), although the
ion remains trapped after the linear ramp the final evolved state is excited. The excitationsmodify the ion
oscillations rotating the axis of the ellipse with respect to the original direction that corresponds to thefinal
unexcited state.

Figure 5.Experimental control sequence. The radial radiofrequency drive is switched off during the application of the shortcut to
adiabaticity protocol on theDC electrodes, the shortcut changes the radial confinement.

Figure 6. Simulation of the classical radial trajectory of the ion including themicro-motion effect for the whole experimental control
sequence depicted infigure 5. The expansion time is 20 ns for both the shortcut (a) and the equivalent linear ramp (b). In both cases the
initial radial trapping frequencies areω⊥(0)/(2π)=3 MHz and 20 ns 2 1 MHzw p =^( ) ( ) . The radiofrequency drive was set to
ωRF/(2π)=100 MHzwith the axial trapping frequency beingωz/(2π)=100 kHz. Rest of parameters:m=40 amu.
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6.Discussion

Making use of shortcuts to adiabaticity we have improved the efficiency of a heat pump for a single ion. The
expansion protocol allows ultra-fast and high-fidelity processes through the use of transient non-confining
potentials. The stability of the potential has been analyzed and the experimental feasibility discussed. The
shortcut control has been improved according to experimental constrains, in particularminimizing the required
power and thus reducing the effect of noise produced by the controls. These improved controls could be useful
since efficient heat pump extraction protocols provide new coolingmechanisms and constitute the basis of
stroke heat engines/refrigerators [28] allowing us to test the laws of thermodynamics and get closer to the
absolute zero temperature [29] in the single particle domain. The possibility to design different refrigerators
based on theOtto cycle according to the performance of each stroke offers a new venue to design newheat pump
protocols. As example, not only optimizing the compression/expansion strokes but also designing efficient
trapping potentials at the isochores for the thermalization processes by controlling the trap frequenciesω(t).
Additionally, using the temperature of the bath as a control could lead to new shortcut to adiabaticity such that
the optimal performance of the heat pumpwould be achieved. These extensions are of additional interest also to
different refrigerators types like the continuous refrigerator where the ion is in continuous contact with the bath
[30], whichmight be easier to implement experimentally.
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AppendixA. Invariant-based inverse engineering for pure states

Related to anyHamiltonian H tˆ ( ) there are invariants ofmotion [16]

I t

t
H t I ti , 0, A.1 ¶

¶
- =

ˆ ( ) [ ˆ ( ) ˆ ( ))] ( )

with constant expectation values for anywave function satisfying the time-dependent Schrödinger equation

t
t H t ti . A.2 ¶

¶
Y ñ = Y ñ∣ ( ) ˆ ( )∣ ( ) ( )

The invariant expands an orthonormal basis tnf ñ∣ ( ) with constant eigenvaluesλn,

I t t t . A.3
n

n n nå f l f= ñ áˆ ( ) ∣ ( ) ( )∣ ( )

These states can be used to express the dynamical wave function as a linear superposition of the ‘dynamical
modes’

t c t t twith e , A.4
n

n n n
t

n
i nå y y fY ñ = ñ ñ = ña∣ ( ) ∣ ( ) ∣ ( ) ∣ ( ) ( )( )

cn being the constant time-independent coefficients of the expansionwith the Lewis–Riesenfeld phases defined
as [16]

t t t
t

H t t
1

d i . A.5n

t

n n
0

òa f f= ¢á ¢
¶
¶ ¢

- ¢ ¢ ñ( ) ( ) ˆ ( ) ( ) ( )

Suppose thatwewant to drive the systemby changing a control parameter ò(t) from an initial Hamiltonian
H t 0 =ˆ ( ( ))with t 0 0 = =( ) to afinal configuration governed by H t tf =ˆ ( ( )), where t tf f = =( ) in
such away that the populations in the initial and final instantaneous basis are the same but transitions at
intermediate times are allowed6.Our aim is to deduce the time dependency of the control ò(t) that enables us to
perform this task.We assume that the structure of theHamiltonian controlling the dynamics of the system is
known, i.e., the dependency of H H =ˆ ˆ ( ) as a function of ò is known but not the time dependency of ò=ò(t),
which is our target. Once H ˆ ( ) is known, a related invariant can be found using equation (A.1) and subsequently
its eigenvectors n f ñ∣ ( ) 7 and eigenvalues deduced. Then the state of the system at any timewill be described by

6
More controls t t,... n1 ( ) ( ) can be considered but a singe control is assumed for simplicity.

7
The relative phases between the eigenstates of the invariant allowdifferent definitions of the nf ñ∣ states; consequently the Lewis–Riesenfeld

phase (A.5) is non-unique.

8

New J. Phys. 20 (2018) 105001 ETorrontegui et al



equations (A.4) and (A.5) evolving during thewhole process as a linear combination of the dynamicalmodes.
Generally, notice that I t 0=ˆ ( ) does not commutewith H t 0=ˆ ( ), then the eigenstates of the invariant do not
coincidewith those of theHamiltonian. A similar situation occurs at t=tf. Imposing the frictionless conditions
I H0 , 0 0=[ ˆ ( ) ˆ ( )] and I t H t, 0f f =[ ˆ ( ) ˆ ( )] will allow us to deduce a control strategy ò=ò(t) that guarantees a
perfect state evolutionwithoutfinal excitations such that the initial and final states are compatible with the
initial/finalHamiltonians [9, 10].

Appendix B. Fast expansion and compression of a harmonic trap

In this sectionwewill apply the general formalism to a particular case corresponding to the expansion/
compression of a time-dependent harmonic potential [9, 10, 12, 17, 26, 31–33].We consider a particle ofmassm
trapped by an effectively 1D time-dependent harmonic potential

H t
p

m
m t q

2

1

2
B.1

2
2 2w= +ˆ ( )

ˆ
( ) ˆ ( )

with an initial frequencyω(0)=ω0 and afinal trapping configuration that corresponds to tf fw w=( ) . For
ω0>ωf(ω0<ωf) the process corresponds to an expansion (compression) of the trap.Our goal is tofind the
controlω(t) so that the system evolves from any eigenstate n 0 ñ∣ ( ) of H 0wˆ ( ) at t=0 to the corresponding
eigenstate n tf∣ ( )⟩ of H fwˆ ( ) at t=tf. A dynamical invariant of theHamiltonian (B.1) reads [18]

I t
m

b t p mb t q mc
q

b t

1

2

1

2
, B.22 2

2

2
= - +ˆ ( ) [ ( ) ˙( ) ]

( )
( )

where b(t) is a free function of time satisfying the Ermakov equation [19]

b t t b t
c

b t
¨ , B.32

2

3
w+ =( ) ( ) ( )

( )
( )

and for convenience we set the constant c=ω0. Defining bp mbqp = -ˆ ˆ ˙ ˆ which is the conjugatemomentumof
qbˆ , we notice that the invariant (B.2) has the structure of a harmonic oscillator with constant frequency c=ω0.

After computing the phases t n t b t1 2 dn
t

0 0
2òa w= - + ¢ ¢( ) ( ) ( ) and using equation (A.4)we found thewave

function of the system at any time. Considering a singlemodewith 00
2w >

q t q t
m

n b

H
m q

b

,
e

2

e , B.4

n n

m b b b q

n

n t b
n

0
1 4 i 2 i

1 2

i 1 2 d 0
t

0
2 2

0
0

2







ò

w
p

w

Y º á Y ñ=

´

w

w

+

- + ¢

⎜ ⎟⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

( ) ˆ∣ ( )
( ! )

( )

( )( ˙ )

( )

withHn the n-orderHermite polynomial. The average energy for this state becomes [9]

H t
n

b t t b t
b t

2 1

4
, B.5n

0

2 2 2 0
2

2


w

w
w

á ñ =
+

+ +
⎛
⎝⎜

⎞
⎠⎟

ˆ ( ) ( ) ˙ ( ) ( ) ( )
( )

( )

having a zero average position, a standard deviation

q t qq q t b t
n

m
d ,

1 2
, B.6

n n
2 2 2 2

0

ò w
D = Y =

+
-¥

¥ ⎛
⎝⎜

⎞
⎠⎟( ) ∣ ( )∣ ( ) ( )

that gives a physicalmeaning to b(t). To set 0Y ñ∣ ( ) and tfY ñ∣ ( ) as eigenstates of the initial and finalHamiltonians

we impose the frictionless conditions H t I t 0b b= =[ ˆ ( ) ˆ ( )] at the boundary times tb=0, tf that implies
b b t0 1, f f0

1 2g w w= = =( ) ( ) ( ) , and b b t b b t0 ¨ 0 ¨ 0f f= = = =˙( ) ˙( ) ( ) ( ) . These boundary conditions are

easily obtainedmaking I H0 0=ˆ ( ) ˆ ( ) and I t H tf fg=ˆ ( ) ˆ ( ). The conditions for the second derivative follow from

equation (B.3) that holds at all time in order to impose I tˆ ( ) as a dynamical invariant of H tˆ ( ). Then any b(t)
fulfilling the previous six conditions at the extremeswill produce the desired driving

t
b t

b t

b t

¨
B.72 0

2

4
w

w
= -( )

( )
( )
( )

( )

between the states of H 0ˆ ( ) and H tf
ˆ ( ) independently of the expansion/compression time tf. In order to satisfy

(8)we interpolate b t a ti i
i

0
5= å =( ) with at least the same number of coefficients ai as conditions over b. Solving

for the coefficients wefind b t s s s6 1 15 1 10 1 15 4 3g g g= - - - + - +( ) ( ) ( ) ( ) where s t tf≔ .We can
take advantage of the non-uniqueness of b(t) at intermediate times to designmore sophisticated b(t) functions
and additionallyminimize or impose possible experimental constraints [17, 26, 34–36].
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