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ABSTRACT. 

The appearance of single photon sources in atomically thin semiconductors holds great promises for the 

development of a flexible and ultra-compact quantum technology, in which elastic strain engineering can 

be used to tailor their emission properties. Here, we show a compact and hybrid 2D-semiconductor-

piezoelectric device that allows for controlling the energy of single photons emitted by quantum emitters 

localized in wrinkled WSe2 monolayers. We demonstrate that strain fields exerted by the piezoelectric 

device can be used to tune the energy of localized excitons in WSe2 up to 18 meV in a reversible manner, 

while leaving the single photon purity unaffected over a wide range. Interestingly, we find that the 

magnitude and in particular the sign of the energy shift as a function of stress is emitter dependent. With 

the help of finite element simulations we suggest a simple model that explains our experimental 

observations and, furthermore, discloses that the type of strain (tensile or compressive) experienced by the 

quantum emitters strongly depends on their localization across the wrinkles. Our findings are of strong 

relevance for the practical implementation of single photon devices based on two-dimensional materials as 

well as for understanding the effects of strain on their emission properties.   

KEYWORDS: single photon emitters, 2D materials, elastic strain engineering, 

photoluminescence, tungsten diselenide monolayers, piezoelectric devices  

 

MAIN TEXT 

The family of two-dimensional (2D) semiconductor transition metal dichalcogenides (TMDs), including 

WS2, WSe2, MoS2 or MoSe2, offers several advantages for optoelectronic and photonic applications. They 

possess a variety of properties such as direct bandgap when thinned down to the monolayer, quantum 

confinement due to their reduced out-of-plane dimensionality, large oscillator strength and quantum 

efficiency,  optically controlled injection of electrons with defined spins for quantum spintronics  and spin-

photon interfacing 1,2. Moreover, functional multilayer heterostructures can be easily built up by simply 
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piling up one material on top of the other – not possible by conventional epitaxial growth techniques – and 

ultra-compact optoelectronic devices such as light emitting diodes have been already fabricated3. Another 

major advantage of 2D materials compared to conventional semiconductors is their impressive 

“stretchability”, as they can withstand strain magnitudes well above 1% before mechanical rupture takes 

place. This offers a large playground for elastic strain engineering, since externally applied strain – by direct 

bending or using piezoelectric actuators 4–9 – provides a natural strategy to tailor the electronic and optical 

properties of the material.  

The discovery of single photon emitters (SPEs) in 2D materials has stimulated an intensive research effort, 

aimed at the exploitation of such sources for quantum photonics10 as well as at  the understanding of their 

physical origin.  In the last years, SPEs have been reported on TMDs monolayers at cryogenic temperatures 

11–15 and on layered hexagonal boron nitride at room temperature 16. The origin of SPEs has been attributed 

to either presence of defects in the crystalline structure of the crystals16,17 or bandgap modulation of the 

material due to local bending of the material itself, which naturally occurs on bubbles or wrinkles 18. In an 

attempt to realize scalable SPEs over large areas, quantum dot-like nanostructures have been fabricated in 

atomically thin WSe2 or WS2 bilayers and monolayers by local strain engineering: Therein predefined areas 

of the monolayer were elastically deformed by pillars or nanorods19–21. A recent theoretical work has 

suggested that this deformation induces the confinement of excitons in potential wells with bound states 

that might lead to emission of single photons 18. First attempts to couple WSe2 quantum emitters to optical 

resonances of metallic nanostructures 22–25 and waveguide structures 26,27 have been also reported, which 

outlines the possibility for integration of TMD monolayers with optical cavities and on-chip integrated 

quantum photonic circuits. 

In spite of these significant advances, quantum emitters in 2D materials deliver photons at random energies, 

which are difficult to control owing to the complexity either of the potential profile eventually leading to 

the exciton confinement or to the nature of the defects. In turn, this severely limits the suitability of 2D 

SPEs for applications in quantum information science and technology. Therefore, it is fundamental to 
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develop post-fabrication tuning methods capable of controlling the SPEs emission energy in a reversible 

manner while leaving their optical quality unaffected. Elastic strain engineering of the material’s band 

structure is a promising strategy to accomplish this task, as previously demonstrated on self-assembled III-

V quantum dots28,29. Previous results on defect-induced emitters in thick hBN flakes reported moderate shift 

values of about 6 meV/% , likely due to the poor strain transfer efficiency of the substrate-bending technique 

used in the experiments30. To the best of our knowledge, no systematic and comprehensive studies on the 

strain effects, including the impact on the single photon purity in SPEs in TMDs has been published until 

now. 

In this work, we successfully demonstrate active tuning of the emission energy of SPEs in WSe2 monolayers 

using (001)- and (110)- [Pb(Mg1/3Nb2/3)O3]0.72-[PbTiO3]0.28 (PMN-PT) piezoelectric actuators. We show 

that a reversible tuning range of up to 18 meV can be obtained for moderate applied electric fields of about 

15 kV/cm and that the single photon purity – as measured via the second order correlation function – is 

unaffected by strain, with a value g(2)() bound to~0.12 over a range of 5 meV. Interestingly, we find that 

upon the same applied voltage, different quantum emitters show completely different energy-shifts, both in 

magnitude and sign. Using finite element calculations, we discuss that this effect can be attributed to a 

different location of the quantum emitters across a wrinkle, which “feel” different strain fields (tensile and 

compressive) for the same induced strain field delivered by the piezo-actuator. 

 

We first study the possibility of implementing a hybrid 2D-WSe2-piezoelectric device capable of delivering 

single photons with controlled energy. Fig. 1a shows a sketch of our device: a wrinkled WSe2 monolayer 

flake obtained by mechanical exfoliation is transferred on top of a PMN-PT piezoelectric plate coated with 

a [Cr (3 nm)/Au (100 nm)] bilayer on both sides for electrical contact 31. In a final step, the full device is 

mounted onto an AlN chip carrier providing electrical contacts. The application of an electric field along 

the poling direction of the piezoelectric actuator (Fp) produces an out-of-plane deformation of the plate 

which induces an in-plane deformation to the attached monolayer, as sketched in figure 1a). In particular, 
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a positive (negative) electric field leads to a compressive (tensile) in-plane deformation of the piezo-crystal 

which is transferred to the attached WSe2 monolayer. Spatially resolved optical spectroscopy was 

performed in a micro-photoluminescence (µPL) setup. The samples were excited non-resonantly at 632.8 

nm in an optical cryostat. Fig. 1b) shows a representative photoluminescence spectrum from a WSe2 

monolayer at a nominal sample temperature of 5 K. At elevated pump powers, the spectrum features a 

characteristic line-shape revealing luminescence from the free exciton (X) and trion (X-) resonances, as 

well as a broad, structured peak spanning over the spectral range from 730 nm up to 770 nm widely 

attributed  to quantum emitters localized in strained areas related to bubbles or wrinkles 18,19,22,23. Atomic 

force microscopy images of representative wrinkles in the monolayer are shown in Fig. S1 (Supporting 

Information). We could identify a variety of emission lines at low excitation power, which are spectrally 

well-isolated, and characterized by emission linewidth on the order of 200 µeV (see Fig. 1c)). We will refer 

hereafter to SPEs localized on wrinkled areas of the monolayer. 

Spectral control over one of the observed quantum emitters is demonstrated by sweeping the electric field 

across to the piezoelectric actuator from Fp=-20 kV/cm to Fp=20 kV/cm as shown in Fig. 2a). Specifically, 

an emission energy blue/red shift is observed for compressive/tensile strain fields introduced by the 

actuator, which is attributed to an increase/decrease of the bandgap in crystalline semiconductor materials. 

Moreover, the shift of the emission can be reversibly tuned in a linear fashion, as in principle expected for 

moderate magnitudes of the strain delivered by the piezo-actuator (see below). From a linear fit to the 

measured spectra, we can infer a total energy shift of about 5 meV with a ratio 5.4 μeV/V, similar to the 

values reported in semiconductor nanomembranes containing quantum dots32. Based on previous 

experiments, we expect that for the maximum electric field investigated an in-plane biaxial strain value of 

about 0.15% 32.It should be mentioned that, due to the Gaussian-like geometry of the wrinkle in the WSe2 

monolayer, the induced strain magnitude and sign strongly depends on the specific SPE under investigation, 

as discussed in detail below.  
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Whether single photons with high purity can be emitted at selected energies is further studied by second 

order correlation measurements. To do so, we investigate the influence of induced strain fields on the 

spectral shape and quality of the single photon emission as seen in Fig. 2. The luminescence is spectrally 

filtered by passing through a monochromator with 0.3 nm bandwidth and coupled to a fiber connected 

Hanbury Brown and Twiss (HBT) setup. The HBT set-up is equipped with two avalanche photodiodes 

(featuring time jitter of about 400 ps) connected to the correlation electronics. Notably, we observe a well-

pronounced anti-bunching signal at zero delay times (𝜏 = 0), allowing us to extract a deconvoluted 

g(2)() value of ~0.1333 at 0 Fp =kV/cm and 0.12 at both positive and negative Fp =20kV/cm. From the single 

exponential decay of the correlation functions carried out in the non-saturation regime of the exciton, we 

can furthermore estimate  the spontaneous emission lifetimes of the exciton with a value of about 1.0 ns, 

which is on the faster end of previously reported values 11. Importantly, both the exciton lifetime, as well 

as the single photon purity of the emitter are fully retained in the presence of mechanical stress, as evidenced 

by the comparative plot in Fig. 2c. This unambiguously confirms that strain does not alter the quality of the 

single photons emitted by quantum emitters in 2D materials – at least for the strain magnitudes and 

anisotropy investigated in this work.  

 

As mentioned above, different SPEs lines show different shifts as the electric field is applied to the piezo-

actuator. As an example, Fig. 3a) shows sharp emission lines originating from another wrinkle, which 

exhibit red and blue shifts as the electric field is varied from Fp=0 to 15 kV/cm. At a first sight, this is 

surprising since a blue shift of all the lines is expected for compressive strain delivered by the actuator. In 

order to explain this peculiar finding, it is first important to note that light is collected over a region with a 

diameter of ~1 µm and, therefore, the whole wrinkle is probed in the experiment. Second, previous reports 

16,17,19 have shown that SPEs are likely related to the presence of point defects in the monolayer, whose 

radiative efficiency is enhanced by strain fields via the funnel effect. It is therefore reasonable to assume 

that the different lines originate from different regions of the wrinkle where the initial strain distribution 
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and its variation with the externally-applied stress may be completely different. To support this hypothesis, 

we perform finite element simulations (FEM) of the strain field distribution in a WSe2 flake featuring a 

representative Gaussian-shaped wrinkle subject to a deformation induced by a piezoelectric actuator. 

Details about the simulations can be found in the Supporting Information. Although each wrinkle is slightly 

different, we simulate a wrinkle with dimensions 100 nm (width) and 40 nm (height) and around 1.5µm 

(length) in agreement with AFM measurements (see Fig. S1). The WSe2 flake is simulated as a continuum 

film with thickness of 0.5 nm. Fig. 3b) shows the hydrostatic strain distribution map εxx+ εyy+ εzz (directly 

connected to the energy shift via the materials’ deformation potentials) for a specific electric field Fp=30 

kV/cm applied on a (001)-PMN-PT piezoelectric actuator, which has an isotropic piezoelectric response – 

i.e. nominally isotropic biaxial in-plane strain fields are delivered by this kind of plates. It should be noted 

that the strain reported in panel b) is not the absolute strain configuration of the wrinkle, but its variation as 

the electric field on the piezoelectric actuator is changed from Fp=0 to Fp=30 kV/cm.  Hence, this map 

represents only the induced strain field on the wrinkle and its initial pre-stress configuration, since 

unknown, is not taken into account in the FEM simulation. As expected, a uniform compressive strain 

distribution is obtained on the flat areas of the monolayer in contact with the piezoelectric actuator (e.g., 

point D in fig. 3b), whereas a highly non-uniform strain field distribution is obtained in the suspended 

wrinkle. Most interestingly, the sign of the strain (tensile or compressive) strongly depends on the specific 

location across the wrinkle with a gradual decrease of the magnitude for compressive strain as we move 

from the tail to the top (points A to C in Fig. 3b)). On the other hand, for the wrinkle geometry studied here, 

tensile strain is found at specific positions at the edges of the wrinkle. Moreover, also the slope 

strain/electric field is position dependent as shown in Fig. 3c) – with relatively small values for tensile and 

large values for compressive strain. While the comparison between theory and experiment would suggest 

that the lines red-shifting (blue-shifting) originate from the edges (body) of the wrinkle, this behavior 

strongly depends on the specific geometry of the wrinkle and/or the type of strain delivered by the 

piezoelectric actuator (see supporting information). To support this statement we performed additional 

experiments using a (110)-PMN-PT piezoelectric plate, which nominally provides highly anisotropic in-
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plane strain fields (ɛxx≈−0.3ɛyy), where “x” and “y” directions correspond to [100] and [01-1] 

crystallographic directions of the PMN-PT crystal, respectively34. Interestingly, exactly the opposite 

behavior is observed in this case as shown in Fig. 4a, with a smaller blue-shift for the line at high energy 

and a remarkably large red-shift up to 18 meV for the lower energy lines (for a maximum electric field 

Fp=15 kV/cm applied to the actuator). It should be mentioned that due to the relatively high strain anisotropy 

introduced by (110)-oriented piezoelectric plates, a completely different strain distribution on the wrinkle 

is to be expected. This is demonstrated by FEM simulations in Fig. 4b, where the hydrostatic strain map for 

a Gaussian-shaped wrinkle oriented at 45 degrees with respect to the [100] direction of the piezoelectric 

plate is shown. We note that our experimental observations depicted in Fig. 4a are compatible with a 

situation where the emitters are located at the edge of a wrinkle (points A and B in Fig. 4b). Interestingly, 

in this case, a large/small tensile/compressive strain field is obtained which may explain our findings (Fig. 

4c). We emphasize once more the importance of the initial geometry of the wrinkle and additional 

experiments are needed to clarify whether there is tight connection between strain-slope and position of the 

emitter. While we leave this point to future studies, it is worth emphasizing that our findings are compatible 

with a scenario of ref  17 (in which multiple SPEs are located at different points of the wrinkle) but not fully 

consistent with the idea that quantum emitters are solely located on the regions with a significant bending18. 

 In summary, we have demonstrated active control of the energy emission of SPEs localized in a wrinkled 

WSe2 monolayer. This is achieved developing a hybrid 2D-piezoelectric device where in-plane biaxial 

strain fields up to a magnitude of ~0.15% can be transferred to SPEs without degrading their optical quality. 

We demonstrate a record tunability up to 18 meV – much larger than the best reported values in 2D 

materials 30. Moreover, the SPEs retain a high-purity single photon emission upon the introduction of strain 

fields, as shown by time-correlation measurements28. Finally, we have observed that different SPEs located 

in the same wrinkle shift to both higher and lower energies for the same applied stress. FEM simulations 

suggest that this peculiar behavior is related to the specific location of the SPEs and to the high non-uniform 

strain distribution across the wrinkle. The results reported in this work pave the way towards the 
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exploitation of energy-tunable SPEs and emitters of entangled photon pairs35 based on two dimensional 

crystals and it will stimulate the use of strain-fields to understand the origin of SPEs in 2D materials. For 

this last point, we anticipate that anisotropic strain fields delivered by micro-machined piezoelectric 

actuators 28,36 will have a key role where 2D materials can be incorporated upon integration in dielectric 

nanomembranes 37. 
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Figures 

 

Fig 1. a) Schematics of a hybrid 2D-semiconductor-piezoelectric actuator with an integrated WSe2 monolayer. b) 

Typical micro-photoluminescence spectrum of a WSe2 monolayer, including the exciton (X) and the trion (X-), which 

breaks up at low pump power into discrete emission lines in the spectral range around 725-780 nm.  c) Close up 

spectrum of a pair of selected lines P1 and P2 with a linewidth of 230 µeV. 

 

Fig. 2 a) Contour plot of the µPL spectra of a SPE as a function of the applied electric field on the piezoelectric 

actuator. The electric field is reversibly swept in the range from -20 to 20 kV/cm. The observed red- and blue-shifts 

are due to the induced compressive and tensile strain fields by the actuator. An energy shift equal to 5.4 μeV/V is 

observed. b) PL spectra of the SPE in a) for zero and the maximum electric fields applied on the actuator (red and blue 

lines). A total shift of 5.4 meV is obtained for a total 40 kV/cm sweep. c) Second order auto-correlation g(2)() 

measurements of the dot in a) for Fp=-20, 0 and 20 kV/cm. The single photon emitter nature of the SPE is confirmed 
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by the low deconvoluted value g(2)()~0.12, 0.13 and 0.12, respectively, which is independent of the applied field (i.e. 

induced strain field).  

 

Fig. 3 a) Contour plot of the PL spectra of SPEs as a function of the electric field applied on a (001) piezoelectric 

device. The electric field was set up to Fp=15 kV/cm and back to Fp= 0 kV/cm. The black line in the middle highlights 

the point where the maximum voltage is applied. Three different peaks can be followed along the voltage sweep, two 

of which show a large blue-shift (6 meV), while the other one exhibits a small red-shift (1 meV). It is worth noting 

the absence of any kind of hysteresis along the voltage cycle on all the energy shifts. b) FEM simulation of the variation 

of the hydrostatic strain exerted over the wrinkle on a (001) piezoelectric actuator, biased at an electric field of Fp=30 

kV/cm. A Gaussian profile with an aspect ratio of 2.5 are assumed as geometrical shape for the wrinkle. Both 

compressive and tensile strain fields are observed at different positions on the wrinkle upon application of the electric 

field to the piezoelectric device. c) Evolution of the hydrostatic strain as a function of the electric field applied to a 

(001) piezoelectric device calculated in 5 different points of the wrinkle, highlighted also in panel b). Independently 

of the type of strain, a linear dependence with the applied voltage is observed. 
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Fig. 4 a) Contour plot of the PL spectra of SPEs as a function of the electric field applied on a (110) piezoelectric 

device. The electric field was set up to Fp=15 kV/cm and back to Fp= 0 kV/cm. The black line in the middle highlights 

the point where the maximum voltage is applied. Three different peaks can be followed along the voltage sweep, 

among which two show a very large red-shift (up to 18 meV), while the other one exhibits a small red-shift (1 meV). 

b) FEM simulation of the variation of the hydrostatic strain exerted over the wrinkle on a (110) piezoelectric actuator, 

biased at an electric field of Fp=30 kV/cm. A Gaussian profile with an aspect ratio of 2.5 is assumed as geometrical 

shape for the wrinkle. Both compressive and tensile strain fields are observed at different positions on the wrinkle 

upon application of the electric field to the piezoelectric device. c) Evolution of the hydrostatic strain as a function of 

the electric field applied to the piezoelectric device calculated in 2 different points of the wrinkle, highlighted also in 

panel b).  

 


