UNIVERSIDAD COMPLUTENSE DE MADRID
FACULTAD DE CIENCIAS FISICAS

TESIS DOCTORAL

A VLT-SINFONI study of local Luminous and Ultraluminous infrared
galaxies

MEMORIA PARA OPTAR AL GRADO DE DOCTOR

PRESENTADA POR

Javier Piqueras Lopez

Directores

Luis Colina Robledo
Santiago Arribas Mocoroa

Madrid, 2014

© Javier Piqueras Lopez, 2014



The importance of Luminous and Ultraluminous Infrared Galaxies in the context of galaxy evolu-
tion has been clearly established since their discovery in the early 70’s. (U)LIRGs are valuable
candidates to study extreme cases of compact star-formation and coeval active galactic nuclei,
as well as their impact on the interstelar medium in terms of feedback processes. Taking advan-
tage of the high spatial resolution and S/N that can be achieved in local samples, the study of
nearby (U)LIRGs provides with a unique oportunity to perform detailed analysis of these physical
processes, and is a fundamental piece to understand their more distant counterparts.

This thesis presents, for the first time, a comprehensive near-IR study of local LIRGs and ULIRGs
based on seeing-limited VLT-SINFONI observations, and focused on the emitting gas structure,
dust morphology and star-formation. In addition, we present the detailed analysis of the spatially
resolved kinematics of the central regions of the nearby galaxy M83, focusing on the role of
supernovae in shaping the gas kinematics at scales of tens of parsecs.

La importancia de las Galaxias Luminosas y Ultraluminosas en el Infrarrojo en el contexto de la
evolucion de las galaxias ha quedado claramente establecido desde su descubrimiento, durante
los primeros anos de la década de los 70. Las (U)LIRGs locales son objetos especialmente Utiles
para el estudio de los casos mas extremos de formacion estelar en regiones compactas, coexis-
tiendo con nucleos galacticos activos, asi como su impacto en el medio interestelar. Haciendo
uso de la alta resolucion espacial y S/N que proporcionan las muestras locales, el estudio de
(U)LIRGs cercanas proporciona una oportunidad Unica para llevar a cabo analisis detallados de
estos procesos fisicos, y es una pieza fundamental en la comprension de sus correspondientes
homologos mas distantes.

Esta tesis presenta, por primera vez, un estudio exhaustivo de LIRGs y ULIRGs locales en el infra-
rrojo cercano, basado en observaciones realizadas con el instrumento VLT-SINFONI, y centrado
en la estructura del gas en emision, la morfologia del polvo y la formacion estelar. Ademas,
presentamos el estudio detallado de la cinematica del gas en las regiones centrales de la
galaxia M83, centrado en analizar el papel que juegan las supernovas en “moldear” la cinemati-
ca del gas a escalas de decenas de parsecs.
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Abstract

The importance of Luminous (LIRGs) and Ultraluminous (ULIRGs) infrared
galaxies in the context of galaxy evolution has been clearly established since their
discovery in the early 70's. This new class of “infrared galaxies” is characterised
by emitting more energy in the mid- and far-infrared than at all other wavelengths
combined (see the review of Sanders & Mirabel |1996). Despite (U)LIRGs are
not very common in the local Universe, they happen to be the most luminous
galaxies locally. They have been detected in large quantities at high-z in deep
mid- and far-infrared surveys, where they dominate the energy density of the
Universe beyond z ~ 1.5 (e.g. |Le Floc'h et al.|2005| |Pérez-Gonzalez et al.|[2005),
Lonsdale et al.|[2006, [Nardini et al.|[2008, [Sargent et al.|[2012, [Magnelli et al.
2013).

(U)LIRGs are valuable candidates to study extreme cases of compact star-
formation and coeval active galactic nuclei (AGN), as well as their impact
on the interstelar medium in terms of feedback processes. Taking advantage of
the high spatial resolution and S/N that can be achieved in local samples, the
study of nearby (U)LIRGs provides with a unique opportunity to perform detailed
analysis of these physical processes, and is a fundamental piece to understand

their more distant counterparts.

This thesis project is part of a larger program, that covers the whole range
of LIRG and ULIRG luminosities and the different morphologies observed, and
presents, for the first time, a near-IR study of local LIRGs and ULIRGs based on
seeing-limited VLT-SINFONI observations. In addition, we present the study of
the spatially resolved kinematics of the central regions of the nearby galaxy M83,
focusing on the role of supernovae in shaping the gas kinematics at scales of tens

of parsecs. The main results and conclusions of this thesis are:



o Spatially resolved kinematics of the central regions of M83

The detailed study of the kinematics of M83 (Piqueras Lopez et al., [2012b))
is based on adaptive optics assisted VLT-SINFONI observations on the H+K
band. The inner regions of M83 are sampled with an unprecedented spatial
resolution of ~0”2, and their analysis shows that the gas kinematics are
unsuitable to estimate dynamical properties of the central regions of M83.
Although the stellar kinematics trace the global velocity field of uniform
rotation, the kinematics of the gas at small scales of tenths of parsecs seem
to be dominated by shocks and inflows, and totally unrelated to the stellar
kinematics.

We also address the controversial issue of the ‘true’ nucleus of M83, and
argue that the optical nucleus of M83 is a star cluster of ~100 Myr with
its own coherent internal kinematics, and a dynamical mass of Mgy, =
(1.1 +0.4) x 10’"Mg. We suggest that the ‘true’ nucleus of M83 is located
at the photometric and kinematic centre of the galaxy, where we found a

modest enhancement of the K-band continuum.

o Mapping the emitting gas structure of local (U)LIRGs

The analysis of the sample of local LIRGs and ULIRGs is based on seeing-
limited near-infrared H- and K-band VLT-SINFONI observations. We present
the atlas of the ionised, partially ionised and warm molecular gas 2D flux
distributions and kinematics of the galaxies of the sample (Piqueras Lopez
et al., 2012a). The analysis of the emission maps of (U)LIRGs shows that
the more luminous star-forming regions are located typically in star-forming
rings or spiral arms in LIRGs, and at the nucleus of the ULIRGs. On the
contrary, the peak of the Hy emission coincides with the stellar nucleus in
all the sources. In addition, although the Brvy and Hy peaks are usually not
spatially coincident, their luminosities are very similar.

In LIRGs, all the phases of the gas (i.e. ionised, partially ionised and
molecular) appear to share the same large scale kinematics in terms of
velocity fields, although we find signatures of radial flows in some of the
objects. The kinematics in ULIRGs are very complex due to their interacting
nature, and show features like coherent velocity gradients that can be

associated with the progenitors or dynamical structures like tidal tails.
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o Characterisation of the visual extinction and dust clumpiness in local
(U)LIRGs
We also analysed in detail the 2D extinction structure of the galaxies of the
sample, based on the Bry/Brd and Paa/Bry line ratios (Piqueras Lopez
et al., 2013). We present the visual extinction maps, and the spaxel-by-
spaxel Ay distributions and radial profiles of the individual sources. The dust
distribution in LIRGs and ULIRGs shows a patchy structure on sub-kpc scales,
and the spaxel-by-spaxel Ay distributions of the individual objects reveals
no clear evidence of any dependence of extinction with Ljg[8-1000xm].
However, the combined spaxel-by-spaxel distributions of LIRGs and ULIRGs
as separated classes show that ULIRGs present a slightly higher median
value of Ay= 6.5 mag, compared to the median value of Ay= 5.3 mag

measured in LIRGs.

o Sub-kpc study of the star formation in local (U)LIRGs

Taking advantage of the spatially resolved Ay maps derived from the
line ratios, we study in detail the observed and extinction-corrected 2D
structure of the star-formation rate (SFR) and surface density of the star-
formation rate (Xsgr) in our sample of (U)LIRGs. When we compare
regions of the same physical extend, LIRGs and ULIRGs seem to have similar
median values of their observed (i.e. not corrected from extinction) Xsrgr
(Zpbse. = 1.16 Mg yr L kpc™2, and ZfSres = 1.38 Mg yrtkpc=2). The
difference between the median values of the ¥ grg distributions increases
when the extinction corrections are applied (L{{Rc, = 1.72Mg yr—tkpc—?
and Z{Tree = 2.90 Mg yr—t kpc™2).

We find that the spatial sampling, i.e. the physical scale per spaxel, of the
emission maps has direct implications in deriving physical quantities like Ay
and YgrRr, even more in high-z studies. Using a first-order approximation,
we simulated the emission maps of LIRGs at increasing distances and found
that the median of the Ay distribution of LIRGs is decreased by a ~20% at
the average distance of the ULIRG subsample, and that it can be reduced in
a factor ~40 % beyond 800 Mpc. When we consider this effect on the Ygrgr
measurements, we observe that the medians of the LIRG Xgpgr distributions

(observed and extinction-corrected) are increased by a factor ~ 2 — 3.
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In agreement with previous studies, we observe a tight correlation between
our near-IR measurements and the SFR derived from Spitzer 24 um data,
and a reasonable agreement with SFR measurements from Lig. When we
compare our SFR values with optical measurements from Ha emission, we
find that the near-IR measurements are a factor ~3 larger than the optical,

even when the extinction corrections are applied.

Together with the spaxel-by-spaxel analysis of the ¥grr, we identified a
sample of 95 individual star-forming clumps in our set of (U)LIRGs, with
sizes that range within ~60-400 pc and ~300-1500 pc, and Paa luminosities
of ~105-107 L, and ~10°-108 L, in LIRGs and ULIRGs, respectively. The
derived properties of these clumps show that local star-forming regions,
specially in ULIRGs, are more similar to high-z clumps in terms of luminosity

and Xgpr than local regions from ‘normal’ galaxies.
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Resumen

La importancia de LIRGs y ULIRGs en el contexto de la evolucién de las galaxias
ha quedado claramente establecido desde su descubrimiento, durante los primeros
afos de la década de los 70. Esta nueva clase de “galaxias infrarojas” se caracteriza
por emitir mas energia en el infrarrojo medio y lejano que en el resto de longitudes
de onda juntas (ver la revisién de Sanders & Mirabel [1996]). Pese a que las
(U)LIRGs no son muy comunes en el Universo local, estos objetos resultan ser
las galaxias mas luminosas localmente. Se han detectado en grandes nimeros a
alto desplazamiento al rojo mediante estudios sistemdticos en el infrarrojo medio
y lejano, donde dominan la densidad de energia del Universo més alld de z ~ 1.5
(Le Floc'h et al.[2005, Pérez-Gonzalez et al.[2005| Lonsdale et al.[2006, Nardini
et al.[2008, [Sargent et al.|2012, Magnelli et al.[2013]).

(U)LIRGs son objetos especialmente dtiles para el estudio de casos extremos de
formacién estelar compacta, evolucionando coetaneamente con AGN (Nucleos
Galacticos Activos, en sus siglas en inglés), asi como su impacto en el medio
interestelar mediante procesos de “feedback” o retro-alimentacién. Aprovechando
la alta resolucdn espacial y S/N que proporcionan las muestras locales, el estudio
de (U)LIRGs cercanas proporciona una oportunidad tnica para llevar a cabo
andlisis detallados de estos procesos fisicos, y es una pieza fundamental en la

comprensién de sus correspondientes homdlogos a mayores distancias.

Este proyecto de tesis se engloba en un programa mas amplio, que cubre todo el
rango de luminosidades correspondientes a LIRGs y UIRGs, asi como los diferentes
tipos morfoldgicos observados. Presenta, por primera vez, un estudio de LIRGs y
ULIRGs locales en el infrarrojo cercano, basado en observaciones limitadas por
“seeing” realizadas con el instrumento VLT-SINFONI. Asimismo, se presenta el
estudio de la cinematica, resuelta espacialmente, de las regiones centrales de la
galaxia cercana M83, centrado principalmente en analizar el papel que juegan
las explosiones de supernova en “moldear” la cinematica del gas a escalas de

decenas de parsecs. Los resultados y conclusiones generales de esta tesis son:
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o Estudio de la cinematica espacialmente resuelta de las regiones cen-
trales de M83

El estudio detallado de la cinemética de M83 (Piqueras Ldpez et al., [2012b))
se basa en observaciones en banda H+K realizadas con VLT-SINFON,I en
combinacién con su médulo de éptica adaptativa. Las regiones internas
de M83 se han muestreado con una resolucién espacial sin precedentes
de ~0”2, y su posterior anélisis muestra que la cinematica del gas no es
adecuada para estimar las propiedades dindmicas de las regiones centrales
de M83. Mientras que la cinematica estelar traza el campo de velocidades
global correspondiente a una rotacién uniforme, la cinematica del gas, a
escalas pequenas de unas decenas de parsecs, parece estar dominada por
ondas de choque y flujos de gas, sin relacién alguna con la cinematica de

las estrellas.

Asimismo, hemos abordado la cuestidn de la controvertida localizacién del
nicleo de M83, y proponemos que el nicleo éptico de M83 es en su lugar un
ciimulo estelar de 100 millones de afios, con su propia y coherente cinematica
interna y una masa dindmica de Mgy, = (1.1 & 0.4) x 10’My,. Ademds,
sugerimos que el niicleo de M83 se encuentra situado en el centro fotométrico
y cinematico de M83, donde hemos encontrado un ligero aumento de la

emisién en la imagen de continuo en banda K.

o Trazado de los mapas de la estructura del gas en emisién en (U)LIRGs

locales

El andlisis de la muestra local de LIRGs y ULIRGs se basa en observaciones
en el infrarrojo cercano, limitadas por “seeing”, realizadas con el instrumento
VLT-SINFONI en bandas H y K. Presentamos el atlas 2D de las distribuciones
de flujo y cinematica del gas ionizado, parcialmente ionizado y gas molecular
templado de las galaxias de la muestra (Piqueras Lopez et al., 2012a)).
El anélisis de los mapas de emisién de LIRGs y ULIRGs muestra que las
regiones de formacion estelar mds luminosas se localizan tipicamente en
las estructuras de anillos o brazos espirales en las LIRGs, mientras que en
las ULIRGs coinciden generalmente con los niicleos de las fuentes. Por el

contrario, el pico de emisién de Hy coincide con el nicleo estelar en todas
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las galaxias. Asimismo, mientras que los picos de Bry y Hy generalmente

no coinciden, sus luminosidades son muy similares.

En las LIRGs, todas las fases del gas (ionizada, parcialmente ionizada y
molecular) parecen presentar la misma cinematica a gran escala en cuanto
a los campos de velocidad, aunque encontramos indicios de flujos de gas
radiales en algunos de los objetos. La cinemética en ULIRGs es muy compleja
debido a que la mayoria de estos objetos son sistemas en interacciéon. Ademads,
muestran caracteristicas como gradientes de velocidad coherentes que se
pueden identificar con los progenitores o con estructuras dindmicas como

colas de marea.

Caracterizacion de la extincion visual y de la distribuciéon del polvo
en (U)LIRGs locales

Hemos analizado en detalle la estructura bidimensional de la extincién en
las galaxias de la muestra, basdndonos en los cocientes de lineas Bry/Brd
y Paa/Bry (Piqueras Lépez et al., 2013). Presentamos los mapas y las
distribuciones spaxel a spaxel de la extincién, asi como los perfiles radiales
de las fuentes individuales. La distribucién del polvo en LIRGs y ULIRGs
muestra una estructura irregular en escalas inferiores al kilopdrsec, mientras
que las distribuciones spaxel a spaxel de la extincidén en fuentes individuales
no revelan ninguna evidencia clara de alguna posible dependencia de la
extincidn con la Lig. No obstante, las distribuciones spaxel a spaxel globales
de LIRGs y ULIRGs, como clases de luminosidad, muestran que las ULIRGs
presentan una mediana de Ay= 6.5 mag, ligeramente mds alta que el valor

mediano en las LIRGs, de concretamente Ay= 5.3 mag.

Estudio de la formaciéon estelar en (U)LIRGs a escalas inferiores al
kiloparsec

Haciendo uso de los mapas espacialmente resueltos de la extincidn, obtenidos
a partir de los cocientes de lineas, hemos estudiado en detalle la estructura
bidimensional, tanto observada como corregida de extincién, de la tasa
de formacién estelar (SFR, en sus siglas en inglés) y de la densidad de
tasa de formacién estelar (Xspr) en nuestra muestra de (U)LIRGs. Al

comparar regiones con la misma extensién fisica, LIRGs y ULIRGs muestran
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valores medianos muy similares en cuanto a la densidad superficial de
tasa de formacién estelar observada, es decir, no corregida de extincién.
Estos valores medianos son ZflﬁgGs = 1.16 My yr 1 kpc~?, and Zalf_isGs =
1.38 Mg yr—lkpc=2. La diferencia entre estos valores medianos de las
distribuciones de Y spr aumenta al tener en cuenta los efectos de la extincidn,
siendo X {{Rce = 1.72Mg yrlkpc?y 2 Res = 2-90 Mg yr L kpc=2.

Hemos encontrado que la resolucién espacial con la que se muestrean los
mapas de emisidn, es decir, la escala fisica por spaxel, tiene implicaciones
directas al derivar magnitudes fisicas como la extincién y la ¥ gpRr, siendo
estos efectos mds importantes a alto desplazamiento al rojo. Usado una
aproximacién de primer orden, hemos simulado los mapas del subconjunto
de LIRGs a distancias cada vez mayores, y hemos encontrado que la mediana
de las distribuciones de Ay en las LIRGs disminuye en ~20 % a la distancia
promedio de la submuestra de ULIRGs, y que puede verse reducida en ~40 %
a partir de los 800 Mpc. Cuando se considera este efecto en las medidas de
la grRr, observamos que las medianas de las distribuciones de las LIRGs se

ven incrementadas en un factor ~ 2 — 3.

En la linea de estudios previos, hemos observado una estrecha relacién entre
nuestras medidas en el infrarrojo cercano y la SFR derivada a partir de datos
de Spitzer en 24 yum, asi como un acuerdo razonable con medidas obtenidas
a partir de la Lig. Cuando comparamos nuestros valores de la SFR con
medidas en el éptico, obtenidas a partir de la emisién en Ha, encontramos
que las medidas en el infrarrojo cercano son ~3 veces mayores que las

Opticas, incluso después de haber aplicado las correciones de extincién.

Junto con el andlisis spaxel a spaxel de la ¥gpr, hemos identificado una
muestra de 95 regiones de formacién estelar individuales en nuestro conjunto
de (U)LIRGs, con tamafios que oscilan entre los ~60-400 pc y ~300-1500 pc,
asi como luminosidades en Pac de ~10°-107 L, y ~10°-108 L, en LIRGs y
ULIRGs, respectivamente. Las propiedades de estas regiones muestran que,
localmente y especialmente en ULIRGs, se asemejan mas a las regiones de
formacién estelar en objetos a alto desplazamiento al rojo, en términos de
luminosidad y Y spRr, que a aquellas regiones procedentes de galaxias locales

[ 1"
normales”.
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Introduction

“Begin at the beginning,” the King said gravely, “and
go on till you come to the end: then stop.”
— Lewis Carroll, Alice in Wonderland

In this chapter we present a brief summary of the main properties of the Luminous (LIRGs)
and Ultraluminous (ULIRGs) Infrared Galaxies and their key role on the study of galaxy
evolution. We also briefly discuss the actual stage of the integral field spectroscopic (IFS)
studies of this class of objects, and describe the main physical mechanisms responsible for the
spectral features observed in the near-IR spectra of (U)LIRGs. Finally, we present a summary

of this thesis project.

1.1. Luminous and Ultraluminous Infrared Galaxies

Infrared bright galaxies were first discovered in the early 70’s with the first mid-infrared
observations of extragalactic sources (Low & Kleinmann||1968, Kleinmann & Low|/1970a,
1970b), |Rieke & Low|1972), that already highlighted the dominant infrared emission of several
objects, including starburst, Seyferts and QSOs. Mid-infrared photometry of larger samples of
starburst, Seyfert and bright spiral galaxies (Rieke & Low|{1975, Neugebauer et al.|1976, Rieke
& Lebofsky |1978, Rieke|1978) revealed that this infrared excess was a common property of
these sources, and that the shape of their infrared continuum was better explained in terms
of models of thermal re-radiation from dust.

The early results from the Infrared Astronomical Satellite (IRAS, Neugebauer et al.|1984)
revealed a new class of “infrared galaxies” characterised by emitting more energy in the

mid- and far-infrared than at all other wavelengths combined (Soifer et al.[|[1984, and the
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Figure 1.1: Optical spectroscopic classification of (U)LIRGs - Left: Spectral type as a function
of Lig for the 1Jy ULRIG sample (Veilleux et al., |1999) and the LIRGs in the Bright Galaxy Survey
(BGS, |Veilleux et al.|[1995). The luminosity bins are labeled at the bottom. Right: Optical spectroscopic
classification as a function of merger morphology for the 1Jy ULIRG sample. The merger progresses
from left to right, from wide binary to old merger. In both panels, the number of galaxies contained in
each bin is marked on top of the histograms. (Figure adapted from |Yuan et al.[[2010)

Sanders & Mirabel 1996/ review). As one of the most important discoveries from extragalactic
mid- and far-infrared observations, this new population of infrared bright galaxies (LIRGs,
101 L, <Ligr< 10*2Ls; and ULIRGs, 10'2L, <Ligr< 10*3L) happens to be the most luminous
galaxies in the local Universe, and dominates the galaxy population at z ~ 1.5 (Pérez-Gonzalez
et al.|2005, [Lonsdale et al|2006| Sargent et al.|2012).

These early studies already related the role of interaction, as triggering mechanism of
extreme nuclear activity and large-scale starbursts, with the infrared excess of the newly
discovered extragalactic sources. Nevertheless, it was not until the first all-sky survey carried
out by /IRAS when the importance of these objects to galaxy evolution was clearly established.
The survey covered ~ 96 % of the sky, and observed ~ 20000 galaxies on 12 um, 25 um,
60 um and 100 pum. Most of these sources were not previously catalogued, since they were

modest emitters in the optical wavelengths and went undetected in optical surveys.

1.1.1. Power source

Since their discovery, there is a wide consensus that interactions and mergers of gas-rich
galaxies are the trigger mechanisms for the most luminous (U)LIRGs (e.g. Sanders & Mirabel
1996). However, there is less agreement on the nature of the power source of these objects.
The IR luminosity in (U)LIRGs could be explained as the output from reprocessed radiation
from dust of either extreme star-formation activity, AGN, or a combination of both. Studies

of large samples of (U)LIRGs suggested that the dominant power source of the low-luminosity
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Figure 1.2: Morphological class as a function of L - Fraction of COSMOS 70 um sources that are
morphologically classified as spiral (blue line), elliptical (red line), minor mergers (light green dotted
line), major mergers (dark green line), QSOs (yellow line), unknown (black dashed line), or major
mergers+unknown (dark green dashed line) as a function of Lir. (Figure adapted from |[Kartaltepe et al.
2010)
objects is likely to be extended star-formation activity, whereas the contribution of AGN
increases with bolometric luminosity in the more luminous sources (see Fig. [1.1] Nardini et al.

2010, [Yuan et al.[2010, Alonso-Herrero et al.|2012).

Due to the large amount of dust in these objects, extinction plays a key role, especially in
ULIRGs. Optical and near-IR studies (e.g. Veilleux et al.|[1995, Murphy et al.|2001, |Alonso-
Herrero et al.[2006) showed that extinction in LIRGs could be as high as Ay~12-15mag, and
ULIRGS could reach even higher values of Ay~20-30 mag. Therefore, dust could completely
obscure a large fraction of the recent star formation activity and, in extreme cases, there

would be no indication of an AGN in the optical.

The advent of mid-IR space telescopes like Spitzer or Herschel contributed to the study of
larger samples of (U)LIRGs in wavelengths that are relatively unaffected by dust obscuration.
These studies confirmed that most of the luminosity in ULIRGs is produced by star formation,
and, although AGN signatures are present in most of them (~70 %), its contribution dominates
the IR emission only in ~20 % of the objects (Nardini et al. 2008, 2010, |Farrah et al|2007,
Alonso-Herrero et al.[2012).
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1.1.2. Morphology and the role of interactions

From the early work of Toomre & Toomre| (1972), galaxy mergers are considered a key
mechanism in driving galaxy evolution, and are the base to explain the morphological features
like tails or bridges observed in close pairs of galaxies. There are multiple evidences that a
large fraction of LIRGs and almost all the ULIRGs show signatures of recent interactions (e.g.
Murphy et al.|[1996| Borne et al.|2000, Veilleux et al|2002, |[Haan et al|2011), and most of
the studies agree that strong interactions and mergers of gas-rich galaxies are the trigger for
the more luminous ULIRGs.

However, numerical simulations showed that the idea that mergers transform disk galaxies
into ellipticals is more complex than initially expected, and highlighted the key role of the
mass ratio of the progenitors, their number, the gas fraction and feedback processes in galaxy
interactions (e.g. [Bournaud et al.[|2005b| and references therein). In those mergers where the
progenitors are systems of similar masses (major mergers), the resulting products are massive,
elliptical galaxies through induced dissipative collapse (e.g. [Toomre & Toomre||1972, |Barnes
& Hernquist (1991, |1996, Mihos & Hernquist 1996, Naab & Burkert|2003). On the other
hand, mergers where the mass ratio of the progenitors are within the range 4:1 and 3:1 lead
to disk-like remnants (e.g. Bournaud et al.|2005b).

Optical and IR studies showed that the merger fraction increases with Lig (see Fig. ,
Kartaltepe et al|[2010), and that approaches the 80-90 % for samples of ULIRGs (e.g.
Murphy et al.|1996| |Veilleux et al.[2002). ULIRGs are then observed across the entire merging
process, from close binary systems with distinct nuclei to compact objects with signs of past
interactions. Local LIRGs, on the other hand, are mostly spiral galaxies, with morphologies

that are less disturbed than of ULIRGs, typical of an early stage of interaction.

1.1.3. LIRGs and ULIRGs in the cosmological context

The importance of LIRGs and ULIRGs in the context of galaxy evolution has been clearly
established in the last decades. They have been detected in large quantities at high-z (z > 1)
in deep surveys with Spitzer and Herschel (e.g. |Le Floc'h et al|2005, [Nardini et al./[2008,
Magnelli et al[2013), and dominate the energy density of the Universe beyond z > 1.5,
although contribute only with a ~3% locally (Soifer & Neugebauer, |1991). LIRGs have
slightly higher spatial densities than the most powerful optically selected starburst and Seyfert

galaxies at similar luminosities, whereas ULIRGs have ~ 2 times the volume density of
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Figure 1.3: Evolution of the comoving energy density - The green filled area shows the evolution
of the comoving IR energy density up to z = 1, and the respective contributions from low-luminosity
galaxies (Lir< 10" L, blue filled area), LIRGs (yellow-filled area) and ULIRGs (red-filled area). The
dashed line corresponds to the SFR measured from the UV luminosity not corrected from extinction.
The dotted line represents the best estimate of the total SFR density as the sum of this uncorrected
UV contribution and the best fit of the IR-SFR (solid line). Open diamonds represent integrated SFR
densities and their uncertainties estimated within various redshift bins and taken from the literature (see
lLe Floc'h et al.[2005| for details). (Figure adapted from Le Floc'h et al. 2005)

optically selected QSOs (Soifer et al., [1987), the only other previously known population of

objects with comparable bolometric luminosities.

There are evidences that LIRGs and ULIRGs have undergone strong evolution in their

luminosity function (see Fig. [1.3} [Le Floc'h et al|[2005, [Pérez-Gonzilez et al/2005). At

z ~ 1, (U)LIRGs are responsible for ~70 % of the comoving IR energy density, and dominate
the star-forming activity beyond z ~ 0.7, where they are responsible for half of the newly

born stars. ULIRGs starts to play a significant role on the star-formation cosmic history

of the Universe beyond z ~ 1 (Pérez-Gonzalez et al. [2005). Previous studies based on

Spitzer 24 ym data concluded that the relative contribution of ULIRGs to the star formation
rate (SFR) density of the Universe increases with redshift, and may even be the dominant
component at z > 2. However, these conclusions still need to be confirmed since there are

large uncertainties at high-redshift in transforming observed 24 m flux densities to far-infrared

luminosities (Magnelli et al.|2011] 2013).
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Figure 1.4: Kennicutt-Schmidt law and stellar mass vs star formation rate relation - Left: Star-
formation rate surface density (Xsrr) as a function of the gas (atomic and molecular) surface density. The
empty blue squares and green diamonds are sub-millimetre galaxies (SMGs) from |Bouché et al.| (2007])
and |Bothwell et al.| (2009), respectively, whereas crosses and filled triangles are (U)LIRGs and spiral
galaxies from [Kennicutt| (1998). The lower solid line is a fit to local spirals and z = 1.5 BzK galaxies,
and the upper dotted line is the same relation shifted up by 0.9 dex to fit local (U)LIRGs and SMGs.
(Figure adapted from |Daddi et al|2010]). Right: Stellar mass-SFR relation at 1.5 < z < 2.5 for different
samples. Red filled circles correspond to PACS-COSMOS sources, cyan squares are objects from the
PACS-GOODS South survey, whereas the BzK-GOODS and BzK-COSMOS samples are plotted as black
filled circles and dots, respectively. The solid black line represents the main sequence for star-forming
galaxies at z~2 defined by |Daddi et al|(2007), while the dotted and dashed lines mark the loci 10 and
4 times above the main sequence (along the SFR axis), respectively. The small inset shows the same
data as the main panel, using the specific SFR instead the SFR. (Figure adapted from [Rodighiero et al.
(2011))

1.2. The role of local (U)LIRGs in the study of galaxy evolution

Despite LIRGs and ULIRGs are not very common in the local Universe, the detailed
analysis of local samples of these objects is essential to understand not only the formation
and evolution of galaxies in a cosmological context, but also the local physical processes that
take place in such extreme environments. (U)LIRGs are hence valuable candidates to study
extreme cases of compact star-formation and coeval AGN, as well as their impact on the ISM
in terms of feedback processes (outflows, quenching of the star-formation, etc). The study of
local samples provides with a unique opportunity to perform these detailed analysis, due to
the high spatial resolution and S/N that can be achieved.

A basic question on the theory of galaxy evolution is whether the mechanism that

transforms the cold molecular gas into stars is or not universal, and whether it is dominated by
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the global dynamics or by local processes. [Kennicutt (1998) presented the empirical relation
(Kennicutt-Schmidt law, or KS law), already proposed by |Schmidt| (1959 |1963), between the
star-formation rate surface density (Xspr) and the gas surface density in spirals. The derived
relation is a power law of index N = 1.40 4 0.15, similar to the one found locally for other
classes of galaxies like LIRGs (Yao et al., [2003)). Recent studies showed that not all galaxies
follow the same relation, and seem to be forming stars at higher ratios. Fig[I.4] shows that
high-z sub-millimetre galaxies (SMG) and ULIRGs lay above the spiral and star-forming disks
relation, suggesting that stars are formed more efficiently in these objects.

This ‘enhanced’ mode of forming stars has been also observed when comparing the
specific SFR (sSFR, i.e. SFR per unit of stellar mass, Mx) with the stellar mass. In recent
years, a tight correlation between these two quantities has been observed (the so-called ‘main
sequence’, Fig. , right panel) out to z ~ 7 (e.g. |Daddi et al. 2007, [Elbaz et al.[2007, [2011,
Rodighiero et al.[[2011, Wuyts et al.[2011). The slope and normalisation of the SFR-Mx
relation play a crucial role in the growth of galaxies and in the evolution of their mass function
(Rodighiero et al., 2011)). In this plot, local ULIRGs and high-z SMGs show higher sSFR than
‘normal’ star-forming (SF) galaxies at the same stellar mass, and appear to be in different star
formation regimes: a quasi-steady, long-lasting mode for disks and a more rapid, starburst
mode in major mergers or in the densest SF regions. The nature of this bimodality is not clear
yet, and the local study of extreme starburst is essential to shed some light in this question.

Given that (U)LIRGs are extreme examples of starburst and coeval AGN, they are perfect
candidates to study in detail the feedback processes of both driving mechanisms. There is a
growing number of studies that has revealed the important role of outflows in LIRGs and
ULIRGs (Rupke & Veilleux 2005, Rupke et al.[2005a, [2005b, |Spoon et al.|2009, Westmoquette
et al.[2012, Rodriguez-Zaurin et al.[|2013| U et al.[2013). These studies showed that outflows
of gas seem to be ubiquitous in LIRGs and ULIRGs, with independence of their driven
mechanisms (AGN or starburst), and are observed in different phases of the gas, from
highly ionised (Rodriguez-Ardila et al. [2006, Bedregal et al.[[2009) and ionised gas (e.g.
Westmoquette et al. 2012, |Bellocchi et al.|2013) to neutral (e.g. |Rupke & Veilleux [2005,
Rupke et al./[2005a, 2005b} Martin| 2005, [2006) and molecular gas (e.g. [Feruglio et al.[2013,
Morganti et al.|2013, Rupke & Veilleux [2013a) |Cicone et al.|2014). These extended outflows,
with sizes from a few hundred of parsecs to several kiloparsecs (Feruglio et al.[2013, |Cicone
et al.[[2014), show mass outflowing rates with typical values of 10-100 M, yr~!. These values
compete with the observed SFR in LIRGs and ULIRGS, and suggest that the star-formation
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could be quenched by the depletion of molecular gas (Rupke & Veilleux|2013a, Cazzoli et al.
2014, in prep.). Although the importance of these local processes is well stablished, there is
still lack of a deeper understanding of the geometry and spatially resolved kinematics, and
accurate measurements of the mass loading factors (i.e. amount of gas expelled in the wind

per unit of solar mass of stars formed), from a multi-phase perspective.

1.3. The IFS perspective of (U)LIRGs

During the first decades since the discovery of LIRGs and ULIRGs, a great effort was
made to understand their nature and physical properties. The first comprehensive studies on
these objects were made using spectroscopic and imaging observations from ground-based
and space telescopes (e.g. |Goldader et al.|[1995, Kim et al.|1995, |Veilleux et al.|[1995, Murphy,
et al.[[1996, Borne et al.[2000, Scoville et al.[[2000, Alonso-Herrero et al.|2006/ among others),
and covered from the optical to mid-IR wavelengths. These studies laid the foundations
of our current understanding of the power source of LIRGs and ULIRGs, and unveiled the
complexity and interacting nature of these objects.

The advent of modern IFS facilities, in combination with adaptive optics (AO) techniques,
has offered a brand-new range of possibilities to study in detail the physical processes in
LIRGs and ULIRGs. The great advantage of these techniques is that they allow to obtain
spectroscopic and imaging measurements of the sources simultaneously, and allow to perform
spectrally and spatially-resolved studies of the emission and kinematics of the gas and stars
in a wide range of redshifts, with an unprecedented level of detail.

The first IFS studies of local LIRGs and ULIRGs in the last decades have been mainly
focused on individual or small samples of sources, and usually oriented towards the optical
analysis of the most luminous nearby objects (e.g. |Colina et al.|1999, Arribas et al.|2000).
More recently, the development of new near-IR integral field units (IFUs) like SINFONI
(Spectrograph for INtegral Field Observations in the Near Infrared, Eisenhauer et al.|[2003)) or
OSIRIS (OH-Suppressing Infra-Red Imaging Spectrograph, |Larkin et al.|[2006)), has extended
the study of these objects towards longer wavelengths (e.g. |Bedregal et al.|2009, U et al.
2013).

In recent years, optical IFS studies of representative samples of local sources have been
performed, covering the whole range of the LIRG and ULIRG luminosities and the different

morphologies observed in this class of objects (e.g. Arribas et al.|2008, |Alonso-Herrero et al.
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2009, |Garcia-Marin et al.|2009b, |2009a|, [IMonreal-Ibero et al.|/[2010, |Rodriguez-Zaurin et al.
2011, Bellocchi et al.[[2013]). These optical studies have been focused in a wide range of
topics, from investigating the ionisation sources or the structure of the star-forming regions,
to the comprehensive analysis of the spatially resolved gas kinematics at sub-kpc scales.

In parallel with the study of local samples, a great effort has been made to investigate
the nature and physical properties of star-forming galaxies at early stages of their evolution
(e.g. the SINS survey, [Forster Schreiber et al.|[2000, 2009, 2011a; MASSIV, Epinat et al.
2012, |Vergani et al.|2012, among others). Although these surveys are focused on optical /UV
selected galaxies, some of these sources have been proposed as the high-z counterparts of
local ULIRGs. Such studies map the morphology and kinematics of the gas using the Ho

emission, redshifted towards near-IR wavelengths.

1.4. A new near-IR IFS approach to local (U)LIRGs

Most of the recent IFS studies of LIRGs and ULIRGs have been mainly focused on
rest-frame optical wavelengths, not only locally but also at higher redshifts, and typically
biased towards the high-luminosity objects. The main advantage of the optical wavelengths
is that they have been traditionally deeply studied, and a wide variety of physical properties
can be constrained from the optical spectroscopic features. In addition, Ha is the brightest
line in the optical, and allows to trace, with great amount of detail, the kinematics of the
jonised gas in high-z sources.

However, early studies like |Goldader et al.| (1995) already showed the large number of
emission lines and stellar absorption features that offer the near-IR wavelengths. Figure
shows an example of the synthetic H- and K-band spectra of local LIRGs and ULIRGs. The
abundance of spectroscopic features, specially in the K-band, allow to perform comprehensive
studies of a wide variety of physical processes, and trace the kinematics of the different
phases of the gas and stars using a single, self-contained dataset. In addition, the IR
wavelengths are less affected by dust extinction, which make them very appropriate to study
dusty environments like LIRGs and ULIRGs.

If we focus only on the brightest spectral features of the H and K bands, i.e. [Fell] at
1.644 um, Pac at 1.876 um, Hel at 2.059 um, Hp 1-0S(1) at 2.122 um and Brvy at 2.166 pm,
and the deepest CO stellar absorption bands, i.e. CO (2-0) at 2.293 um, CO (3-1) at
2.323 um or CO (4-2) at 2.354 um, we could almost completely characterise a wide variety
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Figure 1.5: H- and K-band sample spectra - Synthetic spectra along the H (top) and K (bottom)
bands obtained by stacking and combining the data from local LIRGs and ULIRGs (Piqueras Ldpez et al.,
2012al). The more relevant spectral features have been labeled to illustrate the riches of the near-IR

wavelengths.

of physical properties of the system, as well as its kinematics and dynamics. These spectral

features, for which high S/N can be achieved, allow to trace emission and kinematic maps

of a large number of the ISM phases, e.g. the ionised and partially ionised gas, the warm

molecular phase or the stellar component of the ISM. In addition, other fainter emission lines

like the [SiVI] at 1.963 um or [CaVIII] at 2.321 um are excellent tracers of AGN activity.
Although further details will be given in the following chapters of this project, we will

briefly describe some of the most important physical processes that produce the emission and

absorption features in the H and K bands:

o lonised gas and star-formation from near-IR emission lines

The structure and kinematics of the ionised gas can be traced accurately by the
hydrogen recombination lines Pac: and Br~. In particular, the Pac line at 1.876 um is

the brightest line across the H and K bands, and it is particularly useful at increasing
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distances since it is only a factor ~8 fainter than Ha. For nearby objects (z <0.04), the
atmospheric absorption between ~1.8-2.0 um due to water vapour precludes accurate
measurements of the Paa emission from the ground. In this case, the Bry line at
2.166 um, a factor ~12 fainter than Paq, is also an excellent tracer of the ionised phase

of the ISM.

Therefore, the Paa: and Bry lines are excellent indicators of the recent star-formation
activity, where the more massive, young stars keep the gas in an ionised state (e.g.
Kennicutt & Evans|2012| and references therein). These lines will allow us to map the
SFR in LIRGs and ULIRGs at sub-kpc scales.

Besides the Pac and Bry lines, used as primary indicators of the SFR, the Hel line
at 2.059 um is also associated to very young star-forming complexes. Although its
interpretation is not as straight-forward as the hydrogen recombination lines (Shields,

1993), the Hel emission traces the younger OB stars, given its high ionisation potential.

Finally, the [Fell] line at 1.644 um has been widely used to estimate the supernova
rate in starbursts (e.g. |Colina| 1993, |Alonso-Herrero et al./[2003)), since it is usually
associated with regions where the gas is partially ionised by shocks. In combination
with the Paa or Bry measurements, it can be used to constrain the age of the stellar

populations in synthesis models.

Spatially-resolved extinction measurements

As mentioned before, the detailed characterisation of the extinction is essential to
understand the properties of dusty environments like LIRGs and ULIRGs, and to obtain
accurate measurements of physical quantities like the SFR or the SFR surface density
(Xser). The quantitative study of the extinction of the gas can be performed using
the Paa//Brv line ratio, or, when the Paa line is not available, the Bry/Brd ratio by
measuring the Brd line at 1.945 pum.

Molecular warm gas and excitation mechanisms

The roto-vibrational transition Hy 1-0S(1) at 2.122 um is the brightest Hy line in the H
and K bands, and traces the warm molecular phase of the gas. Its typical brightness is
similar to the Bry line, which allows to study both lines with similar S/N, and given

that both are very close in wavelength, with almost no bias by extinction.

11
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However, one of the advantages of the K-band IFS regarding the H» is that it allows to
study in detail the excitation mechanisms of the molecular hydrogen. These mechanisms
involve radiative processes like fluorescence due to the excitation by UV photons in
photon-dominated regions (PDR), and thermal processes like collisional excitation by
supernova (SN) shocks or X-rays (e.g. Davies et al.[2003, |2005)). The study of these
processes requires measurements of several lines, since the different mechanisms rise
to similar intense and thermalised Hy 1-0S(1) emission. As shown in Fig. [I.5 there
are several Ha lines within 1.9-2.4 um that can be measured with enough S/N on the
integrated spectra of local sources. Using the relative fluxes of these transition to the
1-0S(1), it is possible to obtain population diagrams of the emitting regions, and, in

some cases, to distinguish between thermal and non-thermal processes.

o lonisation mechanisms

The three of the brightest lines in the H and K bands, i.e. [Fell] at 1.644 um, Hy
1-0S(1) at 2.122 um and Bry at 2.166 um, are tracers of three different ionisation
states of the ISM. Since all of them present very similar intensities, they can be studied
achieving similar S/N ratios. Their respective line ratios, i.e. [Fell]/Bry and H»
1-0S(1)/Br~, allow to distinguish different ionisation mechanisms and efficiencies (e.g.
Rodriguez-Ardila et al.| 2005, Riffel et al|2010, 2013 and references therein). The
advantage of the near-IR IFS data is that this analysis could not only be performed in
terms of integrated measurements, but could also be perform in an spaxel-by-spaxel
basis, to obtain the spatially-resolved 2D maps of the line ratios (i.e. 2D BPT near-IR

diagrams).

o Near-IR tracers of obscured AGNs

There are two coronal lines in the K-band, i.e. the [SiVI] line at 1.963 um and the
[CaVIII] line at 2.321 um, that can be used as AGN indicators. Given the high ionisation
potential of both lines, they are usually associated to the outskirts of the broad-line
region, and to extended narrow-line regions. Although the coronal emission is usually
rather compact and unresolved, there are some examples of Seyfert galaxies where [SiVI]
extended emission has been observed. In particular, Bedregal et al. (2009) presented
the detection of a cone of [SiVI] emission in NGC 5135, extending ~600 pc (~2 arcsec)
from its AGN, using the same SINFONI data as presented in this work.

12
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o Absorption features and stellar populations

Besides the large number of emission features along the near-IR, there are different
absorption features that lie within the K-band, such as the Nal doublet at 2.206 um
and 2.209 um, the Cal doublet at 2.263 um, and 2.266 um and the CO absorption
bands CO (2-0) at 2.293 um, CO (3-1) at 2.323 um or CO (4-2) at 2.354 um. The
strongest feature among the stellar signatures is the CO (2-0) band, that is typical of
late stellar types (K or later), and traces the red giant and supergiant populations. The
measurements of the equivalent width (EW) of this first CO band (or the equivalent CO
index defined as the ratio of the flux densities at 2.37 um and 2.22 um), combined with
the equivalent width of the Pac or Brv lines, are widely use by the stellar population
synthesis models to constrain the ages of the stellar populations (e.g. |Leitherer et al.
1999, Maraston|[1998, 2005)).

o Gas and stellar kinematics

In addition to the morphology, luminosity and physical properties, the IFS data allow to
extract the kinematics of the different constituents of the ISM. It is possible to obtain
spatially-resolved maps of the velocity and velocity dispersion of the different phases of
the gas using the brightest emission lines present across the H and K bands (i.e. [Fell],
Ho 1-0S(1) and Bry), and trace the kinematics of the stars using the stellar absorption
bands at 2.293 um and beyond. The analysis of the global kinematics of the different
phases of the ISM provides with a very robust way to study whether the kinematics
of gas and stars are coupled, and whether they are located at the same dynamical
structures. In addition, it is possible to derive the dynamical masses of the objects,
and distinguish between rotation- and dispersion-dominated systems (e.g. Epinat et al.
2012, Bellocchi et al.|[2013))

o Outflows signatures in different phases of the ISM

IFS techniques allow to study not only the global kinematics of the objects, but also
local processes such as that associated with mass flows or turbulence. AGN- and
SF-induced outflows have been detected in multiple phases of the ISM, from highly
ionised to molecular gas, and are almost ubiquitous in LIRGs and ULIRGs (e.g. Rupke
et al.|[2005al [2013bl Westmoquette et al.|[2012, |Cicone et al.|2014, Rodriguez-Zaurin
et al.|[2013)). The near-IR IFS data allow to performed spatially and spectrally resolved

13
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multi-phase analysis of gas outflows, and study their spatial structure, kinematics,
outflows rates and mass loading factors in all different phases using an homogeneous

dataset.

1.5. Thesis project

The advent of IFS facilities allowed to perform spatially and spectrally resolved morpho-
logical and kinematical studies of (U)LIRGs, not only locally, but also at early stages of their
evolution. In parallel with other projects for investigating the nature of star-forming galaxies
at high-z, a large survey of local LIRGs and ULIRGs has been performed using different IFS
facilities (Arribas et al 2008)). This thesis project is part of this larger program, that covers
the whole range of LIRG and ULIRG luminosities and the different morphologies observed, and
presents, for the first time, a near-IR study of local LIRGs and ULIRGs based on seeing-limited
VLT-SINFONI observations. Throughout this work we consider Hg =70 km s~ Mpc™1, Qp =
0.70, Qm = 0.30.

This thesis is divided as follows:

o Data reduction and calibration of VLT-SINFONI data

In Chapter [2} we present a brief description of SINFONI and the science data and
calibration products from seeing-limited and AO observations. We also describe in detail
the reduction and calibration techniques that has been used to perform the calibration
of the datasets used in this thesis, together with some of the techniques implemented

to improve the final products.

o Spatially resolved kinematics of the central regions of M83 (Piqueras Lopez et al.,
2012b)

Chapter 3| presents the study of the spatially resolved kinematics of the central regions
of the nearby galaxy M83, based on AQO-assisted VLT-SINFONI observations on the
H+K band. The inner regions of M83, that correspond to the central ~235x140 pc,
are sampled with an unprecedented spatial resolution of ~0”2 (~4 pc). The detailed
study of the gas and stellar kinematics, and the role of supernovae in shaping the gas
kinematics are discussed. We also present the photometric and kinematic analysis of
the optical nucleus of M83, and discuss whether it is suitable for hosting a supermassive

black hole.

14



1.5 Thesis project

o Mapping the emitting gas structure of local LIRGs and ULIRGs (Piqueras Lépez
et al., [2012a))

We present the detailed study of the sample of local (z < 0.1) LIRGs and ULIRGs,
based on near-infrared H- and K-band VLT-SINFONI. Chapter [4] corresponds to the
atlas of the ionised, partially ionised, and warm molecular gas two-dimensional flux
distributions and kinematics over a FoV of ~ 3 x 3kpc (LIRGs) and ~ 12 x 12kpc
(ULIRGs) and with average linear resolutions of ~0.2 kpc and ~0.9 kpc, respectively.
We include an overview of the data and physical processes of the line emitting gas
and stellar populations, together with the emission and kinematic maps of the main
spectral features (i.e. Bry, Paca, Hy 1-05(1) and [Fell] lines), and a brief discussion of

their general properties.

o Characterisation of the visual extinction and dust clumpiness (Piqueras Lépez
et al} 2013)

In Chapter [5] we present the detailed 2D analysis of the extinction in the galaxies of
the sample, based on the Brvy/Brd and Paa/Bry line ratios. We describe the general
properties of the Ay maps, and analyse the spaxel-by-spaxel Ay distributions and radial
profiles of the individual sources. We investigate the possible effect of the spatial
sampling of the maps in the derived extinction values, and their implications in the

derivation of subsequent physical properties.

o Sub-kpc study of the star formation rate (Piqueras Lépez et al., 2014, in prep.)

In Chapter @] we study in detail the observed and extinction-corrected 2D structure
of the SFR and Xgpr in our sample. We also compare our near-IR measurements
of the SFR with other tracers like Ha, mid-IR continuum and Lg, and investigate
the implications of the spatial scale of the emission maps on the X grgr measurements.
Besides the spaxel-by-spaxel ¥ gpr distributions and maps, we analyse a sample of
95 star-forming regions in terms of their size, luminosity and velocity dispersion, and

compare them with other local and high-z samples of star-forming clumps.

o Conclusions and future work

Finally, in Chapter [7] we present the general conclusions of our analysis, together with
a brief discussion of the ongoing work and future prospects that follow from this thesis

project
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Data reduction and calibration

“Devil is in the detail.”
— Anonymous proverb

In this chapter we briefly describe the characteristics of SINFONI, as well as the resulting
science and calibration products for both AO and seeing-limited observations. We explain in
detail the data reduction process using the standard ESO pipeline, EsoRex, and the absolute
flux calibration of the intermediate products, prior to the final reconstruction of the coadded
data cubes. Finally, we also discuss some techniques that could be implemented to improve

the quality of the final data, and ease the ulterior analysis of the cubes.

2.1. SINFONI observations

2.1.1. Instrument description

SINFONI is a near-infrared (1.1-2.45 um) integral field spectrograph (IFS) installed at
the Cassegrain focus of the ESO VLT UT4 telescope, which can be fed by an adaptive optics
module. The instrument can operate with four different gratings, J, H, K and H+K (see
Table and three setups (250, 100 and 50 mas) that allow to chose the pixel scale of the
observations (see Table [2.2).

There are two main operation modes available for SINFONI, seeing-limited and AO-
assisted observations. In the seeing-limited mode, the spatial resolution is determined by
the natural seeing conditions, and the recommended configuration of the instrument is the
250 mas setup that achieves a field of view (FoV) of 8" x8". In the AO-assisted mode, the
system performs the correction of wavefront errors induced by the atmospheric turbulence.

These corrections are sent to the deformable mirror of the instrument and, together with
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Figure 2.1: SINFONI raw frames - Example of a SINFONI science raw frame. The top left panel
shows the distribution of the slices over a 8" x8" HST-NICMOS F160W image of NGC 3110. The right
panel shows a complete raw frame of the same object. The slitlets are distributed along the detector
following an interleaved pattern. The bottom left panel shows a zoomed view of the 500x500 pixel
region marked as a white square on the right frame, where the sky lines and the object continuum are
clearly visible.

the active optics system of the telescope, allows to reach spatial resolutions close to the

diffraction limit of the telescope (~0.05 arcsec).

The wavefront is measured from a guide star, either a natural guide star (NGS) or a laser
guide star (LGS), although it could also be an extended object that provides enough contrast.
The NGS should be a bright star (mg 2 14 mag), ideally as close as possible to the scientific
target (<30") to provide accurate measurements of the wavefront. The availability of a
suitable NGS severely limits the fraction of sky over the AO can be used. In that sense, the
LGS mode allows to extend the use of the AO to a wider number of scientific targets. The
LGS consists on an artificial star, created by a Na laser beam, that is used to measure the
wavefront. However, it still needs a natural star, a tip-tilt star (TTS), fainter than a NGS
(mg 2 18 mag) and reasonably close to the target, to correct from the motion of the image
(tip-tilt).

SINFONI works as a image slicer, i.e. its FoV is sliced in the image plane into 32 slitlets,

that are dispersed and rearranged on different locations on the detector plane. The pixel
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Band Wavelength range Resolution

J 1.10-1.40 um ~2000
H 1.45-1.85 yum ~3000
K 1.95-2.45 yym ~4000

H+K  1.45-2.45um ~1500

Table 2.1: SINFONI spectral bands. The spectral resolution is approximate since it depends on
the particular plate scale setup.

FoV Spaxel scale Mode
8" x8"  07250x07125 spaxel~? Seeing-limited
3" x3"  07100x0”050 spaxel~! Seeing-limited / AO
078x078 0”050x0”025spaxel ™!  Seeing-limited / AO

Table 2.2: SINFONI plate scale setups and available observation modes.

scale setup determines the angular size of the slices on the sky, each one projected onto 64
pixels of the 2048x2048 detector.

Figure shows an example of a K-band 0725007125 spaxel ™! raw science frame. The
top-left panel shows a 8" x8" FoV with the positions of the slitlets overplotted. The 32 slitlets
are aligned to form a pseudo-slit that is then dispersed and projected onto the 2048 pixels of
the detector. The raw image from the spectrometer is shown in the right panel of Fig. 2.1}

where the position of the slitlets are clearly visible along the detector.

2.1.2. AO-SINFONI observations of M83

The M83 AO-assisted SINFONI observations were carried out in service mode using the
SINFONI AO module fed by a LGS. The data were taken using the H4+-K grating and the
100 mas setup for the plate scale, that yields a FoV of ~3" x3". The wavelength coverage of
the H4-K configuration is ~1.45-2.45 um with an average spectral resolution of R~1500.

The total integration time per pointing was ~3400s, splitting the observations into
individual exposures of 300s. In addition, four sky frames were taking every two on-source
exposures following a pattern OOSOQOSOO. Further details of each of the four pointings will
be discussed in Chapter 3]

Using the same setup as the science data, a set of six spectroscopic standard stars was
observed, using shorter exposures between 2-10s, and following a typical OS pattern (one

on-source exposure followed by a sky acquisition).
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2.1.3. Seeing-limited SINFONI observations of local LIRGs and ULIRGs

The seeing-limited observation of our sample of local LIRGs and ULIRGs were obtained in
service mode, using the same plate scale configuration of 250 mas for all the objects, that yields
a nominal FoV of ~8" x8". The whole sample was observed in the K-band (~1.95-2.45 um),
whereas the subsample of LIRGS was also observed in the H-band (~1.45-1.85 um), with
spectral resolutions of R~4000 and R~3000, respectively.

The average integration time per pointing and per band for each object is ~2800s,
splitted into short exposures of 150s (see Chapter . The observations were carried out
following a jittering OSSO pattern for sky and on-source frames, i.e., two sky frames were
taken between two on-source exposures.

Two sets of standard stars were also observed, for both H and K bands, using the same
configurations as for the scientific data. As for M83, a pair of on-source and sky frames
was taken, using integration times of ~2-30s per frame, every ~2 hours of science data

acquisition, yielding an average of 1-3 stars per observing night.

2.2. Data reduction

Besides the intrinsic difficulty of the near-IR observations (sky lines, background emission,
etc.), the reduction process of SINFONI IFS data also implies an additional effort to reconstruct
the final data from the images of the slitlets on the detector. In addition to the common
techniques of dark subtraction, flat-fielding or wavelength calibration, it is also necessary to
account for the geometrical distortion of the images and to determine the correct position of
the slitlets on the detector.

The SINFONI reduction and calibration processes could be divided as follows:

o Correct from the telescope, instrument and detector signatures: bad pixels, background

emission, pixel to pixel gain variations and geometrical distortions.
o Wavelength calibration of the data.
o Cube reconstruction from the 32 slices to recover the spatial and spectral information.

o Calibration of the data: correct from the strong near-IR sky emission and translate the

information of the cubes into physical units.
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Figure 2.2: Set of SINFONI science and calibration frames - From top to bottom and left to right:
example of a dark frame of 150s of exposition; a flat field used to calculate the response of the detector;
a distortion frame to compute the geometrical distortion of the slitlets across the detector; an arc lamp
frame to perform the wavelength calibration; and a science and sky frames.

The standard ESO pipeline, EsoRex, allows to integrate almost all the reduction and
calibration tasks into data reduction scripts for the automation of the process. We now
describe briefly the reduction process, and the EsoRex recipes and calibration frames involved
in the different steps. An example of the calibration and science frames is shown in Fig. [2.2]

The pipeline is based on a set of stand-alone recipes that performs the different steps
of the reduction cascade. Each recipe has an input ASCII file, a set-of-frames (SOF), that
consists on a list of calibration and/or science FITS frames. The filenames must be listed
together and tagged using a label assigned to each data type. For a detailed description
of the recipes and the calibration frames, please see the SINFONI pipeline user manual at
http: //www.eso.org/sci/software/pipelines/.

An example of a SOF used to reconstruct an spectroscopic standard star is as follows:

/file_path/SINF0.2008-07-16T09:53:34.153.fits STD
/file_path/SINF0.2008-07-16T09:56:02.374.fits SKY_STD
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/file_path/MASTER_BP_MAP_K_250.fits MASTER_BP_MAP
/file_path/MASTER_FLAT_LAMP_K_250.fits MASTER_FLAT_LAMP
/file_path/WAVE_MAP_K_250.fits WAVE_MAP
/file_path/SLITLETS_DISTANCE K.fits SLITLETS_DISTANCE
/file_path/SLIT_POS_K_250.fits SLIT_POS
/file_path/DISTORTION_K.fits DISTORTION

The SINFONI data reduction typically follows the next sequence:

1. The first step of the reduction chain is generate a master dark frame using the recipe

sinfo_rec_mdark, from a set of raw dark frames.

2. Then, the recipe sinfo_rec_detlin calculates the response of the detector as a function of
the pixel intensity, and determines when it becomes non linear. The input SOF consists

on a set of flat field images, with increasing intensity/exposition time.

3. The next step of the reduction is to compute the optical distortion of the system, and the
relative distances of the slitlets from the first one, using the recipe sinfo_rec_distortion.
The recipe needs a set of ~75 fibre flat frames that covers all the slitlets. These fibre
flats are taken with a calibration fibre that moves perpendicular to the image slices and

illuminates only the first detector column of each slitlet.

4. The recipe sinfo_rec_mflat is then used to calculate the master bad pixel map and the
master flat frame from a set of standard flat fields. This step and the previous one (the
distortion correction) could be exchanged, since the input of both routines only depend

on the first two steps of the reduction chain.

5. Before the final data cube is reconstructed, the wavelength calibration frames have
to be created. This task is performed by the recipe sinfo_rec_.wavecal on a set of
arc lamp frames and the slitlet edge position table. This calibration could also be
performed based on OH lines from an input sky frame, improving the accuracy of the
data reduction. However, although for the J and H bands the OH based wavelength
calibration may work, the absence of OH lines beyond 2.3 yum makes it less robust for
the K band (see Fig. . For this reason, we performed the wavelength calibration of

our sample using the arc lamp frames.
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2.3 Sky emission

6. The final step of the reduction cascade is performed by the recipe sinfo_rec_jitter. This
routine reduces not only the science frames, but also the standard stars for the flux
calibration. It subtracts the sky emission (see Sec. [2.3)), correct from the flat-field,
and resamples the science and sky frames to construct wavelength calibrated data
cubes. It also builds a final mosaic from the individual data cubes by reconstructing the
jittering pattern. However, as we will discuss later, we perform the reconstruction of
the final cube using an additional routine, sinfo_utl_cube_combine, after the individual

data cubes are flux calibrated.

The reduction of the spectrophotometric standard stars is performed following the same
reduction cascade as the science data. Almost the totality of the sub-products of the reduction
process are common for both stars and science targets, and could be skipped. The final result
of the standard star reduction process is an individual cube of the star, that is later used

to perform the flux calibration of the scientific targets and to correct from the atmospheric

transmission (see Sec. [2.4).

2.3. Sky emission

One of the key issues of the reduction of near-IR data (1.0-2.5 um) is the correction from
the sky emission. The airglow emission is originated by OH radicals which are created by
reactions between the hydrogen and the ozone in an atmospheric layer of 6-10 km thickness
at an altitude of ~87 km. Fig. shows the stacked spectrum of the sky emission extracted
from SINFONI H- and K-band observations. These emission lines are the dominant source of
noise in fully processed data, since their flux is typically several orders of magnitude above
from other sources (Rousselot et al., 2000). Thus, in most cases, to correct from this emission,
it is mandatory to obtain separate frames of the sky field using identical setups and similar
conditions than science frames.

Besides the OH lines, that dominate the near-IR spectrum below ~2.3 um, the sky
emission has also a thermal contribution that dominates beyond 2.3 um in the K-band (see
Fig. This thermal component consists of both atmospheric and telescope emission, and

has to be subtracted from the raw data during the reduction process.
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Figure 2.3: H- and K-band sky spectra - Stacked spectrum of the sky emission extracted from H-
and K-band SINFONI sky cubes.

2.3.1. Sky lines subtraction

The standard ‘first-order’ approach to deal with the sky emission is to subtract a ‘sky’
spectrum from an ‘object’ spectrum. This procedure implies two sources of error, i.e. from
the statistical photon noise, that can only be improved by longer integration times, and
a systematical source of noise that comes from the strong and rapid variability of the sky
lines. This variability of the line fluxes is specially problematic in IFS observations, since
the limited FoV does not allow to measure both the object of interest and the sky emission
simultaneously, as in long-slit spectroscopy. Even more, in such instruments the line profile
can vary across the FoV due to image distortions, flexures or off-axis aberrations, and can lead
to significant and characteristic ‘P-Cygni’ residual profiles when subtracting an sky frame.

To deal with all these issues, the SINFONI pipeline includes a method developed by
Richard Davies (Davies, 2007)) to remove residual OH emission. This method takes into
account both the variation in the absolute and relative fluxes of the OH lines together with
the instrumental flexures, and allows to reduce significantly the time spent on sky acquisition.

This technique is based on finding a scaling at each position of the sky cube, as a function
of wavelength, in order to match optimally the sky background of an object cube. This
scaling is then applied to the sky cube to obtain a modified sky cube that is subtracted
from the object cube, and that takes the possible variations of the line fluxes into account.
To compensate for the instrumental flexures, the routine measures iteratively the relative

wavelength shifts of the sky lines in both the sky and object cubes, removing outliers which
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Figure 2.4: Spectral resolution from sky line measurements - H- (top panels) and K-band (bottom
panels) sky line FWHM measurements. The left panels show the variation of the line width with
wavelength. Blue diamonds show measurements of individual sky lines, and grey bars represent 1-o
uncertainties. The white lines are linear fits to the data points, and the blue shaded area represents the
98 % confidence interval of the fitting. The right panels show the distributions of the FWHM of each set
of lines.

deviate significantly. A final average shift is then calculated and applied to the modified sky

cube.

2.3.2. Spectral resolution measurements using the sky emission lines

As discussed in Sec. 2.2 the sky emission, although could be a nuisance as an additional
source of noise, could be of useful reference for the wavelength calibration of the data. In
that sense, since the sky frames are usually observed using the same instrument configuration
as the science frames, they are a valuable option to characterise the spectral resolution of the
processed data. Even more, since the sky lines are present all along the J, H and K bands,
with the exception of a small window at ~2.3 um in the K-band, they provide with useful
information of a possible dependence of the spectral resolution with wavelength within the
cubes.

To measure the spectral resolution of our data cubes, we extracted a stacked spectrum
from both a H- and K-band sky cubes (Fig. . We identified as much lines as possible
that were strong enough to be fitted by a single Gaussian profile unambiguously, i.e., were no

sign of blended lines. We found a mean value of the FWHM (full width at half maximum) of
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Figure 2.5: H- and K-band spectra of spectrophotometric standard stars - H- (top) and K-band
(bottom) normalised spectra of two standard stars using for the flux calibration of the data cubes (blue
curves). The red lines correspond to the fits of a black body (BB) profile, that include the stellar
absorption features of the stars, whereas the green lines are the resulting efficiency curves.
the lines of 6.6 + 0.5A for the H-band and 6.4 +- 0.6 A for the K-band, respectively. Fig.
shows the distributions of the FWHM of the lines for each band, together with the variation
of the width with wavelength, and a linear fit to the data. In both bands, the linear fits

are compatible with an almost constant spectral resolution across each wavelength range,

although the K-band data suggest a mild decrease of the line width at larger wavelengths.

2.4. Flux calibration

The final product of the reduction pipeline is a wavelength calibrated and sky-subtracted
data cube, built by combining the individual cubes of each on-source exposures, following the
pre-determined jittering pattern of the observations. This cube still has to be corrected from
the atmospheric absorption and to be flux-calibrated using the spectrophotometric standard
star data.

It is common that SINFONI observations to be carried out in service mode, and thus
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Figure 2.6: H- and K-band efficiency - H- and K-band median efficiency curves obtained from the
sample of standard stars. The colour code indicate the relative error calculated as the standard deviation
of the set of curves at each wavelength point.
that the final data cube to be the result of combining different individual observations taken
during different days or weeks. Hence, instead of combining the un-calibrated exposures in
a single cube, it is advisable to calibrate the individual cubes separately prior to the final
reconstruction, for a more accurate calibration. In this way, each individual cube is calibrated
using the closer standard star exposure to its observing date, assuring the most similar

atmospheric conditions as possible to the science cube acquisition.

2.4.1. Atmospheric absorption. Efficiency curves

The first step of the flux calibration is to correct each individual cube from the atmospheric
absorption. It is well known that the water vapour present in the atmosphere absorbs the
electromagnetic radiation from outside the Earth along well-defined bands, that correspond
to rotational and vibrational transitions of the molecule. In particular, at near-IR wavelength,
the vibrational transitions of the water vapour dominate the absorption of the atmosphere.
Although the H and K-bands take advantage of two windows where the atmosphere is almost
transparent, both bands are still affected by the atmospheric absorption, specially the K-band.

To characterise the transmission of the atmosphere, we use the imprint of the absorption
bands on the spectrum of the standard stars. We extract an stacked spectrum from the star
data cube, by integrating all the flux within a 3¢ radius aperture, where ¢ is measured from
a 2D Gaussian fit of a collapsed image of the star. This ensures that almost all the flux of

the star is included in the spectrum.
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The spectrum of the standard star is then normalised with a black body profile, calculated
with the corresponding T listed in the Tycho-2 Spectral Type Catalog (Wright et al., [2003)),
and scaled at the central wavelength of the spectroscopic band (1.675 um and 2.175 um for
H and K bands, respectively). The presence of stellar absorption features in the spectra of
the stars, in particular along the H-band, needs to be taken into account, to avoid artificial
artefacts on the final processed data. These features, mainly lines from the Brackett series,
are fitted independently using a Lorentzian profile, and added to the black body fit of the
stellar continuum (see Fig. [2.5)).

The resulting curve, after the normalisation of the spectrum, is the efficiency or sensitivity
curve that accounts for the atmospheric transmission. We obtain one efficiency curve per
standard star cube, that would be used to correct each science data cube on an spaxel-by-
spaxel basis. Fig. [2.6] shows the median efficiency curves for the H and K bands, obtained by
combining the whole set of curves for each band. Due to the variability of the atmospheric
conditions, and the different airmasses of the observations, the uncertainties of the curves at
the extremes of the bands are significant, and, in most of the cases, make these wavelength

regions almost unsuitable for analysis purposes.

2.4.2. Absolute flux calibration

To find the conversion factor from counts to physical units, we performed synthetic
photometry on the stacked spectra of the standard stars. We use the H- and K-band response
curves of the 2MASS filters (Cohen et al 2003) to obtain the total flux of the stars on each
band, and compare the values with the H- and K-band magnitudes of the stars from the
2MASS catalogue (Skrutskie et al., [2006]).

We obtain a flux conversion factor for each standard star cube. Figure shows the
distributions of the flux conversion factor for each band, where the average factors are
(1.9140.08)x10~%" and (1.60+0.07)x10~1 for H and K bands, respectively, in units of

1 Lcount™1].

[ergs™tcm ™2 um~

In this way, each individual science data cube is divided by the sensitivity curve and
multiplied by the conversion factor of the standard star which is closest to the observing time
of the cube. Once all the cubes for a certain pointing are fully calibrated, they are combined

by reconstructing the jittering pattern of the observations.
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Figure 2.7: H- and K-band flux factor distributions - H- and K-band flux factor distributions obtained
from the sample of standard stars.

2.5. Improving the data cubes: The La3D and background-
match methods

Before reconstructing the final cubes, we perform additional tasks to the individual cubes,
not included on the standard ESO pipeline, to improve the quality of the resulting cubes by

reducing the noise on both spatial and spectral dimensions.

2.5.1. The 3D Laplacian Edge Detection method

The 3D Laplacian Edge Detection method (La3D) is a procedure kindly provided and
developed by Richard Davies, that is a generalisation of the cosmic-ray rejection algorithm
developed by Pieter G. van Dokkum (van Dokkum), 2001). This procedure detects and
corrects bad pixels on the data cubes using a variation of a Laplacian edge detection method.
This is widely used for edge detection in digital images, and allows to identify the bad pixels
of the data cube and their surroundings by the sharpness of their edges.

In the Laplacian edge detection method, the image is convolved with the Laplacian of
a 2D Gaussian function. In the convolved image, the location of the edges of the spatial
defects is identified as the zero-crossings, and using different values of the Gaussian o, it is
possible to detect both sharp and smooth defects in the image.

Figure shows an example of the results of applying the La3D method to a SINFONI
data cube of NGC 3110. The top panels show the different steps of the procedure, from a
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Figure 2.8: The 3D Laplacian Edge Detection method - Example of the 3D Laplacian Edge Detection
method applied on a single cube of NGC3110. The top panels show, from left to right, a single wavelength
plane (at ~2.21 um) of a calibrated cube before (red) and after (green) the La3D correction; and the
same plane of the final coadded cube (blue) after the combination of all the corrected cubes. The bottom
panel shows the spectra of each cube, extracted over a 10x 10 spaxel aperture, using the same colour
code as in the top panels.
calibrated frame before and after the La3D correction to the coadded final cube, built from
the individual, corrected cubes. The bottom panel shows the effect of the algorithm on the
spectral dimension, using the same cubes than the top panels. In both cases, the spatial and
spectral dimensions, the improvement of the data is clearly visible, with a significant decrease

of spatial defects and sky line residuals.

2.5.2. The background-match method

Although the individual cubes are background-corrected from both, the thermal back-
ground and the atmospheric transmission (that also modifies the slope of the spectra), it is
possible to find some scatter among the background levels of the set of cubes of a particular
pointing. This scatter is translated into a higher dispersion of the flux on an spaxel-by-spaxel
basis, and is clearly visible in some of the coadded cubes, and in the collapsed images in the
form of dark and bright stripes along the FoV (see Fig. .

To minimise this scatter of the background level among the individual cubes, we developed
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Figure 2.9: Background-match method results - Collapsed images of IRAS 22491-1808 from a
coadded cube with no background-matching (left) and after applying the correction (right).
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Figure 2.10: Background-match method - Example of the background-match correction. The top
panels show the spaxel-by-spaxel flux distributions of the same common region on a single wavelength
slice from four individual cubes of IRAS 22491-1808, before (green) and after the correction (blue).
The bottom panel shows the median of the non-corrected (green diamonds) and corrected (blue circles)
distributions of individual data cubes, normalised to the median of the whole set of cubes.
a routine that could be applied, not only before combining individual cubes to form a coadded
one, but also when combining coadded cubes to build larger mosaics. The routine is a
generalisation of a similar algorithm provided by Richard Davies, that evaluates the level of

background of a set of cubes along the spectral dimension, and calculates the relative offsets

among the cubes as a function of wavelength.
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Figure 2.11: Examples of background-match method wavelength variability - Variation of the rela-
tive offsets from the background-match method with wavelength for two individual cubes of IRAS 22491-
1808. The top panel shows a cube with no clear wavelength dependence of the offset, whereas the bottom
panel shows a cube where the relative offsets have a strong dependence with wavelength, probably due
to an inaccurate fit of the slope of the standard star spectrum.

The algorithm identifies the overlapping region of the set of cubes, and measures, in a
particular wavelength slice, the spaxel-by-spaxel flux distribution of the region. It calculates
the median of the flux distributions of all the cubes at this particular wavelength, and derives
the relative offsets of each cube (see Fig. . This procedure is repeated at each wavelength
slice, obtaining a set of relative offsets as a function of wavelength for each individual data
cube.

Figure[2.11)shows the offsets of a couple of individual cubes of IRAS 22491-1808. Although
in one of the cubes the relative offsets are almost constant and close to zero, one of the cubes
shows a strong dependence with wavelength, that clearly indicates an inaccurate correction
of the atmospheric transmission. This source of error is usually consequence of an inaccurate
fit of the standard star continuum. As discussed in Sec. [2.4] the slope of the black body
profile used to fit the stellar continuum is calculated by the T of the star, obtained from the
Tycho-2 Spectral Type Catalog. In those stars where the temperature is not well determined,
the normalisation of the spectrum by the black body yields efficiency curves that are not flat,
and might change the slope of the cube spectra.

This technique provides a correction for individual data cubes that is typically less than
~5% in most of the cases. However, we found that the method is particularly useful when

combining coadded cubes to build a mosaic.
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Figure 2.12: H- and K-band seeing distributions - H- and K-band seeing (FWHM) distributions
obtained from the sample of spectrophotometric standard stars.

2.6. PSF estimation. Seeing-limited vs AO observations

The point spread function (PSF) of the seeing-limited observations could be easily
measured using the standard star cubes. As mentioned in Sec. during the flux calibration
of the cubes, a collapsed image of each standard star is obtained. The image is then fitted
using a 2D Gaussian profile, and the PSF radius is calculated as the quadratic mean of the
widths of the Gaussian function, o, and o/, where x" and y’ are the canonical axes of the
ellipse.

Figure @] shows the distribution of the FWHM of the sets of standard stars, for H and
K bands, respectively. The average values of the distributions are 0.6140.17 arcsec for the
H-band and 0.63+0.15 arcsec for the K-band, respectively.

An accurate measurement of the PSF for AO-assisted data is, nevertheless, not such
straight forward, due to its temporal and spatial variability. Although the shape of the PSF
could be estimated using reference stars, in a similar way as in seeing-limited observations, it
could be misleading due to anisoplanaticism (i.e. shape of the PSF is not constant across the
detector).

Although different methods have been proposed (Davies, |2008), here we discuss one
method that consists on estimating the PSF by comparison with high resolution data. The
main drawback of this method is clear, the availability of additional data at similar wavelengths

and at higher spatial resolution. However, in the particular case of our AO data, M83 was
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Figure 2.13: Estimation of the AO-SINFONI PSF using HST-NICMOS images - Top panels show
the optical nucleus of M83 observed with NICMOS F160W filter (left), the same region after convolving
the image with the broadening function B (centre) and the corresponding AO-SINFONI H-band image
(right). Bottom panels show the NICMOS PSF (left), the broadening function B obtained from convolving
the original NICMOS image to match the AO-SINFONI data (centre), and the SINFONI PSF that results

from convolving the NICMOS PSF with B (right)
also observed using HST-NICMOS NIC2 camera, and the F160W and F222M filters. These
setups achieve a slightly higher spatial resolution than our 100 mas SINFONI data, and have
well defined, stable PSFs.
The aim of the procedure is to find a broadening function, B, that satisfies lgjnpont =

Inicmos ® B. The NICMOQOS PSF is well known, and can be easily modelled using the PSF

simulator Tiny Tim (Krist et al [2011). Using this model, we can estimate the SINFONI PSF

as PSFsinFont = PSFnicmos ® B, where the resulting PSF is dominated by the broadening
function. Fig. shows the different steps of the process to calculate B for one of our
M83 pointings, in the H-band. The top panels show the original NICMOS image of the
optical nucleus of M83, together with the same region after being resampled to the SINFONI

resolution and convolved with the broadening function. The resulting PSFs and B are shown

on the bottom panels.

As discussed in (2008)), the correction provided by the AQO is limited for extragalactic
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Figure 2.14: PSF profiles - Comparison among the NICMOS PSF profile (left), the broadening function

B profile (centre), and the H-band SINFONI PSF profiles (right), where the blue line corresponds to the

AO observations whereas the black line corresponds to the median PSF profile of the seeing-limited data.
sources, and a simple model of B is sufficient for a proper representation of the PSF. In this
particular case, we use a symmetric double 2D Gaussian function to account for the core of
the PSF, and for the wings of the seeing-limited halo. Fig. shows the profiles of the
NICMOS and SINFONI (AO and seeing-limited) PSFs, together with the B profile. The
resulting broadening function is composed by a narrow component of ~1 pixel FWHM and

another wide but fainter component of ~4—6 pixel FWHM.

2.7. The Voronoi binning

After the cubes are calibrated and coadded, and before extracting the kinematics and flux
maps, the cubes/mosaics are binned to increase the average S/N across the FoV. We use
the Voronoi binning, developed by (Cappellari & Copin| (2003), an adaptive spatial binning
method that uses a Voronoi tessellation with a nearly hexagonal lattice.

The method follows a recursive approach to bin the data. Firstly, it generates an initial
set of bins that satisfies certain topological and morphological general criteria, e.g. there have
to be no holes or bin overlapping, the bins have to be as round as possible to maximise the
spatial resolution, and the S/N scatter has to be minimal but not at expenses of an extreme
degradation of the spatial resolution. Secondly, the algorithm tries to improve the binning of
the previous stage, according to the previous criteria of optimal binning.

The binning method employs bins of approximate circular shape to divide the space,
described in terms of a set of points called generators. The algorithm starts from the spaxel
with the highest S/N and keeps accreting its closest spaxels until the target S/N threshold is
reached. Thus, in those regions where the S/N is higher than the threshold, bins are reduced
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Figure 2.15: Voronoi binning - S/N spaxel-by-spaxel (green) and bin-by-bin (blue) normalised
distributions of the IC 5179 Bry (left) and Hz 1-0S(1) (centre) maps, and the IRAS 14348-1447 Pac
map (right).
to individual spaxels. The process continues on an spaxel-by-spaxel basis, until the whole
frame has been processed. Finally, the method computes the centroids of all good bins, that
are then used as generators for the Voronoi tessellation.

Figure shows the S/N distributions of three example maps, before and after the
binning process. Although in all cases the improvement of the average S/N is clear, it is
specially significant on the Paax map of IRAS 14348-1447, where there is a larger number of
spaxels with low surface brightness. However, since the optimal binning criteria have to be
satisfied, some bins might not reach the desired S/N threshold.

Although most of the applications of the Voronoi binning use a S/N criterium, it is also
possible to bin the data according to other quantity of interest. For example, the data could
be binned according to the error of the measured flux, or use more sophisticate quantities as

the error in some extracted parameter like kinematics.
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3

Spatially resolved kinematics of the
central regions of M83

Hidden mass signatures and the role of supernovae

“There is nothing like looking, if you want to find
something. You certainly usually find something, if you
look, but it is not always quite the something you were
after.”

— J.R.R. Tolkien, The Hobbit

The barred grand-design spiral M83 (NGC 5236) is one of the most studied galaxies given
its proximity, orientation, and particular complexity. Nonetheless, many aspects of the central
regions remain controversial conveying our limited understanding of the inner gas and stellar
kinematics, and ultimately of the nucleus evolution.

In this Chapter, we present AO VLT-SINFONI data of its central ~ 235 x 140 pc with an
unprecedented spatial resolution of ~0.2 arcsec, corresponding to ~4 pc. We have focused
our study on the distribution and kinematics of the stars and the ionised and molecular gas by
studying in detail the Paa and Brvy emission, the Hy 1-0S(1) line at 2.122 um and the [Fell]
line at 1.644 ym, together with the CO absorption bands at 2.293 um and 2.323 um. Our
results reveal a complex situation where the gas and stellar kinematics are totally unrelated.
Supernova explosions play an important role in shaping the gas kinematics, dominated by
shocks and inflows at scales of tens of parsecs that make them unsuitable to derive general
dynamical properties.

We propose that the location of the nucleus of M83 is unlikely to be related to the

off-centre ‘optical nucleus’. The study of the stellar kinematics reveals that the optical
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nucleus is a gravitationally bound massive star cluster with Mgy, = (1.1 4 0.4) x 10’ Mg,
formed by a past starburst. The kinematic and photometric analysis of the cluster yield
that the stellar content of the cluster is well described by an intermediate age population of
log T(yr) = 8.0 + 0.4, with a mass of M* ~ (7.8 £ 2.4) x 10° M.

3.1. Introduction

M83 (NGC 5236) is a nearby (D = 4.6 Mpc, 22pcarcsec™!, z = 0.0017 from the
NASA/IPAC Extragalactic Database, NED) barred grand-design spiral galaxy with a nuclear
starburst. The galaxy has been object of intense study during the last decade, given the
complexity of its central regions, its proximity and the fact that it is almost face-on, with an
inclination of i = 24° (Comte, 1981). This makes it a good candidate on which to make use
of high spatial resolution IFS to study the controversial aspects of its innermost regions.

The general morphology of the galaxy shows a pronounced bar and well-defined spiral
arms where star formation is intense. On the other hand, the central regions of M83 in the
infrared are rather complex. The J-K images of the inner region show two non-concentric
circumnuclear dust rings, which are associated with two inner Lindblad resonances (Elmegreen
et al., [1998). These two rings are connected by an inner bar, almost perpendicular to the
main stellar bar. The general shape of the extended emission traces an arc between these
two dust rings, where the star formation is concentrated.

The location of the nucleus of M83 remains unclear. |Thatte et al.| (2000) first reported
the existence of a 3.4arcsec (~ 75 pc) offset between the optical nucleus and the centre
of symmetry of the bulge K-band isophotes. The centre of symmetry of these external
isophotes is coincident with the dynamical centre proposed by Sakamoto et al.| (2004)), based
on two-dimensional CO spectroscopy, and confirmed later by Rodrigues et al.| (2009) and
Knapen et al.[(2010). Different locations of hidden mass concentrations were proposed to
host the supermassive black hole of M83, mainly based on studies of the gas kinematics
(Mast et al.[2006, |Diaz et al.|2006, Rodrigues et al.|2009 and Knapen et al.[2010)).

In this paper, we present new integral field VLT-SINFONI spectroscopy in H+K bands,
with an unprecedented spatial resolution, covering the central ~ 235 x 140 pc of the galaxy.
We study the stellar and gas kinematics of the inner parts and address some of the open
questions regarding the hidden mass concentrations at off-nuclear locations (Thatte et al.

2000, [Mast et al.|2006, Diaz et al.[2006]) and the origin of the steep velocity gradients in the
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gas kinematics (Rodrigues et al., [2009), revealing a complex scenario where supernovae play

a key role in the kinematics.

3.2. Observations

3.2.1. Observations and Data Reduction

The M83 observations are divided into four different pointings, labeled as A, B, C and D
in Fig.[3.1] These pointings were chosen to cover the stellar nucleus of the galaxy, that is
identified with the optical nucleus of M83, covered by pointing A; the centre of symmetry
of the bulge K-band isophotes (Thatte et al., 2000), that corresponds to pointing B; the
proposed location of a hidden mass by |Mast et al.| (2006), by pointing C; and the putative
massive black hole location given in |Diaz et al.| (2006]) sampled by pointing D. The first three,
A, B and C, were carried out between April and June 2009 in service mode, using the AO
module fed by a LGS. The fourth was performed in July 2011, also in service mode. The
data were taken in the H4+K configuration, using a scale plate of 0.05 x 0.1 arcsec pixel !
that yields a nominal field of view (FoV) of ~3.2" x 3.2" then enlarged by dithering. The
wavelength range covered is from 1.45 ym to 2.46 um with a spectral resolution of R~1500.

Although a total of four pointings were programmed, the main analysis in this work
has been performed on three of them, A, B and C. The observations for pointing D could
not be completed and there was only 1 usable object frame. Taking into account the vast
difference of quality in the data, we decided not to include the new data in the main analysis,
but use it instead to support some of the results. The first three pointings cover an area
of ~8" x6" around the nucleus of the galaxy, while the fourth pointing covers ~ 3" x 3".
The footprints of the observed pointings are shown in Fig. [3.1I] The total integration time
was 3300s for pointing A and 3600s for each of pointings B and C, split into individual
exposures of 300s. In addition, four sky frames of 300s were taken for every pointing every
two on-source exposures to subtract the sky emission, following the pattern OOSOQOSOQO. In
the same way, a total of five standard stars (Hip066957, Hip069230, Hip070506, Hip071136
and Hip098641) were observed in order to perform telluric and flux calibration. The fourth
pointing is a single on-source exposure of 300s with a matching sky frame. The standard
star used for the calibration was Hip001115.

The reduction of the data was performed using the standard ESO pipeline. An individual

cube was built from each frame, from which the background sky emission was subtracted
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Optical Nucleus Inner Arc

-6 -4 -2 0
Ao [arcsec]

Figure 3.1: Central region of M83 - HST NICMOS F222M image with the fields covered by the four
SINFONI pointings superimposed. The location of the optical nucleus and the arc of star formation
mentioned in the text are also shown. Although the inner arc is not visible in the continuum map, it is
clearly visible in the western part of the FoV in the flux panels in Fig. The total coverage of our
SINFONI observations is ~ 235 x 140 pc.
using the method outlined in |Davies (2007). We performed the telluric and flux calibration
on each cube individually to improve the results. Taking into account the relative shifts of the
jitter pattern, we then combined the data to create a single cube for each pointing. Finally,
these were combined to build a single mosaic.

The telluric and flux calibration were performed in two steps. First, each individual star
was normalised to the continuum level, using a blackbody profile at the T listed in the
Tycho-2 Spectral Type Catalog (Wright et al., [2003)). To remove the absorption features
in the spectra of the stars, we used a solar template, convolved and binned to match the
resolution of the SINFONI data. The result is a ‘sensitivity function’ that takes into account
the atmospheric transmission. Secondly, we used the H and K magnitudes of the stars from
the 2MASS catalog (Skrutskie et al., [2006) to convert our spectra from counts to physical
units. We made use of the response curves of 2MASS filters, as defined in Cohen et al.| (2003),
to obtain the values in counts of our spectra at their effective wavelengths. Using the above
mentioned magnitudes, we obtained two conversion factors for each star (one for H-band
and one for K-band). These factors were almost identical for both bands in every star, which

verifies the calibration. We adopted the mean value to scale our curves. The flux-calibrated
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Figure 3.2: Fitting of the stellar CO bands - Integrated spectra of apertures A, C, E and H, represented
in Fig. and the result from fitting template spectra to the stellar absorption features. The normalised
spectra are shown in black, and the results from the fitting are plotted as a thick blue line. The red
dotted lines show the residuals from subtracting the fit.

cubes were obtained by dividing the individual cubes by the ‘sensitivity function’, to correct

from the atmospheric transmission, and by multiplying them by the conversion factor.

3.2.2. Gas and Stellar Kinematics

The gas kinematics were extracted by fitting a gaussian profile to the most relevant emission
lines, using the code LINEFIT described in Davies et al|(2011)) (see also [Forster Schreiber
et al.|2009). During the extraction, the OH sky line at 2.18 um is used to remove the
instrumental broadening, measured to be 13 A FWHM.

To extract the stellar kinematics, we focused on the two most prominent CO bands, CO
(2-0) at 2.293 um and CO (3 — 1) at 2.323 um, and used the Penalized Pixel-Fitting (pPXF)
software developed by (Cappellari & Emsellem| (2004) to fit a library of stellar templates to our
data (see Fig. . We made use of the near-IR library of spectral templates from Winge et al.
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(2009), which covers the wavelength range of 2.15 um — 2.43m with a spectral resolution of
R ~ 5600 and sampled at 1 A pixel~!. The library contains a total of 23 late-type stars, from
F7111 to M3IIl, and was previously convolved to our SINFONI resolution.

The uncertainty in the gas and stellar kinematics is highly dependant on the S/N and
how well resolved the line is. For the gas kinematics, the uncertainties could range from
~ 1% of the resolution element in those regions with high S/N up to more than ~10% in
the regions with poorer S/N. The kinematic precision achievable with the stellar absorption
features also depends on the S/N, although it is typically lower than the precision in the gas
kinematics mainly due to uncertainties in the template matching uncertainties. As shown in
Fig. the quality of the template fitting indicates that the precision we achieved in the
stellar kinematics is high, less than ~40kms™! in those regions with high S/N, and that
offsets of 230kms™! would be clearly visible in the residuals of the fitting.

In order to compare the velocity fields of the different phases of the gas and the stellar
component, we have established a reference value of cz = 589.6 kms™! for the velocity that
has been used as a zero-point for the velocity maps. This reference value for the velocity has
been chosen as the mean value of the stellar velocity in a small aperture of 5 spaxel radius

centred in the dynamical centre of the galaxy proposed by Sakamoto et al.| (2004).

3.2.3. Voronoi Binning

Before the extraction of the kinematics, the data were binned to achieve a minimum value
of S/N on the whole field. We used the Voronoi binning method implemented by |Cappellari
& Copin| (2003]) to maintain the maximum spatial resolution of our maps while constraining
the minimum S/N ratio.

The Voronoi tessellation employs bins of approximate circular shape to divide the space,
described in terms of a set of points called generators. Every bin encloses all the points that
are closer to its generator than any other generator. The algorithm finds an initial set of
generators by selecting the spaxel with highest S/N ratio and accreting spaxels to that bin,
until the required threshold is reached. Then, it moves downwards to lower S/N spaxels until
all the points are assigned to a proper bin. This set of generators is then refined to satisfy
both topological and morphological criteria and to ensure that the scatter of the S/N among
all the bins is reduced to a minimum (see (Cappellari & Copin/|2003 for further details).

This binning of the data does not affect those spaxels with high S/N ratio, preserving the

original spatial resolution of these regions. The maps obtained for each line and the continuum
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Feature S/N

Paa 50
Bry 45
H, 1-05(1) 15
[Fell] 25
Stellar 50

Table 3.1: S/N thresholds used for the Voronoi binning

are then binned independently, since their flux distributions are totally different. We have
therefore defined different S/N thresholds for each line, in order to obtain appropriately
sampled maps. The S/N cutoff used for each line and for the stellar continuum are shown in

Table[4.3] We selected these values to achieve roughly the same number of bins in each map.

3.2.4. PSF Determination

The measurement of the PSF has been done by comparing the SINFONI data to higher
resolution HST NICMOS data. As discussed in Davies (2008), we can use a higher resolution
image with a well known PSF to estimate the PSF of a lower resolution image. After
resampling the NICMQOS image to our SINFONI pixel scale, the aim is to find a broadening
function, B, that satisfies Isynront = Inicmos ® B. Since the NICMOS PSF is well known, we
can estimate the SINFONI PSF as PSFsinront = PSFnicmos ® B. The shape of the resulting
PSF is dominated by the broadening function.

We performed independent fittings of the broadening function for each pointing and each
band. The NICMOS images were obtained with the NIC2 camera, using the F160W and
F222M filters for H and K band respectively, with a pixel scale of 0.075 arcsec pixel ™. After
trying different models for the broadening function B, we find that it is better described as a
symmetric double Gaussian with a narrow component of ~1 pixel FWHM and another wide
but fainter component of ~4-6 pixel FWHM that takes into account the seeing-limited halo.
The different values of the FWHM of the resulting PSF are shown in Table 3.2

We note that the resolution of our data is limited by the pixel scale chosen for the
observations rather than the LGS-AO performance since, in order to cover a wider FoV
(~3arcsec), we chose the 0705x 0”1 pixel scale from the three configurations available for

SINFONI.
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H Band K Band
Pointing FWHM FWHM FWHM FWHM FWHM FWHM
(pixel) (") (pc)  (pixel) (") (pc)
A 3.66 0.18 4.03 4.05 0.20 4.45
B 3.76 0.19 414 4.18 0.21 4.60
C 2.95 0.15 3.24 4.09 0.20 4.50

Table 3.2: FWHM of the PSF for each pointing. The values are measured after convolving the
broadening function, B, obtaining from the fitting with the PSF of NICMOS images.

3.3. Overview of Data

The inner ~190 x 130 pc of M83 are covered by pointing A centred on the optical nucleus
of the galaxy, pointing B on the photometric centre, and pointing C on the off-nuclear black
hole location proposed by Mast et al.| (2006)).

The wide spectral coverage of the H4-K band configuration of SINFONI allows us to
study in detail a large number of emission lines and stellar absorption features (see Fig. .
In order to achieve a good level of S/N in the whole FoV, we focussed our study of the
gas kinematics on the brightest emission lines, i.e. Bry 2.166 um for the ionised gas, the
roto-vibrational transition Hp 1-0S(1) at 2.122 um for the warm molecular gas and the [Fell]
line at 1.644 um. We have extracted surface brightness, velocity dispersion and velocity maps
of these three lines, represented in Fig. [3.4] that allow us to study different phases of the
interstellar medium.

Although the Paa line is the brightest in the wavelength range covering the H and K
bands, it lies at a wavelength where the atmospheric transmission is very low. Here, the
strong variability of the sky absorption makes it very difficult to perform a good correction of
the transmission, which translates into an increase of the noise compromising the results of
the kinematics extraction. However, given the brightness of the Pa«a line, we were able to
obtain a map of the emission that can be compared with HST/NICMOS archive images of
the same region.

As noted above, we make use of the Hy 1-0S(1) line to trace the warm molecular gas
in the whole FoV. However, the detection of additional H, transitions allows us to study in
more detail, in Sec. , the excitation mechanisms of the Hs in the inner regions of M83,
and distinguish collisional excitation in shocks from radiative fluorescence. To improve the

S/N ratio of the weaker transitions, we have integrated the signal of all the spaxels from the
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Figure 3.3: Normalised H+K spectra of selected apertures - Normalised H+K spectra of the apertures A, C, E and H (see Fig. for reference).

Aperture A is located at the maximum of the Bry emission, aperture C covers the centre of the optical nucleus, aperture E corresponds to one of the
bright spots of [Fell] emission next to the optical nucleus and aperture H is located at the position of one of the SNR listed in Dopita et al.|(2010). The
wavelengths of a number of lines and features are identified, and those studied in this paper are identified in blue. These spectra clearly illustrate the
wide variety of excitation conditions that are occurring in the inner regions of M83.
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Figure 3.4: M83 flux and kinematics maps - Flux and kinematics maps of the main emission lines. From top to bottom, the Bry , Hy 1-05(1)
and [Fell] maps, and from left to right, flux, velocity dispersion and velocity field. The boxes indicate the apertures used to extract spectra, some
of which are shown in Fig. These also act as reference points with respect to the discussion in the text. Flux maps are scaled with a factor
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Continuum
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Figure 3.5: M83 stellar maps - Maps of the stellar continuum flux (top left), equivalent width (top
right), velocity dispersion (bottom left) and velocity field (bottom right) for the nuclear region of M83.
These were obtained by fitting the first two CO absorption bands, CO (2 — 0) at 2.293 um and CO (3 -
1) at 2.323 um. The boxes indicate the same apertures as in Fig. Flux map is scaled with a factor
3x107®ergs™tecm™2
inner star-forming arc (those above a certain flux level) and those from the optical nucleus
(see Fig.[3.1]). This allows us to measure the fluxes of six different transitions with good level
of confidence. The different lines measured are listed in Table 3.3
In addition to the numerous emission lines available, we detect a variety of stellar features

in our spectra, most notably the Nal, Cal and CO absorption bands. As mentioned previously,

we have focussed on the first two CO bands, CO (2 — 0) at 2.293 um and CO (3 - 1) at
2.323 um to study the stellar kinematics (Fig. .

3.3.1. Morphology and Kinematics of the Gas

As shown in Fig. [3.4] the morphology and, to some extent, the kinematics of the distinct
phases of the gas are rather different. The Bry emission is mainly associated with the inner
star-forming arc towards the west side of the FoV. The global velocity gradient of ~60 kms™!

from northwest to southeast is consistent with an inflow of gas along the spiral arms and
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through the inner bar (Elmegreen et al.||[1998, (Crosthwaite et al. 2002, [Fathi et al.|2008) to
the photometric centre of the galaxy. Superimposed on this, there is a ring that is on and
around aperture A in Fig.[3.4] One of the most remarkable properties of this ring-like feature
is that it shows no velocity gradient and has a low velocity dispersion that, together, argue
against it being a dynamical structure. We discuss this feature in detail in Sec. [3.5

The Hy emission is mainly associated with the inner arc along the western part of the
FoV and with the optical nucleus. The kinematics are very similar to those exhibited by
the ionised gas. Around region A in Fig. [3.4] the velocity is the same as that of the Bry
emission, where no dominant velocity gradient is observed. Moreover, the emission of the
molecular gas resembles the observed ring-like feature of the ionised gas. However, the strong
emission of the optical nucleus allowed us to trace the velocity field across this region in
more detail. The velocity gradient measured from northeast to southwest is ~200 kms™?
in ~45 pc, significantly steeper than the gradient measured from the stellar kinematics (see
Fig[3.5). The velocity dispersion shows a similar picture as the Bry emission, where the
low values measured along the inner arc suggest that the gas is confined to a thin plane,
presumably a disk supported by rotation.

The [Fell] emission is highly extended along the inner arc, showing various knots of strong
emission. Two of the brightest spots are located in the outskirts of the optical nucleus,
labeled as E and F in Fig. [3.4} at radial distances of ~ 30 pc and ~ 32 pc respectively. These
two knots also exhibit a high velocity dispersion (~ 150 kms™! in region E and ~ 115kms~!
in region F, both taking into account the spatial resolution of our data) and are probably
tracing individual supernovae. We return to this issue in Sec. [3.5] Although the velocity
field of the [Fell] is very similar to those traced by the Bry and H» emission, the velocity
dispersion is systematically higher along the inner star-forming arc. As we discuss in Sec.
this higher velocity dispersion may be a sign of recent supernovae explosions, and would set

a constraint on the age of the stellar populations along the arc.

3.3.2. Stellar Component

The stellar continuum derived from the first two CO absorption bandheads is mainly
concentrated in the optical nucleus and, unsurprisingly, shows a similar morphology to that of
the K-band image. On the other hand, the stellar kinematics show a completely different
picture to that traced by the gas. Whereas the gas kinematics appear to be completely

dominated by shocks and outflows at small scales, the stars show a smooth velocity gradient
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Figure 3.6: Optical Nucleus stellar profiles - Flux (white), velocity dispersion (green) and velocity

(magenta) profiles of the stellar component along a pseudo-slit traced to include the optical nucleus

along the direction of maximum variation of the velocity field. The location of the photometric centre of

Thatte et al.| (2000)) is marked as a red dot. The pseudo-slit is plotted in black over the stellar continuum

map for reference.
from northeast to southwest, typical of a rotating disk. Superimposed on this, the stellar
continuum emission from the optical nucleus is dominated by a coherent internal rotation,
as highlighted in Fig.[3.6] The amplitude of the projected velocity field, measured peak to
peak, is ~ 32kms~! within ~ 24 pc. The de-projected rotation velocities for an adopted
inclination of i = 24° would be a factor 2.5 higher. Although the uncertainties in the stellar
kinematics are comparable to this value (in an spaxel basis), Fig. shows a very clear jump
in the projected velocity (magenta line) across the optical nucleus.

As shown in Fig. we detect two bright spots of continuum emission (apertures H and

[) in the outskirts of the optical nucleus, with a substantially high equivalent width. Given the
spatial resolution of our data, these bright sources in the stellar continuum could be identified
as individual stars — late type giants or supergiants — in a post main sequence phase. This
is consistent with the main scenario proposed for the optical nucleus, discussed in Sec. [3.6]
where the UV photons of a population of non-ionising stars would excite the molecular gas,
explaining the overpopulation of the J; = 3 levels shown in Fig. [3.8] Such a population of

stars would be consistent with the age of the cluster derived from the CO absorption bands,

as discussed in Sec[3.6
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K-Band Continuum
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Figure 3.7: M83 maps of pointing D - Maps of the K-band continuum emission (left), Brvy surface
brightness (centre) and velocity (right) from SINFONI data at pointing D. The white contours in the left
panel correspond to the H-K colour obtained from the SINFONI data; the contours in the centre and
right panels show the K-band continuum emission. The values of the Bry velocity are in the same colour
scale as those shown in Fig. for the other three pointings.

3.3.3. Pointing D

Because of the different integration time for the SINFONI data from pointing D, we
have not included them in the general analysis of the emission and kinematics of the nuclear
regions of M83. However, we can draw some conclusions about the hidden mass location
proposed by Dfaz et al|(2006). As shown in Fig.[3.7} we have extracted a K-band continuum

image, H-K colour map and Bry surface brightness and velocity maps of the ~ 65 x 65 pc

region. The H-K values obtained lie within the range ~ 0.2 — 0.7, in good agreement with
those derived by Wiklind et al.| (2004) using NICMOS F160W and F222W images. The dust

lane that crosses from north to south in the central region of M83 is just at the east of our

field of view, although the extinction gradient is clearly visible towards the western part of
the map. The Bry map shows the north-west end of the ring feature seen in Fig. and the
smooth velocity field that continues beyond pointing C. The velocity gradient does not show
any evidence of a hidden mass in this position, but simply reflects the difference in velocity
between two regions, the ring-like structure observed in pointing C and the bright lane of

Bry emission at the west of pointing D (see Fig. .

3.4. Warm molecular gas: H, transitions

There are two very distinct areas of strong Hy emission, one associated with the optical
nucleus and the other with emission from the inner arc at the western part of the FoV (see

Fig. [3.4). We have extracted integrated spectra from both the optical nucleus and the arc,
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Figure 3.8: H. excitation diagrams - H, excitation diagrams relative to 1-05(1) for the optical nucleus
(left panel) and the inner star-forming arc (right panel). The lines from which the population levels are
derived, are indicated. Overplotted are three of the five PDR models discussed in |Davies et al.| (2003).
Models 1 and 2 consist of moderate and high density gas respectively where the main excitation process
is UV fluorescence, while model 3 describes a fully thermalised region. As mentioned in the text, the error
bars are obtained by a bootstrap method of N = 1000 simulations of the spectra. The diagram of the
optical nucleus shows a strong overpopulation of the J, = 5 transitions that points to non-thermalised
excitation mechanisms like radiative fluorescence, whereas the populations of the inner arc are consistent
with a dense PDR where the v = 1 levels are thermalised by collisions while the v = 2 overpopulation is
characteristic of fluorescent excitation.
including all the spaxels from each region above a given flux threshold. This threshold has
been chosen to be 15% of the brightness of the Hy peak, and allows us to reject most of the
weakest spaxels that contribute mostly to increase the noise. We have measured the fluxes of
the different transitions by fitting a Gaussian profile, and derived the uncertainties using a
Monte Carlo technique. The method consists of measuring the noise in the spectra as the rms
of the residuals after subtraction of the Gaussian profile. Taking into account this estimation
of the noise, we construct a total of N = 1000 simulations of our spectra where the lines are
again fitted. The uncertainty of our measurements is defined as the standard deviation of the
fluxes for each line. The values obtained for the fluxes of the different transitions and their
uncertainties are listed in Table 3.3
Using these fluxes, we can calculate the various populations of the upper Hy levels
associated with each transition. As shown in the population diagrams in Fig. [3.8] we found
that the emission on both regions has an important contribution from non-thermal processes.

We have compared the population of the different levels of both regions with three of the PDR

models discussed in Davies et al.|(2003), where the excitation is dominated by far-UV photons.
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Optical Nucleus Star-forming Arc
Line A Flux Flux
(um)  (ergs™tem=2) x 1071®  (ergs™lem™2) x 10715
1-05(3) 1.958 4241073 119+ 0.20
1-0S(2) 2.034 0.50 £0.27 0.43 £0.06
2-1S(3) 2.073 1.30£0.19 0.23 £0.05
1-0S(1) 2.122 1.85+£0.26 1.24 +0.15
1-0S(0) 2.223 0.73+0.14 0.44 +0.05
2.1S(1) 2.248 0.55 + 0.19 0.34 £ 0.07

Table 3.3: Integrated fluxes of the Hj lines for the optical nucleus and the inner arc.

In Fig. model 1 and 2 consist of moderate and high density gas, ny = 103cm~3 and
ny = 10%* cm~3 respectively, where the main excitation process is UV fluorescence, whereas
model 3 describes a fully thermalised region with ny = 10*cm™3 and T =2 x 103 K.

The emission from the inner arc shows that the lowest (v = 1) transitions are thermalised
while the higher (v = 2) transitions are slightly overpopulated. This is a clear sign of
fluorescent excitation mechanisms, that tend to excite the highest levels. The values are
consistent with model 2 of a dense PDR in which the v = 1 levels are thermalised and the
v = 2 levels are overpopulated by fluorescence. Intriguingly, the optical nucleus shows a
stronger contribution of radiative processes, most notably in terms of an overpopulation of
the J, = b levels (equivalently stronger S(3) lines).

Although these results do not allow us to quantify the contribution from the different
mechanisms, it is clear that the dominant processes are rather different in both regions: while
the inner arc seems to be dominated by thermal processes compatible with episodes of recent
supernova activity, the contribution from radiative processes in the optical nucleus associated

to fluorescent excitation mechanisms is highly significant.

3.5. Emission and Kinematics of the Gas: Evidence for Super-
novae

As shown in Fig. the kinematics of the gas is totally unrelated to the stellar kinematics
(Fig. . There is no clear evidence of a single uniform velocity gradient, as seen for the
stars, in any of the emission line maps. Together with the dispersion, this suggest that the
gas kinematics are at small scales dominated by shocks and flows. In this section we argue

that these characteristics are related to the presence of supernovae.
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The nature of the Brvy ring-like feature noted in Sec. [3.3.1] could be explained in terms
of a light echo from a recent type Il supernova explosion. This would be consistent with
the low velocity dispersion and the presence of the complete Brackett series in the spectrum
(see the spectrum of aperture A in Fig. . The projected radius of the ring is ~ 23 pc,
which means that, if its origin was a supernova event, the explosion would have occurred
~ 75yr ago. If it is indeed a light echo, one might expect to see changes on a timescale of
10 years, for example between the NICMOS data from 1998 and our data from 2009. We
have compared the Paca luminosity profiles of the ring measured by NICMOS with our data
to confirm a possible evolution with time. We first matched the PSFs, and then extracted
horizontal and vertical profiles centred in the centre of symmetry of the ring feature in both
images. We applied a single scaling and normalisation to the profiles, derived to match the
background of the emission far from the Paa ring. The two resulting profiles of the Pa«
emission are shown in Fig. Considering the expansion rate of a light echo, the difference
in size of the ring between the two datasets is expected to be of ~3.4 pc, which is less than a
resolution element in our coarse sampling (see Table [3.2)). However, there is a significant
relative decrease of ~6% in brightness between the two epochs that cannot be explain as a
PSF or AO effect. This decrease in the emission supports the hypothesis of a transient event
like a supernova explosion.

In Sec. we also pointed out two bright [Fell] spots located at the outskirts of
the optical nucleus, labeled as E and F in Fig[3.4] which are associated with high velocity
dispersion and are probably tracing individual supernovae. The spectrum of one of these
sources (E) is shown in Fig. . The region labeled as D in Fig. corresponds to the
source M83-SNR-N-01 identified in Dopita et al. (2010)) in their Table 3, and shows some
characteristics expected for a recent supernova, i.e. strong [Fell] and Hy emission.

There are also a few other supernova remnant (SNR) candidates that lie within our FoV,
but none of them are obviously detected. The reason why there is no sign of most of these
sources is because the selection criteria of the SNR candidates in |Dopita et al.| (2010) is in
terms of the [Oll] emission at 3727 A and 3729 A. To achieve high [Oll]/Ha ratios, a radiative
shock of ~300-500 kms~?! is needed (Dopita & Sutherland|[1995, 1996), so it is the ionized
pre-shock that actually emits in [Oll]. Therefore, the temperature and the shock speed are
too high to expect [Fell] or Hy emission (see |Burton et al.|[1990]). We have also assessed
the list of individual X-ray sources of Soria & Wu| (2002)) but only three of them lie within

our FoV (sources 37, 40 and 43). Source 43 corresponds to the optical nucleus, source 37 is
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shifted by ~0.7” to the west and by ~0.5” to the south of our aperture A and source 40 is
shifted ~0.5” to the west and ~0.6” to the south of aperture B. Taking into account the
uncertainties in the position of the X-ray sources, source 37 could be tentatively associated
with the ring of Bry emission.

As proposed by |Raymond (2001)), the width of the [Fell] and H> lines is a good estimation
for the velocity of the shock speed in SNRs. The [Fell] line is clearly broadened with an
intrinsic width of ~100-180 kms™—!. In contrast, the H> line width is no more than ~40 kms—1,
indicating it is barely resolved. These values are in good agreement with the values derived in
Burton et al.| (1990) for fast J shocks (i.e. “jump"” shocks, exhibiting discontinuous transition;
in contrast to “continuous” shocks showing continuous transition in velocity, density and
temperature) where the [Fell] emission is expected to be stronger, and slow J or fast C shocks
for the molecular hydrogen emission. Given the size of these regions of ~4 pc or less and the
velocity dispersion of ~100-180 kms™!, and assuming a constant expansion rate, we obtain
an upper limit to their age of ~ 4 x 10*yr which supports the argument that they are recent
events.

The global velocity gradient in the [Fell] emission of ~60kms~! along the arc is very
similar to that observed for the Bry line. However, the extended [Fell] emission throughout
the inner arc and the high velocity dispersion are rather different compared to the Bry and
H,. Both are consistent with a scenario where the most massive stars have already exploded
as supernovae. These explosions would blow up the gas of a thin quiescent disk in the
perpendicular direction.

This would provide a natural explanation for the systematically higher velocity dispersion
observed for the [Fell] emission along the inner arc: the shocks of the supernovae would be
fast enough to dissociate the H, molecules and enhance the gas-phase Fe abundance as well
as to generate singly ionised Fe, but not to fully ionise the H.

A scenario in which many stars have recently exploded as supernovae, or may soon do
so, is supported by the strong radio continuum found by |Saikia et al.| (1994)) and the diffuse
X-ray emission detected in the arc (see Soria & Wu|[2002)). These authors also found a
high abundance of Ne, Mg, Si and S with respect to Fe. This suggest that the interstellar
medium would have been enriched due to type-ll supernova explosions in the recent past.
This scenario would also provide an origin for the radiative fluorescence excitation of the Hy

molecules. It can be explained in terms of a population of stars of ~5-8 M, that have not
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Figure 3.9: Paq profiles of the ring-like emission - Flux profiles in arbitrary units of the Pac ring-like
emission from NICMOS and SINFONI. Distances are measured from the centre of the ring. Both images
were previously PSF-matched and normalised to the background of the emission before comparing the
data. There is a significative relative decrease of ~6% in flux between the two epochs.
exploded yet as supernovae (and may not do so), but emit enough UV radiation to excite the
Hy (Puxley et al., 1990]).

This scenario would also be in good agreement with the ages of optically-selected star
clusters inferred in Harris et al. (2001)). Based on HST WFPC2 observations, these authors
studied the star formation history of the southern star-forming arc and found that more than
~75 % of the more massive clusters (M =2 x 10* M) have ages less than 10 Myr. They
found a sharp cutoff in the age distribution of the star clusters, and proposed a recent burst
of star formation activity that began <10 Myr ago, suggesting an outward propagation across
the arc.

We can make a rough estimate of the age of the youngest stellar population along the inner
star-forming arc under the assumption that the [Fell] emission originates in supernovae. The
STARBURSTO9 stellar population synthesis models (Leitherer et al.[[1999, SB99 hereafter)
predict that this emission would reach its maximum at ~10 Myr (see Fig. . On the

other hand, the Brvy emission also appears to be dominated by a supernova event. It shows
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little ionised gas emission from the stars themselves and it is probably part of the tail end of
the supernovae for the same burst of star formation that will be discussed in Sec.[3.6] This
implies that there are few OB stars left and that the star formation episode was consequently
a short burst. Compared to the arc, the optical nucleus shows more Hy emission and less
[Fell] while still having very little Bry emission. This is also suggestive of a short burst of star
formation. Both regions therefore appear to have experienced an episode of star formation
around 210 Myr ago. More detailed assessments of the age of the star formation in the

optical nucleus, based on dynamics as well as spectral features, are presented in Sec. [3.6

3.6. Optical Nucleus: An Evolved Massive Off-Nuclear Star
Cluster

In order to shed some light on what one should consider to be the nucleus of M83, we
have studied in more detail the kinematic and photometric properties of the optical nucleus.
We made use of NIC2 F222M K-band continuum image to fit the brightness profile of the
cluster. We adopted a model of a symmetric Sérsic profile convolved with the PSF to fit the
core of the nucleus, combined with an asymmetric Gaussian to take care of the extended
emission. The fits reveal a strongly peaked nucleus of Reff = 2.97 + 0.15 pc (with a Sérsic
index of n = 2.7), clearly unresolved in the SINFONI data, which sits on a more extended
emission of size ~50pc. Given that the core of the cluster appears point-like and is not
resolved in the AO data, we use this value as an upper limit for the effective radius of the

cluster.

3.6.1. Age and Mass Estimation from Stellar Kinematics

We have extracted an integrated spectrum of the core of the nucleus using an aperture
of radius Refr, and performed a similar analysis as for the stellar kinematics, making use of
the pPXF code to fit it with a library of stellar templates. The results of the fitting yield
a velocity dispersion of or_ ~ 71 & 14km s~1. We have adopted this value to provide an

estimate of the dynamical mass of the cluster, given by the following relation:

(3.1)

where 77 is a geometric constant, o is the velocity dispersion, Resr is the effective radius

of the cluster and G is the gravitational constant. The geometrical constant 7 is determined
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by the density and velocity distribution of the cluster, and is commonly assumed to be ~10
when Reg is used (McCrady & Graham| 2007; Walcher et al, 2005)) to obtain the total mass
of the cluster. However, different values from 3 to 10 could be adopted (see [Hagele et al.
2009, Barth et al.[[2009 and [Basu-Zych et al|[2009). As shown in Fig. [3.6] the optical nucleus
has its own internal velocity gradient, distinct from the main velocity gradient of the galaxy,
that suggests that the cluster is virialised. Using the lowest value of 7 = 3 that assumes an
isotropic velocity field, yields Mgyq = (1.1 & 0.4) x 10" Mg, for the mass of the cluster, a
value consistent with an earlier stellar kinematic estimate by Thatte et al.|(2000).

Using both NICMOS F222M image and our SINFONI data, we have obtained the K band
luminosity of the star cluster. In order to perform synthetic photometry in our IFU data,
we made use of the K band response curve of 2MASS as defined in |Cohen et al.| (2003) to
obtain a synthetic K-band image. We have used the same aperture of radius 2.974+0.15 pc
to measure the luminosity of the star cluster in both images. The values obtained are
Lk, sinFont = 6.03 x 10° L@Eland Lk, NicMos = 5.43 x 10° L, from the SINFONI and NICMOS
data respectively.

We can thus derive a mass-to-light ratio Mgyn /L ratio based on the dynamical mass
obtained above, which is Mgyn/L ~ 0.29 +0.12 M, /Lk o (where the denominator is in units
of monochromatic solar K-band luminosity Lk o = 2.150 x 102> W). In order to make a first
estimation of the age of the cluster, we have used the stellar population synthesis models of
Maraston| (2005, M05 hereafter). The age that corresponds to the mass-to-light ratio derived

above according to these models is log T(yr) = 8.17:“8:22.

3.6.2. Age and Mass Estimation From Spectral Diagnostics

In addition to the age derived from stellar kinematics and photometry, we can put further
constrains on the age via the CO stellar absorption. We have measured the equivalent width
of the first CO bandhead as well as its CO index (defined as the ratio of the flux densities
at 2.37um and 2.22um) to compare the values with the prediction from the SB99 and
the MO5 synthesis models respectively. The value obtained for the CO equivalent width
is Wco = 11.06 & 0.25 A, where uncertainties are calculated by a Monte Carlo method of
N = 1000 simulations of the spectrum.

To compare the equivalent width with the SB99 models (assuming a Salpeter initial

mass function, IMF, and solar metallicity), we have considered an instantaneous burst of

Lo =3.826 x 10 W.
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Figure 3.10: Stellar population synthesis models - Evolution of the Bry equivalent width (left) and
[Fell] flux (centre) from SB99 models, and CO222-237,m index (right) from M05 models. The dotted
line in the left panel shows the upper limit of the Bry equivalent width at the optical nucleus. We have
assumed the theoretical ratio from |Colinal (1993) to convert the [Fell] 1.26 um flux predictions to [Fell]
1.64 um fluxes. The upper limit for the [Fell] luminosity at the optical nucleus is log[Fell](ergs™") < 33,
far below the expected luminosity of a ~ 10 Myr population. In the right panel, the region incompatible
with the low Bry and [Fell] fluxes is shown in grey. The blue strip shows the range of CO22_237,m index
allowed by our data to 1o confidence.
star formation as implied by the low Bry emission from the cluster. It is compatible both
with a young population of less than log T(yr) ~ 7.17 or with an evolved population older
than log T(yr) ~ 7.70. On the other hand, according to the models, the lack [Fell] emission
suggests a lower limit of log T(yr) ~ 7.55 for the age of the star cluster. Combining the
constraints from the [Fell] emission and the W¢q yield an estimate for the age of the cluster
of log T(yr) = 7.977333.

In contrast to SB99, the M05 models use the CO index. The integrated spectrum of
the optical nucleus yields CO2 222 37,m = 0.082 4+ 0.018. Using the M05 models with the
same constraints as discussed above from the Bry and [Fell] emission, the resulting age is

0.43
log T(yr) = 7.987( 3.

It is notable that the ages estimated here from the CO equivalent width and index are
very similar to that calculated previously from the mass-to-light ratio using the dynamical
mass. Instead of comparing ages derived using the different methods, we can instead compare
masses. To do this, we first estimate the mass-to-light ratio M*/L from the M05 model
associated with the age derived from the CO index. We can then derive the stellar (rather
than dynamical) mass for the core of the star cluster. Again adopting a Salpeter IMF and
solar metallicity, we find M*/L ~ 0.22 4+ 0.08. Since the luminosity is measured within Ref

(which by definition contains half the light), we set the luminosity of the cluster to be twice

that given in Sec. Thus the stellar mass is M* ~ (7.8 & 2.4) x 10° M.
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This value is a factor of a few higher than the photometric mass estimate from [Thatte
et al.| (2000) and rather similar to that given in Wiklind et al.| (2004). We note that, within
the inevitable uncertainties, it is also remarkably consistent with the dynamical mass we

estimated previously.

These ages (from [3.6.1| and [3.6.2)) are a little higher, but not inconsistent with that

discussed at the end of Sec. and all point to an age approaching, but perhaps a little less
than ~ 100 Myr. We have considered only instantaneous star formation, since continuous
models are clearly ruled out by the low Brvy equivalent width. However, a short but finite
burst length of, for example, ~ 50 Myr could plausibly reconcile the small differences between

the estimates.

3.6.3. Could the Optical Nucleus Host a Supermassive Black Hole?

As a particularly massive star cluster, and potentially the nucleus of M83, the optical
nucleus is a suitable candidate for hosting a supermassive black hole. We have therefore
estimated the mass of the supermassive black hole that one might expect to find in the
inner regions of M83. Using GALFIT (Peng et al., [2010), we fitted a three component
model to the 2MASS K-band image (Skrutskie et al., [2006)), that allows us to separate the
contribution of the disc, bar and bulge to the total flux distribution. The K-band luminosity
of the bulge derived from the fit is logLk buige = 9.705 in Lk  units. Taking into account the
MgH /LK bulge relation from |Marconi & Hunt| (2003), we estimate that the mass of the central
black hole should be around ~ 3.9 x 10® M,. This value for the BH mass is also similar to
that obtained from the Mgy — o relation (Tremaine et al., [2002), if we take 100 kms~! from
Fig. [3.5) to be the velocity dispersion of the stars in the bulge. Although this mass is less
than the dynamical mass of the optical nucleus, it seems unlikely that a supermassive black
hole should make up more than ~ 35% of the dynamical mass of a star cluster.

On the other hand, the measurements from Chandra presented in Soria & Wu (2002)
show that the optical nucleus is one of the brightest sources in X-rays within the nuclear
regions of M83. They fit the nuclear spectra to a power-law model with total X-ray luminosity
(0.3-8keV) of Ly ~ 2.6 x 1038 ergs™! and a photon index of ' ~1.15 (see their Table 3).
The total luminosity is compatible with the X-ray emission from either a low luminosity AGN
or a stellar-mass black hole candidate in a binary system (Grimm et al., 2003)). However,

the lack of any other AGN signature (e.g. [SiVI] emission at 1.96 um) indicate that if a
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supermassive black hole were present, it would not be in an AGN phase at the present epoch.

It is likely then that the X-ray emission comes from X-ray binaries in the hard state.

3.7. Location of the Nucleus

The location of the nucleus of M83 has been topic of an intense debate over the last
decade. [Thatte et al. (2000) first reported the discovery of a double nucleus in M83 based on
long-slit measurements of the velocity dispersion of stars. They found two peaks in the velocity
dispersion, one coincident with the optical nucleus, and another associated with the centre
of symmetry of the bulge isophotes, both enclosing a dynamical mass of ~ 1.3 x 10" Mg,.
However, the lack of two-dimensional information did not allow them to obtain the precise
position of this second mass concentration.

Mast et al. (2006) made optical integral field spectroscopic observations of the inner
12" x 21" of the galaxy that allow them to study in more detail the velocity field of the ionised
gas. Their results support the conclusion about the presence of a second mass concentration
of ~ 1.0 x 10" Mg, (although it is possible that its position was misplaced due to an incorrect
spatial scaling).

Diaz et al.| (2006) pointed out the position of a mass concentration at the northernmost
part of the southern star-forming arc. They estimated that this hidden concentration would
enclose a total mass of ~ 1.6 x 10" M,, derived from the ionised gas kinematics. They also
found that the position of this hidden mass corresponds to a peak of emission in the mid-IR
continuum at 10 pum.

More recently, [Houghton & Thatte| (2008) combined near-IR long-slit spectroscopy with
HST imaging to study the 20”x 20" central region of M83. They looked at the stellar
kinematics for dynamical signatures of putative hidden mass concentrations at locations
indicated in previous work. Their results show no evidence of obscured masses and they
conclude that the velocity gradients observed in the gas kinematics are a consequence of
shocks.

Making use of near-IR integral field spectroscopy and numerical simulations, [Rodrigues
et al.|(2009) presented a detailed study of the ionised gas kinematics in the inner 5”x 13" of
the galaxy, covering the wavelength interval from 1.2 um to 1.4 um with a spatial sampling
of 0736. They focused on the dynamical properties and evolution of the optical nucleus, the

CO kinematic centre (similar to the photometric centre) and the putative mass concentration
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proposed by Diaz et al.| (2000) that is coincident with the 10um continuum emission peak.
Based on the ionised gas kinematics, they derived dynamical masses of ~ 6.0 x 107 Mg,
~ 4 x 10° Mg, and ~ 2.0 x 107" M, for the kinematic centre, the optical nucleus and the
hidden mass concentration respectively.

Finally, Knapen et al.| (2010) analysed in detail the ionised gas kinematics, making use
of Paj IFU observations with a spatial sampling of 0”36, confirming the results found by
Thatte et al.| (2000) that the photometric centre coincides with the kinematic centre, and
this location is offset by ~4” (~90 pc) from the optical nucleus. They proposed two possible
options for the location of the true nucleus of M83. One option is the presence of an obscured
hidden mass in the kinematic and photometric centre, that would require a dust extinction of
Ay = 3 —10mag. However, authors consider this option unlikely, because no other signatures
— such as a peak in the velocity dispersion or in the near-IR emission — of a hidden mass are
found. Their other option was that the optical nucleus is the true nucleus, and it is displaced
from the kinematic centre as a result of some past interaction.

Our results clearly show that on scales of tens of parsecs, the gas kinematics are dominated
by shocks and outflows. But we have also seen there is a global gradient of ~60 kms~! along
the inner arc which is totally unrelated to the stellar velocity field. Given the orientation of the
galaxy, these gas kinematics appear to be tracing an inflow of gas along the inner bar to the
photometric centre. We would expect such a bar-driven gas inflow to terminate at the nucleus,
and the location of the end of the inflow does coincide with the photometric centre. We also
emphasise that there is an increase of the stellar continuum at this point, consistent with the
centre of the bulge. But this continuum, primarily from older stars, is mostly swamped by
the stronger continuum from the young stars in the surrounding star-forming ring. The lack
of a very recent starburst in the photometric centre would explain the low stellar continuum
emission in this region.

As mentioned before, we have not found any evidence or signature of a hidden mass near
the kinematic centre. However, the velocity dispersion expected due to random motions around
such a black hole, given the spatial resolution of our AO data, would be ogy ~ 60 kms™1.
Taking into account the instrumental resolution of our data (R ~ 1500, or an instrumental
broadening of Ginstr ~ 85 kms™1) and the dispersion of the stars of o, ~ 100 kms~! measured
almost everywhere, the effective enhancement of the dispersion expected to be observed for

this BH would be of ~10kms™!, making our data insensitive to such a compact object. Thus,
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the lack of a kinematic signature of a supermassive BH does not equate to the absence of
such a BH at the location of the kinematic and photometric centre of M83.

We also considered the possibility that the ~ 3.4” offset of optical nucleus from the
kinematic centre could be the result of an m = 1 perturbation in the gravitational potential,
as suggested by [Knapen et al.|[(2010). As shown in Bournaud et al.| (2005a), an m =1
perturbation of the potential could be explained by asymmetric accretion of gas towards
the inner regions of the galaxy, which would be in agreement with the unperturbed spiral
pattern revealed at mid-infrared wavelengths for M83 (Dale et al., 2009)). Alternatively, as
discussed in Hopkins & Quataert| (2010), an eccentric pattern resulting from a past interaction
could persist up to ~ 10* dynamical times. However, a model of an eccentric disk as used
by ' Tremaine (1995) to explain the double nucleus of M31 is probably not appropriate to
explain the offset in here. It is caused by the high density of stars near apocenter in their
elliptical orbits: the combination of their slow velocities at this point together with the fact
that their velocity is along the line of sight, create the illusion of a secondary nucleus. In
M83, the compactness of the optical nucleus and the presence of a coherent internal velocity
gradient (see Fig. are inconsistent with the rather diffuse appearance expected for such
a gravitational perturbation. Furthermore, the presence of an apparent secondary nuclei
as in M31 is favoured by the close edge-on sightline. In principle, the eccentric disk could
obscure the radiation from the black hole, even at X-ray wavelengths, and would explain the
lack of signature of a compact object near the kinematic centre of M83. However, the low
inclination of the galaxy and the fact that the optical nucleus lies within the rather symmetric

circumnuclear ring traced by the molecular gas (see Sakamoto et al.[|2004) make it unlikely.

3.8. Conclusions

We have presented new and detailed near infrared adaptive optics integral field spectro-
scopic data for the innermost ~200 pc of M83, and studied the kinematics and distribution

of the stars as well as molecular and ionised gas. Our conclusions are as follows:

o The stellar kinematics show a smooth global velocity field typical of uniform rotation.
They reveal an independent and coherent velocity gradient intrinsic to the optical
nucleus with an amplitude of ~30kms™!. The velocity dispersion across the whole

region also shows a smooth distribution, with values in the range ~ 50-100 kms™!.
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o The ionised and molecular gas reveal a complex situation in which their kinematics
are completely dominated by shocks and inflows at small scales but trace globally an
inflow along the nuclear bar to the kinematic centre. This, and the fact that they are
totally unrelated to the stellar kinematics, make them unsuitable to estimate dynamical

properties of the central regions.

o There is plentiful evidence for recent supernovae. A bright ring-like Bry feature, which
dominates the inner star-forming arc, has low dispersion and no measurable velocity
gradient. It can be explained in terms of a light echo from a recent supernova explosion.
The [Fell] emission has high dispersion along the arc suggestive of shocks from supernova
remnants; and in the optical nucleus shows two bright locations where the dispersion is
high, which are likely to be individual supernova remnants. A comparison of the gas
and stellar kinematics indicates that the off-nuclear mass concentrations, which had
been proposed on the basis of ionised gas kinematics, are instead regions where there

are complex kinematics associated with recent supernova events.

o A spatial study of the excitation mechanisms of the warm Hj suggest that the inner arc
is dominated by collisional mechanisms, consistent with an episode of recent supernova

events, while Hz in the optical nucleus has a higher contribution from radiative processes.

o The ~ 3 pc effective radius of the optical nucleus together with its coherent internal
kinematics yield a dynamical mass of Mgy, = (1.1 + 0.4) x 10’ Mg. Its K-band
luminosity is Lx = 5.7 x 10° L. The resulting mass-to-light ratio implies an age of
~ 100 Myr that is fully consistent with that implied independently by the CO index
and equivalent width. Similarly, the age implied by the CO index yields a stellar mass
for the cluster of M* ~ (7.8 & 2.4) x 10° M, consistent with the dynamical mass.

o We show that the optical nucleus cannot be an m = 1 perturbation, and is not the
‘true’ nucleus of M83. Instead, we argue that this is indeed located at the photometric
and kinematic centre of M83's bulge, where there is a measurable peak in the K-band
continuum (albeit swamped by the bright surrounding star forming ring). We also show
that, for the expected black hole mass in the centre of M83, one would not expect to

see a dynamical signature at currently attainable spatial resolutions.
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4

Mapping the emitting gas structure
of local LIRGs and ULIRGs

Spatially resolved emission and kinematic maps

“Well, | feel that we should always put a little art into
what we do. It's better that way."”
— Jules Verne, From the Earth to the Moon

We present an atlas of a sample of local (z < 0.1) LIRGs (10) and ULIRGs (7) covering
the luminosity range log(Lir/Le)= 11.1 — 12.4. The atlas is based on near-infrared H
(1.45 - 1.85 um) and K-band (1.95 - 2.45 um) VLT-SINFONI integral field spectroscopy.
The atlas presents the ionised, partially ionised, and warm molecular gas two-dimensional
flux distributions and kinematics over a FoV of ~ 3 x 3kpc (LIRGs) and ~ 12 x 12kpc
(ULIRGSs) and with average linear resolutions of ~0.2kpc and ~0.9 kpc, respectively. The
different phases of the gas show a wide morphological variety with the nucleus as the brightest
Bry source for ~33% of the LIRGs and ~71% of the ULIRGs, whereas all the LIRGs and
ULIRGs have their maximum Hy emission in their nuclear regions. In LIRGs, the ionised gas
distribution is dominated by the emission from the star-forming rings or giant HIl regions
in the spiral arms. The Bry and [Fell] line at 1.644 um trace the same structures, although
the emission peaks at different locations in some of the objects, and the [Fell] seems to be
more extended and diffuse. The ULIRG subsample is at larger distances and contains mainly
pre-coalescence interacting systems. Although the peaks of the molecular gas emission and
the continuum coincide in ~ 71% of the ULIRGs, regions with intense Paa (Brvy) emission

tracing luminous star-forming regions located at distances of 2—4 kpc away from the nucleus
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are also detected, usually associated with secondary nuclei or tidal tails. LIRGs have mean
observed (i.e. uncorrected for internal extinction) SFR surface densities of about 0.4 to 0.9

2 over large areas (4-9 kpc?) with peaks of about 2—2.5 M, yr=! kpc=2 in

Mo yr=t kpc™
the smaller regions (0.16 kpc?) associated with the nucleus of the galaxy or the brightest Bry
region. ULIRGs do have similar average SFR surface densities for the integrated emitting
regions of ~0.4 Mg yr~! kpc2 in somewhat larger areas (100—200 kpc?) and for the Pac
peak (~ 2Mg yr—! kpc=2 in 4 kpc?). The observed gas kinematics in LIRGs is primarily due
to rotational motions around the centre of the galaxy, although local deviations associated
with radial flows and/or regions of higher velocity dispersions are present. The ionised and
molecular gas share the same kinematics (velocity field and velocity dispersion) to first order,
showing slight differences in the velocity amplitudes (peak-to-peak) in some cases, whereas the
average velocity dispersions are compatible within uncertainties. As expected, the kinematics

of the ULIRG subsample is more complex, owing to the interacting nature of the objects of

the sample.

4.1. Introduction

The Infrared Astronomical Satellite (IRAS) discovered a population of galaxies with
their bolometric luminosities dominated by its mid- and far-infrared emission (Soifer et al.
1984, Sanders & Mirabel [1996). Although the number density of these luminous (LIRGs;
101 Ly <Ligr< 10'2L) and ultraluminous (ULIRGs; 10*2Lo<Lir< 10%3Ly) infrared galaxies
is low locally (Sanders & Mirabel [1996]), their number increases steadily up to redshift of
~ 2.5 and dominates at redshifts ~ 1.5 and above (Pérez-Gonzalez et al.|2005, Lonsdale
et al.|[2006, Sargent et al.[2012). The energy output of the local (U)LIRGs is now established
as mainly due to massive starbursts with a small AGN contribution for LIRGs, whereas the
contribution from the AGN increases with Ljg and dominates bolometrically at the very high
Ligr end of ULIRGs (e.g. |Nardini et al.[2010, |Alonso-Herrero et al.|2012 and references
therein). Morphological studies show that most/all local ULIRGs show clear signs of on going
interactions or recent mergers between two or more gas-rich spirals (e.g. [Murphy et al.|[1996,
Borne et al.[2000, |Veilleux et al.[[2002, Dasyra et al.|2006). LIRGs are, on the other hand,
mostly normal spirals where some are involved in interactions (Arribas et al.[2004}, Haan et al.
2011).

In recent years, optical integral field spectroscopy of representative samples of local LIRGs
(Arribas et al.|2008, |Alonso-Herrero et al.[2009) and ULIRGs (Garcia-Marin et al., |2009b))
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have been performed with the goal of investigating the nature of the ionisation sources
(Monreal-Ibero et al., 2010), the structure of the star-forming regions (Rodriguez-Zaurin
et al[2011, |Arribas et al.[2012), the 2D internal dust/extinction distribution (Garcia-Marin
et al., 2009a)), and the gas kinematics (Colina et al.|2005, |Alonso-Herrero et al.[2009). In
parallel, a considerable effort has been made to investigate the nature of star-forming galaxies
at redshifts between 1 and 3 (e.g. |Forster Schreiber et al.|[2006, 2009, 2011a, Law et al.
2009, Wright et al.[2009, Wisnioski et al.[2011, [Epinat et al. 2012, Vergani et al.[2012)). The
advent of IFS has allowed spatially and spectrally resolved studies of optically/UV selected
galaxies at early stages in their evolution. Such studies map the morphologies and kinematics
of the gas and stars and have demonstrated that massive star-forming galaxies either appear
to be large massive rotating disks (Forster Schreiber et al.|2011a| Wisnioski et al. 2011}
Epinat et al.|2012)) or are found in highly disturbed mergers (Forster Schreiber et al.|[2006,
Epinat et al.|2012).

The local population of LIRGs and ULIRGs therefore represents the closest examples of
the two modes of formation of massive star-forming galaxies at high redshifts, during the
peak of star formation in the history of the Universe. Their distances offer the possibility
of investigating their physical processes, taking advantage of the high spatial resolution and
S/N achieved. The detailed study of these mechanisms on physical scales of a few hundred
parsecs can then be applied in more distant galaxies, where such a level of detail is extremely
challenging, or not even possible. This is the first paper in a series presenting new H- and
K-band SINFONI seeing-limited observations of a sample of local LIRGs and ULIRGs (z < 0.1),
for which previous optical IFS is already available (see references above). The aim of this
paper is to describe the general 2D properties of the whole sample and to lay the foundations
for further detailed studies. These studies, to be addressed in forthcoming publications,
will focus on the structure and excitation mechanisms of the ionised, partially-ionised and
warm molecular gas, the distribution of the different stellar populations, and the stellar and
multi-phase gas kinematics.

The Chapter is organised as follows. Section [4.2] gives details about the sample. Section
[4.3] contains the description of the observations and techniques that have been used to reduce
and calibrate the data, and the procedures applied to obtain the maps of the emission lines.
Section [4.4] includes a general overview of the data and the physical processes of the line

emitting gas and stellar populations. In Section we discuss the 2D properties as inferred
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from the SINFONI spectral maps, focussing on the general aspects of the morphology and

kinematics of the gas emission. Finally, Section includes a brief summary of the Chapter.

4.2. The sample

The sample is part of a larger survey (Arribas et al., 2008) of local LIRGs and ULIRGs
observed with different optical IFS facilities including INTEGRAL+WYFFOS (Arribas et al
1998) at the 4.2m William Herschel Telescope (WHT), VLT-VIMOS (Visible MultiObject
Spectrograph, LeFeévre et al [2003), and PMAS (Potsdam MultiAperture Spectrophotometer,
Roth et al.[2005). It covers the whole range of LIRG and ULIRG infrared luminosities and
the different morphologies observed in this class of objects, by sampling galaxies in both
hemispheres.

The present SINFONI sample comprises a set of ten LIRGs and seven ULIRGs covering a
range in luminosity of log(Lir/Le)= 11.10 — 12.43 (see Table[4.1)). The objects were selected
to cover a representative sample of the different morphological types of LIRGs and ULIRGs,
although this is not complete in either flux or distance. All the LIRGs of the sample were
selected from the volume-limited sample of Alonso-Herrero et al.| (2000), whereas all the
ULIRGs with the exception of IRAS 06206-6315 and IRAS 21130-4446 come from the IRAS
Bright Galaxy Survey (Soifer et al.|1989, Sanders et al.[1995). Our sample contains objects
with intense star formation, AGN activity, isolated galaxies, strongly interacting systems, and
mergers. The mean redshift of the LIRGs and ULIRGs subsamples is z |rgs = 0.014 and
zyLIRGs = 0.072, and the mean luminosities are log(Lir/Ls)= 11.33 and log(L|r/Le )= 12.29,

respectively.

4.3. Observations, data reduction, and analysis

4.3.1. SINFONI observations

The observations were obtained in service mode using the near-infrared spectrometer
SINFONI of the VLT, during the periods 77B, 78B, and 81B (from April 2006 to July 2008).
All the galaxies in the sample were observed in the K band (1.95-2.45 um) with a plate
scale of 07250x 0”125 pixel~! yielding an FoV of 8"x8" in a 2D 64x64 spaxel framd'] The

LA detailed description of the correspondence between the pixels in the focal plane of the instrument and
the reconstructed cube can be found in the user manual of the instrument. http://www.eso.org/sci/facilities/
paranal/instruments/sinfoni/doc/
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ID1 ID2 « 1) z D Scale log Lir Classification References
Common IRAS (J2000) (J2000) (Mpc) (pc/arcsec) (Lg)
(1) (2) 3) (4) (5) (6) () (8) (9) (10)
IRAS 06206-6315  IRAS 06206-6315 06h21m01.21s -63°17'23"5 0.092441 425 1726 12.31 Sy2 1,2,3
NGC 2369 IRAS 07160-6215 07h16m37.73s -62°20'37"4 0.010807 48.6 230 11.17 Composite 4
NGC 3110 IRAS 10015-0614 10h04m02.11s -06°28'29"2 0.016858 78.4 367 11.34 Composite 4
NGC 3256 IRAS 10257-4338 10h27m51.27s -43°54'13”8 0.009354 44.6 212 11.74 HII, Starburst 1,5
ESO 320-G030 IRAS 11506-3851 11h53m11.72s -39°07'4879 0.010781 51.1 242 11.35 HII 4
IRAS 1211240305 [IRAS 1211240305 12h13m46.00s +02°48'38”0 0.073317 337 1416 12.38 LINER 1,2
IRASF 12115-4656 IRAS 12115-4657 12h14m12.84s -47°13'43"2 0.018489 84.4 394 11.10 HIl 1
NGC 5135 IRAS 13229-2934  13h25m44.06s -29°50'0172 0.013693  63.5 299 11.33 HII, Sy2 1,6
IRAS 14348-1447  IRAS 14348-1447 14h37m38.40s -15°00'2070 0.083000 382 1575 12.41 LINER 1,2
IRASF 17138-1017 IRAS 17138-1017 17h16m35.79s -10°20'39"4 0.017335 75.3 353 11.42 HIl 1
IRAS 17208-0014  IRAS 17208-0014 17h23m21.95s -00°17'009 0.042810 189 844 12.43 LINER 1,6
IC 4687 IRAS 18093-5744 18h13m39.63s -57°43'3173 0.017345 75.1 352 11.44 HIl 1,6
IRAS 21130-4446  IRAS 21130-4446 21h16m18.52s -44°33'3870 0.092554 421 1712 12.22 HIl 7
NGC 7130 IRAS 21453-3511 21h48m19.50s -34°57'04”7 0.016151 66.3 312 11.34  HII, Sy2, LINER 1,6
IC 5179 IRAS 22132-3705 22h16m09.10s -36°50'37”4 0.011415 45.6 216 11.12 HIl 4
IRAS 22491-1808  IRAS 22491-1808 22h51m49.26s -17°52'23"5 0.077760 347 1453 12.23 HIl 1,2
IRAS 23128-5919  IRAS 23128-5919 23h15m46.78s -59°03'15”6  0.044601 195 869 12.04 Sy2, LINER 1,3,6

Table 4.1: Cols. (3) and (4): right ascension and declination from the NASA Extragalactic Database (NED). Col. (5): redshift from NED.

Cols. (6) and (7): Luminosity distance and scale from Ned Wright's Cosmology Calculator (Wright| [2006) given hg = 0.70, 2y = 0.7, Qv
= 0.3. Col. (8): Lig[8-1000xm] calculated from the IRAS flux densities fio, f5, fso and figo (Sanders et al.| 2003), using the expression in
Sanders & Mirabel|(1996) Col. (9): Spectroscopic classification based on the nuclear optical spectra from the literature. Galaxies classified

as composite are likely to be a combination of AGN activity and star formation. 1:Sanders et al.|(2003), 2: |Lutz et al.|{(1999), 3:Duc et al.

(1997), 4{Pereira-Santaella et al.|(2011), 5;Wamsteker et al.|(1985), 6{Véron-Cetty & Véron|(2006), 7:Farrah et al.|(2003)
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subsample of LIRGs was also observed in the H band (1.45-1.85 um) with the same scale,
so the [Fell] line at 1.64 um rest frame could be observed. The spectral resolution for this
configuration is R~3000 for H-band and R~4000 for K-band, and the FWHM as measured
from the OH sky lines is 6.6 & 0.5 A for the H band and6.4 + 0.6 A for the K band with a
dispersion of 1.95 A /pix and 2.45 A /pix, respectively.

Given the limited field of view (FoV) of 8"x8" in the 250 mas configuration provided by
SINFONI , we are sampling the central regions of the objects. However, owing to the jittering
process and the different pointings used in some objects, the final FoV of the observations
extends beyond that value, typically from 9" x9" up to $12"x12" or more. That is
translated to an average coverage of the central regions of ~ 3 x 3 kpc for the LIRGs and of
~ 12 x 12 kpc for the ULIRG subsample. Due to this constraint, some of the more extended
galaxies or those with multiple nuclei were observed in different pointings, each located in
regions of interest. Our seeing-limited observations have an average resolution of ~0.63 arcsec
(FWHM) that corresponds to ~0.2 kpc and ~0.9 kpc.

Owing to the strong and quick variation of the IR sky emission, the observations were split
into short exposures of 150s each, following a jittering OSSO pattern for sky and on-source
frames. The detailed information about the observed bands and integration time for each
object is shown in Table [4.2] Besides the objects of the sample, a set of spectrophotometric
standard stars and their respective sky frames were observed to correct for the instrument
response and to flux-calibrate the data. As shown in Table [4.2) NGC 3256 was observed in
different pointings for the different bands because of an error during the implementation of

the Phase 2 template.

4.3.2. Data reduction

The calibration process was performed using the standard ESO pipeline EsoRex (version
2.0.5). The usual corrections of dark subtraction, flat fielding, detector linearity, geometrical
distortion, and wavelength calibration were applied to each object and sky frame, prior to the
sky subtraction from each object frame. The method used to remove the background sky
emission is outlined in [Davies (2007)). We used our own IDL routines to perform the flux
calibration on every single cube and to reconstruct a final data cube for each pointing, while
taking the relative shifts in the jittering pattern into account. For those objects with different

pointings, the final data cubes were combined to build a final mosaic.
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Object / Pointing Observed Bands  tep(s) per band
(€) @) (€)

IRAS 06206-6315 K 2550
NGC 2369 H, K 2250, 2250
NGC 3110 H, K 2250, 1200

NGC 3256-N H 2250
NGC 3256-S K 1950
NGC 3256-W H, K 750, 950
ESO 320-G030 H, K 2700, 1650
IRAS 12112+0305-N K 2550
IRAS 12112+0305-S K 2550
IRASF 12115-4656-E K 2400
IRASF 12115-4656-W K 2400
NGC 5135 H, K 2400, 1500
IRAS 14348-1447-N K 2550
IRAS 14348-1447-S K 1050
IRASF 17138-1017 H, K 5550, 2850
IRAS 17208-0014 K 3450
IC 4687 H K 3000, 2400
IRAS 21130-4446 K 3000
NGC 7130-N H, K 2400, 2550
NGC 7130-S H, K 2400, 2400
IC 5179-E H, K 2400, 2400
IC 5179-W H, K 2400, 2400
IRAS 22491-1808 K 4350
IRAS 23128-5919-N K 2700
IRAS 23128-5919-S K 2700

Table 4.2: Col. (3): Total integration time on-target for each band in seconds.

The flux calibration was performed in two steps. Firstly, to obtain the atmospheric
transmission curves, we extracted the spectra of the standard stars with an aperture of 50
of the best 2D Gaussian fit of a collapsed image. The spectra were then normalised by a
black body profile at the T listed in the Tycho-2 Spectral Type Catalog (Wright et al.,
2003)), taking the more relevant absorption spectral features of the stars into account. As
discussed in Bedregal et al.| (2009), in most cases the only spectral features in absorption are
the Brackett series so we modelled them using a Lorentzian profile. The result is a 'sensitivity
function’ that accounts for the atmospheric transmission.

Secondly, the spectra of the star was converted from counts to physical units. We made
use of the response curves of 2MASS filters (Cohen et al., [2003)) to obtain the magnitude
in counts of the standard stars and the H and K magnitudes from the 2MASS catalogue
(Skrutskie et al., 2006) to translate these values to physical units. Every individual cube was
then divided by the ‘sensitivity function' and multiplied by the conversion factor to obtain a
full-calibrated data cube. The typical relative uncertainty for the conversion factor is ~5%

for both bands.
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Object Paa Bry H, 1-0S(1) Hel [Fell] H-band FoV  K-band FoV

1.876 um 2.166 um  2.122pum  2.059um  1.644 um (kpc?) (kpc?)

IRAS 06206-6315 15 e 12 e e - 186.1
NGC 2369 e 13 15 10 15 2.8 3.0
NGC 3110 e 15 15 10 10 8.3 7.4
NGC 3256 e 25 20 15 30 4.9 4.6
ESO 320-G030 e 25 10 15 30 3.2 3.1

IRAS 1211240305 20 e 12 10 e e 101.3
IRASF 12115-4656 e 15 13 10 .- e 14.4
NGC 5135 e 20 15 15 25 5.4 4.7

IRAS 14348-1447 20 e 13 10 e e 169.7
IRASF 17138-1017 e 17 20 15 20 6.3 6.1
IRAS 17208-0014 25 e 13 10 e .- 32.3
IC 4687 e 25 20 20 25 7.7 6.9
IRAS 21130-4446 25 e 8 10 e e 38.3
NGC 7130 e 15 13 12 12 10.0 9.5
IC 5179 . 20 15 13 15 5.2 5.2
IRAS 22491-1808 20 e 9 10 e e 82.5
IRAS 23128-5919 20 e 15 15 e e 343

Table 4.3: The last two columns give the total area of the FoV used to derive the integrated
fluxes for the emission lines and the stacked spectra for the H- and K-bands, respectively.

4.3.3. Line fitting

The maps of the brightest emission lines were constructed by fitting a Gaussian profile on
a spaxel-by-spaxel basis. We made use of the IDL routine MPFIT (Markwardt, 2009) and
developed our own routines to perform the fitting of the cubes in an automated fashion. For
each object and every line, we obtained the integrated flux, equivalent width, radial velocity,
and velocity dispersion maps. To account for the instrumental broadening, we made use of

OH sky lines for each band at 1.690 um and 2.190 pm.

4.3.4. Voronoi binning

Before extracting the kinematics, the data were binned using the Voronoi method by
Cappellari & Copin| (2003) to achieve a minimum S/N over the entire FoV. This technique
employs bins of approximately circular shape to divide the FoV, which is described in terms of
a set of points called generators. Every spaxel of the field is accreted to the bin described by
the closest generator, until the S/N threshold is reached. This set of generators is refined to
satisfy different topological and morphological criteria and to ensure that the scatter of the

S/N of each bin is reduced to a minimum. This method ensures that the spatial resolution of

72



4.3 Observations, data reduction, and analysis

the regions with high S/N is preserved, since these bins are reduced to a single spaxel.

The maps from different lines are binned independently since the spatial distribution of
the emission is different and the S/N is line dependent (see Fig. and B.2). Every S/N
threshold has been chosen to achieve roughly the same number of bins in each map of every
object and are listed in Table [4.3]

4.3.5. Spectral maps and aperture normalised spectra

As mentioned above, the maps of the emission lines were constructed by fitting a single
Gaussian profile to the spectra. Figure [B.I] shows, for the subsample of 10 LIRGs, the Bry
and Hjy 1-0S(1) emission and equivalent width maps, together with the velocity dispersion
and radial velocity ones. The figures also include emission maps of the Hel at 2.059 um and,
for those objects observed in the H band, [Fell] line emission maps at 1.644 um. We have also
constructed a K band map from the SINFONI data by integrating the flux along the response
curve of the 2MASS K-band filter, to compare with archival HST images when available.
Figure shows the maps of the subsample of 7 ULIRGs but with the Paa: emission line
instead of Brvy. All the line emission maps are shown in arbitrary units on a logarithmic scale
to maximise the contrast between the bright and diffuse regions and are oriented following
the standard criterium that situates the north up and the east to the leffl]

The radial velocity maps are scaled to the velocity measured at the brightest spaxel in the
K band image. This spaxel is marked with a cross in all the maps and usually coincides with
the nucleus of the galaxy or with one of them for the interacting systems. The measured
systemic radial velocities are similar to the NED published values within less than ~1%.
Although the main nucleus of NGC 3256 was observed in the H band, the reference spaxel
corresponds to its southern nucleus, which is highly extinguished (Kotilainen et al./[1996,
Alonso-Herrero et al.[2006, Diaz-Santos et al.|2008), since the main one was not observed in
the K band (see Fig. [B.1d). The values of the reference radial velocities are shown in Table
44

Besides the spectral maps, Figs. [B.1]and[B.2]show, for illustrative purposes, the integrated
spectra in the K band of two regions of the FoV. The apertures used to extract the spectra are
drawn on the maps and are labelled with the letters “A” and “B". Aperture “A" is centred

on the brightest spaxel of the K band image, which usually corresponds to the nucleus of the

1The only exception to this criterium is IC 5179 (Fig. } where we have adopted the original orientation
of the data to maximise the size of the maps. The axes’ orientation is plotted for reference.
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Object cz
(kms™1)
IRAS 06206-6315 27625 + 15
NGC 2369 3465 + 5
NGC 3110 5151 + 4
NGC 3256 2780 £+ 2

ESO 320-G030 3132 £ 24
IRAS 1211240305 21973 £ 3
IRASF 12115-4656 5519 + 52

NGC 5135 4115+ 6
IRAS 14348-1447 24799 + 4
IRASF 17138-1017 5184 + 1
IRAS 17208-0014 12805 + 6

IC 4687 5226 + 3
IRAS 21130-4446 28016 + 17

NGC 7130 4895 £ 2

IC 5179 3384 £1

IRAS 22491-1808 23287 + 5
IRAS 23128-5919 13437 + 2

Table 4.4: Velocities derived for the sample of galaxies using the Bry line at the spaxel with the
brightest K-band flux. The spaxels are marked with a cross in Figs. and The differences
between these and NED published values are typically less than ~1%.

galaxy. On the other hand, aperture “B" is centred in regions of interest that differ from
object to object. In the LIRG subsample, it covers the brightest region in the Bry equivalent
width map. The same criterion is used for the ULIRG subsample, except in those objects

with two distinct nuclei, where aperture “B"” covers the secondary nucleus.

The spectra are normalised to the continuum, measured between 2.080 um and 2.115 um
and between 2.172 ym and 2.204 um. We also stacked the spectra of one of our sky cubes
into a single spectrum and plotted it to illustrate the typical sky emission. This is useful for
identifying the residuals from sky lines that are the result of the sky subtraction during the
data reduction. Besides the OH sky lines, some of the K-band spectra show the residuals
from the atmospheric absorption of water vapour. These features are easily traced along the
wavelength ranges [1.991-2.035] um and [2.045-2.080] um, and are marked in grey in Figs.
and [B.2l
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4.3.6. Generation of the stacked spectra for the LIRG and ULIRG subsam-
ples

Figure shows the stacked spectra of three different subsets of the sample defined
according to the Ljr range. As discussed in Rosales-Ortega et al.| (2012)), there are different
techniques for optimising the S/N within IFS data. We have adopted a flux-based criterium
to exclude those spaxels with low surface brightness that may contribute to increase the
noise of the resulting spectra. For each object, we considered the continuum images for each
band and ordered the spaxels by decreasing flux. We then selected a set of spectra from
those spaxels that contain at least the 2 90% of the total continuum flux. By assuming this
criterium, we assure that typically between the ~ 85 — 95% of the flux in the lines is also
taken into account.

Before the stacking, every individual spectrum is de-rotated, i.e. shifted to the same rest
frame. This procedure decorrelates the noise due to imperfect sky subtraction, since the
residuals are no longer aligned in the spectral axis, and prevents the smearing of the lines due
to the stacking along wide apertures. To derotate the spectra, we focussed on the [Fell] line
for the H band and on Bry (Paa for the ULIRG subset) and the Hy 1-0S(1) line for the K
band, since the relative shifts in the spectral axis could be different for each phase of the gas.
For the ULIRG subset, we have only considered the Pac line, since the Hp 1-0S(1) line is not
bright enough in all the spaxels where the spectra are extracted. For the K band spectra of
the LIRG subsample, we measured the difference between the relative shifts obtained for the
Bry and Hj lines, to assure that no artificial broadening is introduced if only one phase is
considered as reference for the whole spectra. Given that only less than ~10% of the spaxels
have more than one spectral pixel of difference between the relative shifts measured with
both emission lines, we considered that the effect in the width of the lines is negligible so we
have adopted the Brv line as reference for the whole LIRG subset.

After the derotation procedure, every spectrum of each object is normalised to a linear
fit of the continuum, measured within the intervals [1.600, 1.610] um and [1.690, 1.700] xm
for the H-band and [2.080, 2.115] um and [2.172, 2.204] um for the K-band, and stacked in
one single spectrum per object. Finally, the spectra of each galaxy in each luminosity bin are
rebinned, stacked, and convolved to a resolution of 10A (FWHM) to achieve a homogeneous

resolution. The spectra of the different luminosity bins are available as online material.
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Figure 4.1: H- and K-band stacked spectra of the SINFONI sample - H- and K-band stacked
spectra of the sample, divided into three subsets with log(Lir/Le) < 11.35, 11.35 <log(Lir/Lo) < 12,
and log(Lir/Le) > 12. The spectra are normalised to a linear fit of the continuum measured within the
intervals [1.600, 1.610] um and [1.690, 1.700] um for the H band and [2.080, 2.115] um and [2.172,
2.204] pm for the K band. From top to bottom, H-band and K-band spectra of the different subsets
by increasing Lir. The spectra are available in electronic form at the CDS via anonymous ftp to
ftp://cdsarc.u-strasbg.fr (130.79.128.5) or via |http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/.
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4.3 Observations, data reduction, and analysis

4.3.7. Gas emission and line fluxes

We extracted the spectra of different regions of interest for all the galaxies of the sample,
which comprise the nucleus (identified as the K-band continuum peak), the integrated
spectrum over the FoV, and the peak of emission of Bry (Pa« for the ULIRGs subsample), H»
1-0S(1), and [Fell]. For every region, we integrated the spectra within apertures of 400x400 pc
for the LIRGs and 2x2 kpc for ULIRGs, and measured the flux of the Bry, H, 1-0S(1), and
[Fell] lines for all the LIRGs of the sample and the Paa and Hy 1-0S(1) line flux for the
ULIRGs subsample. Although the study of the ionised gas is focussed on the Paa line in the
ULIRG subset, we have also made measurements of the Bry line to directly compare with the
results obtained for the LIRGs.

To obtain the line fluxes over the FoV, we only took the brightest spaxels in the H and
K-band images (for the [Fell] and Bry Paa and Hy 1-0S(1) respectively) into account, to
include 290% of the total flux in each image. This ensures that only those spaxels with the
highest S/N are included in the spectra, and removes all those with a low surface brightness
that contributes significantly to increasing the noise and the sky residuals in the spectra.

The line fitting is performed following the same procedure as in the spectral maps, by
fitting a single Gaussian model to the line profile. To estimate the errors of the line fluxes, we
implemented a Monte Carlo method. We measured the noise of the spectra as the rms of the
residuals after subtracting the Gaussian profile. Taking this value of the noise into account,
we constructed a total of N = 1000 simulated spectra whose lines are again fitted. The error
of the measurements is obtained as the standard deviation of the fluxes of each line. The
advantage of this kind of method is that the errors calculated not only consider the photon
noise but also the uncertainties due to an improper line fitting or continuum level estimation.

The values of the line fluxes for the different regions in the sample of galaxies are shown in
Table [4.5] Besides the gas emission, we also measured the equivalent width of the CO (2-0)
band at 2.293 um (Wco) using the definition of |Forster Schreiber|2000. This stellar feature
is detected in all the galaxies of the LIRG subsample and in two ULIRGs (IRAS 17208-0014
and IRAS 23128-5919), since it lays out of our spectral coverage for the rest of the ULIRGs.

4.3.8. Stellar absorption features

Although the study of the stellar populations and of their kinematics, derived from the CO
absorption lines, will be addressed in a forthcoming paper, we have included measurements
of the equivalent width of the first CO absorption band (see Table obtained using the
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4. MAPPING THE EMITTING GAS STRUCTURE OF LOCAL LIRGS AND
ULIRGS

pPXF software (Cappellari & Emsellem| 2004) to fit a library of stellar templates to our
data. We made use of the Near-IR Library of Spectral templates of the Gemini Observatory
(Winge et al., 2009), which covers the wavelength range of 2.15 um — 2.43 um with a spectral
resolution of 1A pixel™*. The library contains a total of 23 late-type stars, from F7Ill to

M3III, and was previously convolved to our SINFONI resolution.

4.4. Overview of the data

The wide spectral coverage of the SINFONI data allows us to study in detail a large
number of spectral features that trace different phases of the interstellar medium and the
stellar population (Bedregal et al [2009)). In this work we focus on the gas emission in LIRGs
and ULIRGs by studying the brightest lines in the H and K bands, i.e. [Fell] at 1.644 um,
Pac at 1.876 um, Hel at 2.059 um, Hy 1-0S(1) at 2.122 ym and Bry at 2.166 um. The maps
of these spectral features together with the K-band spectra of the nucleus (identified as the
K-band peak), and of the brightest Bry (or Paa for ULIRGs) region are shown in Figs.
and for the sample of LIRGs and ULIRGs, respectively.

In the present section, we briefly describe the different physical mechanisms and processes
that create the emission lines and stellar features observed in our data. The detailed study
of these mechanisms are beyond the scope of the present work, but some of them will be

addressed in the forthcoming papers of these series.

4.4.1. Hydrogen lines and 2D extinction maps

The overall structure of the ionised gas, mostly associated with recent star formation, is
traced by the hydrogen recombination lines Paa: for ULIRGs and Brvy for LIRGs. Although
Br~ is also observed in the ULIRGs subsample, for this group we focus the study of the
ionised gas on the Pa« emission, since its brightness allows better measurements. The Bré
line at 1.945 um is also observed in all the galaxies of the sample; however, for the LIRG
subsample, it lies in a spectral region where the atmospheric transmission is not optimal and,
for the ULIRG subset, it is too weak to be mapped.

It is well known that the bulk of luminosity produced in local (U)LIRGs is due to the
large amount of dust that hides a large fraction of their star formation and nuclear activity
(see |Alonso-Herrero et al.[[2000, Garcia-Marin et al. [2009a| and references therein). This

dust is responsible for the absorption of UV photons that are then re-emitted at FIR and

78



6.

NGC 2369 NGC 3110
Region Br~y Flux Hy 1-0S(1) Flux [Fe 1] Flux Wco Region Bry Flux Hp 1-0S(1) Flux [Fe 1] Flux Wco
Nuclear 14.71 £+ 0.59 10.68 £ 0.57 9.40 £ 0.58 123+ 21 Nuclear 3.05 + 0.08 2.98 + 0.15 1.82 + 0.22 105 + 0.9
Integrated 78.46 + 125 75.51 + 8.54 91.13 + 14.8 oo Integrated 45.92 + 1.48 52.45 + 2.77 22.66 + 8.20 cee
Bry max’ 15.27 £+ 0.63 10.92 £ 0.57 10.21 £ 0.61 119 + 1.8 Bry max 1.66 + 0.03 1.08 + 0.03 0.68 £ 0.06 82+ 09
Hy 1705(1)1- 14.66 + 0.59 10.58 £ 0.56 9.85 + 0.59 120 + 1.7 Hj 1—05(1)'t 3.05 + 0.08 2.98 + 0.15 1.82 + 0.22 10.5 + 0.9
[Fell] max 11.16 + 0.58 9.15 + 0.45 9.72 + 0.81 115 +13 [Fell] max' 270 + 0.06 250 + 0.12 1.50 4 0.19 105 + 1.1
NGC 3256F ESO 320-G030
Region Brvy Flux Hy 1-05(1) Flux [Fe 11] Flux Wco Region Brvy Flux Hy 1-05(1) Flux [Fe 11] Flux Wco
Nuclear 2221 +0.33 19.13 + 0.21 4.36 + 0.47 113 £ 0.7 Nuclear 2.35 £ 0.29 16.62 4+ 0.50 2.30 £ 0.77 114 + 1.2
Integrated + 4.45 + 3.40 + 6.39 ce Integrated 82.80 + 7.59 78.57 + 6.83 49.03 £ 7.65 ce
213.92 206.98 132.85
Bry max’ 22.40 £+ 0.36 18.85 £ 0.24 11.6 + 0.5 Bry max 4.15 £+ 0.13 2.06 + 0.13 272 +021 11.1 + 0.9
Hj 1-0S(1) 417 £ 021 26.98 + 0.75 e 10.3 £ 0.8 Hj 1—05(1)1‘ 2.07 £ 0.29 16.14 4 0.49 212 £ 0.79 116 + 1.1
[Fell] max o . 4.02 + 0.46 . [Fell] maxt 2,67 + 0.28 13.27 + 0.43 241+ 071 11.6 & 1.1
IRASF 12115-4656 NGC 5135
Region Bry Flux Hy 1-05(1) Flux [Fe 11] Flux Wco Region Brvy Flux Hy 1-05(1) Flux [Fe 11] Flux Wco
Nuclear 0.85 + 0.09 1.89 + 0.18 8.9 £ 0.7 Nuclear 6.45 + 0.20 9.65 + 0.22 5.17 £ 0.25 71+07
Integrated 69.71 + 6.95 59.83 + 6.20 s Integrated 49.39 + 2.54 69.23 + 4.13 42.71 £ 3.69 ce
Bry max 0.80 + 0.03 0.37 £ 0.03 95+ 0.7 Bry max 6.87 £ 0.11 4.40 £ 0.17 431 £ 017 114+ 1.0
Hy 1_05(1)T 0.87 £ 0.08 1.90 + 0.18 89+ 0.7 Hy 1-05(1)1\ 6.45 + 0.20 9.65 + 0.22 5.17 + 0.25 71+07
[Fell] max o e e [Fell] max 523 4+ 0.16 10.64 + 0.38 46.26 & 1.20 134 +13
IRASF 17138-1017 1C 4687
Region Brvy Flux Hj 1-0S(1) Flux [Fe 1] Flux Weo Region Brvy Flux Hy 1-0S(1) Flux [Fe 1] Flux Wco
Nuclear 6.35 + 0.11 3.06 £+ 0.09 5.05 + 0.14 11.1 + 1.0 Nuclear 531+ 0.11 327 £ 0.11 3.75 £ 0.23 123+ 1.1
Integrated 89.48 + 2.69 4229 £+ 1.97 61.55 + 2.75 s Integrated + 3.77 59.31 + 291 78.03 + 7.14 ce
146.64
Bry max 12.14 4+ 0.13 1.75 + 0.06 549 + 0.11 8.8 £ 09 Bry max 7.28 £ 0.10 0.97 £ 0.03 2.64 + 0.11 83+ 1.0
Hy 1_05(1)T 6.35 £+ 0.11 3.06 + 0.09 5.05 £ 0.14 111+ 1.0 Ha l-OS(l)T 4.46 + 0.09 2.86 + 0.10 3.34 £ 023 119 + 1.3
[Fell] max 7.74 £ 0.10 1.90 + 0.04 4.13 £ 0.08 8.7 £ 0.6 [Fell] max 7.05 £ 0.09 0.99 + 0.03 2.86 £ 0.12 9.2+ 1.0
NGC 7130 I1C 5179
Region Bry Flux Hy 1-05(1) Flux [Fe 11] Flux Wco Region Brvy Flux Hy 1-05(1) Flux [Fe 11] Flux Wco
Nuclear 17.32 4+ 0.36 25.39 + 0.44 49.26 + 1.84 114 + 0.7 Nuclear 13.70 £+ 0.19 8.69 + 0.32 8.48 £+ 0.54 122+ 1.2
Integrated 30.62 + 1.43 51.12 + 2.33 32.95 + 2.40 s Integrated 98.24 + 6.98 61.19 + 5.00 45.45 + 6.25 S
Bry max’ 17.32 4+ 0.36 25.39 + 0.44 49.26 + 1.84 11.4 £ 0.7 Bry max’ 13.50 £+ 0.17 8.06 + 0.32 8.16 £+ 0.52 122+ 1.2
Hy 1—OS(I)T 16.84 4+ 0.35 25.17 + 0.44 49.02 + 1.84 11.6 + 0.9 Hy 1-05(1)T 13.42 £+ 0.17 8.34 + 0.32 8.39 £+ 0.52 122+ 1.2
[Fell] max’ 17.32 4+ 0.36 25.39 + 0.44 49.26 + 1.84 114 + 0.7 [Fell] max’ 13.12 £+ 0.16 7.60 £+ 0.31 7.98 £ 0.50 122+ 11

Table 4.5a: Bry, Hy 1-0S(1), and [Fell] integrated observed fluxes in units of [x107 0 ergs™lcm™2],

explanation).

and CO (2-0) equivalent widths (in [A]) of the LIRG
subsample. Spectra are integrated within a 400x400 pc aperture, covering the nuclear region defined as the brightest spaxel in the K-band; the integrated emission
of the FoV, defined as the integrated flux of those spaxels that contain at least the >90% of the total continuum flux in each band; and the peaks of the Bry,
H, 1-0S(1) and [Fell] emission, centred on the brightest spaxel in each of the respective maps. The errors are obtained by a Monte Carlo method of N = 1000
simulations of each spectra. T Regions that are coincident with the nucleus of the object. The spectra are extracted and the lines are fitted independently.t The
Bry peak of emission does not coincide with the stellar nucleus of the object but with the region we have adopted as the ‘nucleus’ (see the main text for a further
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IRAS 06206-6315

IRAS 1211240305

Region Paa Flux Hj 1-0S(1) Flux Wco Region Paa Flux Hj 1-0S(1) Flux Wco
Nuclear 32.91 + 0.90 6.06 + 0.12 Nuclear 45.48 + 0.56 3.62 + 0.10
Integrated 42.47 £+ 6.54 25.13 + 1.42 Integrated 190.87 + 6.61 32.44 £+ 1.59
Pac max’ 32.34 £+ 0.90 5.85 £ 0.12 Pac max’ 45.20 £+ 0.56 3.59 £ 0.10
Hy 1-05(1)T 32.91 4 0.90 6.06 + 0.12 Hy 1-05(1) 42.67 + 0.42 10.39 + 0.13
IRAS 14348-1447 IRAS 17208-0014
Region Paa Flux Hp 1-0S(1) Flux Wco Region Paa Flux Hp 1-0S(1) Flux Wco
Nuclear 45.51 + 0.36 10.21 4+ 0.19 Nuclear 437.13 £ 14.26 60.50 + 1.31 118 £ 1.1
Integrated 144.90 + 2.94 39.39 + 0.81 Integrated 519.96 + 16.00 96.47 + 9.99 cee
Paa max’ 45.51 + 0.36 10.21 4+ 0.19 Pac max’ 437.13 + 14.26 60.50 + 1.31 118 £ 1.1
Hy 1-OS(1)T 45.33 £+ 0.38 10.25 4+ 0.20 Ha 1—05(1)Jr 435.91 £ 14.68 60.70 £+ 1.35 118 + 1.3
IRAS 21130-4446 IRAS 22491-1808
Region Pac Flux Hy 1-0S(1) Flux Wco Region Paa Flux Hj 1-0S(1) Flux Wco
Nuclear 26.98 + 0.98 3.10 £+ 0.11 Nuclear 11.68 4+ 0.18 0.75 + 0.05
Integrated 107.65 + 2.62 6.00 4 0.25 Integrated 54.85 + 1.18 10.22 £ 0.62
Paa max 20.76 + 0.19 0.57 £ 0.04 Pac max 27.17 £+ 0.43 8.64 + 0.16
Hy 1—05(1)Jr 27.75 + 0.98 2.96 £ 0.10 Hy 1-0S(1) 27.45 £ 0.42 8.65 £ 0.17
IRAS 23128-5919
Region Paa Flux Hp 1-0S(1) Flux Wco
Nuclear 336.35 £ 6.04 11.76 4+ 0.35 8.1+ 0.7
Integrated 578.33 + 8.60 26.42 + 1.54 9.0+ 1.2
Pac max’ 335.42 + 6.01 11.80 + 0.35 82 £ 08
H, 1-05(1)% 335.42 + 6.01 11.80 + 0.35 8.2+ 0.8

Table 4.5b: Paa and H, 1-0S(1) integrated observed fluxes in units of [x1071® ergs™lcm™2], and CO (2-0) equivalent widths (in [A]) of the ULIRGs subsample.
Spectra are integrated within a 2x2kpc aperture, covering the nuclear region defined as the brightest spaxel in the K-band; the integrated emission of the FoV,
defined as the integrated flux of those spaxels that contain at least the 2> 90% of the total continuum flux in each band; and the peaks of the Pac and Hy 1-0S(1)
emission, centred on the brightest spaxel in each of the respective maps. The errors are obtained by a Monte Carlo method of N = 1000 simulations of each spectra.

T Regions that are coincident with the nucleus of the object. The spectra are extracted and the lines are fitted independently.
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4.4 Overview of the data

NGC 2369 NGC 3110
Region Bry o Hy 1-05(1) ¢ [Fell] o Region Bry o Hy 1-05(1) ¢ [Fell] o
Nuclear 119+ 5 113+ 6 113+ 8 Nuclear 78+ 2 98 £ 6 69 + 13
Integrated 166 + 25 133 + 13 174 + 31 Integrated 124 £+ 4 145 + 8 91 £+ 29
Bry maxt 124 +5 116 + 6 120 + 8 Bry max 50 + 1 48 £ 2 30 + 11
H, 1-0S(1)f 121 +5 113+ 6 116 + 8 H, 1-0S5(1)f 78 +£2 98 + 6 69 + 13
[Fell] max 136 £ 7 111+ 6 125 + 13 [Fell] max' 72+2 89 +5 62 + 14
NGC 3256 ESO 320-G030
Region Bry o H> 1-05(1) ¢ [Fell] o Region Bry o H> 1-05(1) 0 [Fell] o
Nuclear 110+ 1 86 £ 1 57 £ 12 Nuclear 91 £13 113+ 4 72 £23
Integrated 82+ 2 83+1 84 +6 Integrated 137 + 10 135 + 10 119 + 18
Bry maxf 113 +£ 2 87 +1 Bry max 48 £ 2 51 +5 52+ 9
H, 1-05(1) 103 47 130 + 4 H, 1-05(1)f 87 +£15 11244 71427
[Fell] max 56 + 13 [Felll maxt 89411 100 + 4 71+ 26
IRASF 12115-4656 NGC 5135
Region Bry o Hy 1-05(1) 0 [Fell] o Region Bry o Hy 1-05(1) 0 [Fell] o
Nuclear 82 + 12 96 + 11 Nuclear 84+ 3 67 + 2 61 +5
Integrated 155 + 15 151 £ 13 Integrated 7+E6 87 58 £ 11
Bry max 38+4 29 £ 8 Bry max 65+ 1 66 + 3 50 £ 4
H, 1-05(1)F 82+ 12 97 + 11 H, 1-05(1)F 84 +3 67 + 2 61 +5
[Fell] max [Fell] max 67 £3 90 + 4 205 + 7
IRASF 17138-1017 1C 4687
Region Bry o Hy 1-05(1) ¢ [Fell] o Region Bry o Hy 1-05(1) ¢ [Fell] o
Nuclear 74 £1 67 £2 65 £ 3 Nuclear 77 £2 75 £3 67 £6
Integrated 106 £+ 4 100 £ 5 97 +5 Integrated 117 £ 3 112 £ 5 93+9
Bry max 3+1 56 + 3 66 + 2 Bry max 49 £1 43 £3 45 £ 4
H, 1-05(1)F 74 +1 67 + 2 65 + 3 H, 1-05(1)F 80 & 2 70+ 3 69 + 6
[Fell] max 62 £1 52+ 1 590 £2 [Fell] max 50 £1 43 £3 46 £ 4
NGC 7130 IC 5179
Region Bry o Hy 1-05(1) ¢ [Fell] o Region Bry o H> 1-05(1) 0 [Fell] o
Nuclear 93 +£2 96 + 2 143 + 8 Nuclear TmE1 96 + 4 84 £7
Integrated 64 + 4 78 +5 57+9 Integrated 130 £ 9 117 £ 9 123 £ 13
Bry maxf 93 £2 96 + 2 143 + 8 Bry maxf 74 £ 1 91+ 4 80 + 7
H, 1-0S(1)f 9342 96 + 2 143+ 38 H, 1-0S(1)f 74 +1 93+ 4 82+ 7
[Fell] max' 9342 96 + 2 143+ 8 [Fell] max' 7241 89 4+ 4 79+7

Table 4.6a: Bry, Hy 1-05(1), and [Fell] velocity dispersion values in units of [kms™!] of the
LIRGs subsample. The method of extracting the spectra and the selection criteria for the regions

are the same as for Table
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4. MAPPING THE EMITTING GAS STRUCTURE OF LOCAL LIRGS AND

ULIRGS
IRAS 06206-6315 IRAS 1211240305
Region Paa o H, 1-05(1) o Region Paa o H, 1-05(1) o
Nuclear 177 £ 4 139 + 2 Nuclear 134 +1 118 £ 3
Integrated 148 + 93 117 + 7 Integrated 153 +£ 5 160 + 8
Paa maxt 177 + 4 139 £ 3 Paca maxt 134 +1 119+ 3
H, 1-0S(1)f 177 + 4 139 £ 2 Hy 1-05(1) 121 +£1 150 £+ 2
IRAS 14348-1447 IRAS 17208-0014
Region Paa o H, 1-05(1) o Region Paa o H, 1-05(1) o
Nuclear 109 +£ 1 111 £ 2 Nuclear 219 £ 6 187 £ 3
Integrated 124 £3 127 £3 Integrated 201 £ 5 200 £+ 18
Paar maxt 109 + 1 111 + 2 Pac maxt 219+ 6 187 £ 3
H, 1-05(1)f 108 £ 1 111 £ 2 H, 1-0S(1)T 222+ 6 189 £ 3
IRAS 21130-4446 IRAS 22491-1808
Region Paa o H, 1-05(1) o Region Paa o H, 1-05(1) o
Nuclear 132 £6 131 £ 4 Nuclear 66 £ 1 836
Integrated 119 + 3 113+ 5 Integrated 76 + 2 102 + 8
Paa max 75+0 74+ 6 Paa max 105 £+ 2 125 £+ 2
H, 1-0S(1)f 137 £ 6 127 + 4 H, 1-0S(1) 105 +1 125 + 2
IRAS 23128-5919
Region Paa o H, 1-05(1) o
Nuclear 116 + 2 81 +3
Integrated 104 + 2 87 £ 6
Paa max’ 116 £ 2 82+3
H, 1-0S(1)f 116 £ 2 82 +£3

Table 4.6b: Pac and H, 1-0S(1) velocity dispersion values in units of [kms™1] of the ULIRGs
subsample. The method for extracting the spectra and the selection criteria for the regions are

the same as for Table
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4.4 Overview of the data

submillimetre wavelengths. A detailed 2D quantitative study of the internal extinction could
be performed by using the Brd/Brv ratios in LIRGs and Bry/Pac in ULIRGs. This study of
the objects in the sample will be presented in the next paper of this series (Piqueras Lopez
et al.|[2013, Chapter .

The detailed characterisation of the extinction is essential to achieve accurate measure-
ments of the SFR in these dusty environments. This treatment of the extinction allows us to
obtain maps of the SFR surface density that are corrected for extinction on a spaxel-by-spaxel
basis. The analysis of the SFR in the objects of the sample, based on the Bry and Pa«

maps presented in this work, will be addressed in Piqueras-Lépez et al 2014 (in preparation,

Chapter @

4.4.2. Emission lines and star formation

The hydrogen recombination lines have been widely used as a primary indicator of recent
star-formation activity, where UV photons from massive OB stars keep the gas in an ionised
state. The measurements of the Brvy equivalent width, in combination with the stellar
population synthesis models, such as STARBURST99 (Leitherer et al., [1999) or Claudia
Maraston’s models (Maraston|[1998, 2005)), could be used to constrain the age of the youngest
stellar population. The Hel emission is also usually associated to star-forming regions, and
used as a tracer of the youngest OB stars, given its high ionisation potential of 24.6eV. This
emission may depend on different factors, such us density, temperature, dust content, and
He/H relative abundance and ionisation fractions.

The [Fell] emission is usually associated with regions where the gas is partially ionised
by X-rays or shocks (Mouri et al., |2000). Shocks from supernovae cause efficient grain
destruction that releases the iron atoms contained in the dust. The atoms are then singly
ionised by the interstellar radiation field and excited in the extended post-shock region by
free electron collision on timescales of ~10*yr. The [Fell] lines at 1.257 um and 1.644 um
are widely used to estimate the supernova rate in starbursts (Colina|[1993, Alonso-Herrero
et al.[2003, Labrie & Pritchet [2006| Rosenberg et al.|2012 and references therein), whereas
the EW|r)) could also be used, in combination with the EWg,,, to constrain the age of the

stellar populations in the synthesis models.
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ULIRGS

4.4.3. H, lines and excitation mechanisms

The Hy 1-0S(1) line is used to trace the warm molecular gas, since it is the brightest
Hy emission line in the K band and it is well detected in all the objects with sufficient S/N.
Furthermore, the presence of several roto-vibrational transitions of the molecular hydrogen
within the K band allows studying the excitation mechanisms of the Hj: fluorescence due to
the excitation by UV photons from AGB (Asymptotic Giant Branch) stars in PDRs, thermal
processes like collisional excitation by SN fast shocks, or X-rays (van der Werf||2000, Davies
et al. 2003, 2005)). The determination of the Hy excitation mechanisms in general requires
measurements of several lines, usually weak lines, since the different processes mentioned
may rise to similar intense and thermalised 1-0 emissions.

Based on the relative fluxes of the transitions to the brightest Hy 1-0S(1) line, we could
obtain population diagrams of the emitting regions. In these diagrams, the population of
each level in an ideal thermalized PDR could be determined as a function of the excitation
temperature. The presence of non-thermal processes like UV fluorescence is translated to an
overpopulation of the upper levels and a deviation from the ideal thermalised model. However,
the way these levels are overpopulated due to non-thermal processes is complex, and might
depend on several parameters like density or the intensity of the illuminating UV field (Davies
et al.| 2003, 2005, [Ferland et al./2008| and references therein). The detailed study of the
excitation mechanisms of the molecular hydrogen will be addressed in a future paper of this

series.

4.4.4. Coronal lines as AGN tracers

The [SiVI] at 1.963 um and [CaVIII] at 2.321 um coronal lines are the main AGN tracers
within the K-band. However, the [CaVIIl] line is too faint (typically x4 fainter than [SiVI],
Rodriguez-Ardila et al|[2011) and to close to CO (3-1) to be measured easily. Given the
high ionisation potential of 167 eV for [SiVI] and 128eV for [CaVIll], the outskirts of the
broad-line region and extended narrow-line regions have been proposed as possible locations
for the formation of these lines in AGNs. Although which mechanism is responsible for the
emission remains unclear, there are two main processes proposed: photoionisation due to the
central source and shocks due to high-velocity clouds and the NLR (Narrow Line Region) gas

(see |Rodriguez-Ardila et al.[2011] and references therein).
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4.4 Overview of the data

4.4.5. Line ratios

The interpretation of the Hp 1-0S(1)/Bry ratio is sometimes not straightforward since Ha
could be excited by both thermal and radiative processes, in contrast to the [Fell] emission
that is predominantly powered by thermal mechanisms. This ratio is in principle not biased
by extinction, and starburst galaxies and HIl regions empirically exhibit lower Hy/Br~ ratios,
whereas Seyfert galaxies and LINERs (Low-lonization Nuclear Emission-line Regions) show
higher values (0.6 SH> 1-0S(1)/Bry <2.0, |Dale et al./ 2004, |Rodriguez-Ardila et al./[2005,
Riffel et al.|2010, |Valencia-S et al.|2012).

In combination with the Bry emission that traces the photoionised regions, the [Fell]/Bry
ratio allows us to distinguish regions where the gas is ionised by star formation activity where
the [Fell] is expected to be weak (Mouri et al., |2000), from zones where the gas is partially
ionised by shocks (Alonso-Herrero et al., [1997)). Since [Fell] is not expected in HIl regions
where iron would be in higher ionisation states, we could trace different ionisation mechanisms
and efficiencies by using the [Fell]/Bry ratio, and probe the excitation mechanisms that
produce the [Fell] line in those regions where the emission has stellar origin. In addition,
the [Fell]/Bry ratio depends on the grain depletion, and a high depletion of iron would
reduce the number of atoms available in the interstellar medium, hence reduce the line ratio
(Alonso-Herrero et al .} 1997)).

Although the Hel line could be used as a primary indicator of stellar effective temperature,
interpreting the emission and the Hel /Brvy ratio without a detailed photoionisation model
is still controversial (Doherty et al.|1995, Lumsden et al.[ 2001, [2003). In addition, the Hel
transition is also influenced by collisional excitation, and a full photoionisation treatment is

not enough to predict the line emission (Shields, 1993).

4.4.6. Absorption lines and stellar populations

Besides the emission lines, there are different absorption features that lie within the K
band, such as the Nal doublet at 2.206 um and 2.209 um, the Cal doublet at 2.263 ym, and
2.266 um and the CO absorption bands CO (2-0) at 2.293 um, CO (3-1) at 2.323 um or CO
(4-2) at 2.354 um. The absorption features, such as the CO bands and the Nal doublet, are
typical of K and later stellar types, and they also trace red giant and supergiant populations.
Given the limited S/N of the Nal doublet, it is not possible to map the absorption with the
present data, but it could be suitable for integrated analysis. On the other hand, the CO
(2-0) band can be used to spatially sample the stellar component of all the LIRGs of the
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sample and in two of the ULIRGs. Both EW¢p and EWp, could be used in combination
with the stellar population synthesis models to constrain the age of the stellar populations

(see |Bedregal et al.[2009).

4.5. Results and discussion

Most of the LIRGs of the sample are spiral galaxies with some different levels of interaction,
ranging from isolated galaxies as ESO 320-G030 to close interacting systems as I1C 4687+IC
4686 or mergers like NGC 3256 (Lipari et al., |2000), and to objects that show long tidal tails
several kiloparsecs away from its nucleus (e. g. NGC 7130, Fig. [B.1i). The emission from
ionised and molecular hydrogen has different morphologies in many galaxies of the LIRGs
subsample. The ULIRG subsample contains mainly interacting systems in an ongoing merging
process with two well-differentiated nuclei. The Paa emission extends over several kiloparsecs
with bright condensations not observed in the continuum maps. The molecular hydrogen
emission, on the other hand, is rather compact (<2 — 3 kpc) and is associated with the nuclei
of the systems. An individual description of the more relevant features of the gas emission
morphology for each galaxy can be found in Appendix [Al We will now discuss each gas phase

and the stellar component separately.

4.5.1. lonised gas

The dynamical structures as spiral arms are clearly delineated on the ionised gas maps
traced by the Bry (LIRGs) and Paa (ULIRGs) lines. The observed ionised gas emission
in LIRGs is dominated by high surface brightness clumps associated with extranuclear star-
forming regions located in circumnuclear rings or spiral arms at radial distances of several
hundred parsecs. The nuclei are also detected as bright Brvy sources in several galaxies but
represent the maximum emission peak in only a small fraction (~33%) of LIRGs. These
results are in excellent agreement with those derived from the Pa« emission in |Alonso-Herrero
et al. (2006) using HST NICMOS images for all the objects of our LIRG sample, with the
exception of IRASF 12115-4656, which was not included in their sample. On the other hand,
the main nucleus is the brightest Pacx emission peak in the majority (~71%) of ULIRGs, also
showing emission peaks along the tidal tails, secondary nucleus, or in extranuclear regions at
distances of 2—4 kpc from their centre. However, since ULIRGs in our sample are about four

to five times more distant than our LIRGs, the typical angular resolution of our SINFONI
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Figure 4.2: Luminosity distributions. - Luminosity distribution of the Bry, H2 1-0S(1), and [Fell]
emission. From top to bottom, the histograms show the distribution of the total luminosity in solar units
of the lines measured in the nucleus (defined by aperture “A” in Figs. and [B.2), the integrated FoV,
and the peak of the Bry (Pac) emission. For the distributions of the ionised gas (first column), we have
also included the Pac emission in light blue for the ULIRGs. Note: Bry (Pac) peak coincides with the
nucleus in ~ 33% of the LIRGs and in the ~71% of the ULIRGs.
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Figure 4.3: Surface density distributions. - Surface density distribution of the Bry, Hy 1-05(1), and
[Fell] emission. From top to bottom, the histograms show the distribution of the surface density in solar
units per unit of area (pc?) of the lines measured in the nucleus (defined by aperture “A" in Figs.
and , the integrated FoV, and the peak of the Bry (Paa) emission. For the distributions of the
ionised gas (first column), we have also included the Pac emission in light blue for the ULIRGs. The Bry
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(Pacr) peak coincides with the nucleus in ~ 33% of the LIRGs and in the ~71% of the ULIRGs.
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Figure 4.4: Velocity dispersion distributions. - Distributions of the velocity dispersion of the ionised
gas (Bry for LIRGs Paa for ULIRGs), H, 1-0S(1), and [Fell] emission. From top to bottom, the
histograms show the distributions of the velocity dispersion measured in the nucleus (defined by aperture
“A" in Figs. [BI]and [B.2), the integrated FoV, and the peak of the Bry (Paa) emission. The Bry (Pac)
peak coincides with the nucleus in ~ 33% of the LIRGs and in the ~71% of the ULIRGs.
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maps for ULIRGs covers sizes of about 1.5 kpc, and therefore the Pac peak emission detected
in the nuclei could still be due to circumnuclear star-forming regions, as in LIRGs.

The surface density and total luminosity distributions of the Bry (and Pa«a for the ULIRG
subsample) are presented in Figs. and . On average, the observed (i.e. uncorrected
for internal extinction) luminosities of the Bry brightest emitting region are ~ 1.2 x 10° L,
for LIRGs and ~ 2.3 x 10° L, for ULIRGs, accounting for about ~ 10% and ~ 43% of the
integrated Brvy luminosity, respectively. There is a factor ~20 difference in luminosity between
LIRGs and ULIRGs. Although the ULIRGs are intrinsically more luminous, this difference is
also due to a distance effect since the angular aperture used to obtain the luminosities covers
for ULIRGs an area 25 times larger than for LIRGs. For the ULIRG subset, we have also
measured peak Paa luminosities of the order of 4.5 x 107 L), in agreement with the expected
value derived from Br~ luminosities assuming case B recombination ratios and no extinction.

The observed Bry surface luminosity densities of the Bry (and Pa«) brightest emitting

2 2

regions are ~ 0.7 Lg pc™“ and ~ 0.6 Lg pc™<, on average, for LIRGs and ULIRGs, respectively,

whereas the Paa surface density for the ULIRG subset is ~ 6 L pc~2. Figure shows that
the distributions of the Bry surface luminosity density for the different luminosity bins are
very similar for the Bry (and Paa) peak and the nucleus of the objects, and range between
2and ~3Lgpc2.

As shown in Fig. the luminosity of Bry ranges from ~ 1.7 x 10% L, to ~ 5.1 x 10° L,

~0.1Lgpc™
in the nuclear regions of LIRGs, and the Paa emission reaches up to ~ 5.0 x 107 L, in

ULIRGs. Assuming the standard star formation rate to Ha luminosity ratio given by the

expression (Kennicutt, 1998)),

SFR(Mayr™1) = 7.9 x 107 x L(Ha)(ergs™1),

an estimate of the SFR surface densities, uncorrected for internal reddening, can be directly
obtained from the previous expression if the Ha to Paa: and Bry recombination factors are

taken into account:

SFR(Muyr1) = 6.8 x 107*! x L(Pa)(ergs™?)
=8.2x107% x L(Bry)(ergs™1).

90



4.5 Results and discussion

For LIRGs, the mean SFR surface densities integrated over areas of several kpc?, range
between 0.4 and 0.9 Mg, yr~! kpc=2 with peaks of about 2—2.5 Mg, yr~! kpc™2 in smaller
regions (0.16 kpc?) associated with the nucleus or the brightest Bry region. For ULIRGs, the
corresponding values are similar, ~0.4 for the integrated emission and ~ 2 Mg yr=! kpc—2
for peak emission. However, since ULIRGs are at distances further away than LIRGs, the sizes
of the overall ionised regions and brightest emission peaks covered by the SINFONI data are

greater than those in LIRGs, and they correspond to 100—200 kpc? and 4 kpc?, respectively.

A detailed study of the star formation is presented in Chapter [6]

We estimated the extinction effects by comparing the observed Bry/Brd and Bry/Pa«x
ratios (for LIRGs and ULIRGs, respectively) with the theoretical ones derived from a case B
recombination. We measured Ay values that range from ~2-3 mag up to ~10-12mag in
the nuclei of the objects (Chapter . This is translated to extinction values from ~ 0.3 mag
to ~ 1.0 mag at Bry wavelengths, and from ~ 0.4 mag to ~ 1.6 mag at Paa, and indicates
that the internal extinction in these objects still plays a role at these wavelengths. These
values are similar to those obtained by Alonso-Herrero et al. (2006) from the nuclear emission
in LIRGs. From the detailed 2D study of the internal extinction that will be presented in
Chapter [5| we estimated the median visual extinction for each luminosity subsamples of
LIRGs and ULIRGs. These values are Ay | |rcs = 5.27 mag and Ay yrirgs = 6.48 mag, that
correspond to Ag,, = 0.5mag and Ap,, = 0.9 mag respectively.

Considering the median extinction values presented above, the Bry and Paa luminosities,
hence the SFR surface densities, are underestimated approximately by a factor x1.7 in LIRGs
and x2.5 in ULIRGs. However, on scales of a few kpc or less, the distribution of dust in
LIRGs and ULIRGs is not uniform, and it shows a patchy structure that includes almost
transparent regions and very obscured ones (see |Garcia-Marin et al.|2009al and Chapter [5)).
This non-uniform distribution of the dust implies that the correction from the extinction
depends on the sampling scale, so that the correction to the SFR would depend on the scales
where the Bry (Paa) is sampled. For further discussion of the extinction and the implications
of the sampling scale in its measurements, please see Chapter [5

A detailed analysis of SFR surface densities based on the Bry, Paa, and Ha emission

lines will be presented elsewhere (Piqueras Lépez et al. 2014, in preparation, Chapter @
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4.5.2. Warm molecular gas

The Hy emission is associated with the nuclear regions of the objects, either to the main
nucleus or to the secondary in the interacting systems. In some cases, its maximum does not
coincide with the Bry peak, although in all the LIRGs and ~ 71% of the ULIRGs it coincides
with the main nucleus, identified as the brightest region in the K-band image. The typical Hy
1-0S(1) luminosity of the nuclei ranges from ~ 1.3 x 10° L, for the LIRG subsample up to
~ 4.6 x 10° L, for the ULIRGs, and accounts for ~ 13% and ~ 41% of the total luminosity
measured in the entire FoV. The Hy luminosity observed in the nucleus and in the Bry (Pa«)
peak in both LIRGs and ULIRGs is very similar to the Bry luminosity. The range of observed
luminosity in the nuclei spans from ~ 4.2 x 10% L, to ~ 6.8 x 10° L, and is also very similar
to the distribution observed for the Bry emission. Since the Hy (1—0)/Bry ratio is close
to one (range of 0.4 to 1.4, see Fig. , the surface brightness values derived for the Hp
emission are similar to those obtained for Bry (see Figure [4.3).

4.5.3. Partially ionised gas

The [Fell] maps reveal that the emission roughly traces the same structures as the Bry
line, although the emission peaks are not spatially coincident in some of the objects, and the
[Fell] seems to be more extended and diffuse. In ~ 55% of the LIRGs, the peak of the [Fell]
emission is measured in the nucleus, with typical luminosities of ~ 1.2 x 10° L., on scales
of ~ 0.16 kpc?. The nuclear emission accounts on average for ~ 16% of the total observed
luminosity. The differences in the morphology between the ionised and partially ionised gas
could be understood in terms of the local distribution of the different stellar populations:
although both lines trace young star-forming regions, the Bry emission is enhanced by the
youngest population of OB stars of <6 Myr, whereas the [Fell] is mainly associated with the
supernova explosions of more evolved stellar populations of ~ 7.5 Myr (see STARBURST99
models, Leitherer et al.|[1999).

4.5.4. Coronal line emission

The [SiVI] coronal line at 1.963 um (see Fig. is detected in two LIRGs (NGC 5135
and IRASF 12115-4656) and in one ULIRG (IRAS 23128-5919), with a tentative detection in
another LIRG (NGC 7130). The [SiVI] line has a high ionisation potential (167 €V) and it is
associated with Seyfert activity where the gas is ionised outside the broad line region of the

AGN (Bedregal et al., [2009). The [SiVI] emission is usually rather compact, concentrated
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Figure 4.5: H, 1-0S(3) and coronal line profiles. - H, 1-0S(3) and [SiVI] normalised flux profiles of

the brightest spaxel in [SiVI] for the four objects where the coronal line is detected.
around the unresolved nucleus and extending up to a few tens or a few hundred parsecs
in some Seyferts (Prieto et al. 2005, |Rodriguez-Ardila et al.|2006). While in galaxies like
IRASF 12115-4656 and IRAS 23128-5919 the emission is unresolved (i.e. sizes less than
~ 150 pc and ~ 550 pc, respectively), a relevant exception is NGC 5135, which presents a
cone of emission centred on the AGN and extending ~600 pc (~ 2 arcsec) from the nucleus,
as discussed in [Bedregal et al. (2009). The line profiles for the four galaxies are given in
Fig. [4.5

As shown in Fig[4.6] the [CaVIII] coronal line at 2.321 um is also detected in three of

these objects, NGC 5135, IRASF 12115-4656 and tentatively in NGC 7130. Although the
[CaVIII] line lays also within the rest-frame spectral coverage of IRAS 23128-5919, the S/N

in this region of the spectra is very low, so was not included in the figure.
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Figure 4.6: Detail on the stellar absorption features and the coronal emission. - Zoom around the
region containing the stellar absorption features and the coronal line [CaVIII] at 2.321 um for three of
the objects where coronal emission is detected. Spectra correspond to the brightest spaxel in [SiVI] (see
Fig. . The pPXF fitting of the stellar absorptions is plotted in blue, and the residuals from the fitting
are shown as a red dotted line.

4.5.5. Characteristics of the near-IR stacked spectra of LIRGs and ULIRGs

To obtain representative spectra of LIRGs and ULIRGs, we divided the sample into three
subsamples according to their total infrared luminosity (see Section , i.e. low luminosity
bin, log(Lir/Le) < 11.35; intermediate, 11.35 <log(L|r/Le) <12; and high, the ULIRGs
subsample, log(Lir/Ls) > 12. The average luminosities for each bin are log(Ljr/Ls)= 11.23,
log(Lir/Le)=11.48, and log(Lir/Ls)=12.29. Each luminosity bin contains a similar number
of objects in each subsample, six, four, and seven, respectively. The stacked spectra for each
luminosity bin are presented in Fig.

The H-band spectrum of LIRGs is dominated by the stellar continuum, with pronounced

absorption features from water vapour and CO. The main emission feature is the [Fell] line at
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Figure 4.7: Line ratios. - Hy/Brvy (top), Hel/Bry (centre), and [Fell]/Bry (bottom) line ratios of the

galaxies of the sample, ordered by increasing Lir. The values are measured in the integrated spectra. The

weighted mean of each luminosity bin (low, log(Lir/Ls) < 11.35; intermediate, 11.35 <log(Lir/Le) < 12

and high, log(Lir/Le) >12) is plotted as a thick line, whereas the box represents the standard deviation

of the values. Since all the ULIRGs and one LIRG were not observed in the H-band, [Fell]/Bry data are

presented for only nine LIRGs.
1.644 um, while the faint high-order hydrogen Brackett lines (Br10 to Brl4) are also present.
The K-band spectra show various stellar absorption features like the faint Nal, Cal, Mgl, lines
and the strong CO bands. The emission line spectra contain the hydrogen (Bry and Brd)
and He recombination lines, as well as a series of the Hy lines covering different transitions.
While the [SiVI] coronal line is detected in some LIRGs and ULIRGs, it is a weak line and
thus not visible in the stacked spectra at any luminosity. The average luminosity and surface
brightness of the Bry and Pac emission for each bin is shown in Table

Considering only the brightest emission lines that trace different phases of the gas and/or

excitation conditions, there appears to be some small differences (~ 1) in their ratios with
the Lir (see Fig[4.7) for the Hy 1-0S(1)/Bry, Hel/Bry, and [Fell]/Bry line ratios measured
for the different luminosity bins). The Hel/Bry ratio is slightly higher (x1.3) in intermediate

and high luminosity galaxies than in low luminosity objects. A plausible interpretation could
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be that young and massive stars in low luminosity LIRGs represent a lower fraction than in
more luminous infrared galaxies. Whether this could be caused by age effects or by lower
IMF upper mass limits remains to be investigated in more detail. Some differences are also
identified in the Hy 1-0S(1)/Br line ratio. While this ratio is close to unity for low luminosity
LIRGs, it drops to about 0.6 for intermediate luminosity LIRGs, and increases up to about
1.3 for the most luminous galaxies. However, given the large dispersion of the values for
the individual objects, and the low number of galaxies in each bin, we could not draw any
significant conclusion about these differences. While low Hy 1-0S(1)/Bry values appear to
be characteristic of starbursts (Hp 1-0S(1)/Bry <0.6), classical Seyfert 1 and 2 galaxies also
display a range of values (Rodriguez-Ardila et al.| 2004} |2005, Riffel et al.[[2010) that are
compatible with those measured in our sample.

The [Fell]/Bry ratio also shows values compatible with those observed in starbursts,
although higher values would have been expected for Seyfert galaxies, such as NGC 5135 and
NGC 7130 (Rodriguez-Ardila et al.[2004, Riffel et al.|[2010, |Valencia-S et al.|[2012). These
galaxies show the highest values of the [Fell]/Brvy ratio of the whole sample, close to ~ 2.0,
and are similar to values reported for other Seyfert 2 galaxies (Blietz et al., [1994). These
differences could be related to the different apertures used to extract the integrated values of
the ratios. Even more, the reported ratios are observed values (not corrected for extinction).
Although the Hy 1-0S(1)/Br~ ratio is almost unaffected by extinction, the [Fell]/Bry ratio
could be affected by obscuration, so that an accurate study of the extinction is needed to
confirm or dismiss these discrepancies between both ratios.

Based on our current survey, no evidence of relevant differences in the emission line
spectra of LIRGs and ULIRGs appear as a function of Lig. A larger sample would be required
to confirm the differences in the emission line ratios presented here, since they are still
compatible within the uncertainties. The full two-dimensional study of the line ratios and the
ionisation and excitation mechanisms of the gas will be addressed in a future paper of the

series, since its detailed analysis is beyond the scope of the present work.

4.5.6. Stellar component

In Table[4.5] we have included the EW of the first absorption band of the CO at 2.293 um.
In most of the objects, the values correspond to the Bry (Paa) peak and nucleus, which are
the regions with enough S/N in the continuum to detect the band. The nuclear values of the

LIRGs are 7.1 A < EWco < 12.3 A, with typical uncertainties of ~ 10% and an average of
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Bry and Paa Emission

Low Intermediate High

Region
& LB,’»\/(X].OSL@) SBI”V(L@ pC_2) LBVY(X].OSL@) SBr’y('—@ pC_z) LB,—V(XIOSL@) SB,M/(L@ pC_2) LPaa(X].OSL@) SPaa(L@ pC_2)

Hil max  0.958 (0.785)  0.599 (0.490) 1202 (0.744) 0.807 (0.465)  22.92 (15.12) 0573 (0.378) 236.5 (148.3) 50912 (3.708)
Hy, max  0.977 (0.722)  0.611 (0.451) 0.585 (0.452)  0.366 (0.282) 241.1 (143.8)  6.026 (3.596)
[Felll max  0.873 (0.801)  0.546 (0.501) 0.709 (0.700)  0.443 (0.438)
Integrated  7.829 (0.405)  0.120 (0.048)  15.450 (7.931) 0.286 (0.067)
Nuclear ~ 0.991 (0.746)  0.620 (0.467) (0.320)

97.76 (116.8)  0.119 (0.072) 5215 (207.9)  0.972 (0.792)

0.909 (0.512)  0.568 23.14 (15.44) 0578 (0.386) 233.8 (154.8) 5.846 (3.869)

Table 4.7: Bry (and Paa) average luminosities and surface brightness for the U/LIRGs according to their Lig. The low-luminosity bin is
defined as log(Lir/Le) < 11.35, the intermediate is defined as 11.35 <log(Lir/Ls) < 12, and the high-luminosity bin corresponds to the
ULIRGs subsample, log(Lir/Lg) > 12. The standard deviation of the values within each bin is shown in brackets. The number of objects is
six, four, and seven for the low, intermediate, and high luminosity bins, respectively.
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10.6 A whereas the values measured at the Bry (Paa) peak cover the range 8.3A < EWco <
12.2 A, with the same uncertainties and a mean value of 10.7 A. According to the stellar
population synthesis models like STARBURST99 (Leitherer et al., |1999), these values of the
EW correspond to stellar populations older than log T(yr) ~ 6.8 and up to log T(yr) ~ 8.2 or
more, depending on whether we consider a instantaneous burst or a continuum star-formation
activity. The detailed study of the 2D distribution of the stellar populations using the CO

stellar absorption, the H, and He emission lines will be addressed in forthcoming papers.

4.5.7. Kinematics of the gas

Besides the general morphology and luminosities of the different emission lines, their 2D
kinematics (velocity field and velocity dispersion maps) are also presented (Figs. and
[B.2). We obtained the velocity dispersion of the different regions of interest described above,
i.e. nucleus, the emission peaks of the Bry (Paa), Ha 1-0S(1) and [Fell] lines, and the
entire FoV. The values of the velocity dispersion, corrected for the instrumental broadening,
are shown in Table [4.6] The errors are obtained following the same Monte Carlo method
implemented to estimate the flux error. Figure shows the distributions of the velocity
dispersion obtained from the values of Table[4.6] The distributions show that there is no clear
relationship between the Ljg of the objects and the velocity dispersion of the different regions,
although the highest values of velocity dispersion tend to come from high-luminosity objects
where measurements come from scales x4-5 larger, so could be affected by beam smearing.

The average velocity dispersion of the Bry and Hp 1-0S(1) lines in the LIRGs is ~ 90 kms™1,
whereas the measured average values for the ULIRG subsample are ~ 140kms~! and
~ 120kms™!, respectively. The higher velocity dispersion measured in the ULIRG subset
can be explained mainly as a distance effect: the contribution from the unresolved velocity
field to the width of the line is larger since the physical scales are also larger. We estimated
this effect by extracting several spectra over apertures of increasing radius and measuring
the width of the Bry and Hy 1-0S(1) lines in one of the objects of the LIRG subset. We
used NGC 3110 since the Bry and H, emitting gas is extended and well sampled in almost
the entire FoV, and their velocity fields show a well defined rotation pattern. The velocity
dispersion of the unresolved nuclear Bry emission is o, ~ 75kms™! at a distance of 78.4 Mpc.
We then simulated the observed spectra of the object at increasing distances up to 500 Mpc
and found that, at the average distance of the ULIRG subsample of ~ 328 Mpc, the measured

velocity dispersion of the Bry line rises up to o, ~ 105kms™!, yielding an increase of
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~ 30kms~!. The results obtained with the Hy 1-0S(1) line are equivalent and vyield a
difference of ~ 28kms™!, since the amplitude of the velocity fields of both phases of the
gas are almost identical. Based on these estimates, the difference in velocity dispersion
observed between LIRGs and ULIRGs appears to mainly be due to distance effects. However,
galaxies with steeper velocity gradients, radial gas flows, turbulence, or massive regions with
intrinsically high velocity dispersion would produced an additional increase in the value of the
dispersion.

The velocity fields of the gas observed in the rotating LIRGs have the typical spider
pattern characteristic of a thin disk, with a well identified kinematic centre that coincides in
most cases with the K-band photometric centre, and with a major kinematic axis close to the
major photometric axis. These results are similar to those derived from the Ha: emission in the
central regions of LIRGs (Alonso-Herrero et al., 2009)) and from the mid-infrared [Nell] and
H> emission (Pereira-Santaella et al., |2010)) for larger FoVs. These characteristics indicate
that the velocity fields of both the ionised and the warm molecular gas are dominated by
the rotation of a disk around the centre of the galaxy, as expected given that almost all of
the objects of the subsample are spiral galaxies with different levels of inclination. Local
deviations and irregularities from rotation, as well as regions of higher velocity dispersion,
are present in most/all the LIRGs, suggesting the presence of additional radial flows and/or
regions of higher turbulence or outflows outside and close to the nucleus (e.g. NGC 3256,
NGC 5135). Besides these local deviations, the ionised and molecular gas of the LIRGs show
the same velocity field on almost all scales, from regions of a few hundred parsecs to scales
of several kpc.

In the ULIRG subsample, since all the objects but one are mergers in a pre-coalescence
phase, the kinematics of the gas show a more complex structure, with signs of strong velocity
gradients associated with the different progenitors of the systems, and asymmetric line profiles
that indicate there are outflows of gas associated with AGN or starburst activity. It is
interesting to note that, as in LIRGs, the ionised and warm molecular gas in ULIRGs show
the same overall kinematics on scales of a few to several kpc. Whether the kinematics in
(U)LIRGs are dominated by rotation, radial starbursts/AGN flows, tidal-induced flows, or a
combination of these, the ionised and molecular gas share the same kinematics on physical
scales ranging from a few hundred parsecs (LIRGs) to several kpc (ULIRGs). A detailed study

of the gas kinematics of the sample is beyond the aim of this work and will be addressed in a
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forthcoming paper; however, a brief individual description of the most relevant features of

the gas kinematics is included in Appendix [A]

4.6. Summary

o We have obtained K-band SINFONI seeing limited observations of a sample of local
LIRGs and ULIRGs (z < 0.1), together with H-band SINFONI spectroscopy for the
LIRG subsample. The luminosity range covered by the observations is log(Lir/Lc)=
11.1 — 12.4, with an average redshift of z |rgs = 0.014 and zy |rgs = 0.072 (~63 Mpc
and ~328 Mpc) for LIRGs and ULIRGs, respectively. The IFS maps cover the central
~ 3 x 3kpc of the LIRGs and the central ~ 12 x 12 kpc of the ULIRGs with a scale of
07125 per spaxel. We present the 2D distribution of the emitting line gas of the whole
sample and some general results of the morphology, luminosities, and kinematics of
the line-emitting gas as traced by different emission lines. The detailed studies of the
excitation mechanisms, extinction, stellar populations, and stellar and gas kinematics

of the entire sample will be presented in forthcoming papers.

o In a third of LIRGs, the peaks of the ionised and molecular gas coincide with the stellar
nucleus of the galaxy (distances of less than 0725), and the Bry line typically shows
luminosities of ~ 1.2 x 10° L. However, in galaxies with star-forming rings or giant Hll
regions in the spiral arms, the emission of ionised gas is dominated by such structures.
The warm molecular gas shows very similar luminosities to the Bry emission and is
highly concentrated in the nucleus, where it reaches its maximum in all the objects of
our sample. The Bry and [Fell] emission traces the same structures, although their
emission peaks are not spatially coincident in some of the objects, and the [Fell] seems

to be more extended and diffuse.

o The ULIRG subsample is at greater distances (~4-5 times) and mainly contains pre-
coalescence interacting systems. Although the peaks of the molecular gas emission and
the main nucleus of the objects coincide in ~ 71% of the galaxies, we also detect regions
with intense Pac emission up to ~ 1.1 x 108 L, which trace luminous star-forming

regions located at distances of 2—4 kpc away from the nucleus.

o LIRGs have mean observed (i.e. uncorrected for internal extinction) SFR surface

densities of about 0.4 to 0.9 My, yr—! kpc~2 over extended areas of 4—9 kpc? with
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2 in compact regions (0.16 kpc?) associated with

peaks of about 2—2.5 Mg, yr—! kpc™
the nucleus of the galaxy or the brightest Bry region. ULIRGs do have similar values
(~0.4 and ~ 2 Mg, yr! kpc=2) over much larger areas, 100—200 kpc? and 4 kpc?
for the integrated and peak emission, respectively. To correct the above values from
extinction, we applied a median Ay value of ~ 5.3 mag for LIRGs and ~ 6.5 mag for
ULIRGs, and found that the SFR measurements should increase by a factor ~ 1.7 in

LIRGs and ~ 2.5 in ULIRGs, when dereddened luminosities are considered.

The observed gas kinematics in LIRGs is primarily due to rotational motions around
the centre of the galaxy, although local deviations associated with radial flows and/or
regions of higher velocity dispersions are present. The ionised and molecular gas share
the same kinematics (velocity field and velocity dispersion), showing in some cases slight
differences in the velocity amplitudes (peak-to-peak). Given the interacting nature of
the objects of the subsample, the kinematics of the ULIRG show complex velocity fields

with different gradients associated with the progenitors of the system and tidal tails.
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5

Characterisation of the visual
extinction and dust clumpiness

Spaxel-by-spaxel 2D Ay distributions and distance
effects

“Non est ad astra mollis e terris via.”
[There is no easy way from the earth to the stars.]

— Seneca

We present a 2D study of the internal extinction on (sub)kiloparsec scales of a sample
of local (z < 0.1) LIRGs (10) and ULIRGs (7), based on near-infrared Pac, Brd, and Bry
line ratios, obtained with VLT-SINFONI integral-field spectroscopy (IFS). The 2D extinction
(Ay) distributions of the objects, map regions of ~ 3 x 3kpc (LIRGs) and ~ 12 x 12 kpc
(ULIRGs), with average angular resolutions (FWHM) of ~0.2kpc and ~0.9 kpc, respectively.
The individual Ay galaxy distributions indicate a very clumpy dust structure already on
sub-kiloparsec scales, with values (per spaxel) ranging from Ay~1 to 20 mag in LIRGs, and
from Ay~2 to 15mag in ULIRGs. As a class, the median values of the distributions are
Ay=5.3mag and Ay=6.5mag for the LIRG and ULIRG subsamples, respectively. In ~70%
of the objects, the extinction peaks at the nucleus with values ranging from Ay~3 to 17 mag.
Within each galaxy, the Ay radial profile shows a mild decrement in LIRGs within the inner
2 kpc radius, while the same radial variation is not detected in ULIRGs, likely because of the
lower linear scale resolution of the observations at the distance of ULIRGs. We evaluated the
effects of the galaxy distance in the measurements of the extinction as a function of the linear

scale (in kpc) of the spaxel (i.e. due to the limited angular resolution of the observations). If
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the distribution of the gas/dust and star-forming regions in local LIRGs (63 Mpc, 40 pc/spaxel
on average) is the same for galaxies at greater distances, the observed median Ay values
based on emission line ratios would be a factor ~ 0.8 lower at the average distance of our
ULIRG sample (328 Mpc, 0.2 kpc/spaxel), and a factor ~0.67 for galaxies located at distances
of more than 800 Mpc (0.4 kpc/spaxel). This distance effect would have implications for
deriving the intrinsic extinction in high-z star-forming galaxies and for subsequent properties
such as star formation rate, star formation surface density, and KS-law, based on Ha line
fluxes. If local LIRGs are analogues of the main-sequence (MS) star-forming galaxies at
cosmological distances, the extinction values (Ay) derived from the observed emission lines

in these high-z sources would need to be increased by a factor 1.4 on average.

5.1. Introduction

Since the first results obtained by the Infrared Astronomical Satellite (IRAS) (Soifer
et al| (1984), there has been strong effort to study the physical processes that power the
luminous and ultraluminous infrared galaxy population (Sanders & Mirabel|[1996, [Lonsdale
et al.|[2006). The origin of the mid- and far-infrared emission (L|r[8-1000 ;zm]) that dominates
their bolometric luminosity is established as mainly due to massive starbursts with a small
AGN contribution for LIRGs and with an increasing contribution in ULIRGs (e.g. |Goldader
et al.[1995| Veilleux et al.||2009, [Nardini et al.||2010} |Alonso-Herrero et al.[2012 and references
therein). The radiation that originates in the starburst and/or the active galactic nucleus is
then reprocessed by a surrounding dust component, and then re-emitted at long wavelengths
in the form of a huge infrared emission.

One of the main difficulties in understanding the underlying power source of LIRGs and
ULIRGs is the high opacity of their nuclear regions. Previous optical (Garcia-Marin et al.|
2009a)) and near-infrared studies in LIRGs and ULIRGs (Genzel et al.[[1998, Scoville et al.
2000, |Alonso-Herrero et al.|2006)) reveal that the distribution of the dust in these object is
not uniform and that, though the dust tends to concentrate in the inner kiloparsecs with
average visual extinction of Ay~3-5mag in LIRGs and even higher in ULIRGs, the global
distribution shows a patchy structure on kiloparsec and sub-kiloparsec scales (Colina et al.
2000, (Garcia-Marin et al.[2006| Bedregal et al.[2009)).

Besides the importance of knowing the 2D structure of the dust to understand the

environment where the power source of the LIRGs and ULIRGs is embedded, dust plays a
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key role in the derivation of other physical and structural parameters of these objects, such
as the derived star formation rate (Garcia-Marin et al., 2009a)), the effective radius (Arribas
et al} 2012), and as a consequence, the dynamical masses.

Understanding the distribution and effect of dust in star-forming galaxies is also important
for correctly interpreting or comparing different tracers of star formation during the history
of the Universe. This is in turn relevant when comparing local and high-z star-forming
galaxy populations, which are often observed using different tracers and/or resolutions. The
distribution of dust can in principle be studied in detail in local (U)LIRGs with the advantage
of the relatively high linear resolution and S/N. These studies can, therefore, help us interpret
observations of analogous high-z star-forming galaxies, for which such a level of resolution,
and S/N is not attainable with current instruments.

The present work is part of a series presenting new H- and K-band SINFONI seeing-
limited observations of a sample of local LIRGs and ULIRGs. |Piqueras Lépez et al.| (2012a))
(Chapter [4)) presented the atlas of the sample, the data reduction, and a brief analysis and
discussion of the morphology of the gas emission and kinematics. In this chapter, we focus on
the study of the 2D distribution of the dust derived using the Bry/Brd and Paa/Bry ratios
for LIRGs and ULIRGs, respectively, whereas in Piqueras Lépez et al. 2014 (in preparation,
Chapter @) we will apply the results for the 2D dust structure to study both the overall star
formation rate (SFR) and the kpc structure of the SFR surface density (Xsrr) of the galaxies
of the sample.

The description of the sample, observations, and data reduction process are detailed
in Chapter [4f The procedures for obtaining the emission and Ay maps are described in
Section [5.2] and the results and analysis of the Ay maps and distributions are presented in
Section [5.3] Finally, Section includes a brief summary of the chapter.

5.2. Data analysis

The 2D extinction / dust structure was derived using the Brvy/Brd and Paa/Brv line
ratios for LIRGs and ULIRGs respectively. Although the Brd line is detected in most of the
ULIRGs, its S/N is not high enough to map the emission and, in most of the cases, it is not
sufficient to perform an integrated analysis of the emission.

As mentioned before, the maps of the different lines were constructed by fitting a
single Gaussian profile on a spaxel-by-spaxel basis (see Fig. and . Based on the
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Figure 5.1: Surface brightness distributions of individual spaxels - Surface brightness distributions
of the individual spaxels of LIRGs and ULIRGs. For clarity, we only plot a random distribution of the
20% and 50% of the points for LIRGs and ULIRGs, respectively. The colour code indicates the Ay value
of each spaxel, whereas the points with Ay< 0 are outlined with a black contour line. The increase in
the extinction towards low surface brightness values is mainly due to the high uncertainties of the flux
measurements, in particular in ULIRGs, where the highest Ay values correspond to the spaxels with the
lower Br~y surface brightness.

emission maps, we obtained the extinction in magnitudes (Ay) following the procedure
outlined in Bedregal et al.| (2009). We compared the theoretical ratio between the two
lines (Bry/Bré= 1.52 and Paa/Bry= 12.07 at T= 10,000K and n. = 10*cm~3, case B;
Osterbrock|1989) with the measurements for each spaxel. The extinction in magnitudes could

be expressed in the form

(F)\l/FM)O
(F/\l/FAQ)T '

where Fy o and F), 1 are the observed and theoretical fluxes for a line centred at \;. We

A)\ - A)Q =-25- Iog (5.1)

1

made use of the extinction law described in |Calzetti et al.|(2000) to express Equation in
terms of the visual extinction Ay (Agr, = 0.096 Ay, Ag,s = 0.132Ay and Ap,, = 0.145Ay).

Since the individual values of Ay are sensitive to the S/N of the weakest line (Bré and
Bry for LIRGs and ULIRGs respectively), we have only considered those spaxels where the
weakest line has been detected above an S/N threshold of four to obtain reliable Ay. This
effect is very significative in the case of the Brvy/Brd ratio since the Brd line lies close to
the blue limit of the SINFONI K-band. As discussed in Chapter [4] this wavelength region is
strongly affected by noise due to the sky emission, and the atmospheric transmission also
decreases. This translates into a more complex local continuum determination, making the

line fitting more uncertain. An excess in the continuum level estimation would decrease the
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line flux and, therefore, increase the extinction (see expression above). Although the Paa
line also lies in this region of the spectra, this effect is not so relevant, given the strength of
the line (x12 the Bry emission), and it is in the numerator of Equation [5.1]

The 1o uncertainties of the individual Ay values vary typically from 10-20% in cen-
tral regions with high S/N, up to 70-80% in external areas of low surface brightness
(X <107 ergs~t cm 2 kpc~2), with a median value of 30-35%. Owing to the larger indi-
vidual errors in the low surface brightness areas, we observed an artificial increase in the
Ay measurements, especially in the ULIRGs. This systematic effect is observed in Fig. 5.},
where the highest extinction values are measured in those spaxels with the lower Brvy surface
brightness. The Ay uncertainties are obtained from the corresponding errors in the fluxes of
the two lines, which as described in Chapter [4} are estimated using Monte Carlo simulations.
The advantage of this kind of error estimation is that uncertainties are directly measured from
the spectra, so they not only include the effect from photon noise but also take uncertainties

due to an improper continuum determination or line fitting into account.

5.3. Results and discussion

5.3.1. Two-dimensional extinction structure in LIRGs and ULIRGs

Our 2D extinction maps cover areas from ~2kpc to ~12kpc for LIRGs and ULIRGs,
respectively (see Figs. and . The seeing-limited observations provide a linear resolution
equivalent to a physical scale resolution of ~0.2 kpc and ~0.9 kpc for each subsample. On
these scales, the extinction maps show that dust is not uniformly distributed, revealing a
clumpy structure with almost transparent areas (Ay <1 mag) and regions where the visual
extinction is higher than ten magnitudes.

In LIRGs, the extinction maps show a very irregular and clumpy structure on scales of
~200-300 pc, already observed from near-IR continuum maps (Scoville et al., 2000). The
higher Ay values are usually associated with the nuclear regions of the objects, although
obscured extranuclear regions are also common. The star-forming regions with high Bry
surface brightness, found along the dynamical structures like arms of rings, are typically
low-extinction regions.

As shown in the radial profiles of NGC 3110 or IRASF 12115-4656 (Figs. and ,
the extinction increases inwards up to Ay~15-25mag. This behaviour is also observed in
ESO 320-G030 (Fig. , where the emission is concentrated on a star-forming ring of
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Figure 5.2: Spaxel-by-spaxel individual Ay distributions - Individual Ay distributions of the galaxies
of the sample ordered by increasing Lizr. The extremes of the distributions are the 5th and 95th percentiles
(Ps and Pgs). The boxes illustrate the interquartile range, whereas the horizontal blue and red lines
correspond to the median and the weighted mean of the distribution, respectively. The measurements of
the nuclear extinction are plotted as black diamonds. The total Ay distributions for LIRGs and ULIRGs
are shown on the right-hand side of the plot.
~500-600 pc radius. Although the nucleus might also be obscured, the radial profile of this
object is not as steep as in NGC 3110 or IRASF 12115-4656 and indicates that the lack of
emission could also be due to the intrinsic distribution of the star-forming regions around the
ring.

The morphology of the Ay maps in the ULIRG subsample suggest a patchy, non-uniform
distribution of the dust, typically on physical scales of 2 1kpc that correspond to our resolution
limit. Owing to the higher linear resolution (i.e. kpc/spaxel) of the ULIRG subsample, the
comparison with the LIRGs is not straightforward. As shown in Fig.[5.3] although our data
samples similar areas of ~1-2 Ry, the dust structure is probed with significantly different
spatial resolutions, owing to the factor x5 in distance between both subsamples. This
difference precludes us from resolving sub-kiloparsec structures in ULIRGs, such as the ones
observed in the LIRG Ay maps, limiting our physical resolution to ~1kpc. As discussed in

Sec. [5.3.4] these differences in the linear resolution between both subsamples not only shape
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the observed dust morphology in the more distant galaxies, but also might determine global
measurements of the extinction, such as the median of the Ay distributions. In Sec. [5.3.5]
we discuss how this distance effect would have direct implications for the study of high-z

galaxies.

5.3.2. A, distributions and radial profiles

Figures and show the Ay distributions for each galaxy. Although it is clear
that most of the spaxels with Ay <0 have no physical meaning individually, we have kept
them in the distributions since they do have statistical relevance. If we remove them from
the distributions, we introduce a bias toward the high Ay values, displacing the mean and
median of the distributions artificially. On the other hand, due to the S/N threshold adopted,
we assure that most of those spaxels with Ay<0 are compatible with Ay~0 within the
uncertainties.

The histograms show a wide variety of distributions, from narrow, peaked distributions,
such as NGC 5135 or IC 4687 (Fig. and [C.Th)), concentrated towards low Ay values, to
wide distributions such as NGC 3110 or IRAS 14348-1447 (Figs. and that extend
up to ~30-35mag. The median and weighted mean Ay values, together with the 5th and
95th percentiles of the distributions, are listed in Table [5.1] Figure also compares the
individual distributions of each galaxy of the sample, ordered by increasing Lig. As shown in
the figure, most of the individual values, within the interquartile ranges, are concentrated
between Ay~1 and Ay~20 mag, and there is no clear evidence of any dependence with Lr.

In LIRGs, the visual extinction ranges between Ay~ 1 — 20 mag, whereas in ULIRGs, the
Ay values range between Ay~ 2 — 15 mag. In LIRGs, these values of the visual extinction
are very similar although slightly lower than previous results in the mid-infrared from Spitzer,
Ay <1 — 30mag with a mean value of ~11mag (Pereira-Santaella et al.| 2010, |Alonso-
Herrero et al.[2012)). On the other hand, ULIRGs show slightly higher values than previous
measurements in the optical, from Ay < 0.2 mag to ~ 9 mag (Garcia-Marin et al., 2009a), and
significantly lower than mid-infrared measurements based on the silicate absorption feature
at 9.7 um, from Ay~6 mag up to Ay 240 mag (Imanishi et al., 2007)).

These Ay values have to be considered as lower limits of the dust extinction, since the
theoretical values of the ratios are based on the assumption that the gas is optically thin.
However, it is well known that the central regions of these objects are dusty environments

and that the observed recombination lines might have been originated at different depths
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Figure 5.3: Ay distributions and radial profiles of LIRGs and ULIRGs - Ay distributions and radial profiles of the LIRGs (top) and ULIRGs (bottom)

subsamples on a spaxel-by-spaxel basis. The median Ay values of each distribution are shown in the left panels. In the central and right panels, the

radial profiles are plotted in terms of the radius in kpc (centre) and in units of the Ha effective radius (Rer, right panel) extracted from |Arribas et al.

(2012). The red line represents the weighted mean of Ay and its error for different radial bins in steps of 1/30 of the total radial coverage. For the

ULIRG subsample, we plotted the radial profile of the sample by considering each component of the systems separately (top) and the profile extracted
by taking the brightest nucleus in the K-band continuum as the centre of the systems (bottom).
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ObjeCt AV,nuclear AV,nuclear AV,Reff AV,FoV AV,median AV,mean AV (PS) AV (PQS) Nspaxel

(1) (2) (3) () (6) (7) (8) 9)  (10) (11)
IRASF12115-4656 7.7 +0.1 52+ 0.1 4.9 6.3 + 8.1 -3.65 215 1533
IC5179 104 £ 04 42 +0.1¢ 42 +£0.1 4.4 52+£6.3 -3.00 17.3 2099
NGC2369 16.8 £ 0.2 173 £ 0.1 150 £ 0.1 155 135+ 6.6 3.75 26.0 603
NGC5135 28 +£0.2 3.8+0.1 3.7+ 0.1 4.2 47 £ 45 -1.72 11.7 1100
NGC3110 = 7.4 +0.1% 74+0.1 7.9 79 +538 -3.02 16.6 400
NGC7130 123 £ 0.3 11.8 £ 0.2 8.7+0.1 6.2 59+ 65 -2.45 18.6 687
ESO320-G030 7.8 +£0.1 7.0+ 0.1 7.8 8.0x+71 -2.82 20.1 1383
IRASF17138-1017 152 £ 0.4 11.1 £ 0.1 7.0+ 0.1 7.6 6.1 56 -0.91 17.2 806
1C4687 106 £ 0.1 39 +01 3.7+0.1 4.2 45+51 -1.74 13.1 3401
NGC32561 122 +£ 0.2 5.0+ 0.1 41+0.1 5.0 6.6 + 6.1 -2.73 16.8 4522
IRAS23128-5919 8.7+0.3 6.7 £ 0.2 7.1+0.1 6.8 £ 0.1 6.2 7.0+ 4.7 -1.60 13.4 1182
IRAS21130-4446 43 +£04 32+02 47 +03 44+0.1 54 50%£59 -1.80 155 214
IRAS22491-1808 41+03 45+ 0.2 55+ 0.1 53+ 0.1 6.4 6.5+ 5.1 -1.79 16.0 299
IRAS06206-6315 75+03 113+ 04 7.6 +£0.2 85+0.2 10.7 95+ 77 -3.05 22.7 114
IRAS12112+0305 8.9 £ 0.3 8.4 £0.2 9.2+£0.2 85 £0.1 8.2 9.0£6.2 -0.52 20.9 466
IRAS14348-1447 55+ 0.2 8.1+0.3 6.2+ 0.2 71+01 8.6 79+69 -1.04 20.6 301
IRAS17208-0014 8.0+ 0.2 6.8 £ 0.1 58+ 0.1 4.8 6.3+ 4.0 -1.61 10.8 485

Table 5.1: Integrated properties and statistics of the Ay distributions. Cols. (2) and (3): Nuclear extinction measured at the main (2) and secondary
(3) nucleus within an aperture radius of 0763. Cols. (4) and (5): Measurements of the Ay within the Ha effective radius from |Arribas et al.|(2012),
and the integrated measurement over the whole FoV, respectively. Cols. (6) to (9): Median, weighted mean, and 5th and 95th percentiles of the Ay
distributions. Col. (10): Number of valid spaxels in the Ay maps and distributions. T Since the main nucleus of NGC 3256 was not observed, we
centred the aperture for Ay g, on the centre of the FoV, so the measurement might be inaccurate. *Due to the limited FoV of the observations, in
these objects the Ho effective radius is greater than our FoV, and the Ayr, measurements are equivalent to Ay rov.
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within the star-forming regions. That also means that we would infer different extinction
values from different emission line ratios, since the lines are probing different optical depths.

To compare the Ay distributions of LIRGs and ULIRGs, we combined all the available
spaxels of each luminosity bin to obtain a typical Ay distribution. These distributions are
shown in Fig. and, in more detail, in Fig. The median values of Ay for each subsample
are similar, Aymed = 5.3 mag and Aymed = 6.5 mag, and the number of individual spaxels
is ~16000 for the LIRG distribution and ~3000 for the ULIRG one. The shape of the
distributions are, however, slightly different. Whereas the LIRG distribution seems to have
more than 50% of the points concentrated within the range Ay~ 1 — 10 mag, the ULIRGs
extend over a somewhat narrower range of Ay~ 3 — 10 mag and tend to reach higher Ay
values on individual spaxels. On the other hand, the modes of the distributions are also
different; whereas the LIRG distribution peaks at ~ 3 — 4 mag, the mode of the ULIRG
distribution reaches up to ~ 7 — 8 mag. Although some of these differences might be intrinsic,
we discuss in Section [5.3.4] that the physical sampling of the maps plays an important role in
the study of the extinction, owing to the patchy structure of the dust.

We obtained the radial profiles of the extinction for every individual object of the sample
and characteristic profiles for both LIRG and ULIRG subsamples. For this purpose, we adopted
the same criterion as in Chapter [4| to identify the central spaxel of each object with the
brightest spaxel of the FoV in the K-band image (see Figs and . The only exception
is NGC 3256, since the nucleus of this galaxy was not observed in the K-band (see Chapter
for further details). For this object, we used the H-band continuum image of the nucleus to
identify the central spaxel. For those systems with multiple nuclei (i.e. all the ULIRGs with
the exception of IRAS 17208-0014), we also extracted the radial profiles of each component
separately.

As shown in Figs. and the profiles typically sample the inner ~ 2kpc for the
LIRGs and <6 kpc for the ULIRGs, and most of them have an almost flat or negative slope.
LIRGs show steeper negative slopes than ULIRGs, especially in the central 0.5-1kpc. In

LIRGs, these slopes are typically of ~ —2.4 magkpc™? 1

on average, versus ~ —0.3 mag kpc™
in ULIRGs. This could be explained by the different sampling scales of both subsamples, since
we cannot resolve the innermost regions of the ULIRGs with the resolution achieved for the
LIRG subset. In those pre-coalescent systems with multiple nuclei, we found no systematic

differences between the radial profiles of both components. These profiles typically sample the
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innermost ~ 2 — 3 kpc of each component of the system, and show no clear radial dependence
of the extinction on these scales.

We extracted the radial profiles of the total Ay distributions of LIRGs and ULIRGs
separately. Since each object has been observed with different sampling and physical scales,
we also obtained the profiles in units of the effective radius Reff, using the values from |Arribas
et al|(2012) obtained from Ha maps. As shown in Fig. 5.3} the LIRG profile is almost flat
beyond r~1kpc or ~0.5Ref, with an average value of Ay~5.3 mag. Within the central
kiloparsec, the extinction increases up to ~10mag. The ULIRG subsample shows a very
uniform profile, with a median value of Ay~6.0mag and only local deviations due to the
presence of double nuclei in some of the systems, or due to strong complexes of star formation
at distances beyond 2-3 kpc radius (see Fig. and for some examples). The radial
profile shows small differences when extracted from each component separately, with an
almost flat slope over the inner 2-3 kpc radius (~Reff). The measurements beyond r ~6 kpc
or r ~2 Rer are very uncertain, owing to the lack of available spaxels and to the low surface
brightness of the Bry emission in these regions. As mentioned before, the extinction in
ULIRGs derived using Eq. is highly affected by noise fluctuations of the Brv line.

5.3.3. Nuclear and integrated A, measurements

We obtained integrated Ay measurements for different regions of interest in each object
(Table[5.1)). The uncertainties of the parameters are obtained by a Monte Carlo method of
N = 1000 simulations, and do not take the 1o uncertainties of ~5% into account in the
absolute flux calibration (see Piqueras Lépez et al.[[2012a). We found that, in ~70% of
the objects, its nucleus corresponds to a peak in the extinction, ranging from Ay~3 mag
up to Ay~17 mag. These values of the nuclear extinction are higher than each median and
mean Ay values in ~ 57% of the objects. However, there are some galaxies, such as NGC
3110 or IC 4687 (Figs. and [C.1h]), where the nucleus is completely obscured, and no
measurements of the extinction are available. That the nucleus of the objects coincides with
a peak of the extinction agrees with other studies in LIRGs and ULIRGs (see |Alonso-Herrero
et al.[2006 and (Garcia-Marin et al.[2009a) based on Ha/HB and Pac/Bry ratios, and with
mid-infrared studies with Spitzer, based on the silicate absorption feature at 9.7 um (Imanishi
et al.| 2007, Pereira-Santaella et al.[[2010). These authors found that either the highest
extinctions coincide with the nucleus of the objects or the nuclear regions are local maxima

in the Ay maps.
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For those objects with a double nucleus, we also presented integrated measurements of
the extinction for the secondary one. Although almost all of the interacting systems in our
sample are ULIRGs, NGC 3256 presents a well known, highly obscured nucleus ~ 5 arcsec
to the south of the main one. Our measurements of the extinction of the southern nucleus
of this object shows that it is one of the most extinguished regions in our sample, with
Ay~12.2 mag, in good agreement with previous works (Kotilainen et al.[1996, |Alonso-Herrero
et al.||2006, Diaz-Santos et al. 2008, |Rich et al.|[2011)).

5.3.4. Dust clumpiness and the effect of the linear resolution.

As mentioned in Section [5.3.1 the Ay maps reveal a patchy, clumpy structure of the
dust at sub-kiloparsec and kiloparsec scales in LIRGs and ULIRGs, respectively. Given this
non-uniform distribution, the measurements of the extinction at different distances might be
affected by the physical scale of the observations. To probe how the pixel scale might bias
the Ay measurements, we have obtained the Ay distribution of our LIRG sample simulating
different scales, hence different distances. This distance effect because of the linear resolution
might be even more relevant for high-z objects, where the structure is sampled on even larger
scales of ~1-2kpc.

To simulate the distribution at further distances, we degraded the individual Bry and Brd
maps to different scales, and obtained maps of poorer spatial resolution. In this process, we
only considered the same valid spaxels as in the original maps. Once the maps were degraded,
we obtained the Ay distributions of each individual object as described in Section which
were finally combined in one single distribution.

Since the FoV of our SINFONI observation is limited to ~ 8" x 8", we could only sample
the innermost ~ 3 x 3 kpc of the LIRGs (typically ~Ref). If we translate these scales to a
distance that is ten times larger, these ~ 3 kpc are equivalent to an angular distance of ~1",
i.e. 1/8 of the FoV or ~ 8 spaxels. The lack of data from the external regions of the local
objects keeps the extrapolation to larger distances from beeing straight-forward.

Figure shows the relation of the median of the individual Ay simulated distributions
to the sampling scale/distance, for each galaxy in the LIRG subsample. Although each curve
shows a different behaviour that depends on the particular gas and dust distribution, there is
a general trend towards lower Ay values as distance increases. This decrement of the median
value of the visual extinction is also observed when we consider the distribution of LIRGs as

a class, adding all the individual spaxels of the LIRG subsample in a single distribution, as
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Figure 5.4: Evolution of the median Ay as a function of scale/distance - Evolution of the computed
median Ay of the individual distributions of the LIRG subsample as a function of scale/distance. The Ay
values are normalised to the rest-framed distribution. The value that corresponds to the Ay distribution
of the whole LIRG subsample is plotted as black circles and a power-law fit to the data as a dashed
black line. The mean distance of the ULIRG subsample (328 Mpc) is plotted as a vertical dotted line for
reference.

shown in the figure. To parametrize this observed decrement of the median Ay of the LIRG

distribution with the sampling scale/distance, we fitted the data points to a simple power-law

model, and found that the best-fit model corresponds to

AV/AVO >~ (D/Do)_0'13 ~ (S/So)_0'14, (52)

where Ay and S are the median values of the Ay distribution and the physical scale at a

1 are the median values

distance D, respectively, and Ayg = 5.27 mag and Sg = 290 pc arcsec™
of the rest-frame Ay distribution and median physical scale at the mean distance of the
LIRGs subset, Dy = 63.3 Mpc, respectively.

In figure [5.5] we show in detail the observed Ay distribution of the LIRG subsample
and the simulated distributions for increasing distances. The different panels reveal that
not only the median value of the distribution decreases when the galaxies are sampled on a
larger physical scale, but also that the shape of the distribution is slightly different, becoming

narrower than the rest-framed distribution, and more compact. The mode of the simulated

distribution also changes with respect to the ULIRG observed distribution, and becomes lower
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Figure 5.5: Simulated Ay distributions of the LIRG subsample - Different simulations of the LIRGs

Ay distribution for increasing distance (from top to bottom and left to right). The median of each

distribution is highlighted with a vertical dashed line. The distance and the median Ay of the simulated

distribution is annotated in each panel. The top left panel corresponds to the average distance of the

ULIRG subsample, and shows the observed Ay distribution of the ULIRGs and its median, in yellow.
than the median. As shown in Fig. the difference between the rest-frame extinction, Ayy,
and the simulated Ay increases rapidly within the first D~700 Mpc, and seems to reach an
asymptotic value of Ay/Ayg ~0.65 beyond that distance.

The non-uniform distribution of the dust, even on small scales, makes that, at a given
resolution unit, we map both obscured regions and areas where the interstellar medium is
more transparent. This average is biased towards the brightest regions, which are those were
the emission is less absorbed. The result is that, on average, the dust distribution is smoothed,
becomes narrower, and the Ay values that we measure are biased towards the lowest values.

As mentioned in Section , we measured a median extinction of Ay | |res = 5.3 and
Ay uLIRGs = 6.5 magnitudes for our LIRG and ULIRG subsamples, respectively. Since the
average distance of each subsample is ~ 63 Mpc and ~ 328 Mpc (see Chapter , this factor
~5 in distance and sampling scale (from ~0.2 kpc to ~0.9 kpc on average, respectively)
translates to a decrease in the measured Ay of ~1.2 mag, as shown in Fig. (top right
panel). If we assume that LIRGs and ULIRGs have similar structures and apply the same
correction to the ULIRGs subsample, we find that the average Ay in the ULIRGs, corrected
from distance effects, reaches Ay~8.0 mag, i.e. ~2.8 mag higher than in LIRGs.

Besides this resolution/distance effect, the difference between the observed Ay distribution
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in LIRGs and ULIRGs could also be interpreted in terms of intrinsic differences in the
morphology between both classes. Although there seems to be a general trend for LIRGs as a
class that suggest that the observed Ay decreases with the distance/resolution, Fig also
shows that the behaviour of each individual galaxy is very different, and depends strongly on
the particular morphology of the dust distribution. These differences among the objects of
the LIRGs subset suggest that the correction to the observed Ay could not be accurate for

individual galaxies, and would only reflect a general trend for LIRGs as a class.

5.3.5. Implication for extinction-corrected properties in high-z galaxies

There are different observational proofs that suggest that SMGs could be the high-z
analogous of local (U)LIRG. The sub-millimetre and radio fluxes of this population of galaxies
indicate that their bolometric luminosities are comparable to local ULIRGs, whereas their
mid-IR emission seems to be similar to the observed in local LIRGs (Kovécs et al.|[2006, Takata
et al. 2006, Menéndez-Delmestre et al.[2009). Besides this, recent IFS-based observations of
SMGs reveal that they present evidence of clumpy star formation on kiloparsec scales and
similar star-formation rate surface densities (Xsgr) to the local counterparts (Nesvadba et al.
2007, [Harrison et al.|2012, |Alaghband-Zadeh et al.|2012, Menéndez-Delmestre et al.[2013).
It is well known that these high-z galaxies may be highly obscured and that a combination of
intense dust-obscured star formation and dust-enshrouded AGN activity would be responsible
for the high infrared luminosities of these objects (Blain et al., [2002). HST-NICMOS and
ACS observations reflect structured dust obscuration in these objects (Swinbank et al., [2010)).
In particular, |Takata et al.| (2006)) find that the internal extinction in these objects are similar
to the extinction in local ULIRGs, and measured a median extinction of Ay= 2.9 4+ 0.5 mag
in a sample of SMGs at z~1.0-3.5 using the H,/Hg flux ratio.

Clumpy and dusty star-forming structures have also been identified at high redshifts in
more common star forming galaxies (i.e. the so called ‘main sequence’, MS, of star forming
galaxies). These galaxies have (sub)kpc star-forming clumps mostly spread over galactocentric
distances of few to several kpc (Forster Schreiber et al.[[2011a, |2011b, |Genzel et al.[2011)),
and with internal nebular extinctions of 2 to 4 magnitudes, assuming A, 1, = Ay stellar/0.44
(Forster Schreiber et al.[2009, Wuyts et al.[2011]).

In the previous subsection we showed that the distance/linear scale may play an important
role in deriving the internal extinction properties of LIRGs and ULIRGs, by comparing both

populations of galaxies locally, albeit with a difference of a factor x5 in distance between

117



5. CHARACTERISATION OF THE VISUAL EXTINCTION AND DUST
CLUMPINESS

both subsamples. According to the simulations, the median extinction measured in a given
galaxy decreases when placed at increasing distances. This effect is due to the fixed angular
resolution of the IFS data that translates into a larger physical scale per spatial resolution
element (spaxel) as the distance to the galaxy increases, and is particularly important when
the physical scales sampled by the spaxel are much larger than that of the intrinsic clumpy
structure of the dust distribution and star-forming regions.

It is clear that if the intrinsic star-forming structure of high-z galaxies is in general similar
to that of our local LIRGs (i.e. mostly disks) and ULIRGs (i.e. mostly interacting), the
smearing effect mentioned above would have a direct impact in the derivation of their 2D
internal extinction values, and of all relevant subsequent extinction corrected properties such
as star formation surface densities, KS-laws, and overall star formation rates. This would
certainly be the case not only with seeing-limited near-IR IFS, heavily undersampling the
galaxies at redshifts of 1 to 3, with each spaxel corresponding to about 1.5-2 kpc, but even
when using AO assisted IFS where the spaxel (50 to 100 mas) translates to about 0.4 to 0.8
kpc. Thus, if the results given by Eq.[5.2] (see also Fig. are applied to high-z galaxies, the
extinction values derived directly from the observed optical emission line ratios would require
to be increased by a factor 1.4 on average. This correction would correspond to an additional
increase in the H,, flux by a factor ~3 and hence, in the extinction-corrected SFR and X grr.

Finally, it is worth noticing that this distance effect could also have a minor wavelength
dependency. The method presented here to derive the Ay values is based on specific emission
line ratios in the near-infrared. Since these lines originate in regions of higher optical depths
than the optical emission lines, and the stellar continuum measured at optical wavelengths,
differences in the amount and/or distance dependency could appear. It would be worth
exploring these effects with a suitable set of data, in particular if, as in many high-z studies,
the Ay corrections applied to the observed Ha flux is obtained indirectly using the standard
Calzetti recipe Ap, = 7.4 E(B-V), where E(B-V)gas = 0.44 E(B-V)stars (Calzetti et al.[2000]
2001)

5.4. Summary

o In this chapter, we presented a detailed 2D study of the extinction structure of a
representative local sample of 10 LIRGs and 7 ULIRGs, based on VLT-SINFONI
IFS K-band observations. We sample the central ~ 3 x 3kpc for LIRGs and the
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~ 12 x 12kpc for ULIRGs, with average linear resolutions (FWHM) of ~0.2 kpc and
~0.9 kpc, respectively. The extinction maps are based on measurements of the Bry/Brd
line ratio for LIRGs and of the Paa/Br~ line ratio for ULIRGs.

In agreement with previous studies, we found that the distribution of the dust in
these galaxies presents a patchy structure on sub-kiloparsec scales, with regions almost
transparent with Ay~0 to heavily obscured areas with Ay values up to ~ 20 — 30 mag.
In most of the objects in the sample (~70%), the nucleus of the galaxy coincides
with the peak in the extinction maps, with values that range from Ay~ 3 mag up to

Ay~17 mag.

We obtained the Ay distribution of the individual galaxies on a spaxel-by-spaxel basis
(see Fig.[5.2). The individual Ay distributions show a wide range of values with most of
them spread between Ay~1 and Ay~20 mag, with no clear evidence of any dependence
with Lig. However, as a class (see Fig. , ULIRGs show Ay values (median of
6.5 mag, mode of ~7-8 mag) higher than those for LIRGs (median of 5.3 mag, mode
of ~3-4 mag). The Ay distribution in LIRGs shows a mild decrease as a function of
galactocentric distances of up to 1 kpc and a flattening at larger distances (2-3 kpc). No
similar behaviour is detected in ULIRGs, most likely owing to the lower linear resolution

of the observations.

To study the effect of the spatial sampling in the derived extinction values at increasing
galaxy distances, the individual Bry and Brd maps of our subsample of local LIRGs (at
an average distance of 63 Mpc) have been artificially smeared. These simulations have
shown that the spatial resolution plays an important role in shaping the Ay distributions.
The median value of the visual extinction measured on the LIRG subsample decreases
as a function of the linear resolution/distance by a factor ~ 0.8 at the average distance
(328 Mpc, 0.2 kpc/spaxel) of our ULIRG sample, and up to ~0.67 for distances above
800 Mpc (0.4 kpc/spaxel). This distance effect would have implications in the derivation
of the intrinsic extinction, and subsequent properties, such as SFR, £gsFgr, and the
KS-law, in high-z star-forming galaxies, even in AO-based spectroscopy. If local LIRGs
are analogues of the main-sequence star-forming galaxies at cosmological distances, the
extinction values (Ay) derived from the observed emission lines in these high-z sources

would need to be increased by a factor 1.4 on average.
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6

Sub-kpc study of the star formation
in local LIRGs and ULIRGs

Analysis of the global > srr structure and
characterisation of individual star-forming clumps

“E quindi uscimmo a riveder le stelle.”
[And we came forth to contemplate the stars.]

— Dante Alighieri, Purgatorio

6.1. Introduction

In this Chapter, we present a detailed 2D study of the global star formation rate (SFR)
and the sub-kpc structure of the star-formation rate surface density (Xsgr) in our local
sample of LIRGs and ULIRGs. Besides the spaxel-by-spaxel approach, we also analyse in detail
the properties of individual star-forming clumps, in terms of their size, ¥spr and velocity
dispersion, and compare the results with local and high-z clumps from other samples. Finally,
we briefly discuss the effect of the spatial sampling on the Y gpr measurements.

The Chapter is organised as follows: Section[6.2]contains a summary of the SFR tracers and
calibrations used, and details the procedures for obtaining the Ysrpr maps and characterising
the star-forming clumps. The results and analysis of the spr maps and distributions, as
well as the individual regions, are presented in Sec. whereas Sec. includes a brief

summary of the main results.
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6.2. Data analysis

6.2.1. Star-formation measurements. Optical and infrared tracers

One of the key issues regarding the measurement of the star-formation rate is the calibration
of the SFR indicators. The UV /optical/near-IR range indicators probe the star-formation by
measuring directly the stellar light. The young and most massive stars produce considerable
amount of ionising photons that ionise the surrounding gas that, due to recombination
processes, creates line emission cascades including the Balmer, Paschen and Brackett series.
The conversion from the flux of light into SFR is performed under the assumption of a
particular stellar IMF, that has to be fully sampled (i.e. stars are formed in every mass bin),
and the star-formation has to be roughly constant over the time scale probed by the specific
emission used. In the present work, we focus on the hydrogen recombination tracers that
relate the intensity of a particular emission line with the SFR through the ionising photon rate.

In particular, for the Ha line, we have the well-known calibration from Kennicutt| (1998):

SFR[Mayr 1 = 7.9 x 107 x Ly, [ergs™1], (6.1)

that assumes a Salpeter IMF from 0.1 to 100 Mg, (Salpeter, 1955) and solar abundances,
and the star formation has to have remained constant over ~ 6 Myr for the expression to
be applicable. The variations of the calibration constant are ~ 15% due to variations of
the electron temperature within T, = 5000 — 20000 K and almost negligible for electron
density variations within the range ne = 102 — 106 cm~3 (Osterbrock & Ferland, [2006)). The
calibration constant for other emission lines at longer wavelengths, like Bry and Paq, can
be derived from this using the recombination factors from |Osterbrock & Ferland| (2006)).
Although these lines have the advantage of being less sensitive to dust attenuation, they are
also progressively fainter and more sensitive to the physical conditions of the gas ((Calzetti,
2012). In particular, Bry is ~100 times fainter than Ha, on average, and its luminosity
changes ~ 35% within T, = 5000 — 20000 K, whereas Pa« is ~ 7.5 times fainter than Ha
and its luminosity varies ~ 25% within the same temperature range. The dependence on the
density is, in both cases, less than a ~ 3% (Osterbrock & Ferland, 2006)).

The indicators based on ionisation of hydrogen are also highly sensitive to the effects of
dust by the attenuation of the line itself or by the direct absorption of Lyman continuum

(Lyc) photons by dust. The effect of the dust attenuation on the line decreases at increasing
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wavelength, and could be handled if measurements of the extinction are available, e.g. in
terms of line ratios, as it is the case of this work. On the other hand, the absorption of Lyc
photons by dust is a more difficult effect to treat from an empirical point of view, since the
photons are directly removed from the beam and no emission results. In particular, this effect
could be significant in typical local (U)LIRGs, where large ionisation parameters (ionizing
photons per atom) and dust-to-gas ratios (metallicities) are expected, and could exceed the
20% of absorbed Lyc photons (Inoue|2001, Dopita et al.[2003).

Another plausible effect that might bias the SFR measurements based on recombination
lines is the leakage of Lyc photons. It is well known that a fraction of the ionising photons
created could escape the regions of star formation without been absorbed by the neutral
atomic gas (e.g. [Relafio et al.|2002, |Eldridge & Relafio|2010)). Under these circumstances,
the case B recombination does not fully apply since not all the ionising radiation is absorbed.
Although leakage might be negligible when considering galaxies as a whole, star-forming
regions tend, on the other hand, to lose about ~ 25 — 40% of ionising photons (Crocker
et al.[2012, |Pellegrini et al.|2012, |Relafio et al.2012), and the local SFR measurements from
recombination lines might be biased downwards by a factor 1/3 (Calzetti, [2012).

Besides the mentioned effects, that are either consequence of the transition probabilities
or might occur in a wide range of scales, an incomplete sampling of the stellar IMF could
become particularly problematic when creating spatially-resolved SFR maps, specially for
ionised-gas tracers that are most sensitive to the uppermost part of the IMF. Regardless
of whether the IMF is universal, stochastic sampling of the IMF, i.e. the stellar IMF is
randomly, not fully sampled, will yield large fluctuations in the line luminosity for a fixed SFR,
since only stars more massive than ~ 20 My produce a measurable ionising photon flux. For
star-forming disk galaxies, this typically occurs on spatial scales of ~ 0.1 — 1kpc, and SFR of
~ 0.001 — 0.01 Mg, yr~! (Kennicutt & Evans, 2012). This effect implies a practical limitation
of SFR>0.001 M, yr~! for the use of SFR tracers based on ionised gas for a ~ 20% or less
uncertainty (Cervino et al[2002, Lee et al.[2009). However, this limit is far from the typical
SFR observed in LIRGs and ULIRG of 21-20 My yr1

Although hydrogen recombination lines and UV emission represents the most traditional
SFR tracers (Kennicutt, 1998)), indicators based on dust-processed stellar light have been
widely used since the advent of high-sensitive IR space telescopes like Spitzer or Herschel.
Among all the available IR-continuum tracers, we focused on the Lijg and monochromatic

24 yum indicators to compare with our SFR measurements from the near-IR hydrogen lines.
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In particular, we used the total-IR-based (TIR, Ljg[8-1000um]) SFR calibration derived by
Kennicutt (1998):

SFR[Moyr 1] = 4.5 x 107 x Lig [ergs 1], (6.2)

that assumes a continuous burst of star formation of age 10-100 Myr, with a completely
dust-enshrouded stellar population and dust heating fully dominated by young stars. The
main disadvantage of this indicator is the need to obtain multiple measurements along the IR
spectral energy distribution (SED) and/or perform extrapolations.

In that sense, the monochromatic SFR indicators, like the 24um continuum, have the
advantage of only requiring a single measurement. This tracer, as all the indicators in the
mid-IR range, is based on the continuum emission dominated by a warm (T > 50K) dust
component in thermal equilibrium, and small-grain dust heated by the absorption of individual
starlight photons (Draine, [2003). Among the multiple calibrations available in the literature,

we used the calibration from |Alonso-Herrero et al.| (2006):

SFR[Mgayr ] = 1.5 x 10 8Lag,m [Lo]*8". (6.3)

Unlike the previous optical and TIR tracers, several calibrators of the SFR use a non-linear
relation between the luminosity at 24 um and the SFR. These models predict that the 24 ym
luminosity increases proportionally faster than the SFR, due to the increasing mean dust
temperature. For a detailed description of the 24um calibrations, see |Calzetti et al.| (2010)
and references therein.

As other SFR indicators, dust emission is subject of important systematics effects that
depend on the particular dust distribution and metallicity (Hirashita et al., 2001). The
TIR-based indicator assumes that dust completely absorbs the starlight from the recent star
formation. However, as occurred with the Lyc photons, some radiation might escape without
heating the dust, so the IR emission will systematically underestimate the SFR, if we assume
no AGN emission. The fraction of the not absorbed radiation varies as a function of the dust
content of the galaxies, from almost negligible in dusty starburst galaxies to nearly 100% in
dust-poor objects or metal poor regions (Kennicutt & Evans,|[2012). Another systematic effect
of the IR-continuum based SFR tracer is the contribution of evolved stars (~ 100 — 200 Myr)

to the Ljg that overestimate the SFR. Although in individual star-forming regions almost all
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the dust heating comes from young stars, the fraction of evolved stars that contributes to
the heating of the dust could be significative in galaxies with low specific SFR (Cortese et al.
2008, |[Kennicutt & Evans/2012).

6.2.2. Spatially-resolved star-formation rate at sub-kpc scales

Object Toeden Eoen g " Zobs(Ps) Zovs(Pos)  Zcor(Ps)  Zcorr(Pos)  Av.median
1) ) ®3) 4) (5) (6) ™) (8) ) (10)
IRASF12115-4656 0.7 10 16+06 29+33 0.4 2.1 0.5 75 7.9
1C5179 0.7 07 52+17 28£53 0.3 3.0 0.3 6.1 4.1
NGC2369 14 39  50+25 138+215 0.3 7.8 0.6 60.7 18.5
NGC5135 15 23 62+26 86+68 0.3 7.7 0.4 19.7 8.0
NGC3110 1.0 16  22+08 26+26 0.3 3.0 0.5 7.6 8.8
NGC7130 0.6 08  49+35 49+134 03 5.3 03 17.4 5.4
ES0320-G030 1.4 18 30411 36+33 0.4 3.8 0.5 8.7 5.1
IRASF17138-1017 1.5 28  94+43 126+83 0.4 125 0.5 233 6.6
1C4687 1.9 33  57+28 87+54 0.4 7.9 0.5 16.0 5.4
NGC3256! 2.4 34  66+31 106=+8.1 0.5 9.0 0.5 18.6 4.9
IRAS23128-5919 0.2 02  40+30 46+98 0.0 3.5 0.1 8.1 6.2
IRAS21130-4446 0.2 03 24+10 17+27 0.0 3.0 0.0 6.1 4.2
IRAS22491-1808 0.1 02 11+06 12417 0.0 1.6 0.1 46 6.4
IRAS06206-6315 0.1 02 12+06 15+23 0.1 1.5 0.1 45 6.4
IRAS12112+0305 0.2 03 18+10 28+34 0.1 2.2 0.1 6.4 6.4
IRAS14348-1447 0.1 02  19+09 32£32 0.0 1.6 0.1 48 6.3
IRAS17208-0014 0.2 03 29+20 43+64 0.1 5.1 0.1 12.6 5.4
LIRGs 12 17  21+26 45+88 0.3 6.8 0.4 17.0 53
ULIRGs 0.2 02  07+20 16+66 0.0 2.8 0.1 6.8 6.5

Table 6.1: Statistics of the star formation rate density, ¥srr, distributions. Cols. (2) and (3): Median
Y srr values of the observed (2) and extinction-corrected (3) spaxel-by-spaxel distributions. Cols. (4) and (5):
Weighted mean Xspr values of the observed (4) and extinction-corrected (5) distributions. Cols. (6) to (9): 5th
and 95th percentiles of the distributions. Col. (10): Median Ay from the spaxel-by-spaxel extinction distributions
(Piqueras Lépez et al., [2013). All the quantities are expressed in [Mq yr—! kpc—?], except Ay that is expressed
in magnitudes.

The SFR and Xspgr values were derived using the Bry and Paa emission lines for LIRGs
and ULIRGs, respectively, and assuming the standard star formation rate to Ha luminosity
ratio given by the expression from |Kennicutt (1998) (Eq. that assumes solar abundances,
and a Salpeter IMF from 0.1 to 100 Mg,. It is well known that this expression yields higher
values of the SFR than those based on other IMF like Kroupa (Kroupa, 2001) or Chabrier
(Chabrier, 2003). The conversion factor from these IMF to Salpeter are 1.44 and 1.59
respectively (Kennicutt et al. 2009, Calzetti et al.[2007). From this expression, taking into
account the recombination factors Ha to Paa and Bry (T= 10,000K and n, = 10* cm—3,
case B; |Osterbrock & Ferland|2006), we can directly obtain equivalent relations in terms of

the Bry and Paa luminosities:
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SFR[Mgyr '] =8.2 x 107% x Lg,, [ergs '] (6.4)
SFR[Moyr~1] = 6.8 x 107! x Lp,q [ergs™!]. (6.5)

To obtain the extinction-corrected values of the SFR and Ygpr for the maps and spaxel-
by-spaxel distributions, we have applied the Ay correction presented in [Piqueras Lopez et al.
(2013) (Chapter [B]), based on the Brvy/Brd and Paa/Bry line ratios for LIRGs and ULIRGs,
respectively. As outlined in Chapter [5 this correction is made on a spaxel-by-spaxel basis
on those spaxels where the weakest line (Brd and Bry in LIRGs and ULIRGs, respectively)
has been detected above a S/N threshold of 4. In those spaxels where this point-to-point
correction is not available, we have used a flux-weighted median value of Ay.

The individual SFR uncertainties are obtained directly from the 1o errors in the flux and
in the extinction measurements. As described in Chapter , the Ay uncertainties are derived
from the error in the line fluxes using Monte Carlo simulations, with the main advantage that
uncertainties take into account both the photon noise, and the errors from the line fitting
or from an inaccurate continuum determination. Since the Ay measurements are highly
sensitive to the S/N of the weakest line of the ratio, we observed an artificial increase of the
corrected SFR in those regions with low surface brightness, specially in the ULIRGs. In those
regions, that are typically the external regions of the sources, the uncertainties in the Ay
measurements reach up to 70-80%, and are directly propagated to the SFR measurements.

Figures [D.1] and [D.2] show the two-dimensional structure of the extinction-corrected
> seR, together with the Ay map, and Bry and Paa emission maps for LIRGs and ULIRGs,
respectively. We marked the main nucleus of the objects, defined as the brightest spaxel of
the SINFONI K band image (Chapter [4), and the Bry (Pac) peak, that corresponds to the
brightest spaxel of the corresponding emission map. The statistics of the spaxel-by-spaxel
distributions (i.e. median and percentiles) are shown in Table [6.1]

Although the detection limit of the emission maps varies from object to object, we

1 em™2 per spaxel on the Bry and Paca

found an average sensitivity limit of 1078 ergs™
maps in LIRGs and ULIRGs, respectively. Considering the most favourable case, i.e. the
closest LIRG and ULIRG, this flux threshold yields to £srr values of ~0.3 Mg yr~! kpc=2 and
~0.03 Mg yr—t kpc=? per spaxel in LIRGs and ULIRGs, respectively, that are different due to
the use of different tracers. Therefore, we hereafter assume these values as our detection

limits in the Xspr maps and spaxel-by-spaxel distributions.
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6.2 Data analysis

6.2.3. Integrated measurements of the star-formation rate

Object Reff Febs, Feor Tobe reom o Av

(1) ) ®3) (4) (5) (6) (7) (8)
IRASF12115-4656 1.3 9.4 +0.2 255+ 0.6 0.9 +01 24 £0.1 46 + 2 113+ 0.2
1C5179° 16 223 +0.6 4241 0.7 £0.1 12401 50 & 2 72+£02
NGC2369 05 10.6 +0.3 72£2 20401  13.94+04 108 +3 21.7+03
NGC5135 05 122+02  27.9+0.6 41401 94402 69 =+ 2 93401
NGC3110f 1.9 1434+02 30105 0.9 +£0.1 20+01 53+ 1 84 +0.1
NGC7130 1.0 10.6 £03 352+ 0.9 12+01 41401 83 £ 2 13.6 £ 0.3
ES0320-G030 0.7 13.7+04 234 +07 17+01 2.8 +0.1 43 £ 2 6.1 +0.1
IRASF17138-1017 0.6 9.7 +£0.1 189 +03 45+ 0.1 8.9 +0.1 62+ 1 76 +0.1
1C4687 11 250+04  47.1+08 31401 58+ 0.1 51+1 72401
NGC3256¢ 1.0 73+1 131 + 2 3.0+01 54+0.1 56 + 1 6.6 + 0.1
IRAS23128-5919 2.0 9.5+02 249 +05 24 +0.1 6.3+ 0.1 116 + 2 72+01
IRAS21130-4446 1.6 0.7 + 0.1 15+0.1 12+01 26+ 0.1 127 +3 57+ 04
IRAS22491-1808 1.7 0.6 £ 0.1 14£01 0.6 +0.1 1.6 +0.1 73+1 6.6 + 0.3
IRAS06206-6315 2.5 0.7 + 0.1 2.0 +0.1 0.5+ 0.1 14401 174 £ 3 7.4 +03
IRAS12112+0305 2.6 1.1 4+0.1 32401 0.5+ 0.1 14401 138 +1 8.0 +0.2
IRAS14348-1447 3.8 1.7+ 0.1 42+0.1 04 £01 1.1+0.1 109 £1 6.5 + 0.2
IRAS17208-0014 0.9 4.4 +01  11.8+0.1 51+01 13.7+02  144+1 73401

Table 6.2: Star-forming properties of the sample. Col. (2): Ha effective radius in [kpc] from |Arribas
et al.| (2012). Cols (3) and (4): Observed (3) and extinction-corrected (4) Pac fluxes measured within
Refr, expressed in [x10™ergs™ cm™2]. The Paq fluxes for the LIRGs are obtained from the Bry fluxes
using the case B recombination factor at T= 10,000K and n. = 10* cm™3 (Osterbrock & Ferland) [2006)).
Cols. (5) and (6): Observed (5) and extinction-corrected (6) Xsrr in [Me yr~' kpc2]. Col. (7): Intrinsic
velocity dispersion in [kms™'] of the Bry and Paa lines for LIRGs and ULIRGs respectively. Col. (8):
Av in magnitudes. All the uncertainties are calculated by a bootstrap method of N = 300 simulations.
TDue to the limited FoV of the observations, in these objects the He effective radius is greater than our
FoV, and the fluxes should be considered lower limits. ¥ Since the main nucleus of NGC 3256 was not
observed, we centred the aperture for in the centre of the FoV, so the measurements might be inaccurate.

Besides the statistical analysis of the spaxel-by-spaxel distributions, we obtained integrated
measurements of the SFR and Y.spr by stacking the spectra of the individual spaxels within
the Ha effective radius from |Arribas et al. (2012). The spectra of each individual spaxel were
previously derotated, i.e. corrected from the intrinsic velocity field, to prevent from beam
smearing effects and improve the S/N of the lines. The lines were then fitted to a gaussian
profile, accounting for the instrumental broadening using the OH sky line at 2.190 um (see
Piqueras Lépez et al.[2012a, Chapter for details). Although the extinction of each region
could be estimated directly from the stacked spectra, we argued in |Piqueras Léopez et al.
(2013)), Chapter [5] that the Ay measurements could be affected by aperture effects when
measured over large apertures. To prevent this effect and to take advantage of the more

detailed Ay maps, we calculated the extinction on an spaxel-by-spaxel basis by performing
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synthetic photometry over the observed and extinction corrected Bry and Paa emission maps,

and derived the visual extinction using the formula:

F
Ay = —2.501;1I0g [ ObS] ,

I:COI’I'

where Fops and Feor are the observed and corrected fluxes within the aperture measured
on the observed and extinction-corrected emission maps, respectively, and «) is defined as
A\ = axAy and is given by the extinction law described in|Calzetti et al.| (2000)) (g, = 0.096
and ap,, = 0.145, see Piqueras Lopez et al.[[2013)). We used this latter value of the extinction
to correct the luminosity of each region, extracted from the line fitting of the stacked spectrum.

The measurements of the Ygpgr, velocity dispersion and Ay for each object are listed in

Table 621

6.2.4. Characterisation of the star-forming clumps

We have identified a total of 95 individual star-forming clumps / complexes by a visual
inspection of the Bry and Paa emission maps. To characterise the size of an individual
star-forming clump is a key issue to accurately measure important properties of the region
such as its luminosity, velocity dispersion or 2grr. There are two parameters that have been
widely employed to characterise the size of an emitting region, i.e. the effective radius or
half-light radius, refr (Kennicutt, |1979), and the ‘core’ radius, reore (Sandage & Tammann,
1974)).

The rof is traditionally defined as the radius that encloses half of the total flux of the
emitting region assuming circular symmetry, although it could be generalised in terms of an
isophotal region with arbitrary shape that encloses a total flux greater than a defined fraction
of light. Depending on the flux threshold, the intrinsic flux distribution of the region and the
sensitivity of the observations, this radius can represent either the core of the region or also
include the surrounding diffuse inter-clump emission. The presence of tails, halos or smeared
background emission when two regions are close together increase reg and therefore bias the
measurements. This could be particularly important when comparing low- and high-redshift
samples, since the contribution of the surrounding background could be significantly higher

locally than at higher redshift.
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6. SUB-KPC STUDY OF THE STAR FORMATION IN LOCAL LIRGS AND
ULIRGS

The ‘core’ method consists on fitting the light profile of the region using a particular
analytic function, typically a 2D Gaussian function. One of the advantages of this method is
that it does not depend on any particular flux or surface brightness threshold, and it is less
sensitive to the local background. This method is widely used in high-redshift data where the
regions are almost unresolved, and seems suitable for a direct comparison between low- and
high-redshift observations. However, the main limitation of the method is that it assumes a
light profile, typically Gaussian, that might not reproduce accurately the intrinsic profile of
resolved clumps, particularly in local samples where the spatial resolution of the observations
is of parsec scales. For a further discussion on both methods see |Wisnioski et al.| (2012).

Figure [6.1| shows the Bry (LIRGs) and Paa: (ULIRGs) maps of the objects of the sample
where the individual regions have been overplotted. To obtain the res of the individual clumps,

0718 ergs™! cm™2 to calculate the total flux of each region.

we considered a flux threshold of 1
This flux limit corresponds typically to a S/N ratio of ~ 2 in the Bry and Paa lines per spaxel
for LIRGs and ULIRGs, respectively. For this isophotal regions, we estimate the re using
the ‘A/2" method described in |Arribas et al.| (2012), i.e., the ref is obtained as ref = \/m
where ‘A’ is the area covered by the minimum set of spaxels that accounts for half of the
total flux of the region.

We show a comparison between the area of the isophotal region (Aiso) and the circular
area derived from the refr (Acfr) in Fig. . This relationship would give us an idea of how
compact or extended each individual region is, since one would expect that compact regions
would present a higher ratio than more uniform regions. In that sense, we also plotted
the expected ratio of both areas for an ideal region with an uniform flux distribution, that
represents the extreme case of an extended region with diffuse background emission, and a
mock region with a symmetric 2D gaussian light profile, that represents a typical unresolved,
compact star-forming clump. The region with a constant flux distribution represents the
lower limit for the ratio, since Ajso ~ 2 X Aefr. On the other hand, the relationship between
both areas for the mock region would depend on the total flux of the clump, the FWHM
of the 2D gaussian profile and our limiting flux threshold. We considered an unresolved

013 1

clump with a total flux of 1013 ergs~ cm~2 that corresponds to the total flux of a typical

star-forming clump of our sample, with a FWHM of ~0.63 arcsec and a detection limit of

107 ®ergs™tcm™2

. Most of the clumps from the LIRG subsample lay close to the lower
limit of Ajso ~ 2 X Acfr, whereas the regions observed in the ULIRG subsample present higher

ratios, similar to those of more compact distributions. Although it could be argued that this
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Figure 6.2: Comparison between the isophotal area and the circular area of star-forming regions
- Comparison between the isophotal area (region enclosed by an isophote of 10" Berg s’lcm’z) and the
circular area obtained from the reg of the individual star-forming regions in LIRGs (circles) and ULIRGs
(diamonds). The thick black line represents the ratio between both quantities for a region with an uniform

flux distribution, whereas the dashed line represents the same ratio for a region with a symmetric 2D

gaussian light profile and a total flux of 102 ergs™!cm™2.

might respond to intrinsic differences between the structure of star-forming clumps in LIRGs
and ULIRGs, the differences in the spatial resolution and FoV of our observations between
both LIRG and ULIRG subsamples make this conclusion not straight forward, and could be a
direct implication of the distinct diffuse background contribution in both subsamples.

To calculate reore, we fitted each individual region to a general 2D Gaussian profile that
included the local background level as a free parameter. The final value of the radius is
obtained as a quadratic mean of the widths of the Gaussian function, o, and o/, where X'

and y’ are the canonical axes of the ellipse.

6.2.5. Star-forming clump luminosity, velocity dispersion and extinction cor-
rection

Once the region is delimited by one of the two methods, we measured the luminosity,
velocity dispersion and visual extinction of the clump from the stacked spectra of the individual
spaxels within the circular area defined by refr and by the ellipse given by o,s and oy/. The
measurements are performed using the same procedure as for the whole objects, we fitted

a Gaussian profile to the derotated stacked spectrum of each region, accounting for the
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Figure 6.3: Comparison between the scaling properties of individual clumps measured using the
effective radius and core radius methods - Comparison between the Bry (LIRGs) and Paa (ULIRGSs)
radius (top left), luminosity (top right), velocity dispersion (bottom left) and visual extinction (bottom
right) of individual clumps measured using the effective radius and core radius methods. The black lines
represent a one-to-one ratio in all the panels.
instrumental broadening and used an spaxel-by-spaxel correction to account for the extinction.
The resulting values are shown in Table [6.3]

The measurements of the SFR and Xspr could also be performed directly over the
emission maps. We checked whether the method, i.e. fitting the stacked spectrum or
synthetic aperture photometry of the emission map, could bias the measurements. We found
that the values of the luminosity obtained directly from the maps are slightly larger than
those obtained from the line fitting, although the differences are less than ~ 10%. There
is also a small dependence with the luminosity/size of the region, those regions with small
sizes/less number of spaxels show the largest differences ( <10%) whereas the more extended
regions present differences between both measurements of less than ~ 5% due to the larger

number of spaxels within the region.

Figure 6.3 shows a comparison between the luminosity, radius, velocity dispersion and
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visual extinction of the clumps measured using the regr and reore methods. We found that
the sizes of the clumps measured using res are typically larger than those obtained by the
core method, with differences of ~ 30% on average, and hence, the luminosities extracted
using the effective radius method yield values larger than the corresponding to the reore
measurements. The differences in the area of the region obtained by both methods are
typically of the 50-60% or less, and are translated to differences in luminosity of ~ 50% on
average. We observed that the velocity dispersion and the Ay values are less sensitive to the
method for characterising the size of the clumps, and found a close one-to-one correlation
between the values measured using the effective radius and the core method, with differences

lower than ~ 5% in the velocity dispersion, and lower than ~ 20% in Ay.

6.3. Results and discussion

6.3.1. Two-dimensional X srr structure and spaxel-by-spaxel Y sgr distribu-
tions

The Xspr maps show a very similar structure than the Bry and Paa emission maps, with
some differences at sub-kiloparsec scales due to the clumpy morphology of the extinction
structure. We observed that approximately half of the sources (~47%) present the maximum
of both the observed and extinction-corrected ¥ grr at their main nucleus. In those sources
with multiple nuclei (NGC 3256 and all the ULIRGs with the exception of IRAS 17208-0014),
the X grpr peaks either at the main or secondary nucleus. When the observed maps are
considered, the fraction of systems with the maximum of the Xspgr at the main nucleus
reaches up to ~71%, and decreases significantly to ~57% when the maps are corrected from
extinction.

Figs.[D.1]and [D.2]also shown the histograms of the spaxel-by-spaxel individual distributions
of the observed and corrected ¥ grr. The histograms of the LIRG subsample show a wide
variety of morphologies, from concentrated distributions with extended tails towards high ¥spr
values like IRASF 12115-4656 or IC 5179, to wide distributions like NGC 3110, NGC 3256
or IRASF 17138-1017. In ULIRGs, the histograms are typically narrower due to the large
amount of spaxels with low surface brightness. The extinction correction typically increases
the median and weighted mean of the distributions by ~50% (see Table , although
differences between the observed and the corrected distributions can reach up to ~75%.

Besides the median and mean values, the shape of the distributions does not significantly
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Table 6.3: Properties of individual star-forming clumps

Object  Region reg  Fily, R % % o A e R R %% = o Av
1) 2 © 4) (5) (6) ()] (8) (9) (10) (11) (12) (13) (14) (15) (16)
IRASF12115-4656 Nucleus 187 26 +0.2 6.0 + 0.6 12+0.1 27+03 97 + 11 94+ 1.2 85 0.7 £ 0.1 1.4 £ 0.2 1.6 £ 0.2 29+ 05 97 £+ 16 724+25
R1 398 185 + 0.4 39.2 £ 1.0 1.9+ 0.1 41401 46 £ 1 85+ 03 213 6.8 + 0.1 113 £ 0.3 27+01 45+ 0.1 41+1 57+ 03
R2 357 10.5 + 0.2 65.4 + 1.3 14+ 0.1 8.6 +£ 0.2 46 + 1 20.7 £ 0.5 157 26 + 0.1 18.6 + 0.4 20+ 0.1 13.9 + 0.3 44 + 1 222+ 1.0
R3 338 10.1 + 0.3 21.6 £ 0.6 15+ 0.1 31+01 41 + 2 8.6 £ 0.3 320 9.1 £ 0.2 18.4 £ 05 1.5+ 0.1 3.0+ 0.1 39 +2 8.0 £ 03
R4 252 57 £ 0.2 8.9 £ 0.4 14 +01 23+0.1 37 +2 52+ 0.4 108 20+ 0.1 3.1+01 26 £0.1 41402 39 +2 5.0+ 0.6
1C5179 Nucleus 157 46.4 + 0.5 124 + 1 11.7 £ 0.1 313 £ 05 65 + 1 11.1 + 0.4 81 19.1 £ 0.2 483 £ 1.0 18.5 + 0.2 46.6 £ 1.0 63 +1 10.5 + 0.5
R1 204 12.6 + 0.3 15.7 + 0.6 19+ 0.1 23+ 0.1 36 + 2 25+ 04 146 8.4 4+ 0.2 11.0 + 0.5 24 +01 31401 34 +2 3.0+ 05
R2 275 11.8 + 0.5 12.8 + 0.7 1.0+ 0.1 1.1+ 0.1 3244 1.0+ 0.3 120 35+ 0.2 4.1+ 0.3 1.7+ 0.1 20+ 0.1 27 + 4 1.9 + 0.6
R3 157 8.4 £+ 03 12.3 + 0.5 21401 3.0+ 0.1 43 + 2 42+ 0.4 66 28+ 0.1 45 + 0.2 41+0.1 6.5+ 0.3 46 £ 1 534038
R4 222 7.1+03 10.5 + 0.6 0.9 £ 0.1 1.3+ 0.1 45 + 4 44405 128 27+ 0.1 43+ 0.3 1.2+ 0.1 19+ 0.1 42 +3 55+ 0.8
R5 92 6.2 £ 0.1 123 + 0.3 44+ 0.1 8.7 £ 0.2 44 + 1 7.7 +£04 85 55+ 0.1 10.6 + 0.3 47 £0.1 9.1 +0.2 44 + 1 74 +04
R6 87 5.0+ 0.1 9.0 £03 4.0+ 0.1 72402 34 +1 6.6 + 0.4 71 35+ 0.1 6.6 + 0.2 43 +01 8.0 + 0.2 33+1 71+ 04
R7 130 35402 11.1 + 0.6 1.3+0.1 43+ 0.2 32+4 13.2 + 0.8 87 1.9+ 0.1 73+ 04 1.7 £ 0.1 6.5+ 0.3 31+ 4 153 + 1.0
R8 148 35401 53403 1.0+ 0.1 15+ 0.1 35 +2 46 + 06 91 1.7+01 27402 13+01 20401 33+3 51409
R9 87 32+01 3.8+ 02 25+ 0.1 3.0+ 0.1 28 + 2 19 + 0.4 76 23+ 0.1 26 £ 0.1 28+ 0.1 3.2+ 0.1 27 £ 2 1.7 + 0.4
R10 87 3.0+£01 3.8+ 0.2 26+ 0.1 32+01 42+ 1 24+ 05 60 15+ 0.1 1.8 + 0.1 28+ 0.1 34402 40 + 1 21+06
R11 87 23+ 0.1 29 £0.1 20+ 0.1 2.6 + 0.1 31+2 2.6 £ 0.6 70 1.7 £ 0.1 22401 22+01 28+ 0.1 31+2 27 £ 06
NGC2369 Nucleus 201 48.6 + 1.5 352 £ 11 6.6 + 0.2 479 £ 15 119 +£ 3 224 £ 05 133 275+ 1.1 175 £ 7 8.6 £ 0.4 54.8 + 2.3 119 £ 5 21.0 £ 0.6
R1 210 332+ 09 308 +£ 9 42 4+0.1 38.8 + 1.1 112 +£ 3 252 £ 0.6 135 149 £+ 0.6 166 + 6 47 £02 525 + 2.1 110 £ 5 272 £ 0.9
R2 138 258 £ 1.0 104 + 4 77+03 312 +13 103 £ 5 158 + 0.7 181 38.6 + 1.0 165 + 4 6.9 + 0.2 29.4 £ 09 104 £+ 3 16.4 + 0.6
R3 161 242 £ 0.7 102 + 3 53+ 0.1 224 £ 0.7 76 + 3 16.3 + 0.5 108 129 + 0.3 53.7 £ 1.6 6.2 + 0.2 25.8 £ 0.8 72+ 2 16.1 + 0.7
NGC5135 Nucleus 221 28.5 + 0.7 59.6 £ 1.6 53+ 0.1 11.1 £ 0.3 77+ 2 8.4 4+ 0.3 155 16.1 + 0.4 35.8 £ 1.1 6.1 + 0.2 13.5 + 0.4 84 + 2 9.0 £ 0.4
R1 212 36.0 + 0.5 68.2 +£ 1.1 72+ 0.1 13.6 £ 0.2 60 + 1 72402 133 18.2 £ 0.2 354 +£ 0.6 93+ 0.1 18.0 +£ 0.3 58 £ 1 75 +03
R2 221 35.8 + 0.9 82.8 £ 2.2 6.7 £ 0.2 15.6 + 0.4 64 £+ 2 9.5+ 0.3 153 19.5 £ 0.5 473 + 13 8.0 £ 0.2 19.4 £ 0.5 62 + 2 10.0 £ 0.3
R3 212 24.7 + 0.6 58.0 £ 1.5 49+ 0.1 11.6 + 0.3 68 + 2 9.7 £ 03 143 13.6 +£ 0.3 30.4 +£ 0.8 6.5+ 0.1 145 + 0.4 69 + 2 9.1+ 04
NGC3110 Nucleus 351 26.1 + 0.4 65.7 + 1.4 29+ 0.1 74402 61 + 1 104 + 0.4 268 17.7 £ 0.3 451 + 1.1 35+01 8.8+ 0.2 63 +1 10.6 + 0.5
R1 274 131+ 0.2 28.6 +£ 0.6 25401 55+ 0.1 47 £ 1 88+ 03 146 55+ 0.1 11.8 £ 0.4 38401 82402 48 +£1 8.6 + 05
R2 282 79 £0.2 18.0 + 0.5 14+ 0.1 31+01 51 +1 9.3+ 04 237 4.0 £ 0.1 10.3 £ 0.3 1.6 + 0.1 4.1+ 0.1 49 + 2 10.6 + 0.6
R3 299 73+£02 14.8 + 0.5 1.1+01 23+0.1 56 + 2 7.9 £ 0.6 397 11.6 £ 0.2 21.6 £ 0.7 1.1+ 0.1 20+ 0.1 57 +£1 7.0+ 05
R4 322 76 £0.2 13.6 = 0.5 1.0 £ 0.1 1.8 £ 0.1 61 +£1 6.5+ 0.5 392 93 1+ 0.2 16.7 = 0.5 1.0+ 0.1 1.7 £ 0.1 57+ 1 6.6 £ 0.4
R5 209 38+ 0.1 58 +£ 0.3 1.2 £+ 0.1 1.8 +£ 0.1 47 £ 2 5.0+ 05 221 3.7+01 59 + 0.2 12+ 0.1 19+ 0.1 48 + 2 51+ 05
NGC7130 Nucleus 205 533 £ 1.2 197 + 4 16.1 + 0.4 59.9 + 1.5 93 +2 148 + 0.5 114 237 £ 05 88.8 + 2.5 233+ 05 873+ 25 97 £ 2 149 + 0.7
R1 239 14.0 + 0.3 18.0 + 0.4 3.0+ 0.1 39+ 0.1 41+ 1 29+ 0.1 121 6.0 + 0.1 79 +02 51+ 0.1 6.7 £ 0.1 40 + 1 3.1+02
R2 246 57 £ 0.1 10.8 + 0.3 12+ 0.1 22+ 0.1 37+1 73+ 04 161 31+01 6.5+ 0.2 1.5+ 0.1 3.2+ 0.1 38+ 2 83+ 05
R3 239 4.3+ 0.2 5.0 £ 0.3 0.9 £+ 0.1 1.0 + 0.1 36 + 4 1.6 + 0.4 165 28+ 0.1 3.1+02 1.3+ 0.1 15+ 0.1 34 + 4 1.1+ 0.6
ES0320-G030  Nucleus 174 9.8 £ 05 144 + 0.9 19+0.1 27 +£02 87 +£5 43+ 06 93 4.2 4+ 0.2 6.3 £ 05 31+01 47+ 04 91+5 47 £11
R1 227 30.4 £ 0.7 625 + 1.7 33401 6.7 £ 0.2 38+1 8.1+ 04 167 174 £ 0.4 35.6 £ 0.9 43 +0.1 8.7+ 0.2 38+1 8.1+ 04
R2 246 237+ 05 347+ 09 22401 32+01 30+ 2 43+ 0.2 211 18.4 + 0.4 28.0 £ 0.8 23+01 35+ 0.1 30 +2 4.7 +03
R3 246 245 + 05 40.4 + 1.2 23401 3.8+ 0.1 38+1 5.7+ 0.4 155 11.6 + 0.2 21.7 +£ 0.7 34+01 6.3+ 0.2 37+1 7.0+ 05
R4 210 17.9 + 0.3 39.3 £ 1.0 23401 50+ 0.1 43+ 1 8.9 + 0.4 149 9.7 £ 0.2 24.7 £+ 0.6 31+01 7.8+ 0.2 41 +1 10.6 + 0.5
R5 123 10.3 + 0.2 22.1 £ 0.7 3.8+ 0.1 8.1+02 42 + 2 8.6 £ 0.5 92 6.7 £ 0.1 13.6 £ 0.4 44 +0.1 9.0 £ 0.3 41 +1 79+ 06
R6 161 72+03 115 + 0.6 16 £ 0.1 25+ 0.1 36 + 3 53+ 05 99 32+01 6.4 £ 0.3 21+01 42402 31+3 7.7 £08
IRASF17138-1017 Nucleus 181 19.1 + 0.3 421+ 09 8.4 £+ 0.1 18.5 + 0.4 62 + 1 8.9 + 0.4 188 20.0 + 0.3 445 £+ 1.0 83 +0.1 185 + 0.4 62 + 1 9.1 £03
R1 220 56.2 + 0.7 933+ 14 17.1 +£ 0.2 28.3 £ 0.4 70+1 57402 151 29.6 + 0.4 52.1 + 0.9 20.6 £ 0.3 36.3 £ 0.6 71+1 6.4 + 0.2
R2 237 351+ 05 649 + 1.1 9.2+ 0.1 17.1 +£ 0.3 64 + 1 7.0+ 0.2 225 335+ 0.5 62.0 + 1.1 9.4 £+ 0.1 175+ 0.3 64 +1 7.0+ 02
R3 197 322+ 05 635 + 1.1 12.7 £ 0.2 25.1 + 0.4 61 + 1 7.7 +£0.2 138 20.4 £ 0.3 41.9 +£ 0.8 15.1 + 0.2 31.0 £ 0.6 63 +1 8.1+ 03
R4 158 9.8 £0.2 18.4 + 0.5 57+ 0.1 10.6 £ 0.3 56 + 1 7.2+ 04 135 7.8+ 0.2 147 £ 0.4 6.1 £ 0.1 11.6 + 0.4 56 + 1 72+ 05
R5 158 51+0.1 9.4+ 03 29+ 0.1 55+ 0.2 56 + 1 7.0+ 04 86 1.8 + 0.1 3.7+01 39+01 8.0 £ 0.3 55+ 1 83+ 07
R6 158 29+ 0.1 6.1 +£ 0.2 1.7 £ 0.1 354+ 0.1 56 + 2 85+ 0.6 117 1.8 £ 0.1 39402 1.8+ 0.1 41+ 0.2 55 + 2 9.0 £ 0.8
R7 176 27+ 0.1 74 +02 1.3+ 0.1 3.6+ 0.1 47 + 1 11.4 + 0.8 129 1.7 +£ 0.1 52+ 0.2 1.5+ 0.1 47+ 0.2 47 + 1 12.7 + 1.0
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GET

Object Region  refy (3508 5548 pa-co pais o Ay eore o, FEor, e pai o Ay
1) 2 ® (4) (5) (6) () (8) ) (10) (11) (12) (13) (14) (15) (16)

1C4687 Nucleus 355 45.0 £ 0.7 127 £ 2 52+ 0.1 148 + 0.2 51 +1 118 + 0.3 224 227 £ 0.4 66.3 + 1.2 6.6 + 0.1 192 + 0.4 49 +1 121+ 03
R1 363 59.3 £ 1.1 822+ 1.6 6.6 + 0.1 92+ 02 61 £ 1 37+01 221 24.0 £ 0.4 357 £ 0.7 10.0 + 0.2 148 £ 03 62 + 1 45+ 0.2
R2 268 523 £ 0.8 813+ 14 10.7 + 0.2 16.6 + 0.3 48 +1 50+ 0.1 174 31.1 £ 0.5 49.5 £ 0.9 15.7 + 0.2 249 +£ 0.4 48 +1 53+ 0.2
R3 311 26.7 £ 0.4 438 £ 0.8 41401 6.7 £ 0.1 44 +1 56 + 0.2 178 93+ 0.1 142 + 03 6.1+ 0.1 9.4 +£0.2 43 +1 48+ 0.2
R4 257 16.6 + 0.3 235+ 0.5 37+01 53+ 0.1 39+1 4.0 +0.2 136 6.1 +0.1 89402 54 +0.1 78 +02 36 +1 42403
R5 158 16.8 + 0.3 285 + 0.6 10.0 + 0.2 16.9 + 0.3 52+ 1 6.0 + 0.2 94 75+ 0.1 137 £ 0.3 12.6 + 0.2 232 £ 0.5 49 +1 6.9 + 0.3
R6 257 83+ 0.2 115 £ 0.3 1.9+ 0.1 26 +0.1 44 £ 1 3.6 +£03 145 32401 44 +0.1 22401 3.0+01 39+1 35+ 04
R7 176 54 +0.1 76 +02 26 + 0.1 37+01 3r+1 39+03 131 35401 50402 29+ 0.1 43+01 33+2 42+ 04
R8 197 53+ 0.1 79+ 03 2.0 4+ 0.1 29401 36 + 2 45+ 0.3 138 3.0+ 0.1 47+ 0.2 234+ 0.1 36 + 0.1 34 +2 52+ 05
NGC3256 Nucleus 182 81.2 £ 1.0 196 + 2 102 + 0.1 249 £ 0.3 92 +1 10.0 + 0.2 86 29.5 +£ 0.5 89.9 + 1.7 17.0 £ 0.3 51.6 £ 1.0 100 £ 1 126 + 0.3
R1 151 56.0 £ 0.8 115+ 1 10.3 + 0.1 213 £ 0.3 63 £ 1 82402 101 277 £ 0.4 59.6 + 1.1 11.8 £ 0.2 254 £ 0.5 63 +1 87+ 0.2
R2 205 403 +£ 0.9 68.3 £ 1.8 4.0+ 0.1 6.8 + 0.2 49 +2 6.0 + 0.2 75 10.3 + 0.2 135 + 0.4 7.6 £ 0.1 10.0 + 0.3 47+ 1 31403
R3 120 29.3 £ 0.6 314 £ 08 83+ 0.2 89+ 0.2 36+ 1 0.8 £ 0.2 76 145 + 03 151+ 0.4 115 + 0.2 120+ 03 3B+1 05+ 0.2
R4 135 289 £ 1.1 381+18 6.7 £ 0.2 88 + 04 49 +3 31404 920 157 + 05 215+ 1.1 9.0+ 03 123 + 0.7 48 + 3 35+ 06
R5 151 235+ 0.5 352+ 0.8 44+0.1 6.6 + 0.2 52+ 1 46 + 0.2 118 134 + 03 21.3 £ 0.6 53+ 0.1 8.4+ 0.2 51 +1 52403
R6 153 21.7 £ 0.2 45.0 £ 0.8 38+ 0.1 8.0+ 0.1 65 + 1 83+ 04 134 16.0 + 0.2 334 £ 07 41+01 85+ 0.2 65 + 1 83+ 04
R7 116 18.4 + 0.4 25.0 £ 0.7 57 £ 0.1 78 +02 38+1 35403 118 15.4 + 0.4 204 £ 0.6 6.3 + 0.1 84 +03 37+2 32403
R8 135 16.5 +£ 0.3 19.6 + 0.6 3.7+0.1 4.4+ 0.1 42+ 1 19+03 70 6.3+ 0.1 78+03 54+ 0.1 6.6 + 0.3 41+ 1 2.4+ 05
R9 101 172+ 03 235+ 1.2 6.9 + 0.1 95+ 05 56 + 1 3.6 £ 0.7 50 51+0.1 73+07 9.7 £ 03 141+ 13 57 £ 2 41+ 14
R10 107 157 £ 0.3 185 + 0.4 59+ 0.1 7.0+02 34+1 1.9+0.2 91 112+ 0.2 134+ 03 6.4+ 0.1 77 +02 34+1 2.0+ 0.2
R11 120 13.6 £ 0.3 29.0 + 0.8 39+0.1 8.4+ 0.2 39+2 8.6 + 0.4 100 10.2 £ 0.2 2234+ 0.7 42+0.1 9.1+03 39+ 2 8.8+ 0.4
R12 101 135 + 0.2 239 £ 0.6 55+ 0.1 9.8 £ 0.2 46 £ 1 6.5+ 0.3 70 72 %01 131+ 04 6.1+ 0.1 111+ 03 43+1 6.8 + 0.4
R13 96 11.2 £ 0.2 19.8 + 0.5 5.0+ 0.1 89 £ 0.2 46 + 1 6.4+ 03 63 55+ 0.1 10.1 £ 0.3 6.4 + 0.1 11.6 + 0.3 4341 6.8 + 0.4
R14 108 10.6 + 0.2 152 + 0.5 37+01 54402 45 + 1 41404 146 17.6 + 0.4 285+ 0.8 36 + 0.1 58 + 0.2 43+1 55+ 0.3
R15 86 9.7 £ 0.1 192 + 0.4 55+ 0.1 10.7 £ 0.2 46 £ 1 77 £ 04 62 55+ 0.1 119 £ 03 6.0 + 0.1 13.0 £ 03 44 £ 1 8.7 £ 0.6
R16 75 6.2+ 0.1 104 £ 0.3 4.6 + 0.1 77+£03 36+ 1 58 +£ 05 109 12.0 + 0.3 19.5 + 0.6 42+ 0.1 6.8 £ 0.2 35+1 55+ 0.4
R17 75 54+ 0.1 6.8 + 0.3 42+ 0.1 52+ 0.2 38 +2 25+ 05 59 36 + 0.1 45402 44+ 0.1 54+ 0.2 37+ 2 23+ 05
IRAS23128-5919 Nucleus 490 498 £ 1.0 152 £ 3 20.5 £ 0.4 629 + 1.4 112 £ 3 8.4+ 02 257 20.0 £ 0.4 68.3 £ 1.7 31.0 £ 0.7 105 £ 2 111 £ 3 92+ 03
R1 693 28.8 £ 0.2 72.6 £ 0.7 6.2+ 0.1 15.7 + 0.2 81 +1 6.9 + 0.1 385 13.7 £ 0.1 35.4 + 0.4 9.3+ 0.1 239 £ 0.3 80+ 1 7.1+0.2
IRAS21130-4446 Nucleus 680 32401 8.8 + 04 35+ 0.1 9.6 + 0.4 143 + 4 75+ 06 490 20401 6.2+ 03 4.0+ 0.1 122 + 0.6 145 £ 5 83+ 0.7
R1 1454 105 + 0.1 16.8 + 0.4 23+ 0.1 37 +0.1 70 £1 35+ 02 1441 6.8 + 0.1 11.1 + 0.2 36 + 0.1 58 + 0.1 64 + 1 3.6 + 0.2
IRAS22491-1808 Nucleus 758 25401 59402 1.4 +£01 33+01 65 £ 1 6.5 + 0.4 439 1.2 +01 28+01 2.0+ 0.1 50+ 02 64 £ 1 6.7 £ 05
R1 780 43401 9.8 +£0.2 22401 51+ 0.1 110 £ 1 6.2+ 03 501 234+01 56+ 0.1 3.0+ 0.1 724+02 119 £ 1 6.7 £ 0.4
R2 919 24 +0.1 8.1+ 0.2 09 + 0.1 31+0.1 44 +1 92+ 0.3 500 1.1+0.1 35+ 0.1 1.4+ 0.1 46 + 0.1 42 +1 9.0 +£ 0.5
IRAS06206-6315 Nucleus 775 36 +£0.1 103 £ 03 28 + 0.1 79+03 187 + 4 78 05 512 19 +01 55+ 0.2 35+ 0.1 103 =04 191 £+ 4 8.1+ 06
R1 912 1.7 £ 0.1 28+ 0.2 09 £+ 0.1 1.5+ 0.1 129 + 2 40+ 038 643 1.0 £ 0.1 1.6 + 0.1 1.1+0.1 1.8 £ 0.2 135 + 2 37+ 11
R2 644 0.1+ 0.1 02+ 0.1 0.2+ 0.1 0.3+ 0.1 37+ 2 35+ 0.7 579 0.1+ 0.1 02+ 0.1 0.2+ 0.1 0.3+ 0.1 38+ 3 35+ 038
IRAS12112+0305 Nucleus 551 48 +£0.1 154 £ 0.3 44101 141 +03 143 £ 1 87+ 03 367 26 + 0.1 8.7+ 0.2 59+ 0.1 19.6 = 0.4 144 £ 1 9.1+ 04
R1 1232 97 £ 0.1 248 £ 03 1.8 £ 0.1 47 +£0.1 98 +1 7.0+ 02 531 3.0+ 0.1 105 + 0.2 33401 115 + 0.2 117+ 1 93+ 03
R2 628 0.7+ 0.1 1.0+ 0.1 0.5+ 0.1 0.7 £ 0.1 4149 22+ 04 498 0.5+ 0.1 0.7 £0.1 0.6 + 0.1 0.7 £ 0.1 40 + 16 19+ 05
IRAS14348-1447 Nucleus 872 82+ 0.1 19.6 £ 0.3 4.0+0.1 9.6 £ 0.2 118 £ 1 6.5 + 0.2 515 40 +0.1 10.0 £ 0.2 59+ 0.1 145 + 03 121 +1 6.8 + 0.3
R1 703 47 +£0.1 15.0 £ 0.3 35+ 0.1 11.1 + 0.2 135+ 1 87 + 04 399 23 +0.1 83402 5.0+ 0.1 18.0 £ 0.5 140 £ 2 9.6 + 0.6
R2 1050 14401 15+ 0.1 0.5+ 0.1 0.5+ 0.1 54 +£1 0.4+ 04 731 0.7+ 0.1 0.8+ 0.1 0.6 + 0.1 07+ 0.1 53+ 1 0.9+ 0.5
R3 1573 0.6 + 0.1 09+ 0.1 0.1+ 0.1 0.1+ 0.1 60 + 2 28 +0.3 842 02+ 0.1 0.4 +0.1 0.1+ 0.1 02+ 0.1 53 + 2 3.0+ 05
IRAS17208-0014 Nucleus 675 329 £ 0.3 941 £ 1.1 6.6 + 0.1 19.0 £ 0.2 154 £ 1 79402 347 128 + 0.3 420 £ 1.0 10.1 £ 0.2 334 £ 0.8 152 £ 3 8.9+ 0.3

Table 6.3: co. (2): Region label (see Fig. . Col (3): Effective radius in [pc]. Cols (4) and (5): Observed (4) and extinction-corrected (5) Pac fluxes measured within regr, expressed in [x 10~ *erg s~ em—2].

The Paa fluxes for the LIRGs are obtained form the Bry fluxes using the case B recombination factor at T= 10,000K and ne = 10* cm—3 (Osterbrock & Ferland}[2006). Cols. (6) and (7): Observed (6) and
extinction-corrected (7) Yser in [Mg yr 1 kpc™2]. Col. (8): Intrinsic velocity dispersion in [km s~ ] of the Bry and Pac lines for LIRGs and ULIRGs respectively. Col. (9): Ay in magnitudes. Col. (10): Core radius
in [pc] (see text for definition). Cols. (11) to (16): Same as Cols. (4) to (9) but measured within reore. All the uncertainties are calculated by a bootstrap method of N = 300 simulations.
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6. SUB-KPC STUDY OF THE STAR FORMATION IN LOCAL LIRGS AND
ULIRGS
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Figure 6.4: Observed and extinction-corrected spaxel-by-spaxel Yser distributions of LIRGs and

ULIRGS - Observed and extinction-corrected spaxel-by-spaxel Xser distributions of the LIRGs subsample

(left), of the inner spaxels (r < ruires, see text for details) of the ULIRGs subsample (centre) and the

complete ULIRG distributions (right). The median Xsrr values and the total number of spaxels in each

distribution are shown in the panels in units of [Mg yr! kpc72], and plotted as dashed vertical lines.
change when comparing the observed and extinction corrected values. However, due to the
apparent correlation between Y.srr and Ay, we observed an increase of the number of spaxels
at the high Xsgr end of the corrected distributions.

We also combined all the spaxels of each luminosity class to obtain a characteristic
distribution of the ¥ grg for LIRGs and ULIRGs. The observed and extinction-corrected
Y ser distributions are shown in Fig. 6.4} and their respective median, weighted mean, and
percentiles can be found in Table[6.1] As shown in the figure, the differences between the
observed and corrected Y ggr distributions are similar to those observed when we consider
each object separately. In LIRGs, the median of the observed distribution is ZEF’EGS =
1.16 M yr—t kpc=2, and increases up to a ~32% in the extinction-corrected distribution,

Res = 1.72Mg yr~Lkpc™2. The corrected distribution also becomes a ~ 50% wider than
the observed one. In ULIRGs, the median of the observed and corrected distributions are
Z?J?_SIRGs = 0.16 M, yr—! kpc—2 and Ullrgs = 0.23 Mg yr~Lkpc2, whereas the interquartile
range increases ~ 45% from the observed to the corrected distribution.

As discussed in Chapter [5] the difference in distance, and hence in angular resolution,
between LIRGs and ULIRGs is a key issue when comparing both subsamples. The ~ 8" x 8"
FoV of our SINFONI observations limits our analysis of the LIRGs to their innermost ~ 3 kpc.
Taking that the average distance of the ULIRGs is typically ten times larger into account, the
complete area sampled for the LIRGs is equivalent to ~ 1/8 of the ULIRGs FoV (~ 12" x 12"),

i.e. ~ 8 spaxels. Due to differences in the sampling scale and the lack of data from the
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6.3 Results and discussion

external regions of the LIRGs, the direct comparison between both subsamples is not straight-
forward. However, although we could not eliminate the effect of the linear resolution, we
could limit the comparison to the inner kiloparsecs of the ULIRGs. We estimated an average
radius, rrgs = 1.4 kpc, that correspond to the spaxel-weighted mean of the LIRG FoVs,
and considered only those spaxels from the ULIRG distribution within this physical scales.
The resulting observed and extinction-corrected Y spr distributions are shown in the central
panel of Fig. This set of the innermost spaxels of the ULIRG distributions is ~ 10% of
the whole Ygpgr distributions, and corresponds to those spaxels with the largest £ gFr values.
When we consider only these values, the medians of the observed and extinction-corrected
distributions reach up to 1.38 Mg yr—t kpc=2 and 2.90 M yr~! kpc=2, respectively, i.e. the
median YL gpRr increases by a factor ~ 10 when only the inner regions of the ULIRGs are

considered.

6.3.2. The effect of the linear resolution on the ¥srr measurements. Impli-
cations for high-z galaxies

As discussed in Chapter [B] due to the clumpy structure of the dust observed in LIRGs and
ULIRGs at sub-kiloparsec and kiloparsec scales, the measurement of the extinction could be
affected by the physical scale of the observations at increasing distance. Fig. shows that
the morphology of the ionised gas within the inner ~3x3kpc in LIRGs is mainly in the form
of nuclear star formation rings, emission associated with the nucleus of the galaxy and bright
HII regions with typical sizes of a few hundred parsecs, some of them barely resolved in our
observations. Besides, the Ay maps show that dust seems to be not uniformly distributed
in a patchy and clumpy structure at the same sub-kiloparsec scales. As shown in Fig.[D.2}
ULIRGs show a more compact morphology, of both dust and ionised gas phases, with not
resolved structures beyond <1 kpc, that suggest that the reduced linear resolution of the
observations might play a role in shaping the gas and dust distributions.

To probe how the differences in the pixel scale might bias the ¥ spgr measurements, we
simulated the Bry and Bréd maps of the LIRGs at increasing distances. We performed two
different sets of simulations, the first set considers only the effect of the decreasing spatial
sampling of the maps whereas the second set also takes the smearing effect of the seeing into
account. In the first set of simulations, we rebinned each individual map as if it was observed
at increasing distances with the same instrument set-up. The simulated maps are hence

sampled by a decreasing number of spaxels with a constant angular resolution of 0”125 per
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6. SUB-KPC STUDY OF THE STAR FORMATION IN LOCAL LIRGS AND
ULIRGS
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Figure 6.5: Simulated Ay and Xsrr distributions - Evolution of the computed median Ay and Xsrr
of the spaxel-by-spaxel LIRG distributions, as a function of distance/scale. Colour lines represent the
evolution of the median of each individual distribution, whereas white diamonds show the median of the
whole LIRG distribution. The median Xsrr values of the ULIRG distributions within rres = 1.4 kpc are
also plotted as yellow diamonds, for reference.
spaxel, as the original maps. The rebinning process is performed using the basic equations
of angular diameter distance and luminosity distance, and assuring that the total luminosity
within the FoV is conserved. In the second set of simulations, before the rebinning process,
we considered the effect of the seeing to obtain more realistic emission maps that could be
directly compared with our SINFONI observations of the ULIRG subsample. The resulting
maps presents the same spatial sampling and scale as those from the first set of simulations,
but with a ~0.63 arcsec (FWHM) seeing as the original observations.

Once the simulated maps are built, we followed the same procedure as described in
Sec. [6.2] to obtain a spaxel-by-spaxel Ay correction, and finally a extinction-corrected Xspg
distribution. As discussed in Chapter [5] we sample typically the innermost ~3x3 kpc of the
LIRGs, i.e. ~Ref. Since the average distance of the ULIRG subsample is x10 larger, the
whole FoV of the LIRGs are equivalent to ~1" of the ULIRG FoV, i.e. ~8spaxels. These
limitations and the lack of information about the external regions of the LIRGs makes that
the extrapolation to larger distances to be not straight-forward.

The evolution of the median values of the simulated ¥ spg observed and corrected
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6.3 Results and discussion

distributions is shown in Fig. [6.5] We observe a clear increment of the median Yspgr at
increasing distances in both the observed and corrected distributions, up to ~90% at 328 Mpc,
the average distance of the ULIRG subsample. We observe that in most of the cases the
predicted median of the LIRG distribution is slightly higher than the median of the ULIRG
distribution. However, there is a good agreement between both quantities when the extinction
correction is applied, and the PSF effects are taken into account. Although the simulations are
a first-order approximation, this result suggests that the spr measurements of the ULIRGs

might be very much affected by such distance effects.

6.3.3. Optical vs near-IR star-formation measurements.

As mentioned before, the current SINFONI sample is part of a parent sample of local
LIRGs and ULIRGs described in Arribas et al.| (2008), that has been observed with other
optical IFS facilities like INTEGRAL4+WYFFOS at the WHT, VLT-VIMOS or PMAS. In this
subsection, we compare our Bry and Paae SFR measurements with those derived from Ha
measurements from |Garcia-Marin et al.| (2009a) and Rodriguez-Zaurin et al| (2011). As
we did in the previous subsection, although for our LIRG subsample the SFR values were
derived from the Brvy luminosity, we will generalise and refer to the SFRp,,, assuming that
the LIRGs Bry measurements are translated to the Paa ones using the corresponding case B
recombination factor.

Garcia-Marin et al.| (2009a) presented optical IFS observations from INTEGRAL of 22
local ULIRG systems, and provides with not only observed Ha fluxes of three of our ULIRGs
(IRAS 1211240305, IRAS 14348-1447 and IRAS 17208-0014), but also spaxel-by-spaxel
extinction-corrected measurements based on the Ha/Hg ratio, with an angular resolution
of ~ 1”per spaxel. For our LIRG subsample and the rest of the ULIRGs, we used the
Ha fluxes and Ay corrections from Rodriguez-Zaurin et al| (2011]), based on optical IFS
observations from VIMOS. The Ay corrections for these objects are derived from the Ha/Hp
values that were available in the literature, mainly based on nuclear long-slit spectroscopic
observations. To account for the extinction effects, authors used the nuclear reddening
spectroscopic measurements to correct the fraction of Ha emission within a typical slit width
(~ 2arcsec), and considered the remaining fraction of flux not affected by extinction. As
authors discussed in this current work, although extinction effects are particularly important

in the nuclear regions, this approach will tend to underestimate the extinction corrected
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Figure 6.6: Optical vs near-IR based SFR - Top left: Comparison between the star-formation rate
derived from Ha and Paa observed (blue) and extinction-corrected (yellow) luminosities for LIRGs (circles)
and ULIRGs (diamonds). Top right: Comparison of the observed and extinction-corrected SFRp,o /SFRHa
ratios. Bottom left: Ratio of the star-formation rate derived from the Ha and Paa luminosities as a
function of the star-formation rate derived from the Paa line. Bottom right: SFRpao/SFRH. ratio as
a function of the visual extinction, Ay, derived from near-IR lines. In all panels, the solid black line
represents a one-to-one ratio whereas the dashed line represents a constant ratio of SFRpaa /SFRHa = 1.
The Ha luminosities are extracted from |Garcia-Marin et al.| (2009a)) and |Rodriguez-Zaurin et al.| (2011)).

SFRy. measurements, since, as shown in Figs. and [D.2] it is also frequent to find dusty,
highly-obscured extranuclear regions in these objects.

Figure shows the comparison between the optical and near-IR-based SFR values, for
observed and extinction-corrected measurements. As one would expected, we found a close
correlation between the SFRy, and SFRp,,, values, although the infrared measurements tend
to yield larger SFR, even for extinction-corrected measurements. For the observed values, we
found that infrared measurements are ~ 3.6 times larger than the optical ones, on average,
although individual values ranges between ~ 1.2 and ~ 8 times larger. When the extinction
corrections are applied, the SFRp,,/SFRy, ratio decreases to ~ 2.9 on average, while the

individual factors are constrained between ~ 0.5 and ~ 6.
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As mentioned in Chapter [4] we found evidences of nuclear activity in four of the objects
of the sample, i.e. IRASF 12115-4656, NGC5135, NGC7130 and IRAS 23128-5919, in terms
of detection of [SiVI] coronal emission. Those objects, in particular the three LIRGs, present
the highest SFRy,/SFRpa, ratios, and suggest that the contribution of the AGN to the Ho
and Paa luminosities might be larger at longer wavelengths. If these objects are removed
from the sample, the average ratios of the SFRy, /SFRp,, become ~ 3.4 and ~ 2.0 for the

observed and extinction-corrected values.

Although the ratio slightly decreases when the extinction corrections are applied, we
still found significative differences between both tracers. As it will be discussed later, these
differences could probably be the result of an incomplete extinction correction in both Ho
and Paa measurements, since the regions where the star-formation occurs are dense, dusty
environments. Besides the differences in the ratio, we found an increase in the dispersion of
the individual values, consequence of the high uncertainties of the Ay measurements, that

could reach up to ~70% on an spaxel-by-spaxel basis.

As mentioned before, some differences could be expected, though, between the optical
and infrared SFR measurements due to the dependence of the transition probabilities with T,
and ne, since the infrared recombination lines are progressively more sensitive to the conditions
of the gas. However, although the luminosity of Bry could change 35-40% within the ranges
5000—20000 K and 102-10°cm~3, it is clear that dust obscuration still plays a central role
when comparing optical and infrared SFR measurements. We explored the possibility that
some of the differences could be explained by the choice of a different extinction law for the
optical and infrared data, respectively. As described in Chapter [5] we used the extinction law
from |Calzetti et al.| (2000) to obtain the Ay measurements from the Bry/Brd and Paa/Bry
line ratios, assuming a total effective obscuration at the V-band of Ry = 4.05, whereas
Garcia-Marin et al.| (2009a)) and Rodriguez-Zaurin et al.| (2011) considered the extinction
law from Savage & Mathis (1979), that assumes Ry = 3.1 that corresponds to the Galactic
diffuse interstellar medium. The differences between both extinction curves, [Savage & Mathis
(1979) considering a value of 3.1 for Ry, and |Calzetti et al.| (2000) using Ry = 4.05, are
less than ~ 5% at the Ha wavelength, and hence, can not explain the differences observed

between the extinction-corrected SFR measurements.
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Figure 6.7: Comparison between near-IR based SFR and 24 um and Lr measurements - Left:
Comparison of the extinction-corrected SFRpa, with the monochromatic SFR24,m. The blue circles and
green diamonds correspond to our local LIRGs and ULIRGs, respectively. The green circles are data of
M51 individual star-forming regions from |Calzetti et al.| (2005, and the red diamonds correspond to data
from |Calzetti et al.| (2007) of SINGS galaxies. Right: Comparison of extinction-corrected Pac luminosity
and Lig. Our LIRG and ULIRG samples are plotted as blue circles and green diamonds, respectively,
orange diamonds are data from [Kewley et al.|(2002) of normal galaxies from the NFGS while red squares
correspond to local LIRGs from |Alonso-Herrero et al.| (2006)). In both panels, the black line correspond

to a one-to-one ratio.
6.3.4. Near-IR vs mid-IR star-formation rates

We also compared our SFRp,, values with measurements of SFR24,,m and SFR|r from
Pereira-Santaella et al|(2011) and archive data, respectively. Fig. shows the relation of
the SFRo4,m and SFRjg with extinction corrected SFRp,, for different datasets, that include
nearby galaxies and individual star-forming regions of M51.

Calzetti et al.| (2005) present Spitzer MIPS 24 um observations of resolved star-forming
regions within the central 6 kpc of M51, together with Ha and Paa data from ground-based
and HST-NICMOS images, respectively. We derived the extinction corrections from Ha/Pac
line ratios using the same recipe as we used in our own dataset. On the other hand, the data
from |Calzetti et al.| (2007)) correspond to Spitzer MIPS 24 yum and HST-NICMOS narrow-filter
Pacr observations of a subsample of galaxies from the Spitzer Infrared Nearby Galaxies Survey
(SINGS, |Kennicutt et al.|2003).

We used Egs. and to obtain the SFR measurements from the corresponding
luminosities. As can be seen in Fig. (left), both SFR tracers, i.e. Paa and 24 um,

yield very similar values, as one would expected, although with some deviations at both the
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low- and high-luminosity ends. These deviations are also observed in previous works, like
Alonso-Herrero et al.| (2006), Rieke et al.| (2009) or Calzetti et al.| (2007)), using different
calibrations and datasets, and respond to the fact that the relation between Lo4,m and
the SFR is not longer lineal, since the increasing starlight rises the temperature of larger
dust grains and hence the absorbed energy reradiated at 24 um. Besides this effect, the
high-luminosity end (LIRGs and brighter) corresponds to objects where the star formation
occurs in dusty environments with increasing density, where standard extinction corrections
(e.g. based on hydrogen recombination line ratios) become less effective and lead to an
underestimation of the Paa luminosities.

As shown in the right-side panel of Fig. [6.7] although there is a reasonable agreement
between the SFR measurements derived from Pac and L|g[8-10001m], the SFR|g values are
systematically higher than SFRp,,. In particular, the differences between the measurements
for our LIRG and ULIRG sample are up to a factor x2, and suggest that, as observed when
comparing with the 24 um data, the SFRp,, measurements are underestimated due to an
incomplete extinction correction. Other possible systematic effects, as discussed in Sec. [6.2.1]
are that a fraction of the starlight from the star-forming regions may escape without heating
the dust, and that the contribution from the more evolved stellar populations to the heating
may not be negligible. Both effects work in different directions, i.e. whereas an increase of
the escape fraction leads to an underestimation of the SFR, a larger contribution from old
stellar populations (or larger time scales of the star formation) yields an overestimation of
the SFR measurements. However, since the LIRGs and ULIRGs of our sample are dust-rich
objects with multiple evidences of recent episodes of star formation, we consider that the

differences between SFRp,, and SFR|r are better explained in terms of extinction effects.

6.3.5. Scaling relations of star-forming clumps in local LIRGs and ULIRGs.
Comparison with high-z giant star-forming regions and SMG

To investigate the scaling relations of star-forming regions, we show in Fig. the
relations between YXsrr and luminosity with the size of our sample of clumps. We also
plot the integrated values of the individual LIRGs and ULIRGs, together with measurements
from local starburst galaxies, high-z clumps and SMGs from several samples. Although
most of the data from other samples correspond to Ha measurements, we converted the
extinction-corrected Ha: luminosities into Paa luminosities using the case B recombination

factor at T= 10,000 K and n = 10* cm~3 (Osterbrock & Ferland, 2006)) (Lo /Lpao= 8.582).
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Almost all the local and, specially, the high-z samples are based on Ha measurements
of the SFR. As discussed in Sec. , even when the extinction corrections are applied,
it is expectable to have a factor ~2-3 between Ha- and Paa-based SFR measurements
in dusty environments such as LIRGs and ULIRGs. This effect could be even larger when
the correction from extinction is less accurate, such as object-averaged corrections, Ay
measurements from different datasets, or SED fitting. Although the uncertainties of the
extinction could be intrinsically large, the different methods used would yield additional
sources of uncertainties when comparing the different datasets. To account for this effect, we
corrected the luminosity and ¥ ggr measurements from Ha data by a factor 2.9 to compare
them with Pacx measurements.

As discussed in Sec. [6.3.2] the spatial resolution of the data also plays a role in shaping
the 2D distribution of Yspr. Although we explored this effect at low redshifts (z < 0.2),
our dataset is not well suited to study the effect of distance at higher redshifts, given the
limited FoV of our SINFONI observations. Although this effect might be as significative as
overestimate the Xspr by a factor 2-3 in an spaxel-by-spaxel basis, due to the limitations of
the FoV, we cannot quantify accurately the effect, specially at increasing distances.

We will now describe the local and high-z samples used to compare our measurements.
Planesas et al.| (1997)) presented extinction-corrected narrow band Ha measurements of
individual star-forming regions from local starburst galaxies, where the correction of the
dust extinction is calculated using the Ha/Hf ratio. We also plotted extinction-corrected
HST-NICMOS Paa luminosities of local HII regions from |Liu et al. (2013), which applied an
average extinction correction of Ay = 2.2 mag based on measurements from |Calzetti et al.
(2007)). Besides data from ‘normal’ spiral galaxies, we include data of young star clusters from
the Antennae (NGC 4038/39, Bastian et al.[2006), based on IFS VLT-VIMOS observations.

We also use data from |Genzel et al.| (2011)) of z ~ 2 giant star-forming clumps, based
on AO-SINFONI Ha measurements. These Ha luminosities are corrected from extinction
using stellar E(B-V) values from SED fitting. The extinction of the stars is then re-scaled to
the extinction of the gas using the standard recipe Ay, = 7.4 E(B-V), where E(B-V)gas =
0.44 E(B-V)stars from |Calzetti et al.| (2000). Data from Swinbank et al.| (2012)) correspond
to extinction-corrected Ha measurements of z = 0.8 — 2.2 individual star-forming clumps
from disk galaxies. The correction from dust is performed using galaxy-averaged E(B-V)

values derived from SED fitting. Finally, we also included data of z ~ 2.0 — 2.7 SMGs
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Figure 6.8: Scaling relations of star-forming regions - Dependence of the Ysgg and Lpan with the
radius of individual star-forming clumps and whole galaxies. The individual regions of LIRGs and ULIRGs
are plotted as blue circles and green diamonds, respectively, whereas the integrated measurements of
each object of our sample are marked using hollow symbols. We also show data from |Planesas et al.
(1997) (orange squares), and [Liu et al.|[2013| (green circles) of individual regions from local starburst and
normal galaxies, respectively. Data from |Bastian et al.| (2006) correspond to young star clusters from the
Antennae galaxies, whereas Genzel et al.| (2010]) points come from giant star-forming clumps of z ~ 2
galaxies (red circles); purple squares correspond to star-forming clumps and global measurements (hollow
symbols) of high-z (z = 0.8 — 2.2) disks from [Swinbank et al.| (2012]), and grey squares are data from
Alaghband-Zadeh et al.| (2012) of z ~ 2.0 — 2.7 SMG. The black line in the right panel corresponds to a
power law Lp,o ~ r”, with 7 = 2.78 fit to all the data points, whereas the blue and red lines are the fits
to our data from local LIRGs and ULIRGs together with the local samples ( = 2.98) and high-z points
(n = 1.77), respectively.

from |Alaghband-Zadeh et al.| (2012) consisting on Ha measurements corrected from dust
extinction, using an average Ay = 2.9 mag from Takata et al.| (2006).

Our local star-forming regions have sizes within ~60-400 pc and ~300-1500 pc, whereas
their extinction-corrected luminosities range within ~10°-107 L, and ~10°-108 L, in LIRGs
and ULIRGs, respectively. These values yield to Ysrr values typically of 1-90 M yr—! kpc—2
and 0.1-100 M yr—t kpc=? for LIRG and ULIRG clumps. The intrinsic velocity dispersion
(i.e. corrected from instrumental broadening) measured in the individual regions are ~30-
120km s~ in LIRGs and ~40-200 km s~ in ULIRGs (see Table. The lack of regions below

2 and Lpao~10° L could be explained in terms of observational biases.

Yspr~1 Mg yrtkpe™
The observed regions from the LIRG subset come from the central kiloparsecs of the objects,
and, as discussed in , our detection limit for the LIRGs is £spr~0.3 M, yr—! kpc=2 per
spaxel. These effects could bias our sample of regions from the LIRGs towards high-luminosity,
high-Xspr regions.

As shown in Fig.[6.8] if we compare the Ysgr and Lp,, of our LIRGs regions, we find that
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they have higher luminosity densities than clumps in local ‘normal’ galaxies, although seem to
be similar to the regions from the ongoing spiral-spiral merger of the Antennae (Bastian et al.,
2006). In the left panel of the figure, we also plot the luminosity-radius relation Lp,, ~ r7,
with 7 = 2.72, from |Liu et al.|(2013), obtained from fitting a local sample of HII regions
from nearby galaxies. The regions of our LIRG subsample and those from the Antennae are
significantly more luminous than predicted for their radius range, and follow a relation with
n~ 1.7.

The slope of the L-r relation is usually interpreted in terms of physical properties of
the star-forming regions. If we assume that the regions are ionised-bounded, they can be
represented by a Stromgren sphere, and their L-r relation is of the form Lp,, ~ 1", with n = 3.
The deviations from this model could result from a variety of factors, both physical and
observational. If the regions are density-bounded, i.e. the hydrogen atoms recombine faster
than they are ionised and some ionising photons scape, a shallower slope of the L-r is expected,
since regions turns to be less luminous at a given radius (Wisnioski et al., 2012)). Beckman
et al.|(2000)) presented a detailed discussion of this transition, and proposed a luminosity
threshold of Lp,, 2 10° Lo beyond which regions turn to be density-bounded. Nevertheless,
the exponent of this relation is subject to variations that could be unrelated to intrinsic
physical properties of the HII regions, and are likely to be induced by observational biases as
region blending, or low S/N ratio of the clumps. In addition, the different spatial resolution of
the local and high-z observations might also contribute to change the slope of the L-r relation
(Scoville et al.[2001} [Liu et al.[2013). Despite this observational bias, the use of either Ha or
Paa data to perform the analysis seems to have little impact on 7 (Liu et al. 2013).

The sample of clumps from the ULIRG subset seems to have similar properties than those
observed in high-z star-forming galaxies, like |Genzel et al.|(2011)) and Swinbank et al.| (2012)),
with slightly lower ¥ spr than regions from local LIRGs although over ~5-10 times larger scales.
Although the ULIRG clumps seem to fit better the L-r power law with n = 2.72 than LIRGs
regions, they also show higher luminosities than predicted. However, as mentioned before,
the difference in the spatial resolution of the subsamples might introduce an observational
bias when comparing regions at increasing distances.

Fig. also shows the integrated measurements of the individual LIRGs and ULIRGs of
our sample (Table . The global measurements lie in similar luminosity, Xsrr and radius
ranges than the high-z clumps from |Genzel et al. (2011) and Swinbank et al. (2012), and

ULIRGs in particular show slightly larger luminosities and ¥ggr than the individual disks from

146



6.4 Summary

Swinbank et al.| (2012) at the same spatial scales. On the other hand, our most luminous
ULIRGs also have similar Lp,, than the SMGs from Alaghband-Zadeh et al.| (2012), typically
Lpan~108 Lo, although their XsgRr is, on average, lower than the Xgpr observed in the high-z

proposed analogs.

6.4. Summary

o We presented a detailed 2D study of the star formation of a representative sample
of local LIRGs and ULIRGs, based on VLT-SINFONI IFS K-band observations, that
sample the inner~ 3 x 3kpc and ~ 12 x 12kpc in LIRGs and ULIRGs, respectively,
with an average linear resolution of ~0.2kpc and ~0.9 kpc (FWHM). The analysis of
the SFR and ¥spRr is performed using an spaxel-by-spaxel extinction correction, based
on measurements of the Bry/Brd and Paa/Bry line ratios for LIRGs and ULIRGs,
respectively (Chapter [5)).

o We obtained 2D ¥ sgr maps and spaxel-by-spaxel distributions of the individual galaxies
(Figs.[D.1]and[D.2). We found that, in a significant fraction of the objects (~57 %), the
corrected Y.srr peaks either at the main or secondary nucleus of the systems, and that
the extinction correction typically increases the median of the distributions by ~50 %.
When all the spaxels of each luminosity class are combined, we found that the distribu-
tions of the LIRG subsample have median values of £2S. = 1.16 Mg yrkpc=2,
and IO = 1.72Mgyr tkpc=2 for the extinction-corrected distribution. The
median values for the ULIRG distributions are Z%?jRGS = 0.16 M yr—t kpc=? and
T ce = 0.23 Mg yrtkpc2 for the observed and the extinction-corrected Tser
values, respectively. Due to the difference in distance, and hence in angular reso-
lution between LIRGs and ULIRGs, to compare both classes, we also extracted the
distributions of the inner regions of the ULIRGs, up to the average FoV of the LIRG
subsample. If we consider only those spaxels within r_|rgs = 1.4 kpc, the medians of

the observed and extinction-corrected distributions increase a factor ~ 10, and reach

up to 1.38 M yr—t kpc=2 and 2.90 M, yr—! kpc—2, respectively.

o As discussed in Chapter , the spatial sampling (i.e. physical scale per spaxel) of
the observations shapes not only the Ay structure but also the Y ggr distributions.
Our simulations of the Yspgr maps of the LIRGs at increasing distances show that

the predicted median of the ¥ grr distributions is artificially increased by the poorer
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sampling of the maps. At the average distance of the ULIRG subsample (328 Mpc),
the computed median of the LIRG observed and extinction-corrected distributions is a

factor ~2-3 larger that local measurements.

o We extracted the integrated SFR and Ygpr of the objects of our sample, using the Ha
effective radius from Arribas et al.| (2012), and compared the near-IR measurements with
optical, mid-IR and Ljr-based measurements. We found that the observed SFRy, and
SFRp. values differ a factor ~3.6 on average, and that the difference decreases slightly
when the extinction correction is applied, up to SFRy,/SFRpan~2.9. In agreement
with previous studies, we observed a tight correlation between the extinction-corrected
SFRp,, and the 24 ym measurements from Spitzer, and a reasonable agreement with

SFR values from Lg.

o We identified a total of 95 individual star-forming clumps in the Bry and Pac emission
maps of LIRGs and ULIRGs. These regions present sizes that rage within ~60-400 pc
and ~300-1500 pc in LIRGs and ULIRGs, with Paa luminosities of ~10°-10" Lo and
~100-108 L, respectively. The Yspr of the clumps presents a wide range of values
within 1-90 M yr—* kpc=2 and 0.1-100 M, yr—! kpc=2 for LIRGs and ULIRGs.

o We compared the properties of the local clumps from LIRGs and ULIRGs with other
local and high-z samples, and showed that the regions from LIRGs, and specially
ULIRGs, are more similar to high-z clumps like (Genzel et al.| (2011) or Swinbank et al.

(2012) than ‘normal’ local star-forming regions, although at different spatial scales.
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7

Conclusions and Future Work

“Da steh ich nun, ich armer Tor!
Und bin so klug als wie zuvor.”
[And so | sit, poor silly man

No wiser now than when | began.]

— Faust, Johann Wolfgang von Goethe

In this final chapter, we summarise the most relevant conclusions of this thesis project.
We also present a brief summary of the on-going research that would be the continuation of

the present work, and discuss the future prospects of the study of local LIRGs and ULIRGs.

7.1. Conclusions

The main purpose of this thesis work has been the detailed 2D study of a representative
sample of local (z < 0.1) LIRGs (10 L, <Lir< 10*2Lg) and ULIRGs (1012Lo<Lir< 108Ly),
observed with the IFS SINFONI at the VLT. Our seeing-limited observations covered a
luminosity range of log(Lir/Le) = 11.1 — 12.4, with an average redshift of z| |ggs = 0.014
and zyprgs = 0.072 for LIRGs and ULIRGs, respectively. The IFS observations cover the
inner ~3x3 kpc and ~12x12kpc in LIRGs and ULIRGs, with an average spatial resolution
of ~0.2kpc and ~0.9 kpc, respectively.

In this thesis, we presented the emission and kinematic maps of the Bry, Hy 1-0S(1) and
[Fell] lines of our sample of LIRGs, and the Pacx and Hy 1-0S(1) maps for ULIRGs, that
correspond to the brightest emission features in the H and K bands. We studied in detail the
2D extinction structure of local LIRGs and ULIRGs, derived from the Bry/Brd and Paa/Bry
line ratios, and their spaxel-by-spaxel Ay distributions. Using these corrections, we analysed in

detail the extinction-corrected SFR and Xgpgr distributions of the galaxies of the sample, using
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the Bry and Paa emission maps. Together with the spatial and spaxel-by-spaxel distributions
of the X spRr, we studied the properties of a sample of 95 individual star-forming regions, in
terms of their size, luminosity and Xsfrg.

Besides the analysis of the LIRG and ULIRG sample, we also presented the study of the
spatially resolved kinematics of the central regions of M83, using AO VLT-SINFONI H+K
observations. This galaxy is a nearby face-on grand-design spiral that, albeit widely studied
given its proximity, still has some open questions regarding its innermost regions. To address
these questions, we presented a detailed study of the gas and stellar kinematics with an
unprecedented spatial resolution of ~ 0.2 arcsec, focused on the brightest emission features
of the H and K bands (i.e. Bry, Paca, Hy 1-0S(1) and [Fell] lines), together with the CO
stellar bands at 2.293 ym and 2.323 um.

The main results of this thesis are summarised as follows:

Spatially resolved kinematics of the central regions of M83

o The detailed study of the kinematics of M83 shows that, although the stellar kinematics
are compatible with a global velocity field of uniform rotation, the kinematics of the gas
seem to be dominated by shocks and inflows at small scales of tenths of parsecs, and
totally unrelated to the stellar kinematics. Therefore, the gas kinematics are unsuitable

to estimate dynamical properties of the central regions of M83.

o We find numerous evidences of recent supernova events. The strong [Fell] emission
along the star-forming arc, together with the high velocity dispersion measured, are
suggestive of shocks from supernova remnants. In addition, the study of the Hs
excitation in the arc is also consistent with recent supernovae. These evidences support
the hypothesis that the off-nuclear mass concentrations, that had been proposed based
on emission gas kinematics, are instead regions with perturbed kinematics due to

supernova events.

o We argue that the optical nucleus of M83 is not its ‘true’ nucleus, but instead a star
cluster of ~100 Myr with its own coherent internal kinematics, and a dynamical mass
of Mgyn = (1.1 £0.4) x 10’Mg. We suggest that the ‘true’ nucleus of M83 is located
at the photometric and kinematic centre of the galaxy, where we found a modest

enhancement of the K-band continuum.
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VLT-SINFONI study of local LIRGs and ULIRGs

o The analysis of the emission maps of LIRGs shows that, whereas the more luminous
regions in the Bry line are located typically in star-forming rings or spiral arms (2/3
of the sources), the peak of the Hy emission coincides with the stellar nucleus in all
the sources. In addition, the Hy emission shows very similar luminosities to the Bry,
although its spatial distribution is, in many cases, different at small scales. On the
other hand, the [Fell] emission typically traces the same structures as the Bry, although
their peaks are not spatially coincident in some of the sources. The gas kinematics are
primarily due to rotational motions, although we find signatures of radial flows in some
of the objects. All the gas phases (i.e. ionised, partially ionised and molecular) appear

to share the same large kinematics in terms of their velocity fields.

o Due to the interacting nature of most of the ULIRGs in our sample, and the fact
that the average distance of these sources is a factor ~4-5 larger than LIRGs, the
gas morphology and kinematics in the more luminous systems are rather different.
In ULIRGSs, the Pacx and Hy peaks coincide with the main nucleus of the system in
~71% of the galaxies, and we find off-centre star-forming regions with Lp,, up to
~ 1x 108Ls. The kinematics in ULIRGs are very complex given that most of the
sources are interacting systems, and show features like coherent velocity gradients that

can be associated with the progenitors or dynamical structures like tidal tails.

o In agreement with previous studies, the dust distribution in LIRGs and ULIRGs shows
a patchy structure on sub-kpc scales, with areas that are almost transparent and
regions where the measured extinction reaches up to ~20-30 mag. The analysis of the
spaxel-by-spaxel Ay distributions in the individual objects reveals no clear evidence of
any dependence with Lig. However, the combined distributions of LIRGs and ULIRGs
as separated classes show that, whereas the LIRG distribution has a median value of

Avy= 5.3mag, ULIRGs present a slightly higher value of Ay= 6.5 mag.

o We find a mild dependence on the Ay radial profile of LIRGs with the galactocentric
distance up to ~1kpc. Most of the individual objects show a decrease of the Ay in an
spaxel-by-spaxel basis, and a flattening of the profile at larger distances (~2-3 kpc). In
ULIRGs, such behaviour is not observed, and the Ay profiles are almost constant, most

likely owing to the dearth of spatial resolution of the observations.
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o We obtained the X gpr 2D distribution of the LIRGs and ULIRGs based on their Brvy
or Pacx maps. The analysis of the maps shows that, in a significative fraction of the
objects (~57 %), the peak of the extinction-corrected Y.sgg is located at the main or
secondary nucleus of the systems, and that the Ay correction increases the median of

the individual spaxel-by-spaxel distributions by ~50 %.

o We combined the individual distribution in two general LIRG and ULIRG spaxel-by-
spaxel distributions. For the LIRG subsample, we obtain median values of £ =
1.16 Mo yr—tkpc™2, and 0. = 1.72Mgyr tkpc=2 for the observed and the
extinction-corrected distributions, whereas the median values for the ULIRGs are
Yo rce = 0.16 Mg yr L kpc™2 and T8 Tec. = 0.23 Mg yr—L kpc=2, respectively. How-
ever, when we compare regions of the same physical extend, the medians of the ULIRG
distributions increase a factor ~10, up to 1.38 M yr—* kpc=2 and 2.90 M, yr—! kpc2,

respectively.

o We find that the spatial sampling, i.e. the physical scale per spaxel, of the maps have
direct implications in deriving the Ay and Xspr. We probed this distance effect by
simulating the emission maps of the LIRGs at increasing distances using maps that
are artificially smeared. This first-order approximation yields that, due to the poorer
sampling of the maps, the median of the LIRG Ay distribution is decreased by a ~20 %
at the average distance of the ULIRG subsample, and can be reduced in a factor ~40 %
beyond 800 Mpc. When we consider the effect on the Yspgr measurements, we observe
that the medians of the LIRG Xsgr distributions (observed and extinction-corrected)
are increased by a factor ~ 2 — 3. This would have direct implications in the derivation

of these physical quantities in high-z studies.

o We compared our SFR and £grr measurements with optical, mid-IR and far-IR SFR
tracers. In agreement with previous studies, we observed a tight correlation between our
near-IR measurements and the SFR derived from Spitzer 24 um data, and a reasonable
agreement with SFR measurement from Ljg. When we compare our SFRp,,, values with
optical measurements from Ha emission, we find that the near-IR measurements are a

factor ~3 larger than the SFRy,, even when the extinction corrections are applied.

o We identified a total of 95 individual star-forming clumps in our sample of (U)LIRGs,
with sizes that range within ~60-400 pc and ~300-1500 pc, and Paa luminosities of
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~105-107 L and ~10°-108 L, in LIRGs and ULIRGs, respectively. We find that the
local star-forming regions, specially in ULIRGs, are more similar to high-z clumps in

terms of luminosity and > sgr than local regions from ‘normal’ galaxies.

7.2. Future work

In the present thesis we have investigated the near-IR properties of a local sample of
LIRGs and ULIRGs, based on IFS observations from VLT-SINFONI. We have presented a
general analysis of the more prominent emission and absorption features in the H and K
bands, and their kinematics. We have also focused our study on the analysis of the hydrogen
recombination lines, i.e. Paa, Bry and Brd, to investigate in detail the extinction and the
star formation in extreme environments such LIRGs and ULIRGs.

However, due to the great amount of information provided by the H- and K-band IFS
data, there are other basic topics that require further research. Some of then are already in
an advance stage of the analysis whereas others are specific topics that need to be addressed

in future works.

7.2.1. Kinematic properties of star-forming clumps in LIRGs and ULIRGs

In Chapter [0 we presented a detail study of individual star-forming regions, in terms of their
Lpaq and size. However, to deeply understand how clumps are formed and evolve, it is essential
to characterise the kinematic properties of the regions. In Fig. [7.I] we plot the velocity
dispersion of the clumps and individual galaxies as a function of the Paa luminosity. We
also include three models for the L-o relation of the form Lpy, ~ o™, with n = 3.5,4.18,5.0.
In particular, for a Stromgren sphere, the expected exponent for the L-o relation is n = 6.
However, as discussed in Chapter [6] the model of ionised-bounded region is not an accurate
realisation of bright clumps as the ones in LIRGs and ULIRGs, and a shallower relation is
expected. The exponent n = 4.18 corresponds to the best-fit model from [Wisnioski et al.
(2012), and seems to be a good approximation to the local clumps from Rozas et al.| (2006])
and [Bastian et al.| (2006)), and also for the high-z regions from |Genzel et al.| (2011)), although
with greater scatter. On the other side, the regions from our LIRG and ULIRG present a
shallower relation of n ~ 3.8.

If we assume that the clumps are formed following isothermal Jean collapse, it implies a

relationship between the mass of collapsing gas and the velocity dispersion within the gas.
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Figure 7.1: Scaling relations of star-forming regions - Left: Velocity dispersion vs Lpa, for LIRGs
(blue circles) and ULIRGs (green diamonds). Global measurements within Res are plotted as hollow
symbols. Dashed lines correspond to models of the type Lpaa ~ ¢", with n = 3.5,4.18, 5.0, from top to
bottom, respectively, using the same scaling. The curve n = 4.18 correspond to the empirical relation
from |Wisnioski et al.| (2012). Right: Velocity dispersion vs Ysrr. Dashed lines correspond to models of
the type 0 = €(Zsrr)"/? whereas solid lines are o = €(Zser)'/3, with e = 25,60, 120, from bottom to top,
respectively. The dotted line correspond to the values derived directly from the KS and Jeans relations of
a~ 10" Mg clump (see the text for details). In both panels, points encircled by black diamonds represent
nuclear regions with possible AGN contamination.

Using the KS relation (Xspgr = AL
relation between the velocity dispersion of the gas and the Ysgg is of the form (Lehnert et al.,
2009):

gas) to convert from gas surface density to Xgfgr, the

Ogas ~ MY/ G2 UE — 0.3M}/ 45288,

where 0g,s is the velocity dispersion of the gas, G is the gravitational constant, ¥ 4,5 is the gas
surface density in [Mg pc=2], My is the Jeans mass in [Mg] and Yspg is expressed in units
of [Mg yr~tkpc~2]. Fig. shows the above relation for a region of 10’ My, (right panel,
black line), and represent a lower limit for a o-YXgpr relation where the velocity dispersion is
purely dominated by the internal dispersion of the clumps themselves.

As discussed in |Lehnert et al.| (2009), if we consider that the energy output from the star
formation determines the dynamics of the gas, the velocity dispersion would be proportional

to the square root of the energy injection rate due to the stars. The energy injected per unit
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area would then be proportional, with a certain coupling efficiency, to the Y sg, yielding a
function of the form o = e(ZSFR)l/z. This hypothesis would be equivalent to consider that
the mechanical energy output from the star formation is conserved within the ISM, with some
efficiency. On the contrary, if the star formation is responsible for the observed line width
by a combination of bulk and turbulent motion, the expected relation would be of the form
o= 6(ZSFR)1/3- The different coupling efficiencies are difficult to constrain, and depend on
parameters like the energy injection scales that spawn over wide ranges values. Fig. [7.1] shows
different models for the o-Ysrg relation. Those models of the form o = ¢(Espr)Y/3, with
€ = 25,60, 120, seem to follow the overall trend of the local clumps, whereas the regions from
the ULIRGs subsample and the high-z clumps from [Swinbank et al.| (2012) and SMG from
Alaghband-Zadeh et al.| (2012)) suggest a steeper slope, closer to what would be expected
froma o ~ Zé/Fé relation. These results suggest that star formation itself could power the
turbulence through energetic feedback at kpc scales, and large scale random motions would
drive the ‘turbulence’ at galactic scales. Obviously, these toy models are used as a simple
scaling, and a deeper understanding of the underlaying mechanisms would require a thorough
study of the scale energy injection, density of the gas, etc, that are out of the scope of the

present work.

7.2.2. Outflow and stellar wind signatures from individual star-forming re-
gions

Besides the possible contribution from AGN in the surroundings of the nuclear regions of
the objects, large-scale stellar winds are known to increase the velocity dispersion of clumps
with intense star formation (Xspr> 0.1 Mg yr~! kpc~2, Heckman et al.[2000). There are also
multiple empirical evidence (e.g. (Green et al.|2010, Genzel et al.[2011, |Wisnioski et al./[2012))
that these winds could represent a large fraction (~40 %) of the overall line flux, and increase
significantly the line width. These broad components are typically blue-shifted ~30-50 kms~!
and present line FWHM of ~500-1500 km s,

In Figl7.2) we show the Bry and Hy 1-0S(1) line profiles of an individual region of ESO320-
G030 ('R3’, see Fig. to illustrate the signatures of these stellar winds in our sample.
These signatures of outflowing gas are observed in the majority of the clumps, in both the
ionised and the molecular phase of the gas, and are clearly decoupled from the main global
kinematics of the galaxy. In addition, the relative offsets of both phases, ionised (blue-shifted)

and molecular (red-shifted), would indicate that both phases of the outflow are not only
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Figure 7.2: Outflow signatures in star-forming regions - Left: Bry (blue) and Hy 1-05(1) (green)
line profiles from the integrated spectrum of the star-forming clump ‘R3’ of ESO320-G030 (see Fig. .
The line profiles are normalised to the continuum, and the H, 1-0S(1) profile has been re-scaled to the
maximum of the Brvy line. Centre: Single-component Gaussian fit to the Bry (top) and Hz 1-0S(1)
(bottom) profiles. Right: Double-component Gaussian fit to the Bry (top) and H> 1-0S(1) (bottom)
profiles. The insets of the centre and right panels show the residuals of the fits in units of the rms. The
line widths of the Gaussian profiles, together with the offset between the narrow and broad components,
are also shown in each panel.
dynamical but also geometrically decoupled. This analysis of the broad components of the
ionised and warm molecular gas in the clumps will allow us to characterise the different phases
of the outflowing gas, and study the physical driving mechanisms and feedback from the
winds. In addition, since some of the regions host AGN, we would be able to establish the

role of AGN-driven outflows in quenching the star-formation.

7.2.3. 2D kinematics of local LIRGs and ULIRGs

The analysis of the kinematics of some of the LIRGs and ULIRGs presented in this thesis
has been published in Bellocchi et al.| (2013)), based on the multi-component analysis of
the Ha emission from VLT-VIMOS observations. This detailed 2D analysis of the ionised
gas already showed the key role of non-circular motions on shaping the kinematics of these
objects, in particular in ULIRGs, due to their interacting nature.

The kinematic analysis of LIRGs and ULIRGs presented in Chapter [4] based on a single-
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Figure 7.3: Spatially-resolved kinematics of IRAS 17208-0014 - Left: HST-NICMOS F160W
continuum map of IRAS 17208-0014, with the contours of the H, 1-0S(1) emission overlaid. Centre:
Hz 1-0S(1) velocity field of the narrow component. The emission from the H> broad component is
overplotted as white contours. Right: Detail of the inner region of IRAS 17208-0014 showing the velocity
field of the Hy broad component.
component Gaussian fit to the emission lines, also showed that most of the objects exhibit
complex kinematics and hence line profiles in most of the gas phases on an spaxel-by-spaxel
basis, not only in the ionised gas. The next step on this analysis is to perform a multi-
component study of the emission lines, and compare the kinematics of the different phases of
the gas with the stellar kinematics from the CO (2-0) band at 2.293 um.

Figureshows some preliminary results on the Hy 1-0S(1) kinematics of the ULIRG
IRAS 17208-0014 (Emonts et al. 2014, in preparation). The left panel of the figure shows
the velocity field of the Hy broad component, i.e. not associated with the global (narrow)
component that traces the circular motion of the galaxy. This broad component is completely
decoupled from the global kinematics of the object, and might indicate not only the presence
of outflowing gas, but also circumnuclear discs, warps, infall of gas, or transient structures in
ongoing mergers.

This multi-phase 2D analysis will allow us to determine the geometry and kinematic
structure of the different phases of the outflowing gas, the total mass outflow rates of each
component, analyse the physical driving mechanisms (AGN or starburst), and the energy

injection and feedback at sub-kpc scales.

7.2.4. Kennicutt-Schmidt star formation law at sub-kiloparsec scales in LIRGs

In Chapter [0}, we presented the analysis of the extinction-corrected Ysgr on sub-kpc scales
of our sample of LIRGs and ULIRGs, based on Paa and Bry measurements, and showed

that the X grr structure in this class of galaxies is very clumpy at scales of a few hundred of
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parsecs. The spatially-resolved analysis of the star-formation is crucial to understand whether
the KS law breaks-down at these physical scales on the high Xsrr regime, as it seems to
happen in normal spiral galaxies (Onodera et al.|[2010, |Leroy et al.[[2013). In addition, local
LIRGs are close analogs, in terms of their Xspgr, of the high-z star-forming discs observed at
cosmological distances. Therefore, they are perfect candidates for filling the gap between
local normal spirals and extreme starburst at high-z.

Besides the spatially resolved measurements of the >ggR, it is essential to acquire detailed
measurements of the surface density of the molecular gas at sub-kpc scales. The sensitivity
and the high spatial resolution of the interferometric observations from ALMA will allow,
for the first time, to perform this kind of studies in nearby galaxies. Once the first cold
molecular gas high-resolution observations from ALMA become available, it would be possible

to address and shed some light into these questions.

7.2.5. 2D study of the excitation mechanisms of the H,

We showed in Chapter [3| that it is feasible to analyse in detail the excitation mechanisms
of the Hy, based on K-band spectroscopic data. The amount of different roto-vibrational
transitions of the warm molecular hydrogen in the K-band allows to distinguish among the
different mechanisms, i.e. radiative or thermal, that produce the different transitions.

Although some of the Hj transitions are too weak to be mapped in an spaxel-by-spaxel
basis, it is possible to obtain integrated measurements of the different H; lines over individual
regions. We have started some preliminary analysis of the integrated spectra of star-forming
regions, using different techniques to increase the S/N of the lines, i.e. 'de-rotate’ the spectra
from each spaxel before the stacking, and subtract the stellar continuum to improve the
continuum determination. This analysis will be extended not only to starburst-dominated
regions, but also to clumps identified in terms of their strong Hy emission.

The multi-component analysis highlighted in Sec. [7.2.2] will allow us to identify possible
differences between the excitation mechanisms of both narrow and broad components. Given
that some of these secondary components are associated with outflowing gas, we expect
to observe Hy line ratios compatible with shock-induced excitation, whereas the narrow

component would trace the emission from PDRs associated to the star-forming regions.
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Conclusiones

And you will find someday that, after all, it isn't as
horrible as it looks.
— Richard P. Feynman,
The Feynman Lectures on Physics Vol Il

El objetivo principal del presente proyecto de tesis ha sido el estudio bidimensional
detallado de una muestra local (z < 0,1) de LIRGs (10''L,<Ligr< 10'°L) y ULIRGs
(10'2Ls<Lir< 10'3L), observada con el espectrégrafo de campo integral SINFONI, en el
VLT. El rango de luminosidad cubierto por nuestras observaciones es log(Lir/Le) = 11,1-12,4,
mientras que los objetos presentan un desplazamiento al rojo promedio de z |grgs = 0,014
y zuLirgs = 0,072 en el caso de LIRGs y ULIRGs, respectivamente. Las observaciones de
campo integral cubren los ~3x3kpc y ~12x12kpc mas internos en LIRGs y ULIRGs, con
una resolucién espacial promedio de ~0.2 kpc y ~0.9 kpc, respectivamente.

En esta tesis hemos presentado los mapas de emisién y cineméticos de las lineas Bry, H»
1-0S(1) y [Fell], en el caso de las LIRGs, y Pacr y Ha 1-0S(1) en las ULIRGs, que corresponden
a las lineas espectrales mas brillantes en las bandas H y K. Asimismo, hemos estudiado en
detalle la estructura 2D de la extincidn, obtenida a partir de los cocientes de lineas Bry/Brd y
Paca/Brv, asi como las distribuciones spaxel a spaxel de la Ay. Aplicando estas correcciones,
hemos analizado en detalle las distribuciones de SFR y Y grr de las galaxias de la muestra, a
partir de los mapas de emisién de las lineas Bry y Pac. Junto con los mapas y distribuciones
spaxel a spaxel de la X spr, hemos estudiado las propiedades de una muestra de 95 regiones
individuales de formacién estelar, en funcién de su tamafio, luminosidad y Xsfr.

Ademis del estudio de LIRGs y ULIRGs, hemos presentado el anélisis detallado de

la cinematica de las regiones centrales de M83, basado en observaciones en banda H+K
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realizadas con VLT-SINFONI mediante éptica adaptativa. Esta galaxia cercana es una de
las Ilamadas espirales de gran diseno orientada practicamente de cara y que, pese a haber
sido ampliamente estudiada debido a su proximidad, todavia presenta algunas cuestiones
que permanecen abiertas en relacidn a sus regiones mas centrales. Para abordar algunas de
estas cuestiones, hemos presentado el estudio detallado de la cinematica del gas y de las
estrellas con una resolucién espacial sin precendentes de ~ 0,2 arcsec, centrado en las lineas
de emisién mas brillantes en las bandas H y K, como son Bry, Pac, Hy 1-0S(1) y la linea de
[Fell], junto con las bandas estelares de CO a 2.293 um y 2.323 um.

Los resultados mas importantes de esta tesis se resumen a continuacién:

Estudio de la cinematica resuelta espacialmente de las regiones centrales de M83

o El estudio detallado de la cinematica de M83 muestra que, mientras la cinematica
estelar parece ser compatible con un campo de velocidades global correspondiente a una
rotacién uniforme, la cinematica del gas parece estar dominada por ondas de choque
y flujos de gas a pequenas escalas de algunas decenas de parsecs, siendo por tanto
independiente de la cinematica estelar. Este hecho demuestra que la cinemdtica del gas

no es apropiada para derivar propiedades dinamicas de la regién central de M83.

o Encontramos muiiltiples evidencias de explosiones recientes de supernova. La fuerte
emisién de la linea de [Fell] a lo largo del arco de formacidn estelar, junto con la
alta dispersién de velocidades observada, sugieren la presencia de ondas de choque
procedentes de explosiones de supernova. Asimismo, el estudio de los mecanismos de
excitacidon del Hy en el arco también es consistente con eventos recientes de este tipo.
Estas evidencias sustentan la hipdtesis de que las concentraciones de masa propuestas
en base a la cinematica del gas, son en su lugar regiones en las que la cinemdtica global

del gas se encuentra fuertemente perturbada debido a explosiones de supernova.

o Proponemos que el ntcleo éptico de M83 es un climulo estelar de ~100 millones de
anos que presenta su propia cinemdtica interna, de la que se deriva una masa dindmica
de Mayn = (1,1 £ 0,4) x 10"Mg. Por otro lado, consideramos que el niicleo de M83
se encuentra localizado en el centro fotométrico y cinematico de la galaxia, donde

observamos un ligero aumento de la emisién en el continuo en banda K.
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Estudio de LIRGs y ULIRGs locales mediante VLT-SINFONI

o El andlisis de los mapas de las lineas de emisién en el subconjunto de LIRGs muestra
que, mientras las regiones mas luminosas en la linea de Brvy se encuentran tipicamente
en los brazos espirales o en anillos circumnucleares de formacién estelar (2/3 de las
fuentes), el pico de la emisién en Hy coincide con el niicleo estelar en la totalidad de las
fuentes. Asimismo, la emisién del Hy muestra luminosidades muy similares a la de la
linea de Bry, aunque su distribucién espacial es, en muchos casos, diferente a pequeia
escala. Por otro lado, la emisién de la linea de [Fell] traza tipicamente las mismas
estructuras que la linea de Brv, aunque sus maximos no coinciden espacialmente en
algunos de los objetos. La cinematica del gas parece trazar principalmente movimientos
de rotacién, aunque encontramos evidencias de flujos radiales de gas en algunas de las
fuentes. Todas las fases del gas (ionizada, parcialmente ionizada y molecular) muestran

la misma cinemdtica a gran escala, considerando sus campos de velocidades.

o Debido a que la muestra de ULIRGs esta formada por sistemas en diversos grados de
interacion, y a que la distancia promedio de las fuentes es un factor ~4-5 mayor que en
el caso de las LIRGs, la morfologia y la cinemdtica del gas es bastante diferente en los
objetos mas luminosos. En las ULIRGs, los picos de la emisién en Pac y H» coinciden
con el niicleo principal de los objetos en el ~71 % de los casos, y encontramos regiones
extra-nucleares de formacién estelar intensa con Lp,, hasta ~ 1 x 108 L. Asimismo, la
cinemdtica en las ULIRGs es muy compleja debido a que la mayor parte de las fuentes
son sistemas en interacién, y muestran caracteristicas como gradientes de velocidad
coherentes que pueden ser asociados con los diferentes progenitores o con estructuras

dindmicas como colas de marea.

o En concordancia con estudios previos, la distribucién del polvo en LIRGs y ULIRGs mues-
tra una estructura irregular a escalas inferiores al kiloparsec, con regiones practicamente
trasparentes y zonas donde la extincién visual alcanza valores de hasta ~20-30 mag. El
analisis de las distribuciones spaxel a spaxel de la extincidén en objetos individuales no
sugiere la existencia de ninguna posible dependencia con Ljg. No obstante, al considerar
las distribuciones globales de LIRGs y ULIRGs como clases de luminosidad, se observa
que, mientras que las LIRGs presentan un valor mediano de Ay= 5,3 mag, en el caso

de las ULIRGs se obtiene un valor ligeramente mas alto de Ay= 6,5 mag.
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o Encontramos una ligera dependencia con la distancia galactocéntrica de los perfiles
radiales de Ay en las LIRGs, hasta ~1 kpc. La mayor parte de los objetos individuales
muestran una disminucién de la extincién spaxel a spaxel, pasando a un perfil radial
aproximadamente constante a partir de distancias de ~2-3 kpc. En las ULIRGs no
se observa esta dependencia con la distancia radial, siendo los perfiles de Ay practi-
camente constantes, aunque consideramos que dicho comportamiento puede deberse

principalmente a la falta de resolucién espacial de las observaciones.

o Hemos obtenido las distribuciones bidimensionales de la X srr para las LIRGs y ULIRGs
de la muestra, a partir de los mapas de emisién de las lineas de Bry y Pac. El andlisis de
dichos mapas muestra que en una fraccidn significativa de los objetos (~57 %), el pico
de la Xgpr corregida de extincidn se encuentra locaclizado en el nicleo principal o en
el secundario de los sistemas. Por otro lado, observamos que la correccién de extincién

aumenta la mediana de las distribuciones spaxel a spaxel individuales en ~50 %.

o Siguiendo el mismo método que en caso de la extincién, hemos combinado las distribu-
ciones individuales de la srr en dos distribuciones globales de LIRG y ULIRG. En el
caso de las LIRGs, obtenemos valores medianos para las distribuciones observadas y co-
rregida de extincién de 5. = 1,16 Mg yrTkpc™2, y T = 1,72 Mg yr~t kpc2,
mientras que para las ULIRGs, encontramos los valores ZfﬁjRGs = 0,16 Mg, yr~ L kpc—2
Y 29 ras = 0,23 Mg yr L kpc=2, respectivamente. No obstante, al comparar regiones
con extensiones fisicas equivalentes, las medianas de las distribuciones en el caso
de las ULIRGs se ven incrementadas un factor ~10, hasta 1.38 My yr—tkpc™2 y

2.90 M, yr— kpc—2, respectivamente.

o Por otro lado, encontramos que la resoluciéon espacial con la que se muestrean los
mapas de emisién, y por tanto de Yspr (la escala fisica por spaxel), tiene implicaciones
directas en las medidas de magnitudes fisicas como Ay y Xsrr. Hemos estudiado este
efecto de distancia mediante simulaciones en las que se disminuye la resolucién espacial
de los mapas de emisién de las LIRGs, simulando las condiciones observacionales a
distancias cada vez mayores. Esta aproximacién de primer orden muestra que, debido
a la pérdida de resolucién espacial, la mediana de las distribuciones spaxel a spaxel
de la Ay en el caso de las LIRGs, disminuye en un ~20 % a la distancia promedio de
la submuestra de ULIRGs, y que se ve reducida en un factor ~40 % a partir de los

800 Mpc. Cuando consideramos este efecto en las medidas de la Xgfg, observamos
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que la mediana de las distribuciones en el caso de las LIRGs, tanto observadas como
corregidas de extincién, se ve incrementada en un factor ~ 2 — 3. Este hecho pude
tener implicaciones directas en las medidas de magnitudes fisicas, especialmente en

estudios de objetos a alto deplazamiento al rojo.

Hemos comparado nuestras medidas de la SFR y Y spr con las obtenidas mediante
otros trazadores en el dptico e infrarrojo medio y lejano. En la linea de otros estudios
previos, observamos una estrecha correlacién entre nuestras medidas en el infrarrojo
cercano y las derivadas a partir de observaciones de Spitzer en 24 um, asi como un
acuerdo razonable con medidas procedentes de Ljg. Cuando comparamos los valores de
la SFR derivados de la lineas de Pac: con medidas en el éptico, basadas en la emisién de
Ho, encontramos que las medidas en el infrarrojo cercano son tipicamente un factor ~3

mayores que las dpticas, incluso cuando se tienen en cuenta los efectos de la extincidn.

Hemos identificado un total de 95 regiones de formacidn estelar individuales en nuestra
muestra de (U)LIRGs, con tamafios comprendidos entre ~60-400 pc y ~300-1500 pc,
y luminosidades de Paa entre ~10°-107 L, y ~10°-108L., en LIRGs y ULIRGs,
respectivamente. Encontramos que dichas regiones de formacidn estelar, especialmente
en el caso de las ULIRGs, son mas similares a regiones observadas en objetos a alto
desplazamiento al rojo en términos de luminosidades y > sgr, que a aquellas regiones

observadas en galaxias locales “normales”.
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Appendix A

Notes on individual sources

o IRAS 06206-6315: This object is a ULIRG classified as a Seyfert 2 galaxy according
to its optical spectrum (Duc et al., 1997)). The NICMOS F160W image (Bushouse
et al., 2002) shows a double nuclei structure with a tidal tail starting at the north
and bending towards the south-east, which is not completely covered by our SINFONI
data (Fig. . The projected separation between both nuclei is ~ 4.5 kpc, and the
FoV sampled by SINFONI is ~ 17 x 17 kpc. The southern nucleus (labelled as “A” in
Fig. is the brightest source in the continuum, Pac and Hy 1-0S(1) lines, and it
contributes to the ~ 55% of the total Paa emission within the FoV. A local peak of
Paa emission is visible at the end of the tidal tail. The northern nucleus (labelled as
“B" in the figure), although similar in Paa brightness to the southern one, is ~ 75%

less bright in the Hy 1-0S(1) emission.

The kinematics of the ionised gas show the distinct velocity gradients of both progenitors

of the interacting system.

o NGC 2369 (IRAS07160-6215): The SINFONI field of view covers the central ~ 2x 2 kpc
of this almost edge-on spiral LIRG. The NICMOS F160W image (Alonso-Herrero et al.,
2006) shows a very complex morphology in the inner regions of the galaxy, with multiple
clumps that are not completely resolved in our SINFONI data. One of the brightest
sources of Bry emission is covered by aperture “B" in Fig. [B.1a] It is also a bright
source in [Fell], but no counterpart is detected in either the continuum image or in the

Hy 1-0S(1) map.

The ionised gas kinematics show a strong velocity gradient between regions “A” and

“B", which may indicate the presence of a warp rotating disk.
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A. NOTES ON INDIVIDUAL SOURCES

o NGC 3110 (IRAS10015-0614): The NICMOS F160W image (Alonso-Herrero et al.,
2006) of this almost face-on spiral LIRG shows two well-defined arms that extend for
~ 30 kpc, of which ~ 3 x 3kpc are covered by our SINFONI data. The arms are outlined
by diffuse gas emission that concentrates at the nucleus and in a bright complex to
the north of the FoV. The nucleus dominates the emission of both the ionised and
molecular gas (< 20% of the total flux), although the star-forming region labelled “B”
in Fig. has a comparable brightness in Bry, and even higher in Hel. The [Fell]

emission shows the same structure as the ionised and molecular hydrogen.

The kinematics of the different phases of the gas are very similar and show the typical

pattern of a thin rotating disk.

o NGC 3256 (IRAS10257-4338): Our SINFONI data cover the central ~ 2.5 x 3.2 kpc
of this extreme starburst LIRG. The Bry map shows a very clumpy morphology, with
multiple knots of strong emission spread along the southern spiral arm of the object (see
Lipari et al.[2000, Lipari et al.[2004, Alonso-Herrero et al.|2006| and references therein).
The Hy emission also shows a clumpy distribution with a more diffuse component and
two bright spots of strong compact emission in the south of the secondary nucleus
(aperture "A”, Fig. . These knots are also clearly visible in the velocity dispersion
map, with values up to ~180 kms™!, together with a bright spot east of the southern

nucleus (aperture “B").

o ESO 320-G030 (IRAS11506-3851): The NICMOS F160W image (Alonso-Herrero
et al., [2006) of this SBA LIRG (Erwin| 2004)) reveals an overall spiral structure that
extends over ~32 kpc. Our SINFONI data cover the inner ~ 2 x 2kpc. The Bry map
shows a ring-like structure of star formation not observed in the continuum images,
with well-defined bright regions (Fig. , as observed in Paa by |Alonso-Herrero
et al. (2006). The maximum of Bry emission is reached by the easternmost region
and accounts for ~40% of the integrated flux. The nucleus is a faint source in Bry
but dominates the emission of the molecular hydrogen, with up to ~45% of the total
emission of the Hp 1-0S(1) in the inner ~ 2 x 2kpc. The molecular hydrogen emission
reveals the structure of the nuclear bar, which connects both sides of the star-forming

ring. The [Fell] emission has a similar morphology as the Bry.

The orientation of the galaxy is almost face-on, and the gas kinematics show a well-

defined rotation pattern.
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o IRAS 12112+40305: This system is a close interacting pair classified as ULIRG and
separated ~4.2kpc with a bright tidal tail extending 18 kpc to the north (Surace
et al., [2000). Our SINFONI data covers the central ~ 14 x 14 kpc of the system (Fig.
[B.2b). The southern nucleus is the brightest source in the K-band and in Paa (~ 35%
of the integrated flux), although the large Pac EW (~ 300A) measured along the
tidal tail suggests a recent burst of star formation in the northern component. Also
remarkable is the bright spot of Pac emission in the east of the nuclei, not detected in
the continuum, that traces a young massive HIl complex that could represent a tidally
induced giant extranuclear star-forming region (Colina et al., |2000). The Hy emission
is highly concentrated in the northern nucleus, accounting for ~ 52% of the total flux
of the FoV. The southern nucleus is ~ 42% less bright than the northern component,

and no significative emission is measured along the tail.

The kinematics of the gas reveal two different velocity gradients for each progenitor,
with a steep gradient along the tidal tail and the northern nucleus of more than
Av ~ 400 kmsL.

o IRASF 12115-4656: This spiral-like LIRG might be interacting with IRAS12112-4659,
located at ~ 100 kpc south-west (Arribas et al., 2008). Our data cover the central
~ 5 x 5kpc and show that a star-forming ring dominates the Bry emission, clearly
outlined in the ionised gas map, whereas the nucleus seems to be highly obscured (see
Chapter[5]). The emission from the arms is diffuse, with the exception of a very compact
source, labelled “B" in Fig. , where the Bry emission reaches its maximum. The
ring is not so clearly visible on the Hy 1-0S(1) map, where the emission is more diffuse,
with a peak at the nucleus of the galaxy. As shown in Figs. and [4.6] the [SiVI] line
at 1.963 um and the [CaVIII] line at 2.321 um are detected in the nucleus of the galaxy
and suggest there is an AGN. The gas kinematics show a smooth velocity gradient

along the whole FoV, as is typical of a rotating disk.

o NGC 5135 (IRAS13229-2934): This LIRG is an SBab starburst galaxy classified as
Seyfert 2 (Bedregal et al.,[2009). Our SINFONI data sample the inner ~ 3 x 3 kpc of the
galaxy, and reveal a high excitation ionisation cone centred on the AGN, and extending
up to ~600 pc radius (Bedregal et al., [2009). The brightest source of Bry emission
(aperture “B” in Fig. do not coincide with the H, and [Fell] maxima, which

are located at the nucleus and at the bright region ~ 2 arcsec south-west, respectively.
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A. NOTES ON INDIVIDUAL SOURCES

For a detailed study of the ionisation of the different phases of the gas and the star
formation activity of NGC 5135 with these SINFONI data, see Bedregal et al.|(2009).

o IRAS 14348-1447: Our SINFONI data sample the central ~ 15 x 15kpc of this
ULIRG (see Fig. [B.2d). The K-band image shows two bright sources and a diffuse
component extending towards the north-east of the FoV, where the Pacx map reveals
a very bright knot of emission. This region shows high values of Pacc EW up to
~400 A that suggest a young starburst in an inner tidal tail (Colina et al., [2005). The
southern nucleus represents the ~ 52% of the integrated Pac and Hy emission, whereas
the northern component accounts for the ~ 33% and the ~ 26% respectively. The

molecular emission is highly concentrated at both of the nuclei.

The kinematics of the diffuse ionised gas shows an overall rotation pattern along the
system. The high velocity dispersion measured for the northern component of the

system is due to the steep velocity gradient of the gas.

o IRASF 17138-1017: The K-band image of this galaxy reveals that its central regions
are rather complex. Our SINFONI data cover the central ~ 3 x 3 kpc of this almost
edge-on spiral LIRG that extends beyond ~ 9 kpc. We have identified the nucleus of
the galaxy with the brightest spaxel of the K-band image (labelled “A” in Fig. .
The Bry emission show a clumpy morphology, with its maximum (~ 25% of the total
Bry flux in our FoV) at a bright knot ~ 700 pc south of the nucleus, that also reveals
a strong emission in Hel. The Hy emission is more diffuse, reaching its maximum at
the nucleus of the galaxy. The [Fell] emission has a similar morphology to the Bry and
shows different bright sources along the central region of the galaxy, with an underlying

diffuse emission. The brightest source is identified with aperture “B" in Fig. [B.1g

The kinematics of the gas are, to first order, compatible with a thin rotating disk.

o IRAS 17208-0014: The Pac map of this starburst ULIRG (Arribas & Colinal 2003),
which samples the ~ 7 x 7 kpc of the object, shows that the ionised gas emission is
highly concentrated at the nucleus, and it reveals a young burst of star formation to
the south-east (aperture “B” in Fig. , with values of Paocc EW ~ 130 A. The H,
emission is more compact than the Pac, appears highly concentrated in the nucleus,

and extended perpendicularly to the projected plane of the disk.
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The kinematics of the gas show a very steep rotation pattern, typical of a disk, and

high velocity dispersion values of ~ 250 kms™! in the nuclear regions.

IC 4687 (IRAS18093-5744): This LIRG is part of a system that involves a group of
three galaxies in close interaction (West, [1976). The nuclear separations between the
northern (IC 4687) and the central galaxies (IC 4686) and between the central and the
southern galaxies (IC 4689) are ~10kpc and ~20kpc, respectively. The FoV of our
SINFONI observations covers the central ~ 3 x 3kpc of IC 4687. This object shows a
spiral-like morphology with several knots of enhanced Bry emission along its arms and
nucleus, in close agreement with the Paa: emission from |Alonso-Herrero et al.| (2006)).
The brightest Bry region is located south of the FoV (labelled “B” in Fig. ,
and accounts for the ~25% of the total Bry emission within the inner ~ 3 x 3 kpc.
Although this region and the nucleus are equally bright, the EW of the Bry line is
much higher, up to 120 A, and the intense Hel emission suggests that it is a young
star-forming complex. The morphology of the Hy emission is rather different from the
observed in the ionised gas, and the peak of emission is located at the nucleus. The
[Fell] emission has a similar morphology to the Bry and shows different circumnuclear
sources. The peak of emission coincides with the brightest Brvy region, located south
of the FoV.

The kinematics of the ionised gas on large scales show a smooth velocity gradient along

the FoV, with evident signs of deviations from a rotation pattern.

IRAS 21130-4446: This ULIRG is identified as a double nucleus system with a nuclear
separation ~ 5 kpc, however, the complex morphology of the galaxy makes it hard to
locate the exact position of the two nuclei (Cui et al., 2001). The WFPC2 F814W
image of this source shows different condensations and tails, some of them unresolved
in our SINFONI data, which cover ~ 14 x 14 kpc centred in the northern nucleus of the
galaxy. The Paa emission is concentrated at the northern nucleus, marked as “A” in
Fig. [B.2¢} and extended along the southern part of the system. It reaches its maximum
in these concentrations that extends towards aperture “B”, where the Pacc EW is up
to ~ 900 A. The emission from warm molecular gas comes, on the other hand, mostly
from the northern nucleus, and only a weak diffuse emission from the southern region
is detected. The properties of this southern area suggest an extremely young burst of

star formation spreading over the region.
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A. NOTES ON INDIVIDUAL SOURCES

o NGC 7130 (IRAS 21453-3511): Our ~ 3 x 5kpc SINFONI FoV covers the nucleus
and part of the northern spiral arm / tidal tail of NGC 7130. The gas emission is highly
concentrated at the nucleus and in a bright star-forming region in the arm (aperture
“B" in Fig. , three times less bright than the nucleus (see also Alonso-Herrero
et al.||2006 and Diaz-Santos et al.|2010). We have tentatively detected [SiVI] emission
at 1.963 um and [CaVIII] at 2.321 um, as shown in Figs. and [4.6] in agreement
with the LINER and Seyfert-like features observed in the nuclear, optical spectrum of

this LIRG (Veilleux et al., [1995]).

The kinematics of the gas reveal a rotation pattern in the nucleus of the galaxy and a

steady velocity gradient along the arm / tidal tail.

o IC 5179 (IRAS 22132-3705): Our SINFONI data sample the central ~ 4 x 2kpc of
this spiral LIRG. The gas emission maps show a very clumpy distribution of compact
knots of star formation spread along the spiral arms and a very compact nucleus that
dominates the emission (see Fig. . It accounts for the ~ 40% of the total Bry
emission, up to the ~ 30% of the Hy 1-0S(1) and ~ 45% of the [Fell] emission within
our FoV.

The general kinematics of the gas reveal a smooth velocity field, compatible with the

rotation pattern of a thin disk.

o IRAS 22491-1808: |Cui et al. (2001) propose a multiple merger origin for this ULIRG
based on its morphology. The K-band image, which samples the central ~ 12 x 12 kpc,
reveals two nuclei, separated by a projected distance of ~ 2.3 kpc, with several knots
and condensations in the central regions and along the tidal tails, which extend beyond
~ 5kpc to the east and north-west of the system (see Fig. . The Paa map shows
three clearly distinguished concentrations extending towards the north-west of the FoV.
Two of them coincide with the two nuclei observed in the continuum, whereas the third,
located to the north-west, could be associated with the knots of emission that extend
along the tail, with values of Pac EW ~ 500 A. On the other hand, the Hy emission is
very concentrated in the eastern nucleus, accounting for ~ 85% of the total Hy 1-0S(1)
flux. Although the mid-infrared spectrum of this galaxy is consistent with a starburst

and an AGN (Farrah et al 2003), we have not detected [SiVI] emission.
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The gas kinematics of the eastern nucleus shows a well differentiated steep gradient of
Av ~ 200kms~! in ~ 2kpc. Due to beam smearing effects, this gradient enhances

the measured values of the velocity dispersion up to ~ 170 kms™1.

IRAS 23128-5919: This ULIRG is a strong interacting system, classed as a mixture of
starburst, LINER, and Sy2 (Kewley et al.|2001, Bushouse et al.[2002). The projected
distance between its double nucleus is ~ 4 kpc, and it presents prominent tidal tails,
containing many bright knots of emission, extending to the north and south-east over
~ 50 kpc (Bushouse et al 2002). Our SINFONI data cover the central ~ 7 x 11 kpc
of the system. The double nucleus structure is clearly visible in both the K-band image
and the ionised gas map (Fig. . The southern nucleus, which coincides with the
AGN, is the brightest Pac source, and it accounts for ~ 58% of the integrated Pa«
flux. In contrast, the Paa: emission from the northern nucleus seems to be dominated
by star-forming activity, with Pacc EW up to ~ 600 A. The presence of an AGN in the
southern nucleus is supported by the strong compact [SiVI] emission detected (Fig. .
The Hy morphology shows a very peaked and concentrated emission in the southern
nucleus (~ 45% of the total Hy 1-0S(1) flux), whereas the northern nucleus accounts

for half the flux of the southern nucleus.

The gas kinematics of the northern nucleus show a velocity gradient of Av ~ 140 kms™!
in the north-south direction, whereas the southern nucleus kinematics seem to be domi-
nated by the AGN. The gas kinematics show extremely high velocities (~ 1000 kms~1)
in the ionised gas at radial distances of ~ 2 kpc from the southern nucleus, and the
presence of molecular gas outflows in the same regions. The high velocity dispersion and
the blue/red wings in the Pacv and Hy 1-0S(1) line profiles suggest a cone-like structure,
centred on the AGN, and extending ~3—4 kpc to the north-east and south-west (Fig.
B.2g)).
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Appendix B

Emission and kinematic maps
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B. EMISSION AND KINEMATIC MAPS
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Figure B.1a: NGC 2369 - Top and middle panels are SINFONI observed maps (not corrected from extinc-
tion) of the lines Bry A2.166um, and Hy 1-0S(1)A2.122um. From left to right: flux, equivalent width, velocity
dispersion and velocity. Lower panel shows, from left to right, the K band emission from our SINFONI data,
HST/NICMOS F160W continuum image from the archive, HelA2.06um, and [Fell]A1.64um emission maps. The
brightest spaxel of the SINFONI K band is marked with a cross. The apertures used to extract the spectra at
the bottom of the figure are drawn as white squares and labelled accordingly. At the bottom, the two rest-frame
spectra extracted from apertures “A” and “B" are in black. The most relevant spectral features are labelled at
the top and marked with a dotted line. The sky spectrum is overplotted as a dashed blue line, and the wavelength
ranges of the water vapour atmospheric absorptions are marked in light grey.
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Figure B.1b: NGC 3110 - As Fig. but for NGC 3110.
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B. EMISSION AND KINEMATIC MAPS

Bry Flux ; Bry EW (A) Bry oy (kms™) Bry Velocity (kms™) 230

130

97

N O W= = w0 N

|
Lo e o o

K Band Connnuum

0.90

- W o N

D‘x

|
-

-3
-5
_7 400 pc
-8-6-4-2 0 2 4 6 8 4 - 8
Ao, [arcsec] Aoc [arcsec] Ao [arcsec] Aoc [arcsec]
) g 2 = S = = ~ ~ —~ =g
@ @ @ @ 1] a S =1 q ? g9
= s T < i T [ S = © 9
e T2 s W T s S Q S0 o Q e
o 6 T T T s o [$1s) o o s

c::Nal
Cal
- Mgl

>

1.95 2.00 2.05 5 2.15 . 225 2.30 2.35 2.40

Figure B.1c: NGC 3256 - As Fig. but for NGC 3256.
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Figure B.1d: ESO 320-G030 - As Fig. but for ESO 320-G030.
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Figure B.le: IRASF 12115-4656 - As Fig. but for IRASF 12115-4656.

178



Bry o, (kms™) Bry Velocity (kms™)

Bry Flux ] Bry EW (A)

99

54

(kms™)

0
[Fell] Flux

2.40

1.80

1.20

CO (3-1)

:{Nal

g
@
o
T
=

.. .{[Cavii]

215
Aroer [um]

Figure B.1f: NGC 5135 - As Fig. but for NGC 5135.
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Figure B.1g: IRASF 17138-1017 - As Fig. but for IRASF 17138-1017.

180



Bry Flux ) Bry EW (A) Bry 6, (kms™) Bry Velocity (kms™) 188

98

400 pc
o —— 170

99 _Ho1- -0S(1 Velomty kms 188

0
H, 1-0S(1) Flux

74

98

49

-4 -2 0 2
K-Band Continuum

:zNal

8 [ [ = g = = - ~ ~
2 2 2 g g 2 I == 3 3
= 7 T T T T o e hA ©
< « - - &
o N o~ o o Q 39 Q Q
T T T T T o 0 o o
0 T ™ ™ g T K T ™

[ R

T

{L.

T

2.15

Kot [um]

Figure B.1h: IC 4687 - As Fig. but for IC 4687.
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Figure B.1li: NGC 7130 - As Fig. but for NGC 7130.
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Figure B.1j: IC 5179 - As Fig. but for IC 5179.
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B. EMISSION AND KINEMATIC MAPS
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Figure B.2a: IRAS 06206-6315 - Top and middle panels are SINFONI observed maps (not corrected from
extinction) of the lines Paa A1.876um, and Hp 1-0S(1)A2.122um. From left to right: flux, equivalent width,
velocity dispersion, and velocity. Lower panel shows, from left to right, the K band emission from our SINFONI
data, HST continuum image from the archive, and HelA\2.06um (when available). The brightest spaxel of the
SINFONI K band is marked with a cross. The apertures used to extract the spectra at the bottom of the figure
are drawn as white squares and labelled accordingly. At the bottom, the two rest-frame spectra extracted from
apertures “A” and “B” in black. The most relevant spectral features are labelled at the top and marked with
a dotted line. The sky spectrum is overplotted as a dashed blue line, and the wavelength ranges of the water
vapour atmospheric absorptions are marked in light grey.
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Figure B.2b: IRAS 12112+0305 - As Fig. but for IRAS 12112+0305.
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B. EMISSION AND KINEMATIC MAPS
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Figure B.2c: IRAS 14348-1447 - As Fig. but for IRAS 14348-1447.
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Figure B.2d: IRAS 17208-0014 - As Fig. but for IRAS 17208-0014.
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B. EMISSION AND KINEMATIC MAPS
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Figure B.2e: IRAS 21130-4446 - As Fig. but for IRAS 21130-4446.
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Figure B.2f: IRAS 22491-1808 - As Fig. but for IRAS 22491-1808.
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B. EMISSION AND KINEMATIC MAPS
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Figure B.2g: IRAS 23128-5919 - As Fig. but for IRAS 23128-5919.
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C. Ay MAPS AND DISTRIBUTIONS

A3 [arcsec]

-4

K-Band Continuum
[log (ergs”cm™um™)]

-2 0 2 -4
Ao [arcsec]

Bry Flux

[log (erg s”cm™)]

30pe [

-2 0 2
Ao, [arcsec]

NGC2369

Brd Flux

159 [log (erg s cm™)]

%0pe

-2 0 2
Ao [arcsec]

A
[mag]

300 pe

—4 -2 0 2
Ao [arcsec]

29

80

20

A, distributio

20 30

10
Ay (mag)

g, [€rg s"cm™ kpc?]

107

Surface brightness distribution

1 30
— 22
4 E10ME 1548
¢!
] o 7
0

15

10

5

ok

A, radial profile

107

10"‘4 10"‘3 107

T, [erg s cm™ kpc]

0.0

0.5 1.0
Radius (kpc)

Figure C.1la: NGC 2369 - Top panels show the SINFONI K band continuum emission, the observed maps (not corrected from extinction)
of the lines Bry A2.166um and Bré A1.945um, together with the Ay, map. The white contour englobes those spaxels above S/N = 4 considered to
build the Ay map and distribution. The brightest spaxel of the K band continuum is marked with a plus symbol (+), and has been used as reference
to obtain the radial profile in the bottom right panel. The secondary nucleus, if present, is marked with a cross (x). Bottom left panel shows the
the Av distribution of all valid spaxels (blue histogram) and the distributions of the those spaxels above (red) and below (yellow) the median value
of the Bréd S/N distribution. The relationship between the surface brightness of the lines and the Ay is shown in the central panel, where the points
with Ay <0 are outlined with a black contour. Finally, the radial distribution of the extinction is shown in the bottom right panel, where the blue line
represents the mean value of Ay for different radial bins and its error. The bins are obtained as the 1/30 of the total radial coverage of the map.
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Figure C.1b: NGC 3110 - Same as Fig. but for NGC 3110.
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C. Ay MAPS AND DISTRIBUTIONS
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Figure C.le: IRASF 12115-4656 - Same as Fig. |C.1a but for IRASF 12115-4656.
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Figure C.1f: NGC 5135 - Same as Fig. |C.1a| but for NGC 5135.
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Figure C.1g: IRASF 17138-1017 - Same as Fig. but for IRASF 17138-1017.
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Figure C.1i: NGC 7130 - Same as Fig. [C.1a| but for NGC 7130.
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Figure C.1j: IC 5179 - Same as Fig. but for IC 5179.
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IRAS06206-6315
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Figure C.2a: IRAS 06206-6315 - Top panels show the SINFONI K band continuum emission, the observed maps (not corrected
from extinction) of the lines Pacx A1.8764m and Bry A2.166um, together with the Ay map. The white contour englobes those spaxels above S/N = 4
considered to build the Ay map and distribution. The brightest spaxel of the K band continuum is marked with a plus symbol (+), and has been used
as reference to obtain the radial profile in the bottom right panel. The secondary nucleus, if present, is marked with a cross (X ). Bottom left panel
shows the Av distribution of all valid spaxels (blue histogram) and the distributions of the those spaxels above (red) and below (yellow) the median
value of the Bry S/N distribution. The relationship between the surface brightness of the lines and the Ay is shown in the central panel, where the
points with Ay <0 are outlined with a black contour. Finally, the radial distribution of the extinction is shown in the bottom right panel, where the
blue line represents the mean value of Ay for different radial bins and its error. The bins are obtained as the 1/30 of the total radial coverage of
the map. For those objects with multiple components, the top inset shows the Ay radial profile of the system taking the main nucleus as the centre,
whereas the bottom subpanel shows the radial profile obtained by extracting the profiles of each component separately and plotting them in the same
reference frame.

IRAS12112+0305

AS [arcsec]

-5

K-Band Continuum
[log (ergs™'ecm™um™)]

-3 -1 1
Ao [arcsec]

A, distribution

Paa: Flux
[log (erg s'cm™®)]

-1 1
Ao, [arcsec]

Bry Flux
[log (erg s cm™)]

-3 -1 1
Ao [arcsec]

-3 -1 1
Ao, [arcsec]

A, radial profile

29

21

80

Figure C.2b: IRAS 1211240305 - Same as Fig.

Surface brightness distribution

107

10151

g, [erg s em™ kpc?]

1077

107"

10"‘5 16"“

Zpq, [€rg 7 Cm* kpc]

107

197

3 4
Radius (kpc)

but for IRAS 121124-0305.
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Figure C.2c: IRAS 14348-1447 - Same as Fig. [C.2a| but for IRAS 14348-1447.
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Figure C.2d: IRAS 17208-0014 - Same as Fig. |C.2a but for IRAS 17208-0014.
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Figure C.2f: IRAS 22491-1808 - Same as Fig. [C.2a| but for IRAS 22491-1808.
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IRAS23128-5919
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Figure C.2g: IRAS 23128-5919 - Same as Fig. |C.2a but for IRAS 23128-5919.
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Figure D.1a: NGC 2369 - Top panels show the Ay, map derived from the Bry X2.166:m and Br§ A1.945um line ratio, the observed
maps of the Brvy emission, together with the star-formation rate surface density (¥gpr) map, corrected from extinction. The nucleus and Brvy peak
(see Chapter@ are marked with a plus symbol (+) and a diamond ({), respectively. Bottom left panel shows the observed (blue histogram) and
corrected from extinction (yellow histogram) gpg spaxel-by-spaxel distributions. The relationship between the corrected Y gpg values and the Ay is
shown in the bottom right panel only for those points with a spaxel-by-spaxel correction of the extinction. The blue histograms show the projected

distribution onto each axis, and are arbitrarily normalised, whereas the blue lines are the median of each distribution.
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Figure D.1b: NGC 3110 - Same as Fig.
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Figure D.1c: NGC 3256 - Same as Fig. but for NGC 3256. Please note that the central spaxel
lays outside the FoV since the nucleus was not observed in K-band. See Chapterfor further details.
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Figure D.1d: ESO 320-G030 - Same as Fig. but for ESO 320-G030.
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Figure D.le: IRASF 12115-4656 - Same as Fig. |D.1a| but for IRASF 12115-4656.
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Figure D.1f: NGC 5135 - Same as Fig. but for NGC 5135.
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Figure D.1i: NGC 7130 - Same as Fig. |D.1a| but for NGC 7130.
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Figure D.1j: 1C 5179 - Same as Fig. but for IC 5179.
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Figure D.2a: IRAS 06206-6315 - Top panels show the Ay map derived from the Pace A1.876um and Bry A2.166um line ratio,
the star-formation rate surface density (Xgpgr) map, corrected from extinction. The nucleus
and Paa peak (see Chapter@ are marked with a plus symbol (+) and a diamond ({), respectively. Bottom left panel shows the observed (blue
histogram) and corrected from extinction (yellow histogram) Yggr spaxel-by-spaxel distributions. The relationship between the corrected gpg values
and the Ay is shown in the bottom right panel only for those points with a spaxel-by-spaxel correction of the extinction. The blue histograms show
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10g Zeo, [Mo yr'kpc?]

the projected distribution onto each axis, and are arbitrarily normalised, whereas the blue lines are the median of each distribution.
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Figure D.2c: IRAS 14348-1447 - Same as Fig. [D.2a| but for IRAS 14348-1447.
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Figure D.2d: IRAS 17208-0014 - Same as Fig. but for IRAS 17208-0014.
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Figure D.2e: IRAS 21130-4446 - Same as Fig. but for IRAS 21130-4446.
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Figure D.2f: IRAS 22491-1808 - Same as Fig. but for IRAS 22491-1808.
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IRAS23128-5919
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Figure D.2g: IRAS 23128-5919 - Same as Fig. [D.2a| but for IRAS 23128-5919.
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Referred publications

o Outflow of hot and cold molecular gas from the deeply buried secondary nucleus of

NGC 3256
Emonts, B.; Piqueras Lépez, J.; Colina, L.; Arribas, S.; Villar-Martin, M.; Pereira-
Santaella, M.; Garcia-Burillo, S.; 2014; Astronomy & Astrophysics, submitted.

o Spatially resolved kinematics, galactic wind, and quenching of star formation in the
Luminous InfraRed Galaxy IRAS F11506-3851
Cazzoli, S.; Arribas, S.; Colina, L.; Piqueras Lépez, J.; Bellocchi, E.; Emonts, B.;
Maiolino, R.; Villar-Martin, M.; 2014, Astronomy & Astrophysics, submitted.

o Warm molecular gas temperature distribution in local infrared bright Seyfert galaxies
Pereira-Santaella, M.; Spinoglio, L.; van der Werf, P. P.; Piqueras Lépez, J.; 2014,
Astronomy & Astrophysics, accepted.

o Fueling the central engine of radio galaxies Ill. The molecular gas and star formation
efficiency of 3C 293

Labiano, A.; Garcia-Burillo, S.; Combes, F.; Usero, A.; Soria-Ruiz, R.; Piqueras Lépez,
J.; Fuente, A.; Morganti, R.; Neri, R.; Hunt, L.; 2014, Astronomy & Astrophysics,
accepted (arXiv:1402.7208)

o VLT-SINFONI integral field spectroscopy of low-z luminous and ultraluminous infrared

galaxies. II. 2D extinction structure and distance effects

Piqueras Lépez, J.; Colina, L.; Arribas, S.; Alonso-Herrero, A.; 2013; Astronomy &
Astrophysics, Volume 553, id.A85, 18 pp
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o VLT-SINFONI integral field spectroscopy of low-z luminous and ultraluminous infrared

galaxies. |. Atlas of the 2D gas structure
Piqueras Lépez, J.; Colina, L.; Arribas, S.; Alonso-Herrero, A.; Bedregal, A. G.; 2012;
Astronomy & Astrophysics, Volume 546, id.A64, 38 pp.

o Spatially Resolved Kinematics of the Central Regions of M83: Hidden Mass Signatures
and the Role of Supernovae

Piqueras Ldpez, J.; Davies, R.; Colina, L.; Orban de Xivry, G.; 2012; The Astrophysical
Journal, Volume 752, Issue 1, article id. 47, 13 pp.

Non-referred publications

o A 2D near-infrared study of a sample of local LIRGs and ULIRGs

Piqueras Lopez, J.; Colina, L.; Bedregal, A. G.; Alonso-Herrero, A.; Arribas, S.;
Azzollini, R.. Proceedings of Extreme Starbursts in the Local Universe, Instituto de
Astrofisica de Andalucia, Granada, June 2010; arXiv:1008.2107
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Glossary

2MASS
ACS
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