Sonochemical Synthesis of A Novel Nanoscale 1D Lead(II) \([\text{Pb}_2(\text{L})_2(\text{I})_4]_n\)

Coordination Polymer and Survey of Temperature and Reaction Time Parameters

Payam Hayati \(^c,a\), Salvio Suárez-García \(^c\), Angel Gutiérrez\(^d\), Daniel Ruiz Molina\(^c*\), Ali Morsali\(^b*\), Ali Reza Rezvani\(^a*\)

\(^a\) Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, P.O. Box 98135-674, Zahedan, Iran.

\(^b\) Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-4838, Tehran, Islamic Republic of Iran.

\(^c\) Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.

\(^d\) Departamento de Química Inorgánica I Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain.

Abstract

One new lead(II) coordination supramolecular complex (CSC) (1D), \([\text{Pb}_2(\text{L})_2(\text{I})_4]_n\), \(\text{L}=\text{C}_4\text{H}_6\text{N}_2\) (1-methyl imidazole), has been synthesized under different experimental conditions. Micrometric crystals (bulk) or nano-sized materials have been obtained depending on using the branch tube method or sonochemical irradiation. All materials have been characterized by scanning electron microscopy (SEM), powder X-ray diffraction (PXRD) and FT-IR spectroscopy. Single crystal X-ray analyses on complex 1 showed that \(\text{Pb}^{2+}\) ion is 4-coordinated. Topological analysis shows that the complex 1 is 2,3,5\(\text{C}_2\) net. Finally, the role of reaction time and temperature on the growth and final morphology of the structures obtained by sonochemical irradiation have been studied.

Keywords: Coordination polymer, Sonochemical process, Ultrasound irradiation, Morphology.
1. Introduction

During the past two decades, the rational design, construction, and characterization of metal–organic coordination polymers (CPs) have received significant attention in the fields of materials chemistry and crystal engineering, owing to intriguing structures and potential applications in a variety of fields such as luminescence [1, 2], magnetism [3-5], gas absorption and separation, chemical sensors [6-8], heterogeneous catalysis [9-11] and drug delivery [12, 13]. Although a great number of coordination polymers with diverse structures and interesting properties have been constructed, the precise prediction and controllable preparation of such materials are still a great challenge for chemists, since a lot of factors may largely affect the overall structural formation. The metal-organic networks or coordination polymers based on lead(II) remain less explored, mostly due to the toxicity of this metal, as well as its somewhat unpredictable coordination behavior. Actually, the electronic configuration of Pb(II) allows the Pb$^{2+}$ cation showing a large variety of coordination numbers and geometries. However, interest in the coordination polymers of lead(II) has recently substantially increased. This is presumably related to the diversity of coordination modes of the metal and the unique supramolecular architectures of such complex [14-17]. Several unique synthetic approaches have already been offered for the preparation of coordination complex. Some of them are (1) slow diffusion of the reactants into a polymeric matrix, (2) diffusion from the gas phase, (3) evaporation of the solvent at ambient or reduced pressures, (4) precipitation or recrystallization from a mixture of solvents, (5) temperature controlled cooling and (6) hydrothermal synthesis [18-22]. However, the traditional approaches must be carried out at high temperatures (373–523 K) and pressures (1–10 MPa) with long reaction times [23]. In contrast to the traditional energy sources, ultrasonic irradiation is regarded as a facile and environmentally friendly energy source, which could provide rather
unusual reaction conditions (a short duration of extremely high temperatures and pressures in liquids) [24]. These extreme conditions can drive chemical reactions and then promote the formation of nano-structure materials. The nano-sized particles of CPs often exhibit superior properties that cannot be seen in bulk crystals because they are controlled by a large surface-to-volume ratio [25, 26]. So, the syntheses of nanostructures are important for the development of science and technology within the nanoscale realm [27, 28]. However the sonochemical methods have been adopted for preparation of nanomaterials, the application of the ultrasonic method for construction of CPs receives relatively limited attention. Until now, only examples of

\[\text{[Pb(ind)\textsubscript{2}(H\textsubscript{2}O)\textsubscript{n}, [Pb\textsubscript{2}(dbsf)\textsubscript{2}(bipy)\textsubscript{n}} (\text{Hind = indane-2-carboxylic acid, H\textsubscript{2}dbsf = 4,4'-sulfonyldibenzoic acid, bipy 4,4'-bipyridine)}] [29], [Pb\textsubscript{2}(mpic\textsubscript{4}(H\textsubscript{2}O)\cdot0.5\text{H\textsubscript{2}O}, [Pb\textsubscript{2}(phen)\textsubscript{2}(cit)(mes)]\cdot2\text{H\textsubscript{2}O}, mpic = 3-methyl picolinate, phen = \sigma-phenanthroline, H\textsubscript{2}cit = citraconic acid, H\textsubscript{2}mes mesaconic acid. [30], [Pb\textsubscript{3}(tmph\textsubscript{4}(\mu\textsubscript{N\textsubscript{3}}\textsubscript{5}(\mu-N\textsubscript{O\textsubscript{3}})]\textsubscript{n}, tmph = 3,4,7,8-tetramethyl-1,10-phenanthroline][31], Pb\textsubscript{3}(BOABA\textsubscript{2}(H\textsubscript{2}O)\cdot2\text{H\textsubscript{2}O}\textsubscript{n}}}, \{[Pb\textsubscript{4}(BOABA\textsubscript{2}(\mu\textsubscript{4}-O)(H\textsubscript{2}O)\textsubscript{2}\cdot\text{H\textsubscript{2}O}\textsubscript{n}}, H\textsubscript{3}BOABA=3,5-bis-oxyacetate-benzoic acid) [32], [Pb(L)(\mu\textsubscript{2}-I)]\textsubscript{n}, L = 1H-1,2,4-triazole-3-carboxylate [33], [Pb(tmph)(\mu-SCN)\textsubscript{2}\textsubscript{n}, [Pb(tmph)(\mu-N\textsubscript{O\textsubscript{3}})\textsubscript{2}\textsubscript{n} , tmph = 3,4,7,8-tetramethyl-1,10-phenanthroline) [34], [Pb\textsubscript{2}(Hcpip\textsubscript{2}(ox)\textsubscript{n}}, [Pb\textsubscript{2}(Hcpip\textsubscript{2}(suc)\textsubscript{n}, H\textsubscript{2}ox = oxalic acid, H\textsubscript{2}suc = succinic acid,) [35],[Pb(qcnh)(NO\textsubscript{3}\textsubscript{2})\textsubscript{n}, qcnh = 2-quinolinocarbaldehyde nicotinohydrazide [36], rare lead (II) coordination polymer complex with different ligand are reported. However, the synthesis of lead-based 1D coordination polymers still represents a challenge. Herein, we report the synthesis of a novel nanoscale 1D lead(II) coordination polymer with ultrasounds method. We will demonstrate that this is a robust process independent of experimental parameters such as temperature and reaction time. Moreover, crystal suitable for x-
ray diffraction of the same complex have been obtained by the branched tube method and successfully compared with the x-ray diffraction of sonochemical samples.

2. Experimental

2.1. Materials and physical techniques

Starting reagents for the synthesis were purchased and used without any purification from industrial suppliers (Sigma–Aldrich, Merck and others). Elemental analyses (carbon, hydrogen, and nitrogen) were performed employing a Heraeus Analytical Jena Multi EA 3100 CHNO rapid analyzer. Fourier transform infrared spectra were recorded on a Bruker Tensor 27 FT-IR with a single window reflection of diamond ATR (Attenuated total reflectance) model MKII with the OPUS as data collection software. The instrument was equipped with a room temperature detector, and a mid-IR source (4000 to 400 cm$^{-1}$). Since it is a single beam instrument, it was needed to run a background spectrum in air before the measurement. Single crystal X-ray diffraction (SXRD) experiments were carried out for complex 1 with MoKα radiation (λ=0.71073 Å) at ambient temperature. A micro focused Rigaku mm003 source with integrated confocal caxFlux double bounce optic and HPAD Pilatus 200K detector was used for 1 while for two data were measured on a Bruker-Nonius Kappa CCD diffractometer. The structures were solved by direct methods and refined by full matrix least squares on F^2. All non-hydrogen atoms were refined anisotropically. The hydrogen atoms were included with fixed isotropic contributions at their calculated positions determined by molecular geometry, except for the oxygen bonded hydrogen atoms, which were located on a difference Fourier map and refined riding on the corresponding atoms. (Computing details: data collection, cell refinement and data reduction: CrystalClear-SM expert 2.1b43 [37]; program(s) used to solve structure: SHELXT [38]; program(s) used to refine structure: SHELXL-2014/7; molecular graphics:
PLATON [39]; reduction of data and semiempirical absorption correction: SADABS program[40]; direct methods (SIR97 program[41]); full-matrix least-squares method on F^2: SHELXL-97 program [42] with the aid of the programs WinGX [43] and Olex2[44]. A complete structure solution, refinement and analysis program [45]. Powder X-ray diffraction (PXRD) measurements were performed using an X’pert diffractometer manufactured by Philips with monochromatized Cukα radiation and simulated PXRD patterns based on single crystal data were prepared using the Mercury software [44]. The samples were characterized with a scanning electron microscope (SEM) (FEI Quanta 650 FEG) in mode operation of secondary electrons (SE) with a beam voltage between 15 and 20 KV. The samples were prepared by deposition of a drop of the material previously dispersed in properly solvents on aluminum stubs followed by evaporation of the solvent under ambient conditions. Before performing the analysis, the samples were metalized by depositing on the surface a thin platinum layer (5 nm) using a sputter coater (Leica EM ACE600). A multi wave ultrasonic generator (Elmasonic (Elma) S40 H), equipped with a converter/transducer and titanium oscillator (horn), 12.5 mm in diameter, operating at 20 kHz with a maximum power output of 400 W, were used for the ultrasonic irradiation.

2.8. Synthesis of $[\text{Pb}_2(\text{L})_2(\text{I})_4]_n$ (2) as single crystals

$\text{Pb(NO}_3)_2$ (1 mmol, 0.331g), 1-methylimidazole (L) (2 mmol, 0.15ml) and KI (2 mmol, 332g) were loaded into one arm of a branch tube and both of the arms were filled slowly with methanol. The chemical bearing arm was immersed in an oil bath kept at 60 °C. Crystals were formed on the inside surface of the arm kept at ambient temperature. After 10 days, yellow crystals were deposited in the cooler arm, filtered off, washed with methanol and air dried (0.104 g, 38.37 %, yield based on final product), complex 1 (single crystal): m.p >300 °C. Anal.
2.9. Synthesis of [Pb₂(L)₂(I)₄]ₙ (1) under ultrasonic irradiation

To prepare the nano-/microstructures of [Pb₂(L)₂(I)₄]ₙ (1) by sonochemical process, a high-density ultrasonic probe immersed directly into the solution of Pb(NO₃)₂ (10 ml, 0.1 M) in water, then into this solution, a proper volume of KI (10 ml, 0.1 M) and 1-methylimidazole (L) (10 ml, 0.1 M) ligand in water solvent was added in a drop wise manner. The solution was irradiated by ultrasound with the power of 60W and temperature 30 °C and after 30 min a yellow powder was obtained (complex 1-1, temperature: 30°C reaction time: 30 min, sonication power: 60W, concentration: 0.1 M). For the study of the effect of temperature, the described process was done increasing the temperature to 60°C (complex 1-2, reaction time: 30 min, sonication power: 60W, concentration: 0.1 M), and for the study of the effect of reaction time, it was increased up to 60 min (complex 1-3, temperature: 30°C, sonication power: 60W, concentration: 0.1 M). The obtained precipitates were filtered, subsequently washed with water and then dried.

Complex 1-1: (0.125 g, 46.12 %, yield based on final product), complex 1-1: m.p >300 °C.
Anal. Calc. for Pb₄I₈N₈C₁₆H₂₄: C: 8.83, H: 1.10, N: 5.15 %; Found C: 8.20 H: 0.99, N: 5.05 %.
IR (selected bands for complex 1-1; in cm⁻¹): 3110(w), 2460(br), 1522(s), 1501(s), 1269(s).

Complex 1-2: (0.118 g, 43.54 %, yield based on final product), complex 1-2: m.p >300 °C.
Anal. Calc. for Pb₄I₈N₈C₁₆H₂₄: C: 8.83, H: 1.10, N: 5.15 %; Found C: 8.61 H: 1.00, N: 5.14 %.
IR (selected bands for complex 1-2; in cm⁻¹): 3108(w), 2429(br), 1522(s), 1501(s), 1269(s), cm⁻¹.
Complex 1-3: (0.134 g, 49.44%, yield based on final product), complex 1-3: m.p >300 °C. Anal. Calc. for Pb$_4$I$_8$N$_8$C$_{16}$H$_{24}$: C: 8.83, H: 1.10, N: 5.15%; Found C: 8.76 H: 1.04, N: 5.06%.

IR (selected bands for complex 1-3; in cm$^{-1}$): 3119(w), 2481(br), 1528(s), 1509(s), 1266(s).

3. Results and discussion

3.1. Single crystal x-ray diffraction (SXRD)

Crystal suitable for x-ray diffraction was obtained from solution by thermal gradient method applied to an aqueous and methanol solution of the reagents (the “branched tube method”). Reaction of L = C$_4$H$_6$N$_2$ (1-methyl imidazole), potassium iodide with lead(II) nitrate in methanol induce the formation of the new 1D coordination polymer [Pb$_2$(L)$_2$(I)$_4$]$_n$ (1). Single crystal X-ray diffraction analysis (Tables 1-2) of complex 1 was carried out and the coordination environment of the titled complexes. [Pb$_2$(L)$_2$(I)$_4$]$_n$ (1) complex crystallize in a triclinic space group P$\overline{1}$. The Pb atoms of complex 1 are coordinated by five I atoms and one N atom composing octahedral I$_5$N (Fig. 1). The asymmetric unit of complex 1 contains two Pb$^{2+}$ cations, which coordinate to two 1-methyl imidazole ligands (L) and four I anions (Fig. 2). Each 1-methyl imidazole (L) ligand in complex 1 is coordinated to one Pb atom by N atom of pyridine ring (Hg-N distance of 2.428 Å). Additionally, there are two type of I atoms around the Pb atoms: axial and equatorial I atoms are coordinated to each Pb atom with contacts distances Pb–I$_{ax}$ and Pb-I$_{eq}$ of 3.421 and 3.210 Å, respectively (Table 3 and Fig. 2). It should be noted that the intramolecular and intermolecular interactions can be separated in two groups: strong (more valence) in short range 0.93-3.72 Å; and weak (more electrostatic) in long range 3.18-4.45 Å. Strong bonds form mononuclear complexes [Pb(L)(I)$_3$], which expanded by relatively weak interactions in polymeric chains [Pb$_2$(L)$_2$(I)$_4$]$_n$ along translation a axis (Fig 3). On the other hand, there is $\pi - \pi$
interaction between aromatic rings which lead to crystal structure be stable and distance between two aromatic rings is 4.552 Å (Fig. 4). It should be noted, that each chain in the network is surrounded by six other ones, producing hexagonal shape of growth for the network. Simplification of the chain to the underlying net by ToposPro package reveals 2,3,5C2 topological type, which is abundant for 1D coordination polymers (Fig. S1) (more than 100 examples in TTO collection of ToposPro) [46, 47].

3.2. Hirshfeld surface analysis

In order to analyze the various interactions those lead to the crystal structure, a study of the Hirshfeld surface was performed. In this study, the volume of space where molecule electron density exceeds all neighboring molecules was considered [48-50]. Molecular Hirshfeld surfaces have been constructed from CIF file, for this reason structures can be dissected into noncovalent contacts [60-64]. The very high-resolution Hirshfeld surfaces were generated by Crystal Explorer and functions of curvature, distance including shape index and dnorm were mapped to the surfaces [60-64]. The function dnorm is a normalized distance property defined by di (distance from a point on the Hirshfeld surface to the nearest internal nucleus), de (distance from a point on the Hirshfeld surface to the nearest external nucleus) and van der Waals radii (ri vdW and re vdW), being: dnorm = [(di – ri vdW)/ri vdW] + [(de – re vdW)/re vdW] [22-24]. Thus, the value of dnorm was negative or positive when intermolecular contacts were shorter or longer than r vdW, respectively. The Hirshfeld surfaces of the titled complex (Fig. 5) were mapped over a dnorm, de, di, curvedness and shape-index.

The dnorm values were mapped to the Hirshfeld surface (Fig 5a) by using a red – blue – white color scheme as follows: red regions represented closer contacts as well as a negative dnorm value; blue regions represented longer contacts and a positive dnorm value; and white regions represented
the distance of contacts equal to precisely the van der Waals separation with a d_{norm} value of zero. These normalized contact distances (d_{norm}) reveal the close contacts of valence bond donors and acceptors, but other close contacts are evident. As shown in Fig 5a the large circular depressions are the indicators of valence bonding contacts and the dominant interactions are Pb-I, whereas other visible spots are due to π-π interactions, based on both d_e and d_i. Particularly, adjacent red/orange and blue triangle like patches on a shape index map (Fig-S2) give us information about valence bond and π-π interactions [51 and 54, 55]. The combination of the distances from the Hirshfeld surface to the nearest nucleus inside the surface (d_i) and outside the surface (d_e) and the data conveyed by the shape index are consistent with 2D fingerprint plots [49, 50].

The 2D fingerprint maps of 1 provide some quantitative information giving the possibility of obtaining additional insight to the intermolecular interactions in the crystal state and for describing the surface characteristics of the molecules (Fig. S3). Globally, I……H, H……H, Pb……I and H…..C intermolecular interactions were most abundant in the crystal packing (45.3%, 19.2%, 17.1% and 8.4%, respectively). It really is evident that van der Waals forces exert an important influence on the stabilization of the packing in the crystal structure, and other intercontacts [N……H/H……N (5.6%), Pb…..H (1%), I……C (1.4%), N……C (0.1%) and C……C (0.4%)] contribute less to the Hirshfeld surfaces. On the other hand, the relative contributions of the different interactions to the Hirshfeld Surfaces were also calculated for the title complex (Fig. 6).

3.2. Sonochemical synthesis
Synthesis of complex 1 was alternatively achieved by the application of ultrasounds. For the synthesis of complex 1, a high-density ultrasonic probe was immersed directly into a water solution Pb(NO$_3$)$_2$ and posterior drop wise addition a second methanol solution of KI and 1-methyl imidazole (L). The synthesis were done keeping constant the reactants concentration (0.1 M) and the ultrasound power (60 W) while other factors such as temperature and the reaction time were systematically modified (a resume of the different reactions is shown in Table 3, for more details see section 2.9).

In order to confirm the coordination of the different complexes synthesized, FT-IR measurements were performed (Fig. 7). The absorption bands with variable intensity in the frequency range around 3100 cm$^{-1}$ correspond to N-H symmetric stretching frequency of the 1-methyl imidazole ligand, absorption bands around 2790 cm$^{-1}$ are related to CH$_3$ symmetric bending frequency. Additionally, aromatic C-H stretching frequency appears at around 3035 cm$^{-1}$. The absorption bands with variable intensity in the frequency range 1560-1640 cm$^{-1}$ correspond to N-H bending frequency of the amine group of the 1-methyl imidazole ligand. The absorption bands around 1300 cm$^{-1}$ are attributed to symmetry bending frequency of the CH$_3$ group.

Powder X-ray diffraction (PXRD) of complexes 1-1, 1-2 and 1-3 (see Figure 8) revealed that all of them exhibit the same crystalline phase which in turns is also similar to that obtained upon simulation from the X-ray diffraction data obtained for 1. These results indicate the existence of a single crystalline phase, which is maintained independently of the synthesis method as well as of the temperature (30°C and 60°C) and reaction times (30 min and 60 min). Similar results are obtained as far as the morphology of the nanocrystal is considered. The morphology and size of products prepared by the sonochemical method and observed by SEM images showed the
formation of needles for all the reactants (Fig. 9). Moreover, the variation of temperature and the reaction time in the ultrasounds did not affect the morphology neither the crystalline phase of the complex. SEM images of complexes 1-1 to 1-3 had the same needle morphology (Fig. 9a, b, c). Bravais Friedel Donnay Harker (BFDH) analysis was carried out in order to estimate the faces that are supposed to appear in the crystals morphology. This analysis considers the effect of symmetry operations on the interplanar distances of crystal faces. Predicted crystal morphology of complex 1 is shown in Fig. 9d. In almost all cases, there is a good match between the predicted and observed morphology. It should be noted that in the case of 1, the growth of the coordination material takes place along the [00-1] direction (Fig. 9e). It is interesting to note, that the shape of chains parallel to chain orientation in the structure is quite similar to the morphology of cross section to long axes for needle-like crystals. However the relation between crystallographic orientation of the chains and the faces of the crystals needs further study.

4. Conclusions

Sonochemical methods have been used to obtain crystalline rods a few micron length and nanometers width of the 1D coordination polymer \([\text{Pb}_2(\text{L})_2(\text{I})_4]_n\). Larger crystals suitable for single crystal x-ray diffraction have been obtained by the branched tube method. Interestingly, the simulated x-ray diffraction powder obtained from the x-ray data confirms the structure of the nano-/microcrystal obtained by sonochemistry. These results confirm the potentially of ultrasound for the obtaining of nanoscale coordination polymers. The robustness of the reaction was confirmed and validated by repeating the reaction under different experimental conditions where the temperature and reaction time have been modified.

Supplementary material
Crystallographic data for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-1515619. Copies of the data can be obtained upon application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: +44 1223/336033; e-mail: deposit@ccdc.cam.ac.uk).

Acknowledgement

This work was supported by grant MAT 2015-70615-R from the Spanish Government and by Feder funds. Funded by the CERCA Program / Generalitat de Catalunya. ICN2 is supported by the Severo Ochoa program from Spanish MINECO (Grant No. SEV-2013-0295).

References:

Table 1. Crystal data and structures refinement for \([\text{Pb}_2(\text{L})_2(\text{I})_4]_n\) (1)

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>Pb I₂ N₂ C₄ H₆</td>
</tr>
<tr>
<td>Formula weight</td>
<td>543.10 g/mol</td>
</tr>
<tr>
<td>Temperature</td>
<td>293(2)K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>(P)</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>(a = 4.5520(2))Å, (\alpha = 104.796(1))°</td>
</tr>
<tr>
<td></td>
<td>(b = 12.4614(5))Å, (\beta = 92.902(1))°</td>
</tr>
<tr>
<td></td>
<td>(c = 12.893 (3))Å, (\gamma = 71.778 (9))°</td>
</tr>
<tr>
<td>Volume</td>
<td>1001.99 (7) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Density(calculated)</td>
<td>3.600 g/cm³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>22.934 Mg/m³</td>
</tr>
<tr>
<td>F(0 0 0)</td>
<td>928</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>1.1 to 31.9°</td>
</tr>
</tbody>
</table>
Table 2. Selected bond lengths (Å) for complex \([\text{Pb}_2(L)_2(I)_4]\) \textit{n} (1)

<table>
<thead>
<tr>
<th>Bond</th>
<th>Pb(1)—N(1) 2.428(5)</th>
<th>Pb(2)—I(3) 3.2407(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb(1)—I(1)i</td>
<td>3.1647(5)</td>
<td>Pb(2)—I(3)i 3.2491(5)</td>
</tr>
<tr>
<td>Pb(1)—I(4)i</td>
<td>3.2026(5)</td>
<td>Pb(2)—I(4) 3.4212(5)</td>
</tr>
<tr>
<td>Pb(1)—I(1)</td>
<td>3.2322(5)</td>
<td>I(4)—Pb(1)ii 3.2026(5)</td>
</tr>
<tr>
<td>Pb(1)—I(4)</td>
<td>3.2698(5)</td>
<td>I(1)—Pb(1)ii 3.1648(5)</td>
</tr>
<tr>
<td>Pb(2)—N(3)</td>
<td>2.474(5)</td>
<td>I(2)—Pb(2)i 3.1873(5)</td>
</tr>
<tr>
<td>Pb(2)—I(2)ii</td>
<td>3.1873(5)</td>
<td>I(3)—Pb(2)ii 3.2492(5)</td>
</tr>
<tr>
<td>Pb(2)—I(2)</td>
<td>3.2102(5)</td>
<td>N(1)—C(1) 1.324(8)</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:

(i) \(1+x, y, z\); (ii) \(-1+x, y, z\).

Table 3. Resume of the different sonochemical reactions done, where the temperature and the reaction time have been systematically modified. In all the cases, ultrasounds power was 60 W.
<table>
<thead>
<tr>
<th>Complex</th>
<th>M (mol/l)(^a)</th>
<th>T (°C)(^b)</th>
<th>t (min)(^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>0.1</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>1-2</td>
<td>0.1</td>
<td>60</td>
<td>30</td>
</tr>
<tr>
<td>1-3</td>
<td>0.1</td>
<td>30</td>
<td>60</td>
</tr>
</tbody>
</table>

\(^{a}\text{Concentration of initial reactant; \ }^{b}\text{Reaction temperature; \ }^{c}\text{Reaction time;}\)
Figure 1. Coordination environment of Pb$^{2+}$ cations in complex 1.

Figure 2. Bond distance in complex 1.
Figure 3. 1D chain of complex 1(up) and interaction between chains (down).

Figure 4. π – π interaction in the a direction of the crystal.
Figure 5. Hirshfeld surface analysis of 1; a) Normalized distance (d_{norm}); b) distance from a point on the Hirshfeld surface to the nearest external nucleus (d_e); c) distance from a point on the Hirshfeld surface to the nearest internal nucleus (d_i); d) shape-index.

Figure 6. The relative contributions to the Hirshfeld surface area for 1.
Figure 7. FT-IR spectra of nano-/microstructure 1, 1-1, 1-2 and 1-3.

Figure 8. PXRD patterns corresponding to the simulation of complex 1 and the nano-/microstructure systems (1-1, 1-2 and 1-3).
Figure 9. SEM image of the crystalline rods obtained in reaction: a) 1-1; b) 1-2 and c) 1-3; d) predicted needle crystal morphology of 1, e) predicted from their packing along the [00-1] direction.
Figure S1. Topological representation of coordination networks.

Figure S2. Hirshfeld surface of 1.
Figure S3. Fingerprint plots of major contacts in 1.