
P R IMA R Y R E S E A R CH A R T I C L E

Phenological sensitivity to climate change is higher in resident
than in migrant bird populations among European cavity
breeders

Jelmer M. Samplonius1 | Lenka Barto�sov�a2 | Malcolm D. Burgess3,4 |

Andrey V. Bushuev5 | Tapio Eeva6 | Elena V. Ivankina7 | Anvar B. Kerimov5 |

Indrikis Krams8,9 | Toni Laaksonen6 | Marko M€agi8 | Raivo M€and8 | Jaime Potti10 |

J�anos T€or€ok11 | Miroslav Trnka2 | Marcel E. Visser12 | Herwig Zang13 | Christiaan Both1

1Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands

2Institute of Agrosystems and Bioclimatology, Mendel University in Brno, Brno, Czech Republic

3Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK

4RSPB Centre for Conservation Science, The Lodge, Sandy, Beds, UK

5Department of Vertebrate Zoology, Faculty of Biology, Moscow State University, Moscow, Russia

6Department of Biology, University of Turku, Turku, Finland

7Zvenigorod Biological Station of Lomonosov, Moscow State University, Moscow, Russia

8Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia

9Department of Zoology and Animal Ecology, University of Latvia, R�ıga, Latvia
10Department of Evolutionary Ecology, Estaci�on Biol�ogica de Do~nana-CSIC, Seville, Spain

11Behavioural Ecology Group, Department of Systematic Zoology and Ecology, E€otv€os Lor�and University, Budapest, Hungary

12Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands

13Oberer Triftweg 31A, Goslar, Germany

Correspondence

Jelmer M. Samplonius, Conservation Ecology

Group, Groningen Institute for Evolutionary

Life Sciences (GELIFES), University of

Groningen, Groningen, Groningen, the

Netherlands.

Email: jelmersamplonius@gmail.com

Funding information

Russian Science Foundation, Grant/Award

Number: 14-50-00029; Ministerio de

Econom�ıa y Competitividad, Grant/Award

Number: CGL2014-55969-P, CGL2015-

70639-P; Academy of Finland, Grant/Award

Number: 265859; Estonian Research

Council, Grant/Award Number: 34-8;

Estonian Ministry of Education and Science,

Grant/Award Number: PUT1223

Abstract

Many organisms adjust their reproductive phenology in response to climate change,

but phenological sensitivity to temperature may vary between species. For example,

resident and migratory birds have vastly different annual cycles, which can cause

differential temperature sensitivity at the breeding grounds, and may affect competi-

tive dynamics. Currently, however, adjustment to climate change in resident and

migratory birds have been studied separately or at relatively small geographical

scales with varying time series durations and methodologies. Here, we studied dif-

ferential effects of temperature on resident and migratory birds using the mean egg

laying initiation dates from 10 European nest box schemes between 1991 and 2015

that had data on at least one resident tit species and at least one migratory fly-

catcher species. We found that both tits and flycatchers advanced laying in

response to spring warming, but resident tit populations advanced more strongly in

relation to temperature increases than migratory flycatchers. These different tem-

perature responses have already led to a divergence in laying dates between tits
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and flycatchers of on average 0.94 days per decade over the current study period.

Interestingly, this divergence was stronger at lower latitudes where the interval

between tit and flycatcher phenology is smaller and winter conditions can be con-

sidered more favorable for resident birds. This could indicate that phenological

adjustment to climate change by flycatchers is increasingly hampered by competi-

tion with resident species. Indeed, we found that tit laying date had an additional

effect on flycatcher laying date after controlling for temperature, and this effect

was strongest in areas with the shortest interval between both species groups.

Combined, our results suggest that the differential effect of climate change on spe-

cies groups with overlapping breeding ecology affects the phenological interval

between them, potentially affecting interspecific interactions.
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1 | INTRODUCTION

Climate warming causes the advancement of organismal phenology,

but phenological sensitivity to climate warming often differs among

trophic levels (Thackeray et al., 2010, 2016), which can cause mis-

matched reproductive timing between predator and prey (Parmesan

& Yohe, 2003; Stenseth & Mysterud, 2002; Visser & Both, 2005).

This may consequently lead to lowered offspring condition (Durant,

Hjermann, Ottersen, & Stenseth, 2007; Garc�ıa-Navas & Sanz, 2011;

Reed, Jenouvrier, & Visser, 2013; Samplonius, Kappers, Brands, &

Both, 2016). Residents and migrants have been hypothesized to dif-

fer in response to temperature trends in their breeding areas, with

residents being more flexible to respond than (especially long-dis-

tance) migrants (Berthold, Fiedler, Schlenker, & Querner, 1998). Long

distance migrants were recently shown to be the least responsive to

climate warming on the migrant-resident continuum (Usui, Butchart,

& Phillimore, 2017), and the consequences of climate change on

population demography appear to be most negative for long-distance

migratory bird species (Both, Bouwhuis, Lessells, & Visser, 2006;

Both et al., 2010). This is especially true for those migratory species

with the weakest phenological response to temperature changes

(Møller, Rubolini, & Lehikoinen, 2008; Newson et al., 2016), support-

ing the role of trophic synchrony, although this likely depends on

the specific ecology of each species (Dunn, Winkler, Whittingham,

Hannon, & Robertson, 2011). The basic rationale underlying inflexi-

ble adjustment of migratory birds is that a flexible response of laying

date to directional temperature changes is constrained by arrival

date at the breeding grounds (Both & Visser, 2001), whereas resi-

dent species can more easily adjust the onset of breeding to local

temperature changes.

Two recent long-term studies gave contrasting evidence to the

hypothesis that migrants adjust their laying dates to a lesser extent

to temperature than sympatric residents: in the UK, the migratory

pied flycatcher, Ficedula hypoleuca, was less sensitive in its laying

date response to spring temperature (�2.3 days/°C) than resident

tits (�4.8 days/°C) (Phillimore, Leech, Pearce-Higgins, & Hadfield,

2016). In contrast, in Sweden, the difference in response between

flycatchers and tits was mostly absent (pied flycatchers: mean:

�1.62 days/°C (N = 3 time series; SE: 0.19); blue tits, Cyanistes caer-

uleus and great tits, Parus major: mean: �1.90 days/°C (N = 6 time

series; SE =0.14); time series from 1970/80s to 2010s, K€allander

et al., 2017). The causes of these contrasting patterns are unclear,

but could in part be due to differential time series durations or dif-

ferential methodologies. For example, Phillimore et al. (2016) used a

sliding window approach to determine the temperature window that

was best correlated with egg laying phenology, whereas K€allander

et al. (2017) used the 30-day temperatures before the mean egg lay-

ing phenology. Both methods are widely used, but it is possible that

different methods impact estimates of phenological sensitivity (van

de Pol et al., 2016), and so a comparison between these studies

remains problematic. Such differences in methodologies and pub-

lished phenological responses to temperature plead for a more gen-

eral and standardized description on how migrants and resident

species sharing the same environment respond to between year vari-

ations in temperatures, and how this may affect the interaction

between these species.

Responses in laying or hatching date are often interpreted in

relation to the phenology of underlying trophic levels, but it is

important to consider that also changes in interspecific competitor

timing (Samplonius & Both, 2017) could act as selection pressures

that determine the optimal timing response. European tits and fly-

catchers are ideal model species to study differential adjustment to

climate change. Both resident tits and migratory flycatchers readily

breed in nest boxes, which have been recorded across European

locations for several decades. Blue and great tits are year round resi-

dents, although in Northern latitudes, they show irruptive migration,

which highly depends on the annual conditions (Ulfstrand, 1962).

Pied flycatchers and collared flycatchers Ficedula albicollis breed in

Europe, but pied flycatchers migrate to Western Africa in the fall

(Ouwehand et al., 2016) and collared flycatchers winter south of the
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equator (Briedis et al., 2016). Tits and flycatchers fiercely compete

for nesting sites during the breeding season (Ahola, Laaksonen, Eeva,

& Lehikoinen, 2007; Meril€a & Wiggins, 1995; Slagsvold, 1976, 1978)

and also partly capitalize on the same diet (Cholewa & Wesołowski,

2011; T€or€ok, 1986). Aside from being competitors, flycatchers may

also benefit from social information gained from tits (Kivel€a et al.,

2014; Samplonius, Kromhout Van Der Meer, & Both, 2017;

Sepp€anen & Forsman, 2007; Sepp€anen, Forsman, M€onkk€onen,

Krams, & Salmi, 2011; Slagsvold & Wiebe, 2017). Both information

use and competition have phenological components: flycatcher mor-

tality in tit nest boxes increased with more phenological overlap

between tits and flycatchers (Ahola et al., 2007; Meril€a & Wiggins,

1995), and an experimental study showed that flycatchers preferen-

tially settled in forest patches with early breeding tits (Samplonius &

Both, 2017). If climate warming has differential effects on the phe-

nology of these (and other) resident and migratory species of the

same guild, then phenological components of interspecific interac-

tions may be affected.

In this study, we capitalize on 10 long-term nest box schemes from

across Europe, which vary in the extent of spring warming. For each

site, time series on laying date phenology of at least one species of

resident tit and one species of migrant flycatcher was available (for

details, please refer to Table S1). This study addresses three questions.

First, does the degree of adjustment of mean laying date to tempera-

ture differ between resident tits and migratory flycatchers? We expect

that resident tits are more flexible in their laying date response to tem-

perature than migratory flycatchers. Second, does differential climate

sensitivity between residents and migrants (if the first hypothesis is

true) affect the phenological interval over time between these species

groups? We expect that the phenological interval between resident

and migratory birds diverges if residents respond more strongly to cli-

mate change. We also expect that this divergence over time differs

across latitudes: in areas that are biogeographically more hospitable

for resident species (Southern latitudes: Herrera, 1978), we expect

stronger phenological divergence because resident tits may force fly-

catchers to adopt a later phenology due to increased competition.

Related to this, our final hypothesis is that resident species may affect

the timing response of migratory species. Our main expectation here

is that the timing response of flycatchers may in part be adjusted to

their timing in relation to resident tits (after controlling for the effect

of temperature on laying date). This effect is expected to be stronger

in populations where the phenological interval between tits and fly-

catchers is smaller.

2 | MATERIALS AND METHODS

2.1 | Data selection

To standardize our approach and avoid reporting bias, we used all

the data series of which at least 20 years of phenological data of

both tits and flycatchers were available (Figure 1, Table S1). The spe-

cies we used in this analysis were resident great and blue tits and

migratory pied and collared flycatchers (Table S1). Although in

Northern latitudes tits are irruptive migrants, there are data showing

that populations have become more resident over the past decades

(Smallegange, Fiedler, K€oppen, Geiter, & Bairlein, 2010), but not in all

populations (Meller et al., 2016; Nilsson, Lindstr€om, Jonz�en, Nilsson, &

Karlsson, 2006). At most these populations are short distance migrants

and arrive much earlier at the breeding grounds than long distance

migratory flycatchers. We restricted the time series length to the per-

iod 1991–2015 because all populations had data for these years (ex-

cept Czech Republic, which ran until 2012; Finland missed the year

2001; Spain missed the year 2003). Only datasets with an average

sample size larger than 15 nests per species per year were used in the

analyses (lowest in a single year: n = 6 in a Russian population of great

tits). Nest boxes were checked at least weekly in most populations, and

laying initiation dates (hereafter laying dates) were established under

the assumption that these species lay one egg each day. For each pop-

ulation, we calculated the annual mean and standard deviation in laying

date. Only first broods were included in this analysis, the range of

which was defined as the mean laying date of the first five nests plus

30 days (per year, per population, per species). In one population (Ger-

many), we only had hatch dates available, which were used for the

analysis instead of laying dates, because the temperature slopes in rela-

tion to hatch dates closely match those in relation to laying dates

(R2 = .93, Table S3). Daily mean temperature data were taken from

meteorological stations near (<100 km) each breeding site (Table S2).

In some cases, temperature data from several stations had to be com-

bined due to missing data in one of the stations. For example, in the

case of Germany, we used the average temperature of three weather

stations in the Harz Mountains at similar altitudes, because for some

relevant days, the data from one or two of the stations were missing.

2.2 | Sliding window analyses

It is well known that most birds lay earlier during warm years, but it

is unknown which cues are directly responsible for this response.

Earlier analyses of responses of laying date to temperature have

often used an arbitrary window (i.e., the 30 days prior to the overall

or to the start of the time series population mean laying date: Both

et al., 2004; Visser et al., 2003). When comparing responses for

more populations, such a fixed time window length may not capture

the local variation in ecology because habitats may differ in the

speed of the phenological responses to temperature (M€agi et al.,

2009). Therefore, we have selected for each area and species combi-

nation the best explaining time window, using a sliding window

approach with the climwin package (Bailey & Van De Pol, 2016; van

de Pol et al., 2016) in R 3.3.1 (R Development Core Team, 2016).

The mean temperature during the period that was best correlated

with the mean timing of laying across years will hereafter be

referred to as the “climate window.” We restricted the possible time

windows by letting the starting date vary from 15 to 60 days prior

to the overall average annual laying date, the window being at least

15 days. In all cases, more than one climate window was within 2

AIC of the best climate window, and the window was calculated

using a model average of the opening and closing of these best
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climate windows. Climwin compares the model outputs of thousands

of models, the AIC of which it plots graphically as when the temper-

ature window opens (y-axis) and closes (x-axis) in relation to the ref-

erence date, which were set to the mean average laying date per

population per species, rounded up to the next integer. For example,

if a great tit population had a mean laying date of 20.1 April, climwin

compared all temperature windows larger than 15 days ranging from

21 February to 21 April. An example output of climwin for the

Dutch population of great tits can be found in the supplementary

information (Figure S1). In all cases, the best explaining models fell in

the same cluster of window openings and window closings, so using

a model averaging approach was justified. Finally, bird laying dates

were regressed against the mean temperature of the previously

identified climate window. Slopes and intercepts of the top models

were highly similar (Figure S1).

2.3 | Phenological sensitivity to temperature

To analyze whether resident tits and migratory flycatchers had simi-

lar or different laying date responses to temperature, we centered all

data for each specific population and species climate window by

subtracting the mean, and the same was done with laying date for

each population and species. We centered for each population sepa-

rately to avoid over- or underestimation of the overall slope due to

spatial variation (de Keyzer, Rafferty, Inouye, & Thomson, 2017).

Next, statistical analyses on the relative temperature vs. relative lay-

ing date slopes were performed using linear mixed effect models

(LMER) in lme4 in R (Bates, M€achler, Bolker, & Walker, 2015), using

sample size as a weight factor. We regressed “Laying date (centered

per population and species group)” against “Species (blue tit, great

tit, pied flycatcher, or collared flycatcher),” “Spring temperature (out-

put from climwin, centered per population and species),” “Year (cen-

tered, continuous),” the interaction between “Species” and “Spring

temperature” (as we wanted to test whether tit and flycatcher laying

dates ~ temperature slopes differed), and “tit: temperature|popula-

tion” and “flycatcher: temperature|population” as a random slopes (as

we expected laying date ~ temperature slopes to vary between spe-

cies and populations). “Year” was used as a continuous covariate to

account for temporal patterns in laying date that were not attributa-

ble to temperature, and the interaction between “Year” and “Spe-

cies” was included to test whether temporal patterns not governed

by temperature differed between tits and flycatchers. Backwards

elimination was implemented if interactions or covariates were non-

significant. We also tested for multicollinearity between “Year” and

“Spring temperature” and found a variance inflation factor of 1.062,

which does not present a multicollinearity issue.

2.4 | Laying date over time vs. temperature change
over time

We wanted to test whether birds in areas that experience more

warming also advance their laying date the most over the years

(Both et al., 2004). Therefore, for each population and species group

separately, we calculated the slope of laying date against year and

F IGURE 1 Geographical locations of
the breeding data used in the analysis with
at least one tit and one flycatcher species.
All time series ran from 1991–2015
(except Czech Republic 1991–2012). More
details on the locations and species can be
found in Table S1
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temperature against year and regressed those against each other.

We then used a linear model (LM) with “laying date ~ year slope” as

a response variable, and “Temperature ~ year slope” and “species

group” and the interaction between them as predictors (as we

expected, the response of tits and flycatchers to temperature may

differ). The expectation was that in areas that have experienced

more warming, birds have also adjusted their breeding phenology

more. The Czech Republic population was not included for this anal-

ysis, as it did not include the years 2013–2015, which may affect

temporal trends. Moreover, two tit populations from Hungary were

included (both blue and great tit).

2.5 | Latitudinal variation timing interval tits and
flycatchers

Next, we analyzed whether the phenological interval between mean

tit and flycatcher laying dates within areas and years is affected by

temperature, as this may affect competitive and facilitative interac-

tions between species. Additionally, species-specific climate windows

may experience different degrees of warming, so it is vital to study

how this in turn affects phenological overlap between them (Ahola

et al., 2007). To address this question, we calculated the differences

per year in phenology between tits and flycatchers for each popula-

tion by subtracting the mean tit laying date from the mean fly-

catcher laying date. This variable was regressed against the

“Temperature difference” in species-specific climate window. This

variable was calculated by subtracting the temperature of the tit cli-

mate window from the temperature of the flycatcher climate win-

dow (Ahola et al., 2007). Using LMER, covariates used were “Year”

and “Latitude” and the interaction between them, as we expected,

the degree of phenological divergence between residents and

migrants to be more extreme at lower latitudes. The rationale for

including the interaction between “Year” and “Latitude” comes from

the biogeographical pattern that Northern latitudes are less hos-

pitable to resident species (Herrera, 1978) and have a larger interval

between tit and flycatcher phenology. Therefore, competition

between tits and flycatchers may be more severe in more Southern

areas, subsequently leading to a higher degree of phenological diver-

gence between them. Thus, we hypothesized the temporal diver-

gence between tit and flycatcher phenology to be higher in lower

latitudes. All variables were centered per species per population

except “Latitude” (which was centered by subtracting the mean lati-

tude of 52.01376). We added a random slopes structure of “Temper-

ature difference|Population,” as we expected, slopes to vary among

populations. Backwards elimination was implemented if covariates

were nonsignificant. We also tested for multicollinearity between

“Year” and “Temperature difference” and found a variance inflation

factor of 1.0067, which does not present a multicollinearity issue.

2.6 | Does tit timing predict flycatcher timing?

Finally, we were interested in whether the degree of phenological

overlap with tits affected the response of flycatchers. To study this

question, we regressed flycatcher mean laying dates against “Tem-

perature (centered for each population)” with “relative tit phenology

(centered for each population)” and “mean population tit-flycatcher

interval (centered across all populations)” as covariates and the inter-

action between the latter two using LMER. We expected that tit

phenology would affect flycatcher phenology to a larger extent in

populations with a smaller interval between tit and flycatcher phe-

nology. In this analysis, we implemented “Temperature|population” as

a random slope, as we expected, temperature slopes to differ

between populations.

3 | RESULTS

3.1 | Sliding window analysis

Tit and flycatcher annual mean laying dates were negatively corre-

lated with spring temperature, but responses were to species- and

area-specific climate windows, with tits on average responding to

earlier (paired t test: mean of differences �21 days, t = �6.77,

p < .001), but not to longer (paired t test: mean of differences

6.11 days, t = 1.09, p = .31) climate windows (Figure 2, Table S3).

The mean climate window across all populations was from 13 March

to 24 April for tits, whereas for flycatchers, it spanned from 7 April

to 12 May. Interestingly, the climate window (median value of the

entire window) to which tits responded became significantly later

toward Northern latitudes (1.04 days/latitude, R2 (adj) = .425,

t = 2.765, p < .03), but this was not the case for flycatchers

(0.356 days/latitude, R2 (adj) = �.096, t = 0.543, p = .60). Window

length did not correlate with latitude for either species group (tits:

p = .267, flycatchers: p = .463).

3.2 | Phenological sensitivity to temperature

Tits were on average twice as sensitive in their phenological

response to temperature than flycatchers in the same regions

F IGURE 2 Best-fit climate windows as calculated by a sliding
window approach in climwin. Temperatures in these windows were
used for further analysis. Countries are ordered by latitude
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(Figure 3, Table 1). Tits on average advanced their phenology by

�3.37 (blue tits) and �2.84 (great tits) days per °C, whereas the

advancement was significantly less for pied and collared flycatchers

with �1.52 and �1.54 days per °C, respectively (Table 1). Moreover,

compared to flycatcher populations (�1.97 to �1.01 days/°C), the

temperature slopes of tits (�4.05 to �1.74 days/°C) among popula-

tions was significantly more variable (Bartlett’s K2 = 5.24, p = .022).

Interestingly, the temperature slopes of tit and flycatcher laying

dates in the same populations were not significantly correlated (Fig-

ure 3, R2 (adj) = �.034, N = 10, p = .426) even though the tempera-

ture cues for tits and flycatchers within years were positively

correlated (R2 (adj) = .178, p < .0001). We further found that inde-

pendent of the temperature response, all species advanced their

laying dates by an estimated �0.10 days per decade, but this effect

did not significantly differ between species (Table 1).

3.3 | Laying date over time vs. temperature change
over time

The between-population variation in temporal laying date trends

could be explained by the local trends in temperatures (as in Both

et al., 2004), but to a lesser degree for flycatchers. Areas with more

local spring warming over the past decades showed greater temporal

phenological advancement of both tits and flycatchers (p < .002,

Table 2, Figure 4), but less so in flycatchers for the same degree of

warming compared to tits.

3.4 | Latitudinal variation timing interval tits and
flycatchers

The interval in laying dates between flycatchers and tits varied from

about 30 days to only 5 days, and this interval was smaller when fly-

catcher-specific temperatures were high relative to the tit-specific

temperatures from the same year (Figure 5, Table 3). The interval

declined by 1.76 day per degree centigrade difference in species-

specific climate window temperature (Figure 5, Table 3, p = .002),

F IGURE 3 Comparison of phenological responses of tits and
flycatchers to temperature within the same breeding locations. Each
point compares two population specific laying date ~ temperature
slopes. Tits clearly show a higher degree of phenological sensitivity
to temperature than flycatchers (all points are above x = y line). Tit
and flycatcher responses within sites were not correlated

TABLE 1 LMER output of relative annual mean laying dates (LD)
in relation to local spring temperature across 10 European sites.
Laying dates and mean temperature were centered for each species
and population so only differences in slopes remained. Random
slopes were fitted for each species group and area. Blue tits were
the baseline in the model. Great (GT) and blue tits (BT) did not differ
in their response to temperature, but they responded more strongly
to temperature than pied (PF) and collared (CF) flycatchers.
Additional year effects did not differ between species (see also
Figure 3)

Laying date (LD)a Estimate (SE) t503,11 Pr(>|t|)

Temperature BT (°C) �3.37 (0.36) �9.07 <0.0001

Year �0.0983 (0.014) �6.85 <0.0001

Temperature 9 GT 0.53 (0.39) 1.36 0.181

Temperature 9 PF 1.85 (0.38) 4.89 <0.0001

Temperature 9 CF 1.83 (0.43) 4.29 <0.001

aRandom effect variance � SD ‘flycatcher :temperature|

area’ = 0.0282 � 0.168; ‘tit : temperature|area’ = 0.166 � 0.407.

TABLE 2 Model output of the annual mean laying dates slopes
(LD/year) among populations in relation to the population-specific
degree of warming (°C/year) across 10 European study sites. In
areas that warmed more, tits advanced their laying date more, but
flycatchers did so to a lesser degree (see also Figure 4)

LD/year slope Estimate (SE) T15,3 Pr(>|t|)

(Intercept) �0.122 (0.038) �3.219 0.0054

°C/year slope �3.014 (0.796) �3.785 <0.0016

Species group flycatcher 0.130 (0.045) 2.913 0.010

F IGURE 4 Comparison of the temporal laying date slope with
the temporal temperature slope. Both tits and flycatchers adjusted
their phenology more in areas with more warming between 1991
and 2015, but flycatchers did so to a lesser extent
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showing that species-specific climate windows may be differentially

affected by climate change. The mean interval between tits and fly-

catchers increased by 0.94 days per decade (Table 3, p = .0015), an

effect that was larger at lower latitudes (Figure 6, Table 3, p = .015),

showing that the divergence in laying dates between tits and fly-

catchers was mostly observed south of 50°N.

3.5 | Does tit timing predict flycatcher timing?

In the final analysis, we were interested in whether tit phenology

explained additional variation in flycatcher phenology in addition to

the temperature slope. Interestingly, we found that flycatchers were

apparently affected by the phenology of tits in their laying date. In

addition to the effect of temperature and year, residual flycatcher

mean laying date was delayed by 0.077 days for each day that tits

were relatively late (p = .0067, Table 4), and this effect was larger in

populations where the mean interval between tit and flycatcher

breeding was smaller (interaction “tit laying date” 9 ”mean popula-

tion tit flycatcher interval”: 0.0286 day increase in effect size for

each day that the laying date interval between tits and flycatchers

decreases, Table 4). The overall mean interval between tits and fly-

catchers across all populations was 17.0 days, ranging from 13.3

(�3.7 centered) days in Dartmoor (GBR) to 20.6 (+3.6 centered) days

in Zvenigorod (RUS). To illustrate the effect of the interaction term

in this model (Table 4), the estimated effect of tit phenology on fly-

catcher phenology at these endpoints in the distribution ranged from

(�0.0286 9 �3.7 + 0.077) 0.183 flycatcher days/tit day to �0.026

flycatcher days/tit day. In other words, flycatchers adjusted their lay-

ing dates more in response to tit laying dates in populations where

the mean timing interval between them was smaller. “Latitude” was

not retained in the final model.

F IGURE 5 Comparison of the phenological interval between tits
and flycatchers in relation to the difference in species-specific
temperature windows. The interval between tits and flycatchers
decreases when the tit climate window is relatively cold and the
flycatcher climate window is relatively warm

TABLE 3 Determinants of the interval between tit and flycatcher
mean laying dates include year (as continuous variable), the
difference in species specific prelaying temperatures (see also
Figure 5), latitude, and the interaction between year and latitude.
Predictors were centered for each population and species

Flycatcher–tit LD intervala Estimate (SE) t266,3 Pr(>|t|)

(Intercept) 5.978 (0.972) 6.149 <0.0001

Flycatcher–tit °C difference �1.759 (0.347) �5.062 0.0020

Year 0.0942 (0.0293) 3.216 0.0015

Latitude 0.215 (0.124) 1.742 0.151

Year 9 Latitude �0.0131 (0.0053) �2.454 0.0148

aRandom effect variance � SD ‘1 | area’ = 6.68 � 2.58; ‘temperature dif-

ference|area’ = 0.956 � 0.978.

F IGURE 6 Model output of the temporal divergence trend
(1991–2015) between tit and flycatcher phenology across latitudes
after accounting for species-specific climate windows. Divergence
between tits and flycatchers was larger at lower latitudes (p = .015,
Table 3)

TABLE 4 Effect of tit laying dates and other factors on flycatcher
laying dates in the same population, across 10 European sites. The
positive effect of tit laying date on flycatcher laying date was
especially strong in populations where tits and flycatchers overlap
more in seasonal timing. For this analysis, flycatcher phenology was
regressed against spring temperature, year, population-specific
relative tit phenology, mean population-specific interval between tits
and flycatchers, and the interaction between this interval and
relative tit phenology. All predictors were centered

Flycatcher LDa Estimate (SE) t264,5 Pr(>|t|)

(Intercept) �0.009 (0.120) �0.073 0.941

Spring temperature �1.205 (0.096) �12.60 <0.0001

Year �0.075 (0.018) �4.189 <0.0001

Relative tit phenology 0.0765 (0.028) 2.752 <0.007

Mean tit–flycatcher interval 0.0034 (0.053) 0.063 0.950

Mean interval 9 tit phenology �0.0286 (0.012) �2.39 0.0183

aRandom effect variance � SD ‘1 | area’ = 0.000 � 0.006; ‘temperature|

area’ = 0.005 � 0.071.
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4 | DISCUSSION

Here, we presented a Europe-wide assessment of phenological

advancement of tits and flycatchers in response to climate change

and show three important differences in the response of these resi-

dent and migratory nest box breeders. First, resident tits advanced

their phenology on average twice as much in response to between

year temperature variation than migratory flycatchers, and within

site phenological sensitivity to temperature of tits and flycatchers

were uncorrelated, even though the temperature cues of tits and fly-

catchers were highly correlated. Second, tit populations in areas that

warmed more also advanced their laying date more, but the same

was not true for flycatchers (in contrast to Both et al., 2004). Over-

all, the mean laying date interval between tits and flycatchers has

diverged over the past 25 years by about 0.94 days per decade, an

effect that was stronger at lower latitudes. Finally, in addition to

temperature, flycatchers appeared to adjust their laying date partly

in the same direction as the laying date of tits, an effect that was

stronger in populations that had a smaller phenological interval

between tits and flycatchers. Climate change may, therefore, affect

the phenological interval between competing species with knock-on

effects on species interactions including competition and information

use.

Our results clearly demonstrate that resident tit populations are

generally more flexible in adjusting to variation in temperatures than

migratory flycatcher populations from the same breeding areas. The

large geographical scale at which our analysis was performed allows

us to draw more general conclusions about this pattern than previ-

ous studies, one of which corroborated our findings (Phillimore et al.,

2016), while another did not (K€allander et al., 2017). We further

found that, in contrast to a previous study (Both et al., 2004), fly-

catchers in areas that warmed more did not also advance their laying

dates more over time, but we found that pattern to hold for tits. A

possible explanation of this is that the trends observed by Both

et al. (2004) in both temperature and flycatcher laying dates included

more extremes, probably because their time series started in the

1980s and lasted until 2002, a period with apparently more local

spring warming than the period reported here, and more advance-

ment of flycatcher laying dates. It must be noted that differences

found between tits and flycatchers (interpreted as differences

between residents and migrants) in this study may alternatively be

explained by phylogeny. Interestingly, a recent meta-analysis found

that phylogeny could explain some variation in phenological

responses to temperature, but a larger degree of variation in

responses between species was explained by them being along the

resident migrant continuum (Usui et al., 2017). Long distance

migrants had lower degrees of response to temperature changes

than residents and short distance migrants (Usui et al., 2017), cor-

roborating what we found in this study.

As climate warming continues, resident species are expected to

cope better with such changes, as they are potentially better able to

track phenological optima through plasticity (Phillimore et al., 2016;

Vedder, Bouwhuis, & Sheldon, 2013). Our analyses show that

migratory bird populations may be particularly vulnerable to climate

warming, as their capacity to respond flexibly to changes at the

breeding grounds are more limited than resident species, although

we have not analyzed phenotypic plasticity at the individual level in

this study. This is also in line with a study that showed the most

rapidly declining passerine populations are those of migratory birds

breeding in seasonal habitats (Both et al., 2010). Alternatively, fly-

catchers may not need to adjust as much to temperature changes as

tits because they have a more generalist diet than tits. Nevertheless,

pied flycatchers in a Dutch population preferred caterpillar prey and

their nestlings performed better when well matched with the cater-

pillar peak (Samplonius et al., 2016), and local population declines

were strongly correlated with the date of the caterpillar peak (Both

et al., 2006).

Plasticity is likely the most important mechanism through which

individuals adjust to climate warming (Charmantier & Gienapp, 2013;

Charmantier et al., 2008; Phillimore et al., 2016), but we also

reported on an additional advancement over time by 0.98 days per

decade in both tits and flycatchers (Table 1), potentially explained by

other mechanisms. There is still the potential for phenotypic plastic-

ity to operate through other (unknown) cues here, but alternatively,

this pattern could reflect a microevolutionary response of laying date

with selection favoring early reproduction in years where offspring

return under warm spring conditions (Visser et al., 2015). However,

this explanation cannot be tested here as we cannot discern individ-

ual from population responses in our data. In addition, being born

early might entrain the circannual clock to an earlier schedule

through ontogenetic effects, potentially leading to being earlier the

following year (Both, 2010; Ouwehand, Burger, & Both, 2017). Dis-

cerning between genetic and nongenetic effects in adjusting to cli-

mate change is critical in directing future decisions on species

conservation. For example, directional selection on timing genes may

reduce genetic variation in a population, whereas ontogenetic effects

would not.

Our finding that the degree of phenological divergence over time

between tits and flycatchers is higher in more Southern latitudes can

be explained in different ways. First, Southern latitudes have milder

winters, causing relatively more resident birds to survive and occupy

more suitable breeding space (Berthold et al., 1998), which may push

the timing of migratory birds to become relatively later through

interspecific competition. This is partly supported by our observation

that flycatchers are more affected by tit phenology in areas with

more overlap between their phenologies (Table 4). However, this

could also be a third variable effect as previously discussed. Second,

it is possible that, especially in Southern latitudes, migratory birds

are constrained by arrival date, as spring starts the earliest there. In

our case, this is not true, because the most Southern population lays

considerably later because it is mountainous. Finally, latitude could

be a proxy for photoperiod, which may be used as a birth date cue

during early life, the effect of which differs between Northern and

Southern Europe. In Southern Europe, photoperiod increases for

later born young, whereas Northern birds hatching after the solstice

experience decreasing day lengths, which may have caused their
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recovery dates during spring migration to advance with progression

of the season (Both, 2010). The effect of photoperiod on flycatcher

laying date may thus differ between North and South, causing differ-

ences across latitudes in phenological divergence between tits and

flycatchers. Photoperiodic conditions during hatching before and

after the solstice could then be an alternative explanation for why

there is more phenological divergence in Southern populations than

in Northern populations. However, experimental evidence so far

shows that hatching date (photoperiodic conditions) probably does

not provide birds with an ontogenetic route to adjust to climate

change (Ouwehand et al., 2017).

Our finding that flycatcher phenology is positively affected by tit

phenology in addition to temperature, especially in areas where the

mean laying date interval between them is smaller, begs the question

whether flycatchers adjust their laying date in response to the timing

of resident tits. This could reflect social information use, a competi-

tion driven constraint, or an externally driven adjustment that has

affected both species (third variable effect). In support of the infor-

mation use hypothesis, an experimental study manipulating tit densi-

ties found that flycatchers bred the earliest in plots with

intermediate densities of great tits (Forsman, Hjernquist, Taipale, &

Gustafsson, 2008), and it was also found that that flycatchers can

use timing information of tits for their settlement decisions (Samplo-

nius & Both, 2017). Evidence for competition-driven constraints

comes from a study in which flycatchers had more fatal interactions

when overlapping more in time with tits (Ahola et al., 2007). Alterna-

tively, a third variable may have affected the response of tits and fly-

catchers in similar directions. In other words, tit phenology may have

been affected by a range of variables aside from temperature, which

also may have affected the response of flycatchers. The sum of envi-

ronmental variables affecting phenology may, therefore, have been

captured better by the phenology of the tits than solely by tempera-

ture, leading to a stronger association between (residual) tit phenol-

ogy and flycatcher phenology. This would also explain why this

effect was stronger in areas with a higher degree of average overlap

between tits and flycatchers. However, the temperature response of

tits and flycatchers within populations was not significantly corre-

lated (Figure 3, p > .4), suggesting that temperature-driven effects

may not be able to account for these patterns in phenological diver-

gence. Nevertheless, we did not experimentally manipulate our birds,

so further experimental studies are required to pinpoint whether fly-

catchers adjust their timing to the laying date of tits. Finally, it could

be argued that in populations with higher incidence of second

broods might have affected the timing of flycatchers. However, we

do not deem this likely, as the timing of a second brood of tits is

roughly 6 weeks after the first egg of the first brood is laid (1 week

laying, 2 weeks incubation, 3 weeks chick rearing). The mean laying

initiation date of flycatchers is 2–3 weeks after the mean laying

dates of the first broods of tits, meaning that second broods could

not be used as a cue by flycatchers to initiate laying.

The effect of climate change on species interactions has in the

past mostly been studied among trophic levels. We here highlight

that resident and migrant species of cavity nesting passerines differ

in their degree of adjustment to climate change, which may have

knock on effects on species interactions. Nevertheless, both species

groups are still generally advancing slower than the phenology of

their food resources (Both, van Asch, Bijlsma, van den Burg, & Vis-

ser, 2009; Visser & Both, 2005). Such faster advancement of food

resources may in turn exacerbate interspecific competition. As spe-

cies increasingly initiate breeding on the declining slope of food

resources, species must compete for fewer resources or change to

different habitats with broader food peaks (Burger et al., 2012). In

addition, climate warming may decrease adverse conditions in winter

leading to increased survival of resident species (Robinson, Baillie, &

Crick, 2007). More broadly, Northern latitudes generally contain

more migratory than resident species (Herrera, 1978), and if climate

warming and subsequent range shifts continue (Gillings, Balmer, &

Fuller, 2015), the community composition in warming areas may

change toward more resident species. In addition, selective pressures

may depend on phenological distributions, in which the optimal

response of early individuals may differ from that of late individuals

(Miles et al., 2017), a factor that is rarely considered. The result of

climate warming on species interactions may, therefore, be multi-

faceted and unpredictable. Our results indicate that species groups

with varying annual cycles differentially respond to temperature

changes and potentially affect each other’s response to climate

warming depending on their phenological interval. Understanding

why resident and migratory bird populations differ in their phenolog-

ical response to climate warming by uncovering the potential role of

genetic and ontogenetic adaptation provide interesting avenues of

future research. For understanding how this alters competitive inter-

actions and thereby food web dynamics, a better knowledge is

required about the ecological interactions between these species,

especially in relation to shared and unshared diet components.
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