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Abstract

This paper deals with decentralized decision–making situations in which firms out-
source production orders to multiple identical suppliers. Each firm aims to minimize
the sum of its completion times. We study whether a central authority can install
a mechanism such that strategic interaction leads to a socially optimal schedule.
For the case of single demand the shortest–first mechanism implements optimal
schedules in Nash equilibrium. We show that for the general case there exists no
anonymous mechanism that implements optimal schedules in correlated equilibrium.
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1 Introduction

In the last decade outsourcing has become increasingly important since advanced prod-
ucts are typically no longer completely built in–house. Hence, apart from managing their
own production facilities, companies have an increasing need to tightly control outsourced
operations. In this paper, we consider decentralized decision–making situations in which

∗We thank an associate editor and two anonymous reviewers for their comments and suggestions.
†CentER and Department of Econometrics and Operations Research, Tilburg University.
‡Corresponding author. Institute for Economic Analysis (CSIC), Barcelona GSE, and CentER; e-

mail: flip.klijn@iae.csic.es. The first draft of the paper was written while F. Klijn was visiting
CentER and the Department of Econometrics and Operations Research, Tilburg University. He gratefully
acknowledges the hospitality of Tilburg University and an extramural fellowship from CentER. Financial
support from from AGAUR–Generalitat de Catalunya (2014-SGR-1064 and 2017-SGR-1359), the Spanish
Ministry of Economy and Competitiveness through Plan Estatal de Investigación Cient́ıfica y Técnica y
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companies or departments outsource production orders or jobs to multiple identical suppli-
ers. We assume that each company can only freely decide to which supplier it outsources
each of its jobs. In particular, outsourcing companies cannot decide on the order in which
each supplier processes the assigned jobs. This assumption reflects the fact that most
transactions in supply chains are governed by price-only contracts. A drawback of these
contracts is that they do not coordinate the supply chain. That is, locally optimal de-
cisions may lead to a joint outcome that can be improved upon (see, e.g., Perakis and
Roels, 2007).

We assume that each outsourcing company is selfishly interested in minimizing the
sum of completion times of its jobs. This may reflect for instance the fact that different
jobs of the same outsourcing company are part of different final products, all of which the
company aims to produce and sell as soon as possible. In our setting, individual agents
interact to make decisions that affect them collectively. This is a common feature of many
economic situations. Implementation theory is often used to design mechanisms such that
the equilibrium outcomes satisfy a criterion of social optimality.1 The question we are
interested in is whether a central authority can install a mechanism such that strategic
interaction leads to a socially optimal schedule. Here, a mechanism is a function that
maps any collection of outsourcing decisions to a schedule. We assume that a mechanism
respects the agents’ decisions. In other words, if a job is sent to a particular machine by
its owner, then the mechanism should process the job on that machine. We exclude from
our analysis mechanisms that involve idle time. Finally, we take a normative approach
by imposing two anonymity properties: the output of a mechanism should not depend on
the names of the owners of the jobs nor on the names of the machines.

The solution concepts we focus on are Nash equilibria and correlated equilibria. De-
pending on the specification of the mechanism, a Nash equilibrium in pure strategies may
not exist. We therefore define implementation of optimal schedules in correlated equilib-
rium. More precisely, a mechanism implements optimal schedules if for each outsourcing
problem there exists some correlated equilibrium such that the schedules induced by its
support are optimal. We find that the (anonymous) mechanism based on shortest–first
policy (or Smith’s (1956) rule) implements (in pure Nash equilibrium) optimal schedules
provided that each agent has one job (Theorem 1). However, it is not possible to extend
implementation to the case where some agent has more than one job. More precisely, we
show that in the general case there exists no anonymous mechanism that implements op-
timal schedules in correlated equilibrium (Theorem 2). Hence, there exists no anonymous
mechanism that implements optimal schedules in Nash equilibrium in mixed strategies.

Usually, given a social choice rule, if a mechanism has the property that, in each pos-
sible state of the world, the set of equilibrium outcomes coincides with the set of optimal
outcomes identified by the social choice rule, then the social choice rule is said to be
implemented by the mechanism (see, e.g., Maskin, 1985). We take a different approach
by demanding the existence of some Nash or correlated equilibrium that guarantees op-
timal outcome(s). Since our definition is less demanding than the standard definition of

1Jackson (2001) reviews some of the fundamental results in implementation theory.
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implementation, our impossibility result also holds for the standard definition of imple-
mentation. Our impossibility result implies that anonymity, even though often thought
of as a weak desideratum, is incompatible with the implementation of optimal schedules.
One possible interpretation is that it is a negative finding that may help the central au-
thority in a reorientation towards other desiderata. Impossibility results exist for a wide
variety of economic and social environments. For instance, Arrow’s (1950) famous result
shows the impossibility of satisfactory electoral systems. Myerson and Satterthwaite’s
(1983) classical implementation result for bilateral trading establishes the impossibility of
efficient mechanisms without outside subsidies.

In order to appropriately discuss the rapidly growing literature that studies coordi-
nating mechanisms for supply chains and competitive scheduling environments we note
that our definition of implementation can also be phrased in terms of the price of stabil-
ity.2 Fixing a mechanism and an evaluation/objective criterion, the price of stability is
the ratio between the value of the best Nash equilibrium and the optimal value. Then,
a mechanism implements optimal schedules if for each outsourcing problem the price of
stability equals one.

There are two classes of closely related papers that highlight the relevance of our
approach.3 First, there is a literature that similarly to our study focuses on the best Nash
equilibria to determine the efficiency loss with respect to the social choice rule (defined by
the optimal schedules). Bukchin and Hanany (2007) studied a two machine dispatching–
sequencing model where each decision–maker owns a set of jobs and can choose between
processing on an in–house machine or outsource to a slower machine. Each decision–maker
aims to minimize the sum of completion times of its jobs (minsum objective). Bukchin and
Hanany (2007) were the first to consider mixed–strategy Nash equilibria in the literature
on scheduling and supply chains. They provided a scheduling–based mechanism to ensure
that the centralized optimum is obtained at some equilibrium. Bukchin and Hanany
(2011) considered a decentralized job shop scheduling system with two machines. The
two machines are agents each of which has to decide in which order to process the jobs.
Bukchin and Hanany (2011) proposed a mechanism based on penalization to ensure that a
schedule with smallest total flowtime is obtained at some equilibrium. Agussurja and Lau
(2009) studied the makespan for scheduling games with a common policy for all machines.
They obtained bounds on the price of stability.

Second, there is a scheduling literature that focuses on the worst Nash equilibria to
determine the efficiency loss with respect to the social choice rule (again defined by the
optimal schedules). The ratio of the value of the worst Nash equilibrium and the opti-
mal value is referred to as the price of anarchy.4 Here we mention some of the recent

2The price of stability was first studied in Schulzan and Stier Moses (2003). The name was coined by
Anshelevich et al. (2008).

3We refer to Li and Wang (2007) for a general review of coordination mechanisms for supply chain
systems. Implementation theory and more generally game theory have become essential tools in the
analysis of supply chains with multiple agents. Cachon and Netessine (2004) survey the applications of
game theory to supply chain analysis. Li and Whang (2001) survey game theory models in operations
management.

4The price of anarchy was first studied in Dubey (1986) and Koutsoupias and Papadimitriou (2009).
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and mostly related works. Immorlica et al. (2009) studied the makespan for four promi-
nent coordination mechanisms in four classes of multiple machine scheduling situations.
They provided upper and lower bounds on the price of anarchy. Also focusing on the
makespan, Caragiannis (2013) introduced three new coordination mechanisms and pro-
vided bounds on the price of anarchy. Cole et al. (2015) and Correa and Queyranne
(2012) studied coordination mechanisms with the aim to minimize the weighted sum of
completion times of jobs. In particular, they obtained an upper bound on the price of
anarchy of Smith’s (1956) rule for the case of unrelated machines and restricted related
machines, respectively. Abed et al. (2014) extended Smith’s (1956) rule by adding extra
delays on the jobs accounting for the negative externality they impose on other agents.
Using a weaker equilibrium concept than the Nash equilibrium, they provided a bound
on the price of anarchy and showed that this ratio is best possible even if one allows for
randomization or full information. Braat et al. (2014) and Hoeksma and Uetz (2012)
studied the related machine scheduling problem with minsum objective. They provided
bounds on the price of anarchy of Smith’s (1956) rule. Other related recent papers that
study the weighted sum of completion times of jobs and price of anarchy include Angel
et al. (2016), Cohen and Pascual (2015), and Lee et al. (2012). Finally, complementing
the above mentioned literature, Aumann and Dombb (2010) and Epstein and Kleiman
(2011) studied the Pareto–efficiency of the Nash equilibria of job scheduling games.

The remainder of the paper is organized as follows. In Section 2 we introduce the
scheduling model and game. In Section 3 we state and prove our results. Section 4
concludes.

2 Preliminaries

2.1 Scheduling model

Let M , |M | ≥ 2, be the finite set of (identical) contract manufacturing companies, which
we refer to as machines. Let N be the finite set of outsourcing companies, which we refer
to as agents. Let Ji be the set of production orders, or shortly jobs, owned by agent i.
Each job is owned by exactly one agent, i.e., for all i, i′ ∈ N with i 6= i′, Ji ∩ Ji′ = ∅. Let
J = ∪iJi denote the set of jobs. For j ∈ J , let i(j) denote the agent that owns job j, i.e.,
j ∈ Ji(j). We assume each job has non–preemptive processing requirements, i.e., once it
is started it cannot be interrupted. Each job j ∈ J has processing time pj > 0. To avoid
degenerate situations that require cumbersome notation we assume that for all j, j′ ∈ J
with j 6= j′, pj 6= pj′ . A (scheduling) problem is a quadruple Λ = (M,N, (Ji)i∈N , (pj)j∈J).

A schedule is a sequenced assignment of the jobs to the machines. Formally, a schedule
is a function σ : J →M×{1, . . . , |J |}, where σ(j) = (σ1(j), σ2(j)) = (m, k) indicates that
job j is scheduled in position k of machine m. We assume that on each machine there is
no idle time between jobs nor before the first job. Given a schedule σ, job j’s predecessors
are the jobs P (σ, j) = {j′ ∈ J : σ1(j′) = σ1(j) and σ2(j′) < σ2(j)}. Job j’s completion

The name was coined by Papadimitriou (2001).
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time is the sum of its processing time and the waiting time due to its predecessors, i.e.,

Cj(σ) = pj +

 ∑
j′∈P (σ,j)

pj′

 .

The central objective is to minimize the sum of completion times. Hence, a schedule
σ∗ is optimal if for any other schedule σ,∑

j∈J

Cj(σ
∗) ≤

∑
j∈J

Cj(σ).

Let Σ∗(Λ) denote the set of optimal schedules for Λ. Horowitz and Sahni (1976) introduced
an algorithm to compute all optimal schedules in polynomial time. In Step I of their MFT
algorithm, jobs are allocated one by one to machines. Each time the longest non–allocated
job is allocated to a machine with smallest number of allocated jobs.

Minimum Mean Flow Time5 (MFT) algorithm. (Horowitz and Sahni, 1976)
Step I. For each machine m, set lm ≡ 0. Set J∗ ≡ J . As long as J∗ 6= ∅, do Procedure.

Begin Procedure.
Let j∗ ∈ J∗ be such that pj∗ > pj for all j ∈ J∗, j 6= j∗. Let m ∈ M be a machine with
lowest lm.
Set a(j∗) ≡ m and update lm ≡ lm + 1 as well as J∗ ≡ J∗\{j∗}.
End Procedure.

Step II. Let σ∗ be the schedule obtained by placing on machine m all jobs in a−1(m) in
order of increasing processing times. �

As will be mentioned in Remark 1, the following SFG algorithm generates optimal
schedules. In Step I, jobs are allocated one by one to machines. Each time the shortest
non–allocated job is allocated to a machine with smallest sum of processing times of
allocated jobs.

Shortest–First Greedy (SFG) algorithm. (Ibarra and Kim, 1977)
Step I. For each machine m, set Cm ≡ 0. Set J̄ ≡ J . As long as J̄ 6= ∅, do Procedure.

Begin Procedure.
Let j̄ ∈ J̄ be such that pj̄ < pj for all j ∈ J̄ , j 6= j̄. Let m ∈M be a machine with lowest
Cm.
Set a(j̄) ≡ m and update Cm ≡ Cm + pj̄ as well as J̄ ≡ J̄\{j̄}.
End Procedure.

Step II. Let σ̄ be the schedule obtained by placing on machine m all jobs in a−1(m) in
order of increasing processing times. �

In Example 1 we illustrate the shortest–first greedy algorithm.

5Minimum mean flow time and minimum sum of completion times are equivalent objectives.
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Example 1. (Illustration of the SFG algorithm.) Let M = {m1,m2,m3} and
J = {1, 2, . . . , 8} with p1 < p2 < · · · < p8. Then, one of the schedules σ̄ that can be
obtained by the shortest–first greedy algorithm is depicted in Figure 1. �

m1 job 7

job 3

m2 job 5

job 4

m3 job 6

job 2

job 1

job 8

Figure 1: Output of the SFG algorithm in Example 1

The following remark will turn out to be useful in Section 3.

Remark 1. (Optimality of the SFG algorithm.)
Let σ̄ be a schedule obtained by the shortest–first greedy algorithm. Suppose without loss
of generality that p1 < p2 < · · · < p|J | and that σ̄ processes jobs 1, . . . , |M | on machines
m1, . . . ,m|M |, respectively. Then, σ̄ processes job k on machine ml where l = 1 + (k − 1)
mod |M |. (See Example 1 for an illustration.) It can be easily verified that the |M | jobs
with largest processing times are processed by σ̄ on different machines, the next |M | jobs
with largest processing times are processed by σ̄ on different machines as well, etc. Hence,
σ̄ can also be obtained by the MFT algorithm of Horowitz and Sahni (1976). So, σ̄ is
optimal.6 �

2.2 Scheduling game

Let Λ = (M,N, (Ji)i∈N , (pj)j∈J) be a scheduling problem. For any i ∈ N , we let ΠΛ
i

denote the collection of functions πi : Ji → M . Here, πi(j) indicates the machine to
which player i allocates/sends his job j ∈ Ji. Hence, we will refer to πi as an allocation
of player i’s jobs Ji. Let ΠΛ = (ΠΛ

i )i∈N . Whenever no confusion is possible we omit the
supindex Λ from ΠΛ

i and ΠΛ.
Let L be a class of scheduling problems. A mechanism is a map ϕ that for each pair

(Λ, (πi)i∈N) with Λ ∈ L and (πi)i∈N ∈ Π results in a schedule ϕ(Λ, (πi)i∈N) for Λ. Let
ϕ be a mechanism. Let Λ = (M,N, (Ji)i∈N , (pj)j∈J) ∈ L. We associate with Λ and ϕ a
non–cooperative scheduling game of complete information Γ(Λ, ϕ) = (N, (Πi)i∈N , (ci)i∈N),
which is explained next. The set of players is N . For each i ∈ N , the set of (pure)
strategies of player i is given by the set Πi. Each strategy–profile π ∈ Π induces a
schedule ϕ(Λ, π) = (ϕ1(Λ, π), ϕ2(Λ, π)). In other words, for any i ∈ N and any j ∈ Ji, job

6Not all optimal schedules can be obtained by the SFG algorithm. For instance, let M = {m1,m2}
and J = {1, 2, 3} with p1 < p2 < p3. Consider the schedule that processes jobs 1 and 2 (in this order)
on m1 and job 3 on m2. The schedule is optimal (since it can be obtained by the MFT algorithm) but
it cannot be obtained by the SFG algorithm (since jobs 1 and 2 are processed on the same machine).

6



j is scheduled in position ϕ2j(Λ, π) on machine ϕ1j(Λ, π). We will assume throughout that
mechanism ϕ respects the players’ allocations, i.e., for any job j ∈ J , ϕ1j(Λ, π) = πi(j)(j).
Player i’s resulting “costs” are given by the sum of completion times of his jobs in ϕ(Λ, π).
In other words, player i’s cost function ci is given by

ci(π) =
∑
j∈Ji

Cj(ϕ(Λ, π)), where π ∈ Π.

Remark 2. (No idle time.) According to our definition, a mechanism yields schedules.
Hence, we exclude from our analysis functions that yield sequenced assignments of jobs
to machines that involve idle time between jobs or before the first job. �

Next, we give an example of a mechanism.

Example 2. (Shortest–first mechanism ϕ̄.) Let ϕ̄ be the mechanism that for each
scheduling problem and each allocation–profile yields the schedule obtained by putting on
each machine the allocated jobs in order of increasing processing times (i.e., shortest–first
policy or Smith’s (1956) rule). Formally, for any scheduling problem Λ, any allocation–
profile π ∈ Π, and any jobs j, j′ such that πi(j)(j) = πi(j′)(j

′),

• ϕ̄1j(Λ, π) = πi(j)(j);
• ϕ̄2j(Λ, π) < ϕ̄2j′(Λ, π) if and only if pj < pj′ . �

We complement Example 2 by showing how the shortest–first mechanism induces a
scheduling game.

Example 3. (A scheduling game induced by ϕ̄.)
Let Λ be the scheduling problem with M = {m1,m2}, N = {1, 2}, J1 = {α, γ}, J2 =
{β, δ} and (pα, pβ, pγ, pδ) = (1, 2, 3, 4). Consider the game Γ(Λ, ϕ̄). Each player has 4
pure strategies regarding his 2 jobs: he can send both jobs to machine m1, both jobs to
machine m2, or different jobs to different machines (two ways). Table 1 concisely depicts
the scheduling game. Player 1 is the row player and each row indicates which jobs are sent
to machine m1 (the complement is sent to machine m2). For instance, {α} corresponds
with player 1’s strategy π1 with π1(α) = m1 and π1(γ) = m2. Similarly, player 2 is the
column player and each column indicates which jobs are sent to machine m1.

1\2 ∅ {β} {δ} {β, δ}
∅ 7,13 5,10 7,7 5,8
{α} 6,11 4,10 6,7 4,10
{γ} 4,10 6,7 4,10 6,11
{α, γ} 5,8 7,7 5,10 7,13

Table 1: Table of Example 3

Next, we illustrate that each pair of numbers indicates the costs induced by the cor-
responding strategy–profile. Consider, for instance, the pair ({α}, {β, δ}), which corre-
sponds with profile π = (πi)i=1,2 such that π1(α) = π2(β) = π2(δ) = 1 and π1(γ) = 2.
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Mechanism ϕ̄ from Example 2 applied to problem Λ and strategy–profile π places the
jobs allocated to each machine in order of increasing processing times. Hence, ϕ̄(Λ, π)
is the schedule defined by ϕ̄α(Λ, π) = (1, 1), ϕ̄β(Λ, π) = (1, 2), ϕ̄δ(Λ, π) = (1, 3), and
ϕ̄γ(Λ, π) = (2, 1). Recall that the first coordinate indicates the machine and the second
coordinate indicates the position at that machine. So, machine m1 processes first α, then
β, and finally δ; machine m2 only processes job γ. Then, player 1’s costs equal the sum
of the completion times of his jobs α and γ: Cα(ϕ̄(Λ, π)) + Cγ(ϕ̄(Λ, π)) = 1 + 3 = 4.
Similarly, player 2’s costs equal the sum of the completion times of his jobs β and δ:
Cβ(ϕ̄(Λ, π)) + Cδ(ϕ̄(Λ, π)) = (1 + 2) + (1 + 2 + 4) = 10. Hence, in this case the costs of
the two players are given by (4, 10).

Finally, the boldfaced numbers in Table 1 indicate the best responses. For instance,
if player 2 plays {β}, then the best response of player 1 is {α}. One immediately verifies
that there is no strategy–profile in which each player gives a best response to the other
player’s strategy. Hence, the game has no Nash equilibrium in pure strategies. �

The scheduling game in Example 3 has no Nash equilibrium in pure strategies. For
this reason, it is natural to consider Nash equilibrium in mixed strategies.7 But since our
main result is an impossibility result and Nash equilibria in mixed strategies are particular
correlated equilibria we will focus on correlated equilibria to obtain a stronger result. Let
Γ(Λ, ϕ) = (N, (Πi)i∈N , (ci)i∈N) be a scheduling game. A correlated equilibrium of Γ(Λ, ϕ)
is a quadruple (Ω, P r, (Pi)i∈N , (si)i∈N) where

• (Ω, P r) is a finite probability space, where w.l.o.g. for all ω ∈ Ω, Pr(ω) > 0;
• for each player i ∈ N , Pi is a partition of Ω;
• for each player i ∈ N , si is a function si : Ω → Πi that is Pi–measurable, i.e.,
si(ω) = si(ω

′) whenever ω, ω′ ∈ Pi for some Pi ∈ Pi

such that for all i ∈ N and all Pi–measurable functions ti : Ω→ Πi we have∑
ω∈Ω

Pr(ω) ci([sk(ω)]k∈N) ≤
∑
ω∈Ω

Pr(ω) ci(ti(ω), [sk(ω)]k∈N\{i}). (1)

Let E(Γ(Λ, ϕ)) be the set of correlated equilibria of game Γ(Λ, ϕ). For any correlated
equilibrium (Ω, P r, (Pi)i∈N , (si)i∈N), let O(Ω, P r, (Pi)i∈N , (si)i∈N) be the set of schedules
obtained with positive probability, i.e.,

O(Ω, P r, (Pi)i∈N , (si)i∈N) = {ϕ(Λ, [si(ω)]i∈N) : ω ∈ Ω}.

It is well-known that for any Nash equilibrium in pure strategies, there is a correlated
equilibrium that yields the same schedule. Similarly, for any Nash equilibrium in mixed
strategies, there is a correlated equilibrium that yields the same distribution of schedules.
Finally, for any correlated equilibrium (Ω, P r, (Pi)i∈N , (si)i∈N) and any subset Ω′ ⊆ Ω, we
denote Pr(Ω′) =

∑
ω∈Ω′ Pr(ω).

7We omit the formal definition of Nash equilibrium in mixed strategies as it can be easily found in
any standard text book on game theory.
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3 Results

The question we are interested in is whether it is possible to design a mechanism such
that strategic interaction leads to optimal schedules. Let L be a class of scheduling
problems. A mechanism ϕ implements optimal schedules (in correlated equilibrium)
for L if for each scheduling problem Λ ∈ L, there exists some correlated equilibrium
(Ω, P r, (Pi)i∈N , (si)i∈N) ∈ E(Γ(Λ, ϕ)) such that

O(Ω, P r, (Pi)i∈N , (si)i∈N) ⊆ Σ∗(Λ). (2)

Remark 3. (Equivalent definition of implementation.) Equivalently, a mechanism
ϕ implements optimal schedules for a class of scheduling problems L if for each schedul-
ing problem Λ ∈ L, there exists some correlated equilibrium (Ω, P r, (Pi)i∈N , (si)i∈N) ∈
E(Γ(Λ, ϕ)) such that for some (or equivalently, all) σ∗ ∈ Σ∗(Λ) and for all ω ∈ Ω,∑

j∈J

Cj(ϕ(Λ, [si(ω)]i∈N)) =
∑
j∈J

Cj(σ
∗). �

Next, we introduce two anonymity properties for mechanisms. First, since in any
scheduling problem all machines are identical, it is natural to focus on mechanisms that
leave the schedule “essentially” unchanged if only the names of the machines are per-
muted, i.e., mechanisms should satisfy “machine–anonymity.” Let ϕ be a mechanism for
a class L. Let Λ = (M,N, (Ji)i∈N , (pj)j∈J) ∈ L and consider the game Γ(Λ, ϕ). Let π′

be a strategy–profile that is obtained from some other strategy–profile π by permuting
complete batches of jobs according to a permutation ρ : M →M , i.e., π′ = ρ ◦ π where ◦
denotes composition. Then, since machines are identical, each job should be processed in
the same position by ϕ(Λ, π) and ϕ(Λ, π′) (but possibly on different machines). Formally,
mechanism ϕ satisfies machine–anonymity on L if for any Λ ∈ L, any π ∈ Π, any
permutation ρ : M →M , and any j ∈ J ,

ϕ2j(Λ, ρ ◦ π) = ϕ2j(Λ, π). (3)

Second, we require that mechanisms do not yield a different schedule if only the
ownership of the jobs is changed, i.e., mechanisms are to satisfy “owner–anonymity.” In
other words, a mechanism is owner–anonymous if at two scheduling problems that only
differ in ownership the same schedule is obtained when for each job its possibly distinct
owners at the two problems allocate it to the same machine. Formally, a mechanism ϕ for
a class L satisfies owner–anonymity on L if for any Λ′ = (M ′, N ′, (J ′i)i∈N ′ , (p

′
j)j∈J ′) ∈ L

and any Λ∗ = (M∗, N∗, (J∗i )i∈N∗ , (p
∗
j)j∈J∗) ∈ L with M ′ = M∗, J ′ = J∗ and for all j ∈ J ′,

p′j = p∗j , it holds that ϕ(Λ′, π′) = ϕ(Λ∗, π∗) for any strategy–profile π′ in Γ(Λ′, ϕ), and any
strategy–profile π∗ in Γ(Λ∗, ϕ) such that for all j ∈ J ′, π′i′(j)(j) = π∗i∗(j)(j). Here, i′(j) and

i∗(j) denote the owner of job j in problems Λ′ and Λ∗, respectively.

Let L1 be the class of single demand problems, i.e., each player has one job. Formally,
let L1 be the class of scheduling problems (M,N, (Ji)i∈N , (pj)j∈J) with |Ji| = 1 for all i ∈

9



N . The next result shows that the shortest–first mechanism satisfies the two anonymity
properties and implements optimal schedules for single demand problems and strongly
builds upon Theorem 1 in Immorlica et al. (2009).

Theorem 1. (Possibility of implementation for single demand.)
Shortest–first mechanism ϕ̄ satisfies machine–anonymity and owner–anonymity, and more-
over implements optimal schedules in (pure strategy) Nash equilibrium for L1.

Proof. Since ϕ̄ does not discriminate between machines, it follows that it satisfies machine–
anonymity. Moreover, since ϕ̄ orders jobs based on their processing times (i.e., indepen-
dently of the names of their owners), it satisfies owner–anonymity as well.

It remains to show that ϕ̄ implements optimal schedules in Nash equilibrium for L1.
Let Λ ∈ L1. Let σ̄ be a schedule obtained by the SFG algorithm. Immorlica et al. (2009,
Theorem 1) showed that σ̄ is the (unique) schedule induced by some Nash equilibrium π̃
in pure strategies of the game Γ(Λ, ϕ̄). By Remark 1, σ̄ is an optimal schedule. Hence,
inclusion (2) holds.

Next, we show that Theorem 1 cannot be extended to the case where players can have
multiple jobs. In fact, we obtain an impossibility result, even if we relax the solution
concept from Nash equilibrium to correlated equilibrium. In particular, there exists no
machine–anonymous and owner–anonymous mechanism that implements optimal sched-
ules in Nash equilibrium in mixed strategies.

Theorem 2. (Impossibility of implementation.)
There is no mechanism that satisfies machine–anonymity and owner–anonymity and that
implements optimal schedules in correlated equilibrium for the full class of scheduling
problems.

Proof. Let ϕ be a mechanism that satisfies machine–anonymity and owner–anonymity.
Let

ΛJ1 = (M,N, (J1, J2), (pj)j∈J)

be such that M = {m1,m2}, N = {1, 2}, J = {a, b, c} with processing times (pa, pb, pc) =
(1, 2, 3), and J1, J2 ⊆ J such that J1 ∪ J2 = J and J1 ∩ J2 = ∅. We will later specify J1

(and thus J2 as well), i.e., choose the owner of each job in order to create a “convenient”
scheduling game. Table 2 depicts the four optimal schedules, i.e., for all J1 ⊆ J , Σ∗(ΛJ1) =
{α, β, γ, δ}.

Since mechanism ϕ satisfies machine–anonymity and owner–anonymity, it follows that
for any two jobs x, y ∈ {a, b, c}, x 6= y, if they are the only jobs sent to some machine,
then they are processed on that machine and their order is independent of the identity of
the machine and the identity of the owners of any of the jobs. Therefore, we can write
[x, y] (i.e., first x and then y) or [y, x] (i.e., first y and then x) to indicate that order. We
distinguish among the following four cases. In each case we will specify J1 and prove that
none of the correlated equilibria of the induced game Λ ≡ ΛJ1 satisfies (2).
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optimal schedule

α m1 : a, b
m2 : c

β m1 : a, c
m2 : b

γ m1 : c
m2 : a, b

δ m1 : b
m2 : a, c

Table 2: Optimal schedules for J = {a, b, c} with processing times (pa, pb, pc) = (1, 2, 3).

Case I: ϕ yields [b, c] and [a, b].

Let J1 = {a, c} and J2 = {b}. Assume there exists a correlated equilibrium (Ω, P r, (Pi)i∈N ,
(si)i∈N) ∈ E(Γ(Λ, ϕ)) such that (2) holds.

For any set of schedules Σ, define

ΩΣ = {ω ∈ Ω : ϕ(Λ, [si(ω)]i∈N) ∈ Σ}.

Let i ∈ N . We qualify Σ to be “consistent” with Pi if there are P 1
i , . . . , P

l
i ∈ Pi such that

ΩΣ = ∪lr=1P
r
i . If Σ is consistent with Pi, then we can define a Pi–measurable function ti

that coincides with si on Ω\ΩΣ and specify some “deviating allocation” on ΩΣ.
We prove that O(Ω, P r, (Pi)i∈N , (si)i∈N) cannot be a subset of the set of optimal

schedules Σ∗(Λ), which contradicts (2). We proceed by considering all subsets of Σ∗(Λ).
As an illustration, we prove first that O(Ω, P r, (Pi)i∈N , (si)i∈N) 6= {α, β}. Suppose

that O(Ω, P r, (Pi)i∈N , (si)i∈N) = {α, β}. The key observation is the following: Since
player 2’s job is assigned to different machines at α and β, it follows that Σ = {α} is
consistent with P2. Hence, we can consider the P2–measurable function t2 that coincides
with s2 on Ω\ΩΣ and specify the deviating allocation “send job b to machine m2” on ΩΣ.
Note that at profile (si)i∈N , with probability Pr(Ω{α}) job b is processed and completed
at time 3 (on machine m1) and with probability Pr(Ω{β}) = 1 − Pr(Ω{α}) job b is pro-
cessed and completed at time 2 (on machine m2). However, at profile (s1, t2) job b is not
only always processed on machine 2 it is also always completed at time 2 (due to the
assumption that ϕ yields [b, c]). Since this constitutes a violation of (1), it follows that
O(Ω, P r, (Pi)i∈N , (si)i∈N) 6= {α, β}. The proof for this case is summarized in the 5th row
(labeled {α, β}) in Table 3. All other subcases can be similarly discarded, as indicated in
Table 3.

Case II: ϕ yields [b, c] and [b, a].

Let J1 = {b, c} and J2 = {a}. Assume there exists a correlated equilibrium (Ω, P r, (Pi)i∈N ,
(si)i∈N) ∈ E(Γ(Λ, ϕ)) such that (2) holds. Since ϕ yields [b, a], we have α, γ 6∈ O(Ω, P r,
(Pi)i∈N , (si)i∈N). Hence,

O(Ω, P r, (Pi)i∈N , (si)i∈N) ⊆ {β, δ}.

The only three remaining cases of subsets of Σ∗(Λ) can be discarded as well. The argu-
ments are similar to those in Case I and are presented in Table 4.
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player i consistent Σ dev. allocation on ΩΣ

{α} 2 {α} b→ m2

{β} 1 {β} a→ m2 and c→ m1

{γ} 2 {γ} b→ m1

{δ} 1 {δ} a→ m1 and c→ m2

{α, β} 2 {α} b→ m2

{α, γ} 2 {α} b→ m2

{α, δ} 1 {δ} a→ m1 and c→ m2

{β, γ} 1 {β} a→ m2 and c→ m1

{β, δ} 1 {β} a→ m2 and c→ m1

{γ, δ} 2 {γ} b→ m1

{α, β, γ} 2 {α} b→ m2

{α, β, δ} 1 {δ} a→ m1 and c→ m2

{α, γ, δ} 1 {δ} a→ m1 and c→ m2

{β, γ, δ} 1 {β} a→ m2 and c→ m1

{α, β, γ, δ} 1 {β} a→ m2 and c→ m1

Table 3: Deviating allocations in Case I: [b, c], [a, b], and J1 = {a, c}.

player i consistent Σ dev. allocation on ΩΣ

{β} 1 {β} b→ m1 and c→ m2

{δ} 1 {δ} b→ m2 and c→ m1

{β, δ} 1 {β} b→ m1 and c→ m2

Table 4: Deviating allocations in Case II: [b, c], [b, a], and J1 = {b, c}.

Case III: ϕ yields [c, b] and [a, c].

Let J1 = {a, b} and J2 = {c}. Assume there exists a correlated equilibrium (Ω, P r, (Pi)i∈N ,
(si)i∈N) ∈ E(Γ(Λ, ϕ)) such that (2) holds.

We claim that O(Ω, P r, (Pi)i∈N , (si)i∈N) cannot be a subset of the set of optimal
schedules Σ∗(Λ), which contradicts (2). The arguments are presented in Table 5.

Case IV: ϕ yields [c, b] and [c, a].

Let J1 = {b, c} and J2 = {a}. Assume there exists a correlated equilibrium (Ω, P r, (Pi)i∈N ,
(si)i∈N) ∈ E(Γ(Λ, ϕ)) such that (2) holds. Since ϕ yields [c, a], we have β, δ 6∈ O(Ω, P r,
(Pi)i∈N , (si)i∈N). Hence,

O(Ω, P r, (Pi)i∈N , (si)i∈N) ⊆ {α, γ}.

The only three remaining cases of subsets of Σ∗(Λ) can be discarded as well. The argu-
ments are presented in Table 6.

In the proof of Theorem 2 it is sufficient to consider a situation with only two machines.
So, our impossibility results still holds if we weaken machine–anonymity to the property
that only considers switches between two machines. However, the following remark shows
that this property is in fact equivalent to machine–anonymity.

Remark 4. (Equivalent definition of machine–anonymity.) Machine–anonymity
can equivalently be defined by imposing (3) for transpositions, i.e., permutations ρ : M →
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player i consistent Σ dev. allocation on ΩΣ

{α} 1 {α} a→ m2 and b→ m1

{β} 2 {β} c→ m2

{γ} 1 {γ} a→ m1 and b→ m2

{δ} 2 {δ} c→ m1

{α, β} 1 {α} a→ m2 and b→ m1

{α, γ} 1 {α} a→ m2 and b→ m1

{α, δ} 1 {α} a→ m2 and b→ m1

{β, γ} 1 {γ} a→ m1 and b→ m2

{β, δ} 2 {β} c→ m2

{γ, δ} 1 {γ} a→ m1 and b→ m2

{α, β, γ} 1 {α} a→ m2 and b→ m1

{α, β, δ} 1 {α} a→ m2 and b→ m1

{α, γ, δ} 1 {α} a→ m2 and b→ m1

{β, γ, δ} 1 {γ} a→ m1 and b→ m2

{α, β, γ, δ} 1 {α} a→ m2 and b→ m1

Table 5: Deviating allocations in Case III: [c, b], [a, c], and J1 = {a, b}.

player i consistent Σ dev. allocation on ΩΣ

{α} 1 {α} b→ m2 and c→ m1

{γ} 1 {γ} b→ m1 and c→ m2

{α, γ} 1 {α} b→ m2 and c→ m1

Table 6: Deviating allocations in Case IV: [c, b], [c, a], and J1 = {b, c}.

M that only switch two machines: for some m,m′ ∈ M , ρ(m) = m′, ρ(m′) = m, and
ρ(m′′) = m′′ for all m′′ ∈ M\{m,m′}. The equivalence follows from the fact that any
permutation can be written as a product of transpositions. �

4 Outlook

In the context of outsourcing, we have considered the question whether a central authority
can install a mechanism such that strategic interaction leads to a socially optimal schedule.
Assuming that the mechanism has to satisfy two mild anonymity properties the answer
is negative for the general domain, even if we consider correlated equilibria. On the other
hand, as long as each company has a single job, the shortest–first mechanism fulfills all
requirements.

There are at least three natural follow–up questions. First, it could be of interest to
identify the family of mechanisms that satisfy the desiderata and provide implementability
on the single demand domain, and then use other normative properties to select a single
(or subfamily of) mechanism(s). Second, another possible research line would study the
implementability of optimal schedules on the general demand domain if one or both of the
two anonymity properties are weakened. Third, in the proof of Theorem 2 we distinguish
among four different cases and construct in each case a specific scheduling problem such
that no correlated equilibrium only induces optimal schedules. In particular, we cannot
use the same scheduling problem to cover all cases. Each case deals with a particular class
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of mechanisms that satisfy our anonymity properties. Hence, an interesting question is to
determine the “problematic” scheduling problems in each case so that by excluding them
a maximal domain for implementation can be obtained.
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