Transport-Number Determination of a Protonic Ceramic Electrolyte Membrane via Electrode-Polarisation Correction with the Gorelov Method

Domingo Pérez-Colla, Gemma Heras-Juaristi, Duncan P. Fagg, Glenn C. Mather

aInstituto de Cerámica y Vidrio, CSIC, Cantoblanco, 28049 Madrid, Spain
bNanotechnology Research Division, Centre of Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193, Aveiro, Portugal

*e-mail address: mather@icv.csic.es
Tel.: + 34 917355840
Fax.: + 34 917355843

Abstract

Analysis of transport numbers is critical for assessing the suitability of an ion-conducting material for a given electrochemical application and the conditions for its employment. In this work, the proton, oxide-ion and electron transport numbers of the candidate protonic ceramic electrolyser and fuel cell material SrZr\(_{0.9}\)Y\(_{0.1}\)O\(_{3-\delta}\) (with the addition of 4 mol\% ZnO as sintering aid) are measured in wet and dry oxidising atmospheres in the temperature range 700-850 °C. The determination of proton transport numbers is analysed in detail, encompassing the suitability of equivalent circuits in different conditions and the inclusion of an external parallel resistance for the correction of electrode-polarisation effects (Gorelov method). It is confirmed that transport numbers are highly inaccurate if no polarisation correction is applied. In dry oxidising conditions oxide-ion transport numbers, \(t_o\), lie in the range 0.63–0.78. The conductivity in wet oxidising conditions is dominated by protons and an electronic component, with the proton transport number increasing from 0.79 to 0.88 with increasing pH\(_2\)O in the range \(1.1\times10^{-3} \leq \text{pH}_2\text{O} \leq 1.27\times10^{-2}\) atm at 700 °C.

Keywords: strontium zirconate, proton conduction, solid oxide electrolyser cell, modified electromotive force technique, transference number, protonic ceramic fuel cell
1. Introduction

One of the most important energy vectors of the future for motive power, stationary-energy needs and portable electronics is likely to be hydrogen [1-4]. Presently, many large and growing industrial processes also require this fuel as a reactant, which currently is mostly extracted from dwindling hydrocarbon sources. Alternative production methods, which are both sustainable and environmentally benign, are thus very necessary in the medium term.

Pure, dry hydrogen required for power in fuel cells and certain industrial applications may be produced efficiently in a high temperature range 600 – 900 °C through the electrolysis of steam employing a ceramic proton-conducting membrane [5,6]. Such protonic ceramic electrolyser cells (PCECs) conduct protons through a dense oxide, typically a stable perovskite membrane, evolving hydrogen at the cathode. In contrast to an oxide-ion-conducting membrane (SOEC, solid oxide electrolyser cell), the produced hydrogen does not need to be separated from reactant steam. The study of PCECs is still in its infancy, although SrZrO$_3$-based phases have emerged as very strong candidates for this application due to their good chemical and mechanical stability in comparison to other perovskite proton conductors [5,7]. These advantages of SrZrO$_3$ suggest that, despite its more moderate conductivity than competitor perovskite proton conductors such as BaZrO$_3$- and BaCeO$_3$-based phases [8], it may also be employed as electrolyte in protonic ceramic fuel cells (PCFCs) in a thin-film configuration.

The determination of transport numbers of ion-conducting ceramics for electrolyser cables and related electrochemical devices is of considerable interest for evaluating both their suitability for application and performance. In the case of PCECs, a high proton-transport number is required to maximize the current efficiency of steam electrolysis. Protons are incorporated in wet conditions as a result of acceptor
doping on the B site of the perovskite, with a hydroxyl group and a proton from an ambient water molecule replacing an oxygen vacancy, $V_{o}^{\bullet \bullet}$

$$\text{H}_2\text{O} + \text{O}_{o}^{\bullet} + V_{o}^{\bullet \bullet} \rightleftharpoons 2\text{OH}_{o}^{\bullet}$$ (1)

In dry atmospheres and high temperatures water is desorbed, resulting in the formation and migration of oxygen vacancies. Alternatively, the oxygen vacancies may be compensated in oxidising atmospheres by the formation of electron holes.

The range of operation of an electrolyte material is limited by the electrolytic domain, whereas the joint diffusion of protons and oxide-ion vacancies gives rise to the transport of water vapour in a chemical potential gradient of steam [9]. This is undesirable for the production of dry H$_2$ by electrolysis but could be favourable in a fuel-cell application where steam permeation from the cathode to the anode provides the water vapour for internal reforming of hydrocarbons [10]. Mapping of transport properties under a range of conditions is, therefore, most important for the further development of these promising materials in electrochemical applications.

The emf method for the determination of transport numbers in oxide-ion-conducting ceramics is fairly widely employed [11,12]. Electrode polarisation effects lead to a significant underestimation of the transport number of oxide-ion conductors by the emf method [13]. The Gorelov method of applying an external variable resistance in parallel with the cell, simulating the effect of enhanced electronic conductivity, provides a means of correcting for the polarisation resistance [13,14]. Very few works have applied the Gorelov method for the correction of proton transport numbers [15,16]. In this paper, we examine in more detail than these previous reports the emf technique for proton-transport determination and the application of the Gorelov (active-load) method.
for the correction of electrode polarisation in the candidate PCEC and PCFC material SrZr$_{0.9}$Y$_{0.1}$O$_{3-\delta}$ with the addition of ZnO (4 mol.%) as sintering aid (SZY-Zn) [17] in wet oxidising conditions.

2. Theoretical

2.1. General aspects of the determination of transport numbers

In mixed-conducting oxides with several types of conducting species, it is practical to use the transport number of the corresponding species “j”, defined as:

\[t_j = \frac{\sigma_j}{\sigma_{\text{tot}}} = \frac{\sigma_j}{\sum_j \sigma_j} = \frac{1/R_j}{\sum_j 1/R_j} \]

(2)

where \(\sigma_j \) and \(\sigma_{\text{tot}} \) are the j carrier conductivity and total conductivity, respectively, and \(R_j \) is the resistance associated with the transport of the j carrier through the sample. It is apparent from Eq. 2 that

\[\sum_j^n t_j = 1 \]

(3)

When the charge carriers are protons, oxide ions and electrons (or holes), the electrical transport through the sample can be represented by the equivalent circuit shown in Fig. 1(a); Eqs. 2 and 3 then yield
$$t_H = \frac{R_H^{-1}}{R_H^{-1} + R_O^{-1} + R_e^{-1}} = 1 - (t_e + t_O) = 1 - R_T \left(\frac{1}{R_e} + \frac{1}{R_O} \right)$$ \hspace{1cm} (4)$$

and

$$t_O = 1 - R_T \left(\frac{1}{R_e} + \frac{1}{R_H} \right)$$ \hspace{1cm} (5)$$

where subscripts H, O and e represent protons, oxide ions and electronic carriers, respectively, and R_T is the overall resistance of the sample (bulk + grain boundary). Moreover, the total ionic transport number is given by

$$t_{ion} = t_H + t_O = 1 - t_e = 1 - R_T \frac{1}{R_e}$$ \hspace{1cm} (6)$$

The application of an external electric field to the sample produces a combined charge-transport process with parallel flows of charged species. As a consequence, the main conducting contribution prevails and minor components may be masked. Thus, the identification of each charge-transport component requires specific experimental methods. The emf method is based on the determination of the open-circuit voltage between two reversible electrodes of a mixed-conducting oxide exposed to a chemical potential gradient [11,12]. According to Eq. 2 and the model presented in Fig. 1(b), for a mixed-conducting sample with electronic carriers and generic ionic carriers, the ionic transport number averaged across the sample (t_{ion}) can be obtained by comparison between the observed electromotive force (E_{obs}) and the Nernst voltage (E_{Nernst}) as follows:
\[
 t_{\text{ion}} = \frac{R_e}{R_e + R_{\text{ion}}} \frac{E_{\text{obs}}}{E_{\text{Nernst}}}
\]

(7)

where the Nernst voltage corresponds to the theoretical open-circuit voltage for an ideal ionic conductor exposed to the same gradient of the active species [11,12,18,19]. When the concentration cell is submitted to a gradient of reactive gases of the active species, the Nernst voltage is expressed in terms of the partial pressures of the reacting gases as

\[
 E_{\text{Nernst}} = \frac{RT}{nF} \ln \left(\frac{p_1}{p_2} \right)
\]

(8)

where R and T have their usual meanings, \(p_1 \) and \(p_2 \) are the partial pressures of the active gas at both surfaces of the ionic conductor, and n are the electrons transferred.

However, Eq. 7 is derived under the assumption that interfacial processes are infinitely fast (Fig. 1(b)), thus limiting its use in real devices which are affected by interfacial overpotentials [20]. The influence of the electrode potential has been overlooked in many cases, mainly for mixed-conducting materials with the presence of protonic carriers [17,21], leading to the likelihood of large errors in the determination of the transport numbers.

A correct study of the transport properties of mixed-conducting oxides requires a methodology which marries both theoretical and practical approaches, as has been widely employed for mixed ionic-electronic conductors [13,20,22-24] and, of particular relevance to the present case, for mixed oxide-ionic-protonic-electronic conductors [15,16,25]. It has been demonstrated in the literature [26,27] that the presence of gradients of oxygen partial pressure (pO\(_2\)) and/or hydrogen partial pressure (pH\(_2\)) across these mixed conductors give rise to an electromotive force which, under the assumption
of non-polarisable electrodes, can be expressed in terms of the averaged protonic and oxide-ionic transport numbers as

$$E_{th} = \frac{RT}{4F} t_o \ln \left(\frac{pO_2'}{pO_2''} \right) - \frac{RT}{2F} t_h \ln \left(\frac{pH_2'}{pH_2''} \right)$$ \hspace{1cm} (9)$$

In practical applications, however, it may be difficult to control both the oxygen and hydrogen partial pressures due to the equilibrium between hydrogen, oxygen and water vapour:

$$H_2 + \frac{1}{2}O_2 \rightleftharpoons H_2O$$ \hspace{1cm} (10)$$

Using this equilibrium, Eq. 9 is expressed in terms of oxygen partial pressure and water-vapour partial pressure (pH_2O) as

$$E_{th} = \frac{RT}{4F} (t_o + t_h) \ln \left(\frac{pO_2'}{pO_2''} \right) - \frac{RT}{2F} t_h \ln \left(\frac{pH_2O'}{pH_2O''} \right)$$ \hspace{1cm} (11)$$

Equation 11 is a useful expression for oxidising conditions in which both pO_2 and pH_2O can be readily established.

Several equivalent circuits have been proposed to represent the mixed-conducting behaviour of a sample with simultaneous transport of several ionic and electronic species submitted to chemical potential gradients. Patterson [28] proposed the equivalent-circuit model presented in Fig. 2(a) for simultaneous transport of cationic, anionic and electronic species through a dense scale of a metal exposed to hostile gases.
at high temperature. This model is also the basis adopted by Bentzer et al. [16] in a study of the emf technique for the determination of ionic transport number of SrCe$_{0.95}$Y$_{0.05}$O$_{3-δ}$ under several working conditions, including the effect of the non-negligible polarisation at the electrodes. Alternatively, Frade [25] proposed a slightly different equivalent circuit, Fig. 2(b), the solution of which is in good agreement with the theoretically-deduced relation (Eq. 11), where

$$E_0 = \frac{RT}{4F} \ln \left(\frac{pO'_2}{pO''_2} \right)$$

(12)

and

$$E_{H_2O} = \frac{RT}{2F} \ln \left(\frac{pH'_2O}{pH''_2O} \right)$$

(13)

Nevertheless, both equivalent circuits presented in Fig. 2 lead to the same analytical solution if $R_1 = R_O$, $R_2 = R_H$, $R_3 = R_e$, $E_1 = E_O$ and $E_2 = -(E_{H_2O}-E_O) = -E_{H_2}$ [25]. This can be expressed in terms of the equilibrium between H_2, O_2 and H_2O (Eqs. 9 and 10), where

$$E_{H_2} = \frac{RT}{2F} \ln \left(\frac{pH'_2}{pH''_2} \right)$$

(14)

2.2. Non-negligible electrode polarisation. Oxidising conditions.

In order to account for the possible impact of the electrode overpotentials on the measured open-circuit voltage, the relevant element should be incorporated in the equivalent circuit and the observed open-circuit voltage as a function of the
characteristic parameters should be determined. As both equivalent circuits presented in Fig. 2 fit conveniently to the theoretical formalism obtained from the electrochemical analysis (Eq. 11), both models could be considered as the basis for the development of our approach. Nevertheless, in the model presented in Fig. 2(a), the electromotive force E_2 is dependent on E_1. Moreover, the model presented in Fig. 2(b) better resembles our case in oxidising conditions given that the electromotive force corresponding to the protonic branch is directly related to the gradient in water-vapour partial pressure (Eq. 13). This allows both electromotive forces to be fixed in a simple manner under oxidising conditions by setting the values of pO_2 and pH_2O. The non-ideal, electrochemical-reaction kinetics at the interfaces are considered as resistive elements in series with the corresponding transport process of the ionic species (Fig. 3(a)).

It follows from Eq. 11 that the theoretical electromotive force of the mixed-conducting membrane submitted to a gradient in pH_2O with no gradient in pO_2 is directly related to t_H. Furthermore, the theoretical electromotive force is a function of $t_{i_{mn}} = t_O + t_H$ when there is a gradient in pO_2 but no gradient in pH_2O across the cell. Advantage can be taken of these relations for independent measurements of the electromotive force in order to derive the protonic and oxide-ionic transport numbers, as previously performed by some authors [15,16]. However, it is evident from Fig. 3(a) that the direct measurement of the electromotive force of the system (E_{obs}) differs considerably from the theoretical value (E_{th}) deduced from the electrochemical formalism presented in Eq. 11, due to the presence of the electrode-polarisation elements. This handicap is overcome by modification of the classical emf measurements via the introduction of an auxiliary parallel resistance [13].

2.2.1. Determination of protonic transport number (t_H).
In order to determine t_H, the same pO_2 is set at both sides of the sample, whereas a controlled gradient in pH_2O is established. In these circumstances, it follows from the equilibrium of Eq. 10 that

$$pO'_2 \approx pO''_2$$

(15)

and

$$\frac{pH'_2}{pH''_2} \approx \frac{pH_2O'}{pH_2O''}$$

(16)

As a consequence of the absence of a gradient in pO_2, the equivalent circuit representing the electrochemical system, Fig. 3(a), is considerably simplified by removing the dc source E_O and the polarisation resistance associated with the electrochemical reactions of oxidation-reduction of oxygen at the electrodes (R_{η_O}). Modification of the emf measurements is performed by the introduction of a parallel variable resistance (R_{aux}), following the methodology widely developed for mixed ionic-electronic conducting oxides with a single ionic carrier [22,24] and recently adopted for oxide ionic-protonic-electronic conducting materials [15,16]. In these circumstances, the equivalent circuit corresponding to the whole system, including the auxiliary resistance, is presented in Fig. 3(b). Solving this circuit, it follows that

$$E_{obs} \left(\frac{1}{R_O} + \frac{1}{R_H + R_{\eta_H}} + \frac{1}{R_e} + \frac{1}{R_{aux}} \right) = -E_{H_2O} \frac{1}{R_H + R_{\eta_H}}$$

(17)

and

$$\frac{-E_{H_2O}}{E_{obs}} - 1 = \left(R_H + R_{\eta_H} \right) \left(\frac{1}{R_{aux}} + \frac{1}{R_e} + \frac{1}{R_O} \right) \left(R_H + R_{\eta_H} \right)$$

(18)
The factor \((-E_{H2O}/E_{obs})-1\) can be expressed as a linear function of \(1/R_{aux}\), \(y=A_1x+B_1\), where

\[
A_1 = \left(R_H + R_{\eta H} \right)
\]

(19)

and

\[
B_1 = \left(\frac{1}{R_c} + \frac{1}{R_O} \right) \left(R_H + R_{\eta H} \right)
\]

(20)

The linear fitting of Eq. 18 for different values of external resistance provides a simple way to determine the protonic transport number averaged across the sample by combination of Eqs. 4, 19 and 20:

\[
t_H = 1 - R_T \left(B_1 / A_1 \right)
\]

(21)

where the overall resistance of the sample \(R_T\) (bulk + grain boundary) can be obtained on independent measurement by impedance spectroscopy in the same working conditions.

2.2.2. Determination of oxide-ionic transport number \(t_O\).

In this experiment, the same pH\(_2\)O as the average value employed in the previous experiment (subsection 2.2.1) is set on both sides of the cell. Similarly, the cell is submitted to a gradient of pO\(_2\) whose average value also equals the constant value of
pO$_2$ fixed in the experiment outlined in subsection 2.2.1. We note that for small gradients of partial pressures of active species, the full behaviour of the electrochemical system is approximated by that of the average conditions. In this state, the modification of the emf methodology by the external resistance can be represented as shown in Fig. 3(c). From the current working conditions and the equilibrium of Eq. 10, it is inferred that

\begin{equation}
\text{pH}_2\text{O}' \approx \text{pH}_2\text{O}''
\end{equation}

and

\begin{equation}
\frac{\text{pH}'_2}{\text{pH}''_2} \approx \left(\frac{\text{pO}'_2}{\text{pO}''_2} \right)^{-1/2}
\end{equation}

As pointed out by Sutija et al. [27], it is important to note that the presence of a gradient in pO$_2$ is sufficient to permeate protonic species from the lowest-pO$_2$ side to the highest-pO$_2$ side without the presence of a pH$_2$O gradient. We note that this is due to the existence of a gradient in pH$_2$. As a consequence, the contribution associated to the hydrogen oxidation-reduction reactions at the electrodes (R$_\eta$H) should be included in the equivalent circuit representing the whole electrochemical system (Fig. 3(c)). The solution of the circuit can be expressed as

\begin{equation}
E_{\text{obs}} \left(\frac{1}{R_e} + \frac{1}{R_{\text{aux}}} + \frac{1}{R_{\eta H} + R_{\eta H}} + \frac{1}{R_{\eta O} + R_{\eta O}} \right) = E_{\text{O}} \left(\frac{1}{R_{\eta H} + R_{\eta H}} + \frac{1}{R_{\eta O} + R_{\eta O}} \right)
\end{equation}

giving

\begin{equation}
E_{\text{O}} \frac{E_{\text{obs}} - 1}{E_{\text{obs}}} = \frac{\left(R_{\eta H} + R_{\eta H} \right) \left(R_{\eta O} + R_{\eta O} \right)}{R_{\eta H} + R_{\eta H} + \left(R_{\eta O} + R_{\eta O} \right)} \frac{1}{R_{\eta H} \left(R_{\eta H} + R_{\eta H} \right) + \left(R_{\eta O} + R_{\eta O} \right) R_{\eta O}} + \frac{1}{R_e \left(R_{\eta H} + R_{\eta H} \right) + \left(R_{\eta O} + R_{\eta O} \right)}
\end{equation}
The solution of \(\frac{E_0}{E_{obs}} \cdot 1 \) can thus be represented as a linear function of \(1/R_{aux} \).

\[y = A_2 x + B_2, \text{ where} \]

\[
A_2 = \frac{(R_H + R_{\eta H})(R_O + R_{\eta O})}{(R_H + R_{\eta H}) + (R_O + R_{\eta O})}
\]

(26)

and

\[
B_2 = \frac{1}{R_e} \frac{(R_H + R_{\eta H})(R_O + R_{\eta O})}{(R_H + R_{\eta H}) + (R_O + R_{\eta O})}
\]

(27)

From the linear fitting of Eq. 25 for different external resistance values \((R_{aux}) \), combined with Eq. 6, it follows that

\[
t_e = R_T \left(\frac{B_2}{A_2} \right)
\]

(28)

and

\[
t_O = 1 - R_T \left(\frac{B_2}{A_2} \right) - t_H
\]

(29)

where \(t_H \) is determined as in section 2.2.1. The conductivity values associated with each species can then be determined from combination of Eqs. 2, 21, 28 and 29.

3. Experimental

Ceramic membranes of \(\text{Sr}_{0.9}\gamma_{0.1}\text{ZrO}_3 \) were prepared by solid-state reaction of \(\text{SrCO}_3 \) (99.9%, dried at 300 °C), \(\text{ZrO}_2 \) (99.7 % dried at 600 °C) and \(\text{Y}_2\text{O}_3 \) (dried at 950
°C) in the appropriate stoichiometric ratios, with the addition of 4 mol.% ZnO as sintering aid [17]. The reagents were attrition milled before heating slowly to 1100 °C for 12 hours to remove organic product and achieve improved homogenisation. Subsequent firing took place at 1250 °C for 24 hours with intermediate grinding in an agate mortar. This powder was then ball milled then re-milled with the addition of Zn(NO₃)₂, dried and sieved. Pellets of diameter 15 mm were formed on pressing the powder uniaxially prior to isostatic pressing to 190 MPa followed by sintering at 1500 °C for 6 hours.

Samples were examined for completeness of reaction and phase purity by powder X-ray diffraction (XRD) with a Bruker D8 high-resolution diffractometer equipped with a solid-state rapid LynxEye detector, using monochromatic CuKα₁ radiation over the range 15° ≤ 2θ ≤ 109°. Lattice parameters were determined by Rietveld refinement using the Fullprof program [29]. The microstructure of a polished, thermally-etched transversal membrane surface was examined with Hitachi a TM-1000 tabletop scanning electron microscope. The densities of sintered pellets for electrical measurements were determined by careful measurement of the mass and geometrical volume; relative density was then calculated as a percentage of the theoretical X-ray density.

Electrodes were prepared by coating the pellets with Pt paste and firing at 900 °C for 1 hour in air to remove the organic content, harden the Pt and attach it to the pellet faces. Transport-number measurements were performed in a dual-chamber configuration by sealing the membrane to an yttria-stabilised zirconia (YSZ) tube with glass-ceramic sealant [30]. A schematic diagram of the measuring chamber is shown in Fig. 4. A paste of the powdered glass-ceramic in ethanol was applied between the outer wall of the open end of the tube and the disk; sealing was achieved on heating at 1
°Cmin⁻¹ to 975 °C for a 10-minute dwell followed by cooling to the first measuring temperature. The inner and outer walls of the YSZ tube were coated with Pt electrodes close to the sample, and attached via Pt wires to a voltmeter for measurement of the pO₂ gradient across the sealed membrane.

The gas composition in the two chambers was controlled by a series of mass-flow controllers (Bronkhorst Hi-tec) for simultaneous control of pO₂ and pH₂O, Fig. 5, similar to the experimental set-up outlined by Sutija et al.[27]. Dry gases were fed through a drying column containing a moisture trap of aluminosilicate and zeolite-based beads (Supelco). Wet gases were fed through a humidifier consisting of a saturation stage followed by bubbling in a chamber with saturated KBr solution, which yields a water content of approximately 0.025 atm at room temperature [27]. The water content of this gas was then controlled by dilution with the dry gas, Fig. 5.

The ionic and electronic transport numbers were determined by the emf method in the temperature range 700-850 °C in a series of pH₂O and pO₂ gradients. The Gorelov (active-load) method of electrode-polarisation correction was applied by introducing a variable resistor, Raux in parallel with the cell (Fig. 3). The thermovoltage contribution (Ethermal) to the measured electromotive force arising from slight gradients of temperature was taken into account by reversing the gas flow and measuring the actual values of emf under direct (E_direct) and reverse (E_reverse) flows, according to

$$E_{\text{thermal}} = \frac{E_{\text{direct}} + E_{\text{reverse}}}{2}$$ \hspace{1cm} (30)

The effect of the thermovoltage was then eliminated as follows:

$$E_{\text{obs}} = E_{\text{direct}} - E_{\text{thermal}}$$ \hspace{1cm} (31)
where E_{obs} corresponds to the electromotive force of the mixed conducting membrane, including electrode contribution, created by the chemical potential.

The sample resistance was determined by impedance spectroscopy in the frequency range $0.05 \leq f \leq 10^6$ Hz with an Autolab PGStat302N instrument operating in potentiostatic mode with a voltage amplitude of 250 mV. Impedance spectroscopy measurements were also performed in a single-atmosphere cell supplied with dry atmospheres of N$_2$, O$_2$ and air in the range 700–900 °C.

4. Results and Discussion

4.1 Phase characterisation

The XRD powder pattern of SrZr$_{0.9}$Y$_{0.1}$O$_3$-4 mol.% ZnO sintered at 1500 °C for 6 h showed the formation of orthorhombically distorted perovskite, isostructural with SrZrO$_3$ (PDF. No. 44-0161), with lattice parameters $a = 5.8216(2)$, $b = 8.2156(3)$, $c = 5.8052(2)$ Å (space group, Pnma). No evidence of ZnO was apparent in the XRD pattern, although a small amount of SrY$_2$O$_4$ was identified. A similar result was reported by Peng et al. [17] for ZnO-modified SZY, who interpreted that Zn was located in the perovskite lattice; however, in this case Y$_2$O$_3$ was reported as a second phase. The effects of Zn on the phase composition, microstructure and transport properties of SZY in conditions relevant to electrochemical applications are currently under study in our group.

A scanning electron micrograph of a polished transversal surface, Fig. 6, reveals that the membrane is free of cracks and open porosity, with a grain size in the micron
Relative density was measured as, \(\sim 97\% \), above the limit for gas tightness. The membrane maintained mechanical integrity throughout exposure to the experimental conditions.

4.2. Transport numbers in dry oxidising conditions

The electrical-transport properties of the SZY-Zn membrane were analysed under dry conditions on submitting the sample to a gradient of pO\(_2\) without moistening. For this purpose, oxygen partial pressures of 0.3 atm and 0.1 atm were introduced in respective compartments by mixing flows of O\(_2\) and N\(_2\) with a total flow rate of 50 ml·min\(^{-1}\).

In this context, the material should be essentially free of protonic defects, the formation of which under oxidising conditions occurs by the hydration of oxygen vacancies according to Eq. (1). As a consequence, the protonic transport number is considered to be zero, and ionic transport process is solely assigned to oxide ions. This is a specific situation of the general case presented in Fig. 3(c) in which the protonic branch is removed (due to the protonic resistance approaching infinity) and the electromotive force derives from the pO\(_2\) gradient (Eq. 12). The corresponding solution of the remaining equivalent circuit corresponds to the well-known solution for mixed oxide-ionic-electronic conductors [13,24]:

\[
\frac{E_0}{E_{\text{obs}}}-1=(R_0 + R_{n0}) \frac{1}{R_0} + \frac{1}{R_e} (R_0 + R_{n0})
\]

(32)

We note that, although in dry conditions the pO\(_2\) gradient may give rise to a pH\(_2\)O gradient according to Eq. 11 from the residual hydrogen present in air in the experimental starting conditions, the insignificant content of protonic species within the
material prevents an additional non-negligible contribution to the emf arising from any pH$_2$O gradient. Figure 7 shows the experimental data obtained for the SZY-Zn membrane by the Gorelov modification of the emf method in dry conditions at 850 °C. The excellent fit of E_0/E_{obs}-1 to the linear dependence on 1000/R_{aux} for R_{aux} between 0.2–100 KΩ is apparent. The linear fitting parameters were combined with the overall resistance of the sample (R_T) determined from impedance spectroscopy to obtain the oxide–ionic and electronic transport numbers in the range 750–900 °C, Fig. 8. The apparent oxide–ionic transport numbers ($t_{o,\text{app}}$) obtained without applying the active-load correction (Eq. 7), also shown in Fig. 8, deviate enormously from the corrected values due to the very high values of electrode polarisation, as observed by impedance spectroscopy (Fig. 9). The oxide-ionic conductivity under dry conditions is attributable to oxygen vacancies which are introduced on acceptor doping with Y$^{3+}$ on the B position of SrZrO$_3$. A significant electron-hole contribution to transport was reported in SrZrO$_3$–based oxides doped with different trivalent cations on the Zr site, including Yb$^{3+}$, Y$^{3+}$, Ga$^{3+}$, Al$^{3+}$ and In$^{3+}$, under dry oxidising conditions [31] according to the following equilibrium:

$$\frac{1}{2}\text{O}_2 + \text{VO}^{**} \rightleftharpoons 2\text{O}_\text{o}^* + 2\text{h}^*$$ (33)

The presence of a significant electronic component to transport may also be attributable to the presence of ZnO, either incorporated in the perovskite structure, as was previously asserted by Peng et al. [17], or segregated in the grain boundaries. Although these authors reported that a quantity of ZnO less than 5 mol% does not significantly affect the electronic transport number in an emf measurement based on a fuel-cell configuration (H$_2$/H$_2$O//O$_2$/H$_2$O), in Peng et al.’s work, the behaviour in oxidising...
conditions with the adoption of the Gorelov correction of electrode polarisation was not determined.

The presence of p-type transport is consistent with our results of total electrical conductivity under dry atmospheres of O₂, air and N₂ in the range 700–900 °C, presented in Fig. 10, in which there is an increase in total conductivity when the sample is exposed to the more oxidising gases of air and O₂ in comparison to N₂. However, the dependence of conductivity on pO₂ deviates from a typical \(\sigma \sim pO_2^{1/4} \) power-law dependence for dominating p-type transport carriers, suggesting that oxide-ions, in addition to electron holes, are responsible for electrical transport (Fig. 8).

It is also evident in Fig. 8 that the oxide-ionic transport number (\(t_0 \)) increases and the electronic transport number (\(t_e \)) decreases with increasing temperature. This is a consequence of a lower activation energy for electronic conductivity compared with that of the oxide-ionic conductivity, as is observed in the Arrhenius representation of conductivity presented in Fig. 11.

4.3. Wet oxidising conditions.

Exposure of the sample to wet atmospheres under oxidising conditions creates protonic defects according to Eq. 1. The study of charge transport numbers was performed by independent experiments, as outlined in section 2. For the determination of \(t_H \), the pO₂ was set to 0.2 atm in both compartments by mixing 10 ml·min⁻¹ of O₂ with 40 ml·min⁻¹ of N₂. A gradient of pH₂O was generated by exposing each side to a different level of dilution of dry and humidified O₂/N₂. As the experiments were restricted to relatively low gradients of pH₂O, the transport properties were analysed as functions of the average states. Figure 12 shows a representation of the modified
experimental emf data (Eq. 18) at 850 °C in a pH₂O gradient of 2.4x10⁻²/1.8x10⁻³ atm/atm. An excellent fit between the experimental data and the model in a wide range of values of auxiliary resistance (0.3-100 KΩ) can be observed. From the linear fitting parameters, \(t \) was obtained by combination with impedance-spectroscopy data according to Eq. 21. The \(t \) values as a function of the pH₂O averaged across the membrane for a fixed value of pO₂ = 0.2 atm at both sides of the sample are shown in Fig. 13. In the adopted wet conditions, the contribution to resistance from the electrode polarisation is significant, which is reflected as an appreciable voltage loss that lowers the observed electromotive force considerably and, as a consequence, gives very low values of apparent protonic transport number (\(t \)), according to Eq. 7. The protonic transport number increases with increasing pH₂O, in accordance with the higher concentration of protonic species (Eq. 1). Moreover, the absorption of protons is significantly higher at lower temperature, as is confirmed in Fig. 14 over a wider temperature range in different conditions of pH₂O, as a result of the exothermic hydration reaction, Eq. (1) [32]. It is notable that, on decreasing the temperature in the range 700-850 °C, the increase of protonic transport number is most significant from 750 °C to 700 °C. Recombination of total conductivity with the protonic transport number yields the protonic conductivity presented in Fig. 15(a). As is expected from the increase of \(t \), the protonic conductivity increases for higher values of averaged pH₂O as a result of the higher concentration of protonic defects. Note that, in spite of the fact that the protonic transport number decreases with increasing temperature, the protonic conductivity increases at higher temperatures due to the higher proton mobility. According to the model outlined in subsection 2.2.1, recombination of Eqs. 19-20 allows the values of \(\sigma_o + \sigma_e \) as a function of the averaged pH₂O, at a fixed pO₂ of 0.2 atm, to be calculated (Fig. 15(b)). Although the sum of \(\sigma_o + \sigma_e \) is practically constant at
the higher range of pH\textsubscript{2}O, a slightly greater value is obtained for this sum at the lowest measured pH\textsubscript{2}O value.

For determination of \(t_{\text{ion}} = t_H + t_O \), the sample was exposed to a gradient of pO\textsubscript{2} with the same level of humidification at both sides of the membrane. At this stage, the average conditions of partial pressures were chosen to be similar to those of the previous experiment in order to retain the average transport properties of the sample. In the present case, a pO\textsubscript{2}\textsubscript{av} of 0.2 atm was obtained by exposing one side of the sample to a mixture of O\textsubscript{2} and N\textsubscript{2} with flow rates of 15 and 35 ml·min-1, respectively, with the other side exposed to a mixture of 5 ml·min-1 of O\textsubscript{2} and 45 ml·min-1 of N\textsubscript{2}. Gas mixtures at both sides were firstly wetted to the same degree of hydration on mixing gas (humidified with water at room temperature, followed by bubbling in a saturated KBr solution pH\textsubscript{2}O \textasciitilde 0.025 atm) with the dry gas. Figure 16 shows a comparison of the protonic, oxide ionic, total ionic and electronic transport numbers at 750 °C for different levels of humidification. The values of transport number previously obtained for “dry” conditions, assuming an estimated value of pH\textsubscript{2}O \approx 2\times10^{-5} atm for our drying system, are also represented with data obtained under wet conditions. It is evident that the total ionic transport number is practically equal to the protonic transport number in the higher range of pH\textsubscript{2}O, i.e. \(t_O \approx 0 \) and \(\sigma_O \approx 0 \). However, for pH\textsubscript{2}O \leq 3.8\times10^{-3} atm, a significant increase of \(t_O \) accompanied by a decrease of \(t_H \) is observed on moving to drier conditions. Note that the total ionic transport number was assumed to be essentially equal to the oxide-ionic transport number under the dry conditions adopted in subsection 4.2. Figure 16 also shows a gradual increase of the electronic transport number as the water-vapour partial pressure decreases.

The conductivity associated to protons, oxide ions and electronic carriers, calculated from the transport numbers obtained by the modified emf technique and total
conductivity values, are represented as functions of the average water-vapour partial pressure in Fig. 17. It can be seen that the electronic conductivity is essentially constant, whereas the oxide-ionic conductivity increases by two orders of magnitude on moving to drier conditions in the range $2 \times 10^{-5} \leq \text{pH}_2\text{O} \leq 1.27 \times 10^{-2}$, with a constant value of pO_2. These results are consistent with a charge-compensation mechanism in which the loss of protons is mainly balanced by the generation of oxygen vacancies according to Eq. 1. It follows that the equilibrium of Eq. 33 is essentially independent of the water-vapour partial pressure, in the studied range of wet conditions, due to the fixed value of pO_2 in these measurements. Our experimental results agree very well with the numerical solution of the defect equilibria reported by Bonanos et al. [33] of a generic proton-conducting perovskite, $\text{AB}_{1-y}\text{M}_y\text{O}_{3-\delta}$, where A and B represent cations with divalent and tetravalent oxidation states, respectively, and M represents a trivalent cation. The defect profiles obtained by these authors show a constant concentration of electronic defects, a considerable increase of oxygen vacancies and a less pronounced decrease of protons, with decreasing pH_2O in similar conditions to those employed in the current work. The changes in $\text{pH}_2\text{O}^{\text{av}}$ should not affect any electronic transport component ascribable to ZnO, which may be segregated in grain boundaries.

5. Conclusions

An appropriate equivalent circuit was adopted for determination of proton, oxide-ion and electron transport numbers in the proton-conducting electrolyte material $\text{SrZr}_{0.9}\text{Y}_{0.1}\text{O}_{3-\delta}$-4 mol% ZnO with the inclusion of an external parallel resistance for correction of electrode polarisation. The modified methodology with the external parallel variable resistance yields significantly more accurate values of proton and
oxide-ion transport numbers, especially in the case of poor reaction kinetics at the electrodes.

Concentration cells with gradients in water-vapour partial pressure and fixed oxygen partial pressure were employed to determine proton transport numbers in wet oxidising conditions. Oxygen concentration cells with no gradient in pH₂O were employed to extract total ionic transport numbers, which were similar to protonic transport numbers in the higher range of pH₂O (> 3x10⁻³ atm), indicating negligible oxide-ionic conductivity. Progressing to drier conditions considerably increases the oxide-ionic transport number with a concomitant decrease of the protonic transport number. The electronic conductivity was practically independent of the water-vapour partial pressure, whereas the oxide-ionic conductivity increased by ~ two orders of magnitude when moving from the wetter to the drier conditions at the studied value of pO₂av=0.2 atm. It is likely that electrolyser and fuel-cell operation parameters with SrZr₀.₉Y₀.₁O₃.₅-4 mol% ZnO as electrolyte will be limited by significant electronic transport with increasing temperature and low water vapour partial pressures.

Acknowledgements
We thank the “Ministerio de Economía y Competitividad” (MINECO) (Plan Nacional, ENE2012-30929) for financial assistance. D. Pérez-Coll also acknowledges the support of a “Ramón y Cajal” contract (MINECO, CSIC). We are grateful to Dr M.J. Pascual (ICV, CSIC) for supplying the sealing glass-ceramic.
Figure Captions

Fig. 1. (a) Parallel transport of oxide ions, protons and electronic carriers through the mixed conducting sample submitted to an electrical field. (b) Equivalent circuit of a mixed-conducting sample with generic ionic and electronic carriers submitted to a chemical potential gradient of the active species under the ideal assumption that there is no polarization at the electrodes.

Fig. 2. (a) Equivalent-circuit model proposed by Patterson [28] for simultaneous transport of cationic, anionic and electronic species in a metal-dense scale under hostile gases and high temperature; (b) equivalent circuit model proposed by Frade [25] for a mixed conducting oxide with protons, oxide ions and electronic carriers submitted to gradients of water vapour and oxygen partial pressures.

Fig. 3. (a) Equivalent-circuit model considered in the current work for an oxide-ionic-protonic-electronic mixed conducting oxide submitted to gradients in pO\textsubscript{2} and pH\textsubscript{2}O; (b) modification of the emf methodology by the introduction of an auxiliary parallel resistance for the electrochemical system exposed to a gradient in pH\textsubscript{2}O without gradient in pO\textsubscript{2}; (c) modification of emf for the electrochemical system submitted to a gradient in pO\textsubscript{2} without gradient in pH\textsubscript{2}O.

Fig. 5. Schematic diagram of experimental set-up for supplying gas mixtures with controlled gradients of pO\textsubscript{2} and pH\textsubscript{2}O across the membrane.

Fig. 6. Scanning electron micrograph of a polished and thermally-etched surface of the SZY-Zn membrane.
Fig. 7. Experimental data obtained by the active-load modification of the emf method for the sample exposed to a gradient of pO$_2$'/pO$_2$'' = 0.3/0.1 atm/atm under dry conditions at 850 °C.

Fig. 8. Oxide-ionic and electronic transport numbers under dry conditions for a pO$_2$ gradient of 0.3/0.1 atm/atm in the range 750-900 °C. The apparent ionic transport number obtained without modification of the emf method ($t_{o,app}$) is also shown for comparison.

Fig. 9. Impedance spectrum of the sample exposed to a dry gradient pO$_2$'/pO$_2$'' = 0.3/0.1 atm/atm at 900 °C.

Fig. 10. Arrhenius representation of total conductivity of the sample submitted to single atmospheres of dry O$_2$, air and N$_2$.

Fig. 11. Arrhenius representation of oxide-ionic, electronic and total conductivities under dry conditions in a pO$_2$ gradient of 0.3/0.1 atm/atm.

Fig. 12. Experimental data of emf measurements at 850 °C after Gorelov’s modification at fixed pO$_2$ = 0.2 atm and under a pH$_2$O gradient of 2.4x10$^{-2}$/1.8x10$^{-3}$ atm/atm.

Fig. 13. Protonic transport number averaged across the membrane as a function of the average pH$_2$O at 700 °C and 850 °C. The sample was exposed to several gradients of pH$_2$O in the absence of a pO$_2$ gradient. The apparent protonic transport numbers obtained without modification of the emf methodology are also represented for comparison.

Fig. 14. Average protonic transport number as a function of temperature for sample exposed to different pH$_2$O in the absence of a pO$_2$ gradient.

Fig. 15. (a) Protonic conductivity as a function of the pH$_2$O averaged across the membrane without pO$_2$ gradient; (b) sum of oxide-ionic and electronic conductivities versus average pH$_2$O.
Fig. 16. Total ionic, protons, oxide ions and electronic transport numbers as functions of water partial pressure averaged across the membrane at 750 °C. The lowest value of water partial pressure corresponds to “dry” conditions and was estimated as 3×10^{-5} atm.

Fig. 17. Logarithmic representation of conductivity associated to protons, oxide ions and electronic carriers versus water partial pressure for an average oxygen partial pressure of 0.2 atm.
References

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Dry conditions

\[
\frac{pO'_2}{pO''_2} = \frac{0.3 \text{ atm}}{0.1 \text{ atm}}
\]
Fig. 8.

Dry conditions

\[p_{O_2}' = 0.3 \]
\[p_{O_2}'' = 0.1 \]

\[t_{o, app} = \frac{E_{obs}}{E_{th}} \]
Fig. 9.

\[
\frac{pO_2'}{pO_2''} = 0.3 \quad 900 \degree C
\]

\[
5.4 \times 10^5 \text{Hz}
\]

\[
1 \text{ Hz}
\]
Fig. 10.
Fig. 11.

\[
\log\left(\frac{\sigma T}{S \cdot K \cdot m^{-1}}\right) = \frac{-0.5}{1000/T (K)}
\]
Fig. 12.
Fig. 13.

\[
\frac{pO_2'}{pO_2''} = 0.2
\]

\[t_{H,app} \]

700 ºC

850 ºC

log (pH_{2Oav}/ atm)

\[t_H \]

0

1

0.8

0.6

0.4

0.2

0

-3.25

-2.75

-2.25

-1.75
Fig. 14.
Fig. 15.
$pO_2^{av} = 0.2 \text{ atm}$

750ºC

Fig. 16.
Fig. 17.