Genetic evaluation of the Iberian lynx *ex situ* conservation programme

Daniel Kleinman-Ruiz¹, Laura Soriano¹, Mireia Casas-Marce¹, Charles Szychta¹, Iñigo Sánchez², Jesús Fernández³ & José A. Godoy¹

 Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD-CSIC), Calle Americo Vespucio 26, 41092 Sevilla, Spain
 Zoobotánico Jerez, Calle Madreselva s/n, 11408 Jerez de la Frontera, Spain
 Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña Km.
 28040 Madrid, Spain

Correspondence: José A. Godoy, Estación Biológica de Doñana (EBD-CSIC), Calle Americo Vespucio 26, 41092 Sevilla, Spain. Fax: 34-954621125. E-mail: godoy@ebd.csic.es

Running title (< 50 characters): Genetic evaluation of *ex situ* Iberian lynx

Word count: 6 286 (abstract included; references excluded)

1 Abstract

2

3 *Ex situ* programmes have become critical for improving the conservation of 4 many threatened species, as they establish backup populations and provide 5 individuals for reintroduction and reinforcement of wild populations. The 6 Iberian lynx was considered the most threatened felid species in the world in 7 the wake of a dramatic decline during the second half of the 20th century that 8 reduced its numbers to around only 100 individuals. An *ex situ* conservation 9 programme was established in 2003 with individuals from the two well-10 differentiated, remnant populations, with great success from a demographic 11 point of view. Here we evaluate the genetic status of the Iberian lynx captive 12 population based on molecular data from 36 microsatellites, including 13 patterns of relatedness and representativeness of the two remnant genetic 14 backgrounds among founders, the evolution of diversity and inbreeding over 15 the years, and genetic differentiation among breeding facilities. In general terms, the *ex situ* population harbours most of the genetic variability found in 16 17 the two wild populations and has been able to maintain reasonably low levels 18 of inbreeding and high diversity, thus validating the applied management 19 measures, and potentially representing a model for other species in need of 20 conservation. 21 22 Keywords

23 Conservation, Iberian lynx, *ex situ* programme, captive population, molecular
24 kinship

25

26 Introduction

28	Human activity is driving species to extinction at exceptionally high
29	rates (Pimm et al., 2014). Ever-growing threats to biodiversity, such as
30	overexploitation, habitat destruction, and pervasiveness of invasive species
31	(Wilson, 1992), pose a challenging ordeal for species persistence (Butchart <i>et</i>
32	al., 2010). At the same time, it is becoming evident that conservation actions
33	can have a positive impact (Hoffmann <i>et al.</i> , 2010). <i>In situ</i> conservation is the
34	main focus of biological conservation based on the multiple benefits derived
35	from the integrated protection of habitats and ecosystems. However, in the
36	current scenario of rapid climate change and increased habitat destruction,
37	reliance solely on <i>in situ</i> approaches may not ensure the long-term –or, under
38	critical scenarios, even the short-term– persistence of many species. In
39	contrast, the potential of <i>ex situ</i> conservation, once relegated to educational,
40	research and fund-raising roles (Pritchard et al., 2012), to contribute more
41	directly to biological conservation is rapidly increasing, thanks to improved
42	global coordination, infrastructures, technical knowledge and practices
43	(Pritchard <i>et al.</i> , 2012; Redford <i>et al.</i> , 2012).
44	Captive populations act as an insurance reserve in case disaster strikes
45	wild populations. Individuals in captive populations are protected from
46	threats such as predation and poaching, they are subject to continuous
47	surveillance, and they can receive timely medical assistance. As collateral
48	benefits, <i>ex situ</i> programmes provide valuable insights into species' biology by
49	supporting and enhancing research on behaviour, reproduction, and

50	physiology, among others (McGowan et al., 2017). Indeed, ex situ conservation
51	has played a major role in the improved conservation of many vertebrate
52	species, including the California condor (<i>Gymnogyps californianus</i>), Arabian
53	oryx (Oryx leucoryx), whooping crane (Grus americana), and blackfooted ferret
54	(Mustela nigripes) (Hoffmann et al., 2010). Still, ex situ conservation should be
55	regarded as an additional means of preserving species, so whenever possible
56	it should be the source for individual reintroductions into the wild and be part
57	of an integrative approach to species-wide management in conjunction with <i>in</i>
58	situ actions (Russello and Amato, 2007; Pritchard et al., 2012; Redford et al.,
59	2012; McGowan <i>et al.</i> , 2017).
60	More importantly, captive populations can be used to boost genetic
61	diversity and minimize inbreeding through managed and monitored
62	admixture of differentiated remnant populations when available. This is
63	particularly relevant since species under extinction risk are often genetically
64	eroded (i.e. show loss of genetic diversity and accumulation of inbreeding), as
65	the consequence of species decline and fragmentation. However, captive
66	populations –which are generally founded by a small number of individuals,
67	are usually small themselves, and have an environment different from wild-
68	carry their own additional genetic risks, namely: i) loss of genetic diversity, ii)
69	accumulation of inbreeding, iii) incidence of genetic diseases and other
70	deleterious traits, and iv) adaptation to captivity (Frankham, 2008; Frankham
71	<i>et al.</i> , 2010).
72	Genetic risks in captivity, though, can be somewhat ameliorated
73	through adequate genetic management. Towards this goal, the commonly

74	recommended and optimal strategy (as proven both theoretically and by
75	simulations) is based on the minimisation of average kinship (Ballou and Lacy,
76	1995; Meuwissen, 1997; Fernández and Toro, 1999; Caballero and Toro,
77	2000; Fernández et al., 2004). The implementation of the minimum kinship
78	strategy has traditionally been based on studbook records and pedigree
79	analyses (Ballou et al., 2010). However, molecular data can assist and improve
80	genetic management by assessing the representativeness of founders,
81	detecting studbook errors and, most importantly, unravelling the typically
82	unknown relatedness among founders. By doing so, they allow for higher
83	accuracy in routine tasks such as identifying optimal breeding pairs,
84	exchanging individuals between facilities, or selecting suitable candidates for
85	reintroduction (Frankham <i>et al.,</i> 2010).
86	
86 87	Of the four extant species in the lynx genus, the Iberian lynx (<i>Lynx</i>
	Of the four extant species in the lynx genus, the Iberian lynx (<i>Lynx pardinus</i>) has the smallest distribution area and population size. During the
87	
87 88	pardinus) has the smallest distribution area and population size. During the
87 88 89	<i>pardinus</i>) has the smallest distribution area and population size. During the second half of the 20 th century the species underwent a drastic decline that
87 88 89 90	<i>pardinus</i>) has the smallest distribution area and population size. During the second half of the 20 th century the species underwent a drastic decline that saw the majority of its populations become extinct in the span of five decades
87 88 89 90 91	<i>pardinus</i>) has the smallest distribution area and population size. During the second half of the 20 th century the species underwent a drastic decline that saw the majority of its populations become extinct in the span of five decades (Rodríguez and Delibes, 1992, 2002; Calzada <i>et al.</i> , 2007). By 2002, less than
87 88 89 90 91 92	<i>pardinus</i>) has the smallest distribution area and population size. During the second half of the 20 th century the species underwent a drastic decline that saw the majority of its populations become extinct in the span of five decades (Rodríguez and Delibes, 1992, 2002; Calzada <i>et al.</i> , 2007). By 2002, less than 100 individuals remained, distributed among two isolated populations in
87 88 89 90 91 92 93	<i>pardinus</i>) has the smallest distribution area and population size. During the second half of the 20 th century the species underwent a drastic decline that saw the majority of its populations become extinct in the span of five decades (Rodríguez and Delibes, 1992, 2002; Calzada <i>et al.</i> , 2007). By 2002, less than 100 individuals remained, distributed among two isolated populations in Andalusia (southern Spain): a peripheral population in the protected area of
87 88 90 91 92 93 94	pardinus) has the smallest distribution area and population size. During the second half of the 20 th century the species underwent a drastic decline that saw the majority of its populations become extinct in the span of five decades (Rodríguez and Delibes, 1992, 2002; Calzada <i>et al.</i> , 2007). By 2002, less than 100 individuals remained, distributed among two isolated populations in Andalusia (southern Spain): a peripheral population in the protected area of Doñana (DON), and a central one in Sierra de Andújar in the Sierra Morena

98 This scenario led to the recognition of the Iberian lynx as the most endangered
99 felid in the world (Nowell and Jackson, 1996) and to its classification as
100 "critically endangered" in the 2002 and 2008 IUCN red lists (Rodríguez and

101 Calzada, 2015).

102 Genetic erosion in the Iberian lynx has been well documented. Studies 103 based on mitochondrial, microsatellite and genome-wide data have revealed a 104 high inbreeding rate, high differentiation between the two populations, and 105 extremely low whole-genome level diversity ($\pi = 0.026\%$), which is among 106 the lowest ever reported – in the same ballpark as that of the cheetah 107 (Acinonyx jubatus) and notably lower than that of other felids and humans 108 (Johnson *et al.*, 2004; Palomares *et al.*, 2012; Casas-Marce *et al.*, 2013; 109 Dobrynin et al., 2015; Abascal et al., 2016). Moreover, several observations 110 indicative of inbreeding depression have been reported, including an increase 111 in the proportion of abnormal sperm with individual inbreeding (Ruiz-López 112 et al., 2012), a decrease in survival and litter size in DON (Palomares et al., 113 2012), a trend that may have reversed following translocations (Simón et al., 114 2012), and a high incidence of membranous glomerulonephritis and lymphoid 115 depletion (Peña et al., 2006; Jiménez et al., 2008). Besides, a number of 116 deleterious traits believed to have a genetic basis are currently segregating at 117 moderate frequencies in the captive population (Martínez *et al.*, 2013). 118 Such a negative outlook encouraged the implementation of active 119 conservation measures with the main funding coming from four successive 120 European LIFE projects in the period 1994-2012 (Simón et al., 2012). In situ 121 actions have included the improvement of natural habitats, an increase of prey

122	abundance, the reduction of non-natural mortality, the reconnection of the
123	two remnant populations through translocations, and awareness-raising
124	measures, to name a few (Simón <i>et al.</i> , 2012). In parallel, an <i>ex situ</i> breeding
125	programme was established in 2003 with the specific goals of: i) maintaining a
126	genetically and demographically managed captive population that
127	encompasses and safeguards the extant genetic diversity present in the two
128	wild populations; and ii) providing individuals for reintroduction programmes
129	aiming to recover the species' historical distribution in Spain and Portugal
130	(Vargas <i>et al.</i> , 2008; Vargas, Breitenmoser, <i>et al.</i> , 2009; Vargas, Rivas, <i>et al.</i> ,
131	2009).
132	The initial Iberian lynx captive population was founded with animals
133	from the two genetically differentiated populations. Genotypes for 36
134	microsatellite markers (Godoy et al., 2009; Casas-Marce et al., 2013) have
135	been routinely used to estimate the unknown relatedness among founders,
136	which then informs the pedigree-based kinship minimisation management
137	strategy. On a yearly basis, a list with the optimal contributions and mating
138	pairs is developed for each centre, becoming the blueprint on which crosses
139	are attempted. Every few years, translocations of animals between facilities
140	take place to avoid reduced diversity within centres and differentiation
141	between them. Finally, since 2010, when carrying capacity was reached, most
142	captive-born animals have been released at reintroduction sites. The selection
143	and distribution of animals among reintroduction sites have also been
144	informed by minimum average kinships.

145	Global conservation efforts have helped to recover the number of free-
146	living lynx to over the 500-individual milestone (589 in the latest census from
147	2017;
148	http://www.iberlince.eu/images/docs/3_InformesLIFE/Informe_Censo_2017.
149	pdf), which has resulted in the down-listing of the species from "Critically
150	Endangered" to "Endangered" in the 2015 International Union for
151	Conservation of Nature (IUCN) Red List (Rodríguez and Calzada, 2015).
152	
153	The aim of this study is to evaluate the genetic status of the captive
154	Iberian lynx population based on pedigree and genotype data for 36
155	microsatellites. We specifically aim to answer the following questions: i) how
156	well is the genetic diversity of wild populations represented by founders, and
157	ii) how have diversity and genetic structure statistics changed over the years,
158	as measured by marker- and pedigree-based analyses. In short, we evaluate
159	how successful the Iberian lynx <i>ex situ</i> programme has been from a genetic
160	point of view.
161	
162	Material & Methods
163	
164	Populations
165	Here we studied the captive population (CAP) of Iberian lynx from its
166	conception up to 2015. For most analyses, captive individuals were
167	categorised into two groups: wild-born founders (from here on CAP-WB)

168 belonging to either the DON (CAP-WB-DON) or the AND (CAP-WB-AND)

169 populations, and captive-born (CAP-CB).

170 The Iberian lynx *ex situ* programme was founded in 2003 with seven 171 CAP-WB individuals that had been captured starting in 2001, and up to 50 172 have since been recruited (Supplementary Figure S1a). Currently, the 173 programme comprises four main breeding facilities: i) El Acebuche, located 174 within the boundaries of Doñana National Park (Andalusia, Spain), with 18 175 enclosures; ii) Centro Nacional de Reprodução de Lince Ibérico, in Silves 176 (Algarve, Portugal), with 16 enclosures; iii) Granadilla, located north of 177 Cáceres (Extremadura, Spain), also with 16 enclosures; and iv) La Olivilla, in 178 Santa Elena (Andalusia, Spain), with 23 enclosures. Five additional enclosures 179 in the Zoobotánico Jerez facility, in Jerez de la Frontera (Andalusia, Spain), 180 complete the breeding network (https://www.lynxexsitu.es/programa-181 en.php?sec=centro). 182 For the yearly analyses, two different sets of criteria were adopted to 183 define the yearly datasets based on a version of the studbook dated the 21st of 184 April, 2017 (Supplementary Table S1). Yearly cohorts include CAP-CB 185 individuals born in the year (typically between March and May) that were still 186 alive on the 1st of November (i.e. only each year's surviving newborns were 187 included; Supplementary Figure S1b). Yearly censuses include all living 188 captive individuals on the 1st of November of each year (Supplementary Figure 189 S1c). 190 Additionally, free-living wild-born individuals (FRL-WB) coming from 191 the remnant populations of AND (FRL-WB-AND) and DON (FRL-WB-DON)

were used for comparison with CAP-WB individuals. A map showing the
location of both remnant populations as well as the breeding facilities is
provided in Supplementary Figure S2.

195

196 Samples & DNA extraction

197 A total of 239 captive individuals, sampled during routine check-ups or 198 necropsies between 2003 and 2015, were genotyped for this study, including 199 an exhaustive sampling of wild-born individuals (49 out of 50 CAP-WB 200 individuals; the unsampled one died before contributing any descendants). 201 Thirty-six of these individuals were of pure AND genetic background, nine of 202 pure DON genetic background, and the remaining four, which were born in the 203 DON population following translocations of AND animals, were first 204 backcrosses to DON individuals (descendants of DON x F1 matings). With 205 regard to the 190 CAP-CB individuals, the sampling was comprehensive until 206 2011, with the exception of some rare cases of abortions and a few other 207 individuals that died before breeding. From 2012 to 2015, the genotyped 208 samples covered between 63% and 94% of each year's cohort. 209 Whole blood from living animals was mixed with four volumes of lysis 210 buffer (0.1 M Tris-HCl, pH 8.0; 0.1 M Na-EDTA; 0.01 M NaCl, 0.5% SDS) 211 immediately after collection and stored at 4 °C. Tissue samples (mainly 212 muscle) from dead animals were frozen and kept at -80 °C. DNA was extracted 213 from all samples using standard phenol-chloroform methods (Sambrook and 214 Russell, 2006).

As for the remnant populations, genotypes previously reported in

216 Casas-Marce et al. (2013) from a total of 50 FRL-WB-DON and 54 FRL-WB-

217 AND individuals were used to gauge representativeness of CAP-WB

218 individuals.

219

220 Microsatellite genotyping

221 Samples were genotyped for 36 heterospecific microsatellite loci as 222 previously reported (Casas-Marce et al., 2013). Fluorescently labelled 223 products were amplified in separate PCRs containing 1x Bioline PCR buffer, 2 224 mM MgCl2, 0.25 mM dNTPs, 0.01 mg/mL BSA, 0.4 µM of each primer, 0.4U of 225 Bioline Tag polymerase and 50 ng of template in a total volume of 14 μ L and 226 were run for 2' at 92 °C, followed by 39 cycles of 30" at 92 °C, 30" at 55 °C and 227 30" at 72 °C, and a final extension of 5' at 72 °C. Products were analysed in an 228 ABI 3130xl Genetic Analyzer (Applied Biosystems), and the scoring of alleles 229 was carried out using GENEMAPPER, version 3.7 software (Applied 230 Biosystems). 231 A previous study of wild populations did not yield evidence of null

alleles, high error rates, or deviations from Hardy-Weinberg equilibrium for
both populations for any of the markers (Casas-Marcé et al., 2013). Here we

used the software CERVUS 3.0.7 (Marshall *et al.*, 1998; Kalinowski *et al.*, 2007)

and the completely known *ex situ* pedigree to tally Mendelian inconsistencies

across all 190 CAP sire-dam-offspring triads as a proxy for error rate. All

237 genotypes obtained in this study are reported in Supplementary Table S2.

238

239 Molecular data analyses

240	Genetic diversity and differentiation. With the aim of comparing wild
241	and captive genetic variation, genetic diversity statistics were estimated in R
242	(The R Core Team, 2015) using the PopGenReport package (Adamack and
243	Gruber, 2014), including observed (H_0) and expected heterozygosity (H_E),
244	mean number of alleles per locus (NA), and allelic richness (AR; the average
245	number of alleles per locus rarefied to the smallest number of alleles seen in a
246	sample across all combinations of population and locus). These statistics were
247	obtained for the CAP population, CAP-WB individuals, subsets that included
248	only pure captive individuals born in Doñana (CAP-WB-DON) or Andújar
249	(CAP-WB-AND), and the aforementioned FRL-WB-DON and FRL-WB-AND
250	populations. F_{IS} (population inbreeding coefficient) values were estimated
251	with FSTAT v2.9.3 (Goudet, 1995, 2002). Four admixed (backcross DON) CAP-
252	WB-DON individuals were excluded from most analyses pertaining to
253	founders. Significance of differences in average H_{0},H_{E},N and AR between CAP-
254	WB and FRL-WB individuals were tested for both DON and AND using a two-
255	tailed paired Wilcoxon signed rank test. To illustrate the distribution of alleles
256	between these two groups, Venn diagrams were drawn using the R package
257	VennDiagram (Chen and Boutros, 2011) for all observed alleles and for a
258	reduced dataset in which all alleles with a single occurrence were pruned out.
259	We assessed differentiation between the CAP-WB sets and their
260	respective source FRL-WB population for each locus and across loci by
261	estimating $F_{\mbox{\scriptsize ST}}$ (Weir and Cockerham, 1984), as implemented in FSTAT, and
262	Jost's D (Jost, 2008) as given by PopGenReport. Additionally, we obtained $F_{\mbox{\scriptsize ST}}$

values and 99% confidence intervals among the four main breeding centres
(A, S, G & O) at the end of our sampling period (year 2015). We considered
significant those F_{ST} values that did not include zero in their 99% confidence
interval.

We also estimated the variation over time in H_0 and H_E , per locus and across loci, for CAP-CB individuals (cohorts approach), or for the whole CAP population as well as the CAP-WB and CAP-CB subsets of individuals (census approach) using the advanced frequency-based analysis module in GENALEX 6.5 (Peakall and Smouse, 2012). To assess the evolution of inbreeding we estimated F_{IS} for CAP-CB individuals (cohorts and census approaches) and the whole CAP population (census approach).

274 Relatedness and relationships. A two-step approach was used for the 275 estimation of relatedness (R) between CAP-WB individuals from molecular 276 marker genotypes. First, we used the *weighted equal drift similarity* (WEDS) 277 estimator proposed by Oliehoek et al. (2006) and implemented in the 278 software REA v0.2, with the option of β 2 correction. The WEDS estimator 279 adjusts observed molecular similarities so that the increase in co-ancestry 280 since the base population is equal at all loci. The β 2 correction regresses 281 relatedness estimates to their mean using $\beta 2$ (the regression coefficient of 282 pedigree relatedness on estimated relatedness) empirically predicted from 283 the amount of molecular information. The corrected WEDS estimator was 284 shown to conserve a higher proportion of diversity than other estimators 285 under an optimal contribution scheme, particularly so in structured 286 populations (Oliehoek et al., 2006). However, kinships estimated with this

287 method do not range from zero to one as expected for a true kinship. Thus, we 288 also used the methodology implemented in the software MOLCOANC v3.0 289 (Fernández and Toro, 2006) to obtain a congruent kinship matrix. This 290 software creates a virtual genealogy for the founders in such a way that the 291 correlation between the genealogical kinship calculated from that virtual 292 pedigree has the highest correlation with a provided matrix (the one from 293 REA v0.2 in our case). The methodology is able to account for any *a priori* 294 known relationship (e.g. a couple of individuals sharing a parent) and to 295 detect Mendelian incompatibilities in the proposed families. The number of 296 generations above the founders was set to three, which provided a correlation 297 between matrices of around 98%. Any time a new founder is added to the ex 298 *situ* population the kinship matrix is re-evaluated in order to accommodate 299 the relationships of the new incorporation. 300 Additionally, with the aim of assessing the occurrence of close 301 relatives among founders from the same population, we used the software

302 ML-RELATE (Kalinowski et al., 2006) to calculate maximum likelihood 303 estimates of relatedness and relationship, to compare between alternative 304 relationship categories (PO: parent-offspring; FS: full-siblings; HS: half-305 siblings; UR: unrelated) and to identify a "confidence set" of categories for 306 each pair of individuals. On the basis of the latter, we conservatively 307 considered as related only those pairs for which the 95% confidence set did 308 not include the UR category, as unrelated those with only UR included in the 309 set, and as ambiguous those with any combination of unrelated and related 310 categories. For this purpose, we analysed only intra-population pairs using the

311	empirical allele frequencies of each population, so that these estimates re	eflect

- only the most recent genealogy.
- 313

314 Pedigree analyses

- Pedigree analyses for a version of the studbook dated the 21st of April,
 2017 (Supplementary Table S1) were carried out with the software
 Population Management x (PMx; Lacy *et al.*, 2012). We estimated values for
 gene diversity (GD; measured as the reduction in H_E with respect to the
- founding population) and mean inbreeding (F) over time taking into account
- 320 or not the kinships among founders (empirical kinships ON vs. empirical
- 321 kinships OFF, respectively), which were estimated from molecular marker
- 322 data as detailed in the previous section.
- 323
- Optimal and realised ancestry proportions among founders and theoretical
 maximum H_E

326 We estimated the optimal proportion of founders (i.e. the contribution 327 of each genetic stock to the pool that would maximise its genetic diversity) 328 following the equation on page 1,369 of Toro & Caballero (2005), and on the 329 basis of the genetic diversity within, and Nei's minimum distance (Nei, 1973) 330 between, the two remnant populations empirically estimated from 331 microsatellite genotypes. We often refer to the H_E of this ideal mix as the 332 theoretical maximum H_E, and use it as a reference point to gauge the actual 333 estimated H_E.

334	For comparison purposes, we also inferred from the census the actual
335	proportion of CAP-WB individuals from each pool each year, as well as the
336	proportion of contributing founders (defined as those CAP-WB individuals
337	that had offspring before the end of 2017). For all practical purposes, CAP-WB
338	individuals coming from a first backcross of an F_1 individual with an
339	individual of DON ancestry contributed to calculations as 0.75 DON and 0.25
340	AND founders.
341	
342	
343	Results
344	
345	Genotyping
346	All samples were genotyped at a minimum of 25 (out of the 36 total)
347	loci, with 96% of them genotyped at 30 or more. Thus, no sample was
348	discarded because of a high proportion of missing data. The proportion of
349	genotypes with Mendelian inconsistencies across all CAP sire-dam-offspring
350	trios in the dataset was 1.35%, indicating a low overall error rate.
351	
352	Comparing wild and captive genetic variation
352 353	Comparing wild and captive genetic variation <i>Genetic diversity and differentiation.</i> Average number of alleles
353	Genetic diversity and differentiation. Average number of alleles
353 354	<i>Genetic diversity and differentiation.</i> Average number of alleles observed per locus for CAP (3.81; range: 2-11) was similar to previously

358 respectively), as expected for an admixed population (Table 1). As previously 359 reported, the genetic diversity of CAP-WB-AND was higher than that of CAP-360 WB-DON (Casas-Marce et al., 2013). We found no significant differences in any 361 of the diversity statistics in comparisons between CAP-WB-AND and FRL-WB-362 AND populations (Wilcoxon test: P > 0.05), but NA and AR were significantly 363 lower in CAP-WB-DON than in FRL-WB-DON (P < 0.012 and $P < 1.226 * 10^{-06}$, 364 respectively). 365 The sets of alleles in each pool of CAP-WB individuals and in their 366 respective FRL-WB population were largely overlapping, more so for AND 367 (where only two and three alleles were private to the FRL-WB and CAP-WB 368 populations, respectively) than for DON (where 12 alleles sampled in FRL-WB 369 were not represented in CAP-WB, and one was exclusive to the latter). 370 Differences between FRL-WB and CAP-WB sets were noticeably reduced when 371 alleles with only one occurrence (singletons, most likely arising from 372 genotyping errors or mutations) were ignored: only one and three alleles 373 were private to FRL-WB-AND and FRL-WB-DON populations, respectively, 374 and none was private to the CAP-WB population (Fig. 1). 375 Finally, genetic differentiation was extremely low between CAP-WB-376 DON and FRL-WB-DON populations (F_{ST} = -0.001; 99% CI [-0.022, 0.029]), and 377 even lower for AND (F_{ST} = -0.009; 99% CI [-0.011, -0.006]). These slightly 378 negative values suggest that variance is higher within than between groups. 379 In summary, lack of structure between founders and their source 380 population indicate that both genetic stocks are reasonably well represented

381 in captivity, whereas diversity statistics suggest a slightly incomplete

- 382 representation of wild allelic variation in founders from DON.
- 383

384 Optimal and realised ancestry proportion among founders and 385 theoretical maximum H_E. According to theoretical predictions, and given the 386 unbiased expected homozygosity of each genetic stock (DON: 0.703; AND: 387 (0.541) and observed Nei's minimum distance between the two (0.3), a 388 proportion of 0.36 founders from DON and 0.64 from AND (~1:2 DON:AND) 389 would yield the theoretical maximum H_E of 0.54 (Supplementary Figure S3). 390 The actual proportion of founders from each remnant population has changed 391 over the years and is approaching -but has not yet reached- this optimum, 392 showing a relative deficit of CAP-WB-DON individuals for most of the study 393 period (Supplementary Figure S4). This may have contributed to a realized H_E 394 a little below the theoretical maximum at the end of the study period (see 395 below). 396 397 Molecular estimation of relatedness among CAP-WB individuals. 398 399 Table S3. Average R was notable (R = 0.098 after excluding self-relatedness). 400 The actual distribution exhibited a marked bimodality in which the mode

Relatedness values among CAP-WB individuals are reported in Supplementary 401 closer to zero amassed relatedness between DON and AND individuals and the 402 higher mode encompassed relatedness within each genetic pool (Fig. 2). The 403 subsequent shoulder and a long tail suggest the existence of certain pairs of

404 moderately related founders within both stocks, but mainly within the DON405 subset.

406	To characterise relationships between founders better, we obtained
407	maximum likelihood inferences of relatedness among pairs within each
408	genetic CAP-WB stock using the observed allelic frequencies of each
409	population (Supplementary Tables S4 and S5). We obtained moderate levels
410	of ambiguous kinship; in other words, many individuals could not be assigned
411	unambiguously as unrelated or related, especially in the DON stock, where
412	diversity was lower and relationships are known to be more complex
413	(Lucena-Perez et al., 2018). Nevertheless, both stocks were confirmed to
414	include a number of related pairs (resolved with a confidence of 95%),
415	including some instances of FS and PO relationships (Supplementary Figure
416	S5).
417	
418	Evolution of diversity over the years
419	<i>Molecular statistics.</i> Average H_0 of the CAP-CB cohorts fluctuated over
420	the years, mostly driven by the degree of admixture of the two differentiated
421	genetic stocks of DON and AND (Fig. 3a). H_0 peaked in years when most of the
422	offspring were F1, decreased later when successive generations of admixture
423	(backcrosses) became more frequent, and then stabilized in more recent years
424	around the theoretical maximum value for H_{E} H_{0} consistently stayed above

- $425 \qquad H_{E}, resulting in negative \, F_{IS} \, throughout \, the \, entire \, history \, of \, the \, captive$
- 426 population, an expected outcome of the inbreeding avoidance strategy

427 implemented by the genetic management programme, which has favoured the428 mating of least related couples (Fig. 3a and 3b).

429	The whole population (census approach) followed a pattern similar to
430	that of cohorts: while H_0 exceeded H_{E} in CAP-CB individuals, reaching higher
431	values in years with a higher proportion of F_1 individuals, CAP-WB individuals
432	exhibited the opposite pattern, i.e. H_{E} –which seemed to flatten above 0.5
433	following the stabilisation of allelic frequencies– was higher than average H_{0}
434	(Fig. 4a and 4b). Since the CAP-WB group resulted from the pooling of two
435	differentiated populations, such a Wahlund effect (Wahlund, 1928) was
436	expected. Consistent with this, global $F_{\mbox{\scriptsize IS}}$ for the whole CAP population was
437	positive in the early phase of the <i>ex situ</i> programme (when CAP-WB was the
438	major, or even only, component), and subsequently steadily decreased as the
439	proportion of admixed individuals continued to increase, finally reaching a
440	negative value in the last year of our study (Fig. 4c).
440 441	negative value in the last year of our study (Fig. 4c). Regarding the structure between facilities in 2015, F_{ST} values were low
441	Regarding the structure between facilities in 2015, F_{ST} values were low
441 442	Regarding the structure between facilities in 2015, F_{ST} values were low between all pairs of breeding facilities, although still significant for the
441 442 443	Regarding the structure between facilities in 2015, F _{ST} values were low between all pairs of breeding facilities, although still significant for the Acebuche-Granadilla, Granadilla-Olivilla, and Acebuche-Olivilla pairs. The
441 442 443 444	Regarding the structure between facilities in 2015, F _{ST} values were low between all pairs of breeding facilities, although still significant for the Acebuche-Granadilla, Granadilla-Olivilla, and Acebuche-Olivilla pairs. The highest value (0.018; 99% CI [0.009, 0.028]) was found between Acebuche
441 442 443 444 445	Regarding the structure between facilities in 2015, F _{ST} values were low between all pairs of breeding facilities, although still significant for the Acebuche-Granadilla, Granadilla-Olivilla, and Acebuche-Olivilla pairs. The highest value (0.018; 99% CI [0.009, 0.028]) was found between Acebuche and Granadilla, while the lowest (-0.005; 99% CI [-0.012, 0.001]) was
441 442 443 444 445 446	Regarding the structure between facilities in 2015, F _{ST} values were low between all pairs of breeding facilities, although still significant for the Acebuche-Granadilla, Granadilla-Olivilla, and Acebuche-Olivilla pairs. The highest value (0.018; 99% CI [0.009, 0.028]) was found between Acebuche and Granadilla, while the lowest (-0.005; 99% CI [-0.012, 0.001]) was
441 442 443 444 445 446 447	Regarding the structure between facilities in 2015, F _{ST} values were low between all pairs of breeding facilities, although still significant for the Acebuche-Granadilla, Granadilla-Olivilla, and Acebuche-Olivilla pairs. The highest value (0.018; 99% CI [0.009, 0.028]) was found between Acebuche and Granadilla, while the lowest (-0.005; 99% CI [-0.012, 0.001]) was observed for the Silves and Olivilla comparison (Supplementary Figure S6).

451 accounting for the empirical relatedness between founders, however, GD

452	tends towards a value around 0.87 (Fig. 5a).
453	Under the assumption of zero relatedness between founders, the
454	breeding programme has been able to keep inbreeding at bay (F < 10^{-4} up to
455	2015). When considering molecular kinships, however, the picture is starkly
456	different (Fig. 5b). In earlier years values up to nearly 0.2 were reached, likely
457	reflecting recruitment of wild-born individuals with varying degrees of
458	inbreeding. In later years, inbreeding has fluctuated around 0.1.
459	
460	

461 Discussion

462

463	Since its inception in 2003, the Iberian lynx <i>ex situ</i> programme has
464	become a major pillar on which conservation efforts to save the species from
465	extinction rest. Although its course of action has been clearly validated in
466	demographic terms, evaluating its success from a genetic point of view is not
467	as straightforward. A thorough study was necessary to either back the
468	adopted set of measures and decisions or shed light on potential concerns or
469	amendable issues. In this study, we discovered that the species' remnant
470	genetic diversity is fairly well represented in the CAP population, more so for
471	the AND genetic background than for the DON one. Considering that the
472	heterozygosity of the CAP population has been approaching the theoretical
473	maximum level, and its mean inbreeding has been constantly shrinking, the
474	programme's genetic management has been satisfactory. Moreover,

475 differentiation between breeding facilities is also negligible. In short, the

476 programme has thus far been able to achieve its goals from a genetic

477 perspective.

478

479 1. To mix or not to mix

480 A first important decision to be made when genetically differentiated 481 populations persist is whether to mix them and manage them as a single unit 482 or to keep them separated in captivity. In those cases where remnant 483 populations have different local adaptations or a long history of isolation, 484 mixing stocks could potentially lead to a reduction in the biological fitness of 485 the hybrid offspring (outbreeding depression) due to extrinsic or intrinsic 486 factors (Templeton, 1986; Lynch, 1991; The SSC Re-introduction Specialist 487 Group, 1995). In contrast, when differentiation is due to stochastic processes, 488 and/or when the risk of inbreeding in the source populations far outweighs 489 the risk of outbreeding, mixing affords the potential advantages of maximising 490 genetic diversity and boosting fitness of hybrid individuals (Chesser, 1983; 491 Lacy, 1987). For the Iberian lynx ex situ programme, it was decided that the 492 two remnant populations of DON and AND should be mixed in order to restore 493 the highest possible amount of historical diversity and to limit inbreeding 494 depression. This decision, originally informed by accumulated signs of 495 inbreeding depression (Peña et al., 2006; Jiménez et al., 2008; Palomares et al., 496 2012; Ruiz-López et al., 2012) and historical range reconstructions showing 497 likely connections in the recent past, has recently been further validated by an 498 extensive analysis of the historical variation in the species, which showed a

499	progressive loss of genetic diversity within populations and the accumulation
500	of genetic differentiation among them, resulting from the contraction and
501	fragmentation that took place in the latter half of the 20th century (Casas-
502	Marce <i>et al.</i> , 2017). Even though the estimated date of divergence of the two
503	remnant populations (ca. 200 ybp) was earlier than previously thought based
504	on range reconstructions (around 50 ybp), the absence of major
505	environmental differences and the evidence of gene flow in the recent past do
506	conclusively support the management of the two remnant populations as a
507	single unit in captivity as well as in the wild (Frankham et al., 2011). These
508	points also validate the genetic reinforcement of DON through the
509	translocation of animals from AND which was initiated in 2007 (Simón et al.,
510	2012).
511	The fitness consequences of admixture in the Iberian lynx have not
512	been formally analysed yet, but as often observed (e.g., Frankham, 2016), the
512 513	been formally analysed yet, but as often observed (e.g., Frankham, 2016), the fitness of outbred individuals coming from admixture of the two inbred lines
513	fitness of outbred individuals coming from admixture of the two inbred lines
513 514	fitness of outbred individuals coming from admixture of the two inbred lines appears to be higher, and at the very least it is not lower than that of their
513 514 515	fitness of outbred individuals coming from admixture of the two inbred lines appears to be higher, and at the very least it is not lower than that of their pure, inbred counterparts, both in captivity and in the wild (Simón <i>et al.</i> ,
513 514 515 516	fitness of outbred individuals coming from admixture of the two inbred lines appears to be higher, and at the very least it is not lower than that of their pure, inbred counterparts, both in captivity and in the wild (Simón <i>et al.</i> ,
513 514 515 516 517	fitness of outbred individuals coming from admixture of the two inbred lines appears to be higher, and at the very least it is not lower than that of their pure, inbred counterparts, both in captivity and in the wild (Simón <i>et al.</i> , 2012).
513 514 515 516 517 518	fitness of outbred individuals coming from admixture of the two inbred lines appears to be higher, and at the very least it is not lower than that of their pure, inbred counterparts, both in captivity and in the wild (Simón <i>et al.</i> , 2012). 2. Representativeness.
513 514 515 516 517 518 519	fitness of outbred individuals coming from admixture of the two inbred lines appears to be higher, and at the very least it is not lower than that of their pure, inbred counterparts, both in captivity and in the wild (Simón <i>et al.</i> , 2012). 2. Representativeness. One of the main goals of <i>ex situ</i> conservation is to safeguard genetic

522 DON and AND seem to have been represented well in captivity, as revealed by

523	our analyses on private alleles and particularly by the extremely low $F_{\mbox{\scriptsize ST}}$
524	values between each founder subset and their source population. As expected,
525	our results suggest that of the two CAP-WB stocks, the smaller CAP-WB-DON
526	(N=9 pure and 4 backcross individuals) provides a slightly worse
527	representation of its source than its counterpart from AND (N=36), as
528	indicated by its higher proportion of unsampled alleles (Figure 1) and
529	significant differences in NA and AR (Table 1). Thus, recruiting pure DON
530	individuals should be a priority in the near future. On the other hand, once a
531	source population is well represented genetically, as is now the case for SMO,
532	randomly selected new founders will likely make a relatively small
533	contribution to the global genetic diversity and may rank low in breeding
534	priority. Given this situation, together with current space limitations, carefully
535	selecting potential founders based on their average kinship to the current
536	captive population becomes a priority.
537	A related but different matter concerns the proportions in which the
538	two genetic stocks should be mixed in captivity, considering the difference in
539	their genetic diversity and the level of genetic differentiation observed
540	between them. Our estimated optimal contribution of about two AND lynx for
541	every DON individual (0.64 vs. 0.36) has not quite yet been realised, as the
542	AND stock has been overrepresented since 2003 to the detriment of the DON
543	one. Empirical proportions did approach the optimal ones in the last few years
544	of the study (0.71 vs. 0.29 in 2015, when they were the closest), and do so
545	even more at present (data not shown), so it is expected that the H_{E} of the
546	captive population will continue to close in on the theoretical maximum in the

near future. For the time being, this observation underlines the importance ofprioritising DON founders versus AND ones in the short term.

549

550 3. Effectiveness of genetic management

551 Management in *ex situ* conservation programmes typically invokes 552 pedigree-based kinships assuming unrelated founders. However, such an 553 assumption dismisses the possible genetic structure between, and kinship 554 structure within, the source populations (e.g. Astle and Balding, 2009), which 555 are common situations when dealing with recently declined and fragmented 556 populations, such as those of the Iberian lynx. Molecular markers, on the other 557 hand, can provide insights into these processes, and marker-based relatedness 558 estimators have been developed specifically for structured populations 559 (Oliehoek et al., 2006). Microsatellite genotypes have been previously used in 560 breeding programmes to augment pedigree-based management (Jones *et al.*, 561 2002; Gonçalves Da Silva et al., 2010; Henkel et al., 2012), while more 562 recently, SNP-derived kinships have informed the genetic management of the 563 whooping crane (*Grus americana*; Boardman *et al.*, 2017) and Tasmanian devil 564 (Sarcophilius harissii; Hogg et al., 2017). Unfortunately, these are among the 565 few existing examples of direct usage of molecular kinships within breeding 566 programmes (Norman et al., 2019). 567 Currently, the Iberian lynx captive population is genetically managed 568 using a mixture of both pedigree- and molecular-based approaches, where 569 kinships among all founders are estimated based on genotypes for the 36

570 microsatellite set, and pedigree-based kinships are calculated for the

571 remainder of the population taking the estimated founder kinships into 572 consideration. Here we found moderate levels of relatedness among founders, 573 evidence of the recent structure within both wild populations, and particularly 574 in DON. It is therefore likely that a hypothetical alternative management 575 assuming unrelated founders would have yielded a suboptimal outcome. 576 Results from PMx show that ignoring relationships between founders can lead 577 to a gross overestimation of GD and underestimation of mean inbreeding in 578 the population. To be more specific, under the assumption of zero relatedness 579 among founders, no inbreeding accumulated during the period of our study, 580 but when the empirical matrix is accounted for, the average population 581 inbreeding fluctuated around a non-negligible value of 0.1 (Figure 5). It must 582 be noted that ignoring relatedness among founders will generally lead to the 583 underestimation of inbreeding for any given genealogy, but more importantly, 584 to suboptimal mating schemes (i.e. a different genealogy) that would result in 585 an otherwise avoidable accumulation of inbreeding. Overall, our findings 586 argue against the founder assumption whenever a certain level of inbreeding 587 and/or relatedness among founders cannot be discarded, as typically occurs 588 in admixed captive populations. 589 In such instances, a natural consequence of applying a minimum 590 kinship based strategy is that genetic structure between the two (or more) 591 source populations weighs heavily in the design of the matings, so 592 interpopulation crosses that generate hybrids are often favoured. 593 Genetic management in breeding programmes should be planned in 594 advance. Particularly, the consideration of kinship among founders is most

595	necessary at an early stage, as allelic frequencies in a population managed by
596	minimum mean kinship equalise after four to five generations, so that
597	information on founder relationships may not have any significant effect on
598	genetic trends at these later stages (Schäfer and Reiners, 2017).
599	Molecular kinship holds the convenience of reflecting realised instead
600	of average expected kinship; however, it has been argued to be preferable to
601	genealogical information only when estimated from high-density molecular
602	data (Gómez-Romano <i>et al.,</i> 2013; Kardos <i>et al.,</i> 2015). Indeed, estimates of
603	relatedness and other genetic parameters based on a limited number of
604	hypervariable markers such as microsatellites have been argued to have high
605	sampling variances and can be inaccurate (Blouin et al., 1996; Csilléry et al.,
606	2006), particularly so in genetically eroded populations (Tokarska et al.,
607	2009). However, our set of 36 microsatellites, which is larger than the average
608	size used in wildlife studies (Witzenberger and Hochkirch, 2011), has a low
609	overall genotype error rate as judged by the small proportion of Mendelian
610	errors in the pedigree, and holds moderate power to classify individuals in
611	kinship categories, properly discriminating full-siblings from half-siblings in
612	75% of the cases and from unrelated individuals in over 99% of them
613	(Kleinman-Ruiz et al., 2017). Furthermore, we only used molecular
614	information to assess the relatedness among founders, for which no genealogy
615	is available, but relied on the fully known genealogy otherwise.
616	The Iberian lynx <i>ex situ</i> programme is arranged in breeding facilities as
617	a security measure in case of catastrophes. Since matings are performed
618	within centres, genetic management also pursues the minimisation of genetic

structure among the facilities to restrict the rise of inbreeding. The nearly
negligible but still significant levels of structure that we observe here support
the maintenance of translocations of individuals at current or even slightly
higher levels.

623

624 4. Needs, challenges and recommendations

625 Deleterious traits with a likely genetic basis are a pervasive challenge 626 for ex situ conservation programmes (Laikre, 1999 and the references 627 therein), and the Iberian lynx' is no exception. Idiopathic epilepsy occurring at 628 moderate frequency in captivity causes a number of cubs at the age of around 629 two months to go through episodes of seizures and eventually die unless 630 treated (Martínez et al., 2013). Its segregation pattern suggests a simple 631 genetic basis with recessive inheritance, but without further knowledge, 632 management of this trait has consisted of excluding affected individuals from 633 the pool of breeders, and avoiding crosses between any two identified 634 carriers. Not only can these restrictions interfere with minimum kinship 635 breeding recommendations, they also imply a general lessening of the 636 breeding programme's performance as unbreedable individuals add up and 637 occupy more enclosures. While relocating this surplus to external parties 638 (such as zoos) can alleviate the saturation, it does not tackle the root cause of 639 the problem. Further research is encouraged to narrow down the cause of this 640 and other genetic disorders, such as cryptorchidism, and to identify carriers 641 molecularly with the objective of incorporating selection measures against the

responsible alleles, as is being done to manage chondrodystrophy in theCalifornia condor (Ryder *et al.*, 2016).

644 Beyond its role as an insurance population, the Iberian lynx *ex situ* 645 population has also provided the majority of individuals for reintroduction. 646 Between 2010 and 2017, a total of six populations were founded across the 647 southern half of the Iberian Peninsula by sub-adults released from captivity on 648 a yearly basis. Under these circumstances, it is necessary to strike a balance 649 between the number (and composition) of released and kept individuals, in 650 order not to distort the age pyramid nor the allelic frequencies of the 651 insurance population. Moreover, since all reintroduced populations are meant 652 to be representative of the captive stock and, eventually, act as a single 653 metapopulation, the distribution of individuals among release sites should 654 ideally be based on up-to-date allelic frequencies and/or genealogical data at 655 each site. This scenario requires an intensive and integrative individual-based 656 genetic monitoring that records survival, reproduction and dispersal in all 657 reintroduced populations. To fulfil this requirement, current practices based 658 on camera-trapping and radio and GPS telemetry should be complemented 659 with non-invasive genetic monitoring, which would allow for the assessment 660 of progress towards the final objectives of the interactive *in situ/ex situ* 661 strategy (Attard et al., 2016). 662 Following the publication of the Iberian lynx genome (Abascal et al., 663 2016), small panels of optimal, genome-wide SNPs were selected based on the

allelic frequencies of the captive population and compared to the set of 36

665 microsatellites upon which genetic management of the species has relied so

666	far (Kleinman-Ruiz et al., 2017). According to this study, these SNP panels
667	provide more power than the current 36-microsatellite panel to carry out
668	routine conservation tasks such as the identification of individuals, parentage
669	assignment, or relatedness estimation, and they are also best suited for
670	application to non-invasive samples. Hence, they are positioned as the most
671	convenient and effective tool on which to base the genetic monitoring and
672	integrative management of all Iberian lynx populations in the future.
673	It is important to keep in mind <i>ex situ</i> conservation strategies involve
674	huge resource investments (Conway, 1986), which many authors argue
675	should rather be diverted into <i>in situ</i> measures (Caughley, 1994; Snyder <i>et al.</i> ,
676	1996). Moreover, <i>ex situ</i> actions will not be applicable to most threatened
677	species (Rahbek, 1993; Balmford <i>et al.</i> , 1995; Snyder <i>et al.</i> , 1996). And yet the
678	IUCN's Conservation Breeding Specialist Group have recommended captive
679	breeding for one third of vertebrate taxa at risk of extinction (Seal et al.,
680	1994). The opportunity, feasibility, and priority of an <i>ex situ</i> conservation
681	programme should be considered carefully case by case, and when
682	implemented, it must be scientifically managed and integrated into a
683	multifaceted species conservation plan (Russello and Amato, 2007; Bowkett,
684	2009).
685	The Iberian lynx <i>ex situ</i> breeding programme has been a key piece in
686	the multifaceted conservation of the Iberian lynx. After 12 years, it has
687	accomplished the two main goals that were set at the start. Firstly, it has
688	succeeded in establishing a demographically and genetically healthy ex situ
689	population that may act as a safeguard for the species in case of extinction in

690	the wild. Secondly, after a few years of internal growth, the population has
691	been serving as the almost exclusive source of individuals for reintroduction
692	in the wild. Besides, the programme has assembled a set of experts in many
693	different fields as well as fostered and coordinated research on issues of high
694	relevance for the conservation of the species, while becoming a major driver
695	of awareness and dissemination. Here we show how the Iberian lynx <i>ex situ</i>
696	programme has been quite effective in representing, boosting and maintaining
697	the low genetic diversity that survived the latest severe bottleneck of the
698	species while minimising the accumulation of inbreeding, which should
699	ultimately result in increased adaptive potential and average fitness. In this
700	regard, the Iberian lynx <i>ex situ</i> programme could serve as an example of
701	marker-assisted pedigree-based management for other species at similar
702	conservation stages.
700	

704

705 Acknowledgments:

706 Iberian lynx samples were contributed by the Iberian lynx *Ex Situ* Breeding 707 Programme, the Centro de Análisis y Diagnóstico de la Fauna Silvestre and the 708 LIFE projects LIFE06NAT/E/000209 and LIFE10NAT/ES/570, with 709 authorization of the Consejería de Medio Ambiente de la Junta de Andalucía. 710 Logistical support was provided by the Laboratorio de Ecología Molecular, 711 Estación Biológica de Doñana, CSIC (LEM-EBD). The study was funded by the 712 contract between the CSIC and the Consejería de Medio Ambiente de la Junta 713 de Andalucía "Caracterización genética de individuos y poblaciones andaluzas

714 de lince ibérico" and by the Spanish Dirección General de Investigación	714	de lince ibérico"	and by the Spanish	Dirección General d	e Investigación
---	-----	-------------------	--------------------	---------------------	-----------------

- 715 Científica y Técnica through projects CGL2006–10853/BOS, CGL2010-
- 716 21540/BOS and CGL2013-47755-P. DKR was supported by a PhD contract
- 717 from the Programa Internacional de Becas "La Caixa-Severo Ochoa". MCM was
- supported by a PhD JAE grant from the CSIC (Spanish National Research
- 719 Council). CS was supported by a Ciência Sem Fronteiras grant from the CNPq
- 720 (Brazilian National Research Council). Special thanks to David Aragonés from
- 721 Laboratorio de Sistemas de Información Geográfica y Teledetección, Estación
- 722 Biológica de Doñana, CSIC (LAST-EBD) for his help with the map, and to P.
- 723 James Macaluso Jr. for his assistance in the English editing of the manuscript.
- 724 We appreciate useful comments and suggestions from Maria Lucena-Perez,
- 725 Elena Marmesat, Ana Píriz, and three anonymous reviewers.
- 726
- 727 Conflict of Interest
- 728 The authors declare no conflict of interest.
- 729
- 730 Data archiving
- The datasets analysed in this study are available in our institutional repository
- 732 DIGITAL.CSIC (http://digital.csic.es).
- 733
- 734 References
- 735
- Abascal F, Corvelo A, Cruz F, Villanueva-Cañas JL, Vlasova A, Marcet-Houben
 M, et al. (2016). Extreme genomic erosion after recurrent demographic
 bottlenecks in the highly endangered Iberian lynx. *Genome Biol* 17: 251.
 Adamack AT, Gruber B (2014). PopGenReport: Simplifying basic population

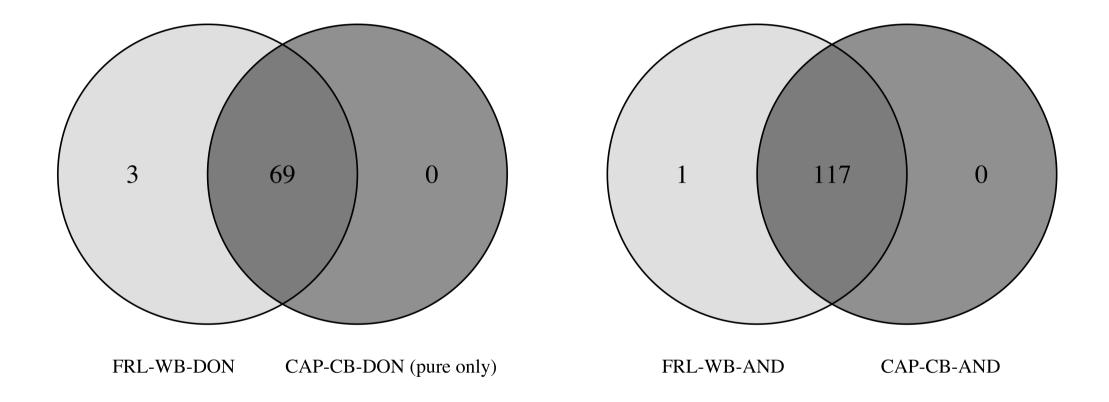
740	genetic analyses in R. <i>Methods Ecol Evol</i> 5 : 384–7.
741	Astle W, Balding DJ (2009). Population structure and cryptic relatedness in
742	genetic association studies. <i>Stat Sci</i> 24 : 451–71.
743	Attard CRM, Möller LM, Sasaki M, Hammer MP, Bice CM, Brauer CJ, et al.
744	(2016). A novel holistic framework for genetic-based captive-breeding
745	and reintroduction programs. <i>Conserv Biol</i> 30 : 1060–9.
746	Ballou JD, Lacy RC (1995). Identifying genetically important individuals for
747	management of genetic diversity in pedigreed populations. In: Ballou JD,
748	Gilpin M, Foose TJ (eds) Population management for survival and
749	<i>recovery</i> , Columbia University Press: New York, pp 76–111.
750	
	Ballou JD, Lees C, Faust LJ, Long S, Lynch C, Lackey LB, <i>et al.</i> (2010).
751	Demographic and genetic management of captive populations. In:
752	Kleiman DG, Thompson K, Kirk-Baer C (eds) Wild mammals in captivity,
753	principles and techniques, Univ. of Chicago Press: London & Chicago, pp
754	219–52.
755	Balmford A, Leader-Williams N, Green MJB (1995). Parks or arks. <i>Biodivers</i>
756	<i>Conserv</i> 4 : 595–607.
757	Blouin MS, Parsons M, Lacaille V, Lotz S (1996). Use of microsatellite loci to
758	classify individuals by relatedness. <i>Mol Ecol</i> 5 : 393–401.
759	Boardman K, Mace M, Peregoy S, Ivy JA (2017). Population analysis & breeding
760	transfer plan, whooping crane (Grus americana). AZA Species Survival
761	Plan.
762	Bowkett AE (2009). Recent captive-breeding proposals and the return of the
763	ark concept to global species conservation. <i>Conserv Biol</i> 23 : 773–6.
764	Butchart SHM, Walpole M, Collen B, van Strien A, Scharlemann JPW, Almond
765	REA, <i>et al.</i> (2010). Global biodiversity: Indicators of recent declines.
766	<i>Science</i> 328 : 1164–8.
767	Caballero A, Toro MA (2000). Interrelations between effective population size
768	and other pedigree tools for the management of conserved populations.
769	Genet Res 75 : 331–43.
770	Calzada J, Guzmán JN, Rodríguez A (2007). Lynx pardinus (Temminck, 1827).
771	Ficha libro rojo. In: Palomo L, Gisbert J, Blanco J (eds) Atlas y libro rojo de
772	los mamíferos terrestres de España, Dirección General para la
773	Biodiversidad-SECEM-SECEMU: Madrid, pp 345–7.
774	Casas-Marce M, Marmesat E, Soriano L, Martínez-Cruz B, Lucena-Perez M,
775	Nocete F, et al. (2017). Spatiotemporal dynamics of genetic variation in
776	the Iberian lynx along its path to extinction reconstructed with ancient
777	DNA. <i>Mol Biol Evol</i> 34 : 2893–907.
778	Casas-Marce M, Soriano L, López-Bao J V, Godoy JA (2013). Genetics at the
779	verge of extinction: insights from the Iberian lynx. <i>Mol Ecol</i> 22 : 5503–15.
780	Caughley G (1994). Directions in conservation biology. J Anim Ecol 63: 215-
781	44.
782	Chen H, Boutros PC (2011). VennDiagram: a package for the generation of
783	highly-customizable Venn and Euler diagrams in R. <i>BMC Bioinformatics</i>
784	12 : 12–35.
785	Chesser RK (1983). Isolation by distance: relationship to management of
786	genetic resources. In: Schonewald-Cox C, Chambers S, MacBryde B,
,00	Senere resources. In. Senonewalu-Gox G, Ghambers S, MacDi yue D,

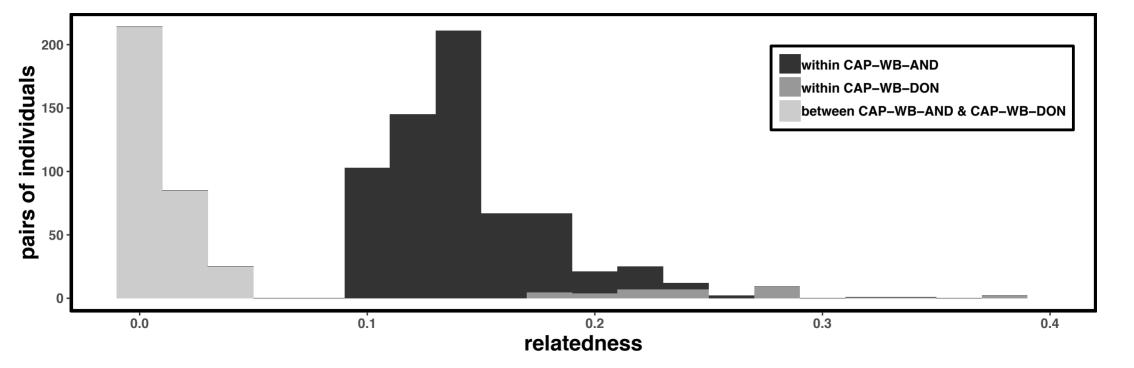
787	Thomas W (eds) Genetics and conservation: a reference for managing wild
788	animal and plant populations, Benjamin Cummings Publishing Co.:
789	London & Amsterdam, pp 66–77.
790	Conway WG (1986). The practical difficulties and financial implications of
791	endangered species breeding programmes. <i>Int Zoo Yearb</i> 24 : 210–9.
792	Csilléry K, Johnson T, Beraldi D, Clutton-Brock T, Coltman D, Hansson B, et al.
793	(2006). Performance of marker-based relatedness estimators in natural
794	populations of outbred vertebrates. <i>Genetics</i> 173 : 2091–101.
795	Dobrynin P, Liu S, Tamazian G, Xiong Z, Yurchenko AA, Krasheninnikova K, et
796	al. (2015). Genomic legacy of the African cheetah, Acinonyx jubatus.
797	Genome Biol 16 : 277.
798	Fernández BJ, Toro MA (1999). The use of mathematical programming to
799	control inbreeding in selection schemes. J Anim Breed Genet 116 : 447–
800	66.
801	Fernández J, Toro MA (2006). A new method to estimate relatedness from
802	molecular markers. <i>Mol Ecol</i> 15 : 1657–67.
803	Fernández J, Toro MA, Caballero A (2004). Managing individuals'
804	contributions to maximize the allelic diversity maintained in small,
805	conserved populations. <i>Conserv Biol</i> 18 : 1358–67.
806	Frankham R (2008). Genetic adaptation to captivity in species conservation
807	programs. <i>Mol Ecol</i> 17 : 325–33.
808	Frankham R (2016). Genetic rescue benefits persist to at least the F3
809	generation, based on a meta-analysis. <i>Biol Conserv</i> 195 : 33–6.
810	Frankham R, Ballou JD, Briscoe DA (2010). <i>Introduction to conservation</i>
811	genetics, 2nd edn. Cambridge University Press: Cambridge.
812	Frankham R, Ballou JD, Eldridge MDB, Lacy RC, Ralls K, Dudash MR, et al.
813	(2011). Predicting the probability of outbreeding depression. <i>Conserv</i>
814	<i>Biol</i> 25 : 465–75.
815	Godoy JA, Casas-Marcé M, Fernández J (2009). Genetic issues in the
816	implementation of the Iberian lynx ex situ conservation programme. In:
817	Vargas A, Breitenmoser C, Breitenmoser U (eds) Iberian lynx ex situ
818	conservation: an interdisciplinary approach, Fundación Biodiversidad in
819	collaboration with: International Union for Conservation of Nature,
820	Species Survival Commission (IUCN /SSC) Cat Specialist Group: Madrid,
821	pp 86–99.
822	Gómez-Romano F, Villanueva B, de Cara MA, Fernández J (2013). Maintaining
823	genetic diversity using molecular coancestry: the effect of marker density
824	and effective population size. <i>Genet Sel Evol</i> 45 : 38.
825	Gonçalves Da Silva A, Lalonde DR, Quse V, Shoemaker A, Russello MA (2010).
826	Genetic approaches refine ex situ lowland tapir (Tapirus terrestris)
827	conservation. <i>J Hered</i> 101 : 581–90.
828	Goudet J (1995). FSTAT (version 1.2): a computer program to calculate F-
829	statistics. J Hered 86 : 485–6.
830	Goudet J (2002). FSTAT, a program to estimate and test gene diversities and
831	fixation indices (version 2.9.3).
832	https://www2.unil.ch/popgen/softwares/fstat.htm.
833	Guzmán JN, García FJ, Garrote G, Pérez de Ayala R, Iglesias C (2004). <i>El lince</i>

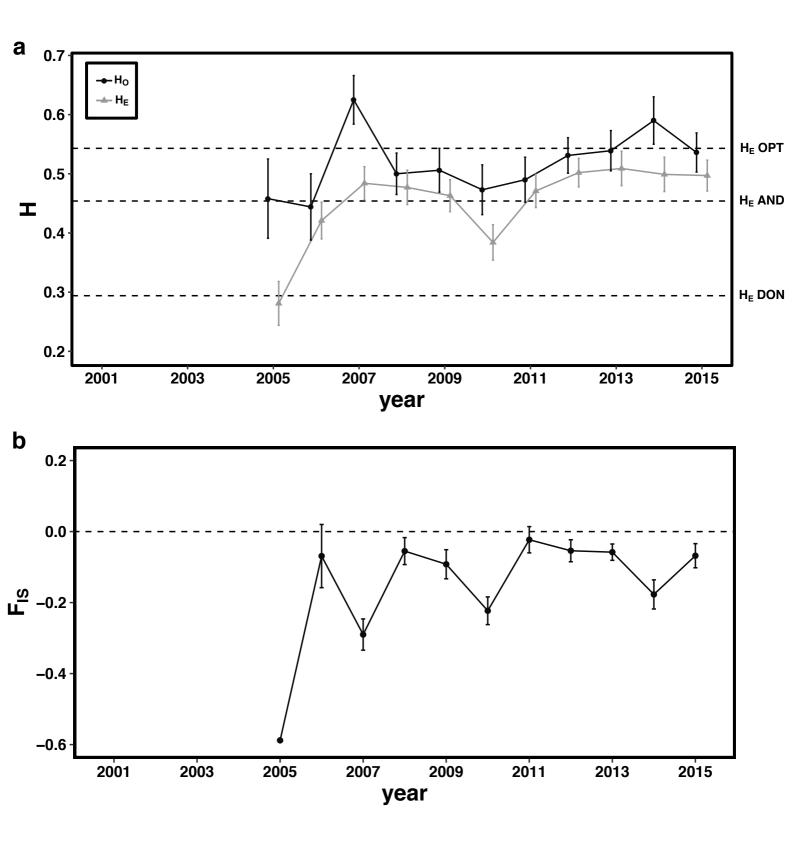
834	ibérico (Lynx pardinus) en España y Portugal. Censo diagnóstico de sus
835	poblaciones. Dirección General para la Biodiversidad: Madrid.
836	Henkel JR, Jones KL, Hereford SG, Savoie ML, Leibo SP, Howard JJ (2012).
837	Integrating microsatellite and pedigree analyses to facilitate the captive
838	management of the endangered Mississippi sandhill crane (Grus
839	canadensis pulla). Zoo Biol 31 : 322–35.
840	Hoffmann M, Hilton-Taylor C, Angulo A, Böhm M, Brooks TM, Butchart SHM, et
841	al. (2010). The impact of conservation on the status of the world's
842	vertebrates. <i>Science</i> 330 : 1503–9.
843	Hogg CJ, Grueber CE, Pemberton D, Fox S, Lee A V, Ivy JA, et al. (2017). "Devil
844	Tools & Tech": a synergy of conservation research and management
845	practice. <i>Conserv Lett</i> 10 : 133–8.
846	Jiménez MA, Sánchez B, Alenza MDP, García P, López J V, Rodríguez A, <i>et al.</i>
847	(2008). Membranous glomerulonephritis in the Iberian lynx (Lynx
848	pardinus). <i>Vet Immunol Immunopathol</i> 121 : 34–43.
849	Johnson WE, Godoy JA, Palomares F, Delibes M, Fernandes M, Revilla E, <i>et al.</i>
850	(2004). Phylogenetic and phylogeographic analysis of Iberian lynx
851	populations. J Hered 95 : 19–28.
852	Jones KL, Glenn TC, Lacy RC, Pierce JR, Unruh N, Mirande CM, <i>et al.</i> (2002).
853	Refining the whooping crane studbook by incorporating microsatellite
854	DNA and leg-banding analyses. <i>Conserv Biol</i> 16 : 789–99.
855 856	Jost L (2008). GST and its relatives do not measure differentiation. <i>Mol Ecol</i> 17 : 4015–26.
857	Kalinowski ST, Taper ML, Marshall TC (2007). Revising how the computer
858	program CERVUS accommodates genotyping error increases success in
859	program CERV 03 accommodates genotyping error increases success in paternity assignment. <i>Mol Ecol</i> 16 : 1099–106.
860	Kalinowski ST, Wagner AP, Taper ML (2006). ML-RELATE: a computer
861	program for maximum likelihood estimation of relatedness and
862	relationship. <i>Mol Ecol Notes</i> 6 : 576–9.
863	Kardos M, Luikart G, Allendorf FW (2015). Measuring individual inbreeding in
864	the age of genomics: marker-based measures are better than pedigrees.
865	Heredity (Edinb) 115 : 63–72.
866	Kleinman-Ruiz D, Martínez-Cruz B, Soriano L, Lucena-Perez M, Cruz F,
867	Villanueva B, <i>et al.</i> (2017). Novel efficient genome-wide SNP panels for
868	the conservation of the highly endangered Iberian lynx. BMC Genomics
869	18 : 556.
870	Lacy RC (1987). Loss of genetic diversity from managed populations:
871	interacting effects of drift, mutation, immigration, selection, and
872	population subdivision. <i>Conserv Biol</i> 1 : 143–58.
873	Lacy RC, Ballou JD, Pollak JP (2012). PMx: software package for demographic
874	and genetic analysis and management of pedigreed populations. <i>Methods</i>
875	Ecol Evol 3 : 433–7.
876	Laikre L (1999). Hereditary defects and conservation genetic management of
877	captive populations. Zoo Biol 18 : 81–99.
878	Lucena-Perez M, Soriano L, López-Bao JV, Marmesat E, Fernández L,
879	Palomares F, et al. (2018). Reproductive biology and genealogy in the
880	endangered Iberian lynx: implications for conservation. Mamm Biol 89:

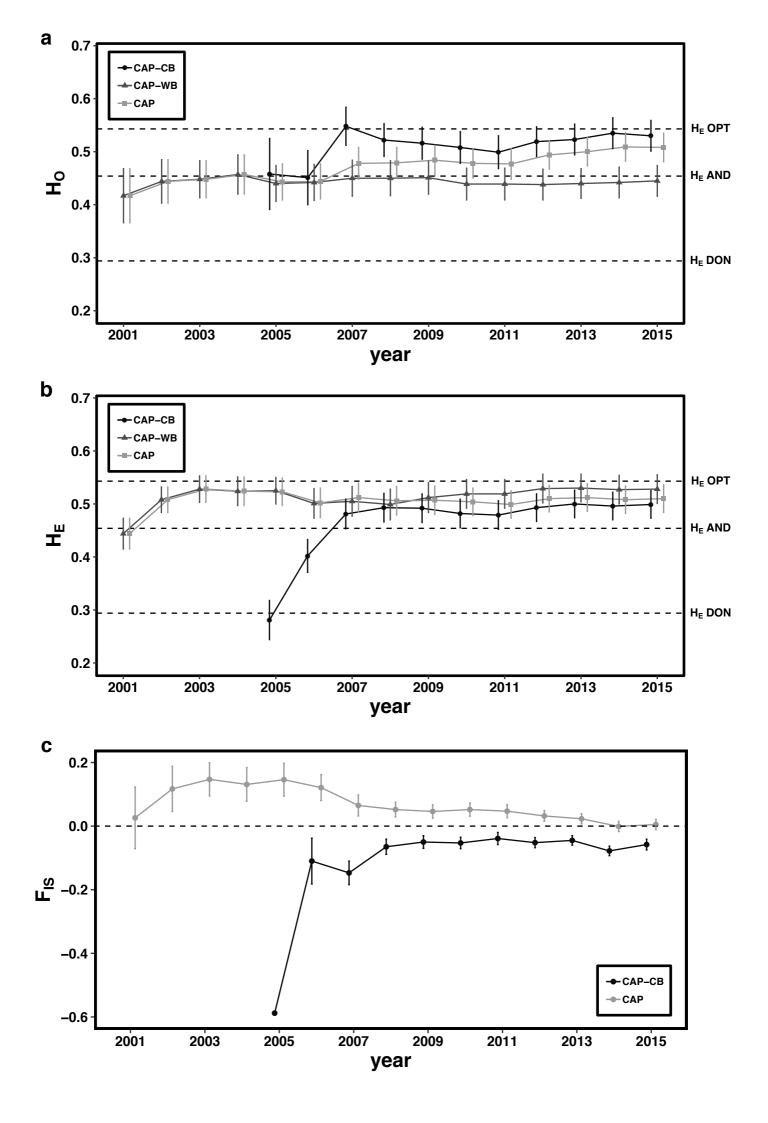
881	7–13.
882	Lynch M (1991). The genetic interpretation of inbreeding depression and
883	outbreeding depression. <i>Evolution</i> 45 : 622–9.
884	Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998). Statistical confidence
885	for likelihood-based paternity inference in natural populations. <i>Mol Ecol</i>
886	7 : 639–55.
887	Martínez F, Manteca X, Pastor J (2013). Retrospective study of morbidity and
888	mortality of captive Iberian lynx (Lynx pardinus) in the ex situ
889	conservation programme (2004–june 2010). <i>J Zoo Wildl Med</i> 44 : 845–52.
890	McGowan PJK, Traylor-Holzer K, Leus K (2017). IUCN guidelines for
891	determining when and how ex situ management should be used in
892	species conservation. <i>Conserv Lett</i> 10 : 361–6.
893	Meuwissen TH (1997). Maximizing the response of selection with a
894	predefined rate of inbreeding. <i>J Anim Sci</i> 75 : 934–40.
895	Nei M (1973). Analysis of gene diversity in subdivided populations. <i>Proc Natl</i>
896	Acad Sci 70 : 3321–3.
897	Norman AJ, Putnam AS, Ivy JA (2019). Use of molecular data in zoo and
898	aquarium collection management: benefits, challenges, and best
899	practices. <i>Zoo Biol</i> 38 : 106–18.
900	Nowell K, Jackson P (1996). Wild cats: status survey and conservation action
901	plan. IUCN/SSC Cat Specialist Group. IUCN: Gland.
902	Oliehoek PA, Windig JJ, Van Arendonk JAM, Bijma P (2006). Estimating
903	relatedness between individuals in general populations with a focus on
904	their use in conservation programs. <i>Genetics</i> 173 : 483–96.
905	Palomares F, Godoy JA, López-Bao JV, Rodríguez A, Roques S, Casas-Marce M,
906	<i>et al.</i> (2012). Possible extinction vortex for a population of Iberian lynx
907 908	on the verge of extirpation. <i>Conserv Biol</i> 26 : 689–97.
908 909	Peakall R, Smouse P (2012). GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research – an update. <i>Bioinformatics</i> 1:
910	6–8.
911	Peña L, Garcia P, Jiménez MA, Benito A, Pérez-Alenza MD, Sánchez B (2006).
912	Histopathological and immunohistochemical findings in lymphoid tissues
913	of the endangered Iberian lynx (Lynx pardinus). <i>Comp Immunol Microbiol</i>
914	<i>Infect Dis</i> 29 : 114–26.
915	Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, <i>et al.</i> (2014).
916	The biodiversity of species and their rates of extinction, distribution, and
917	protection. <i>Science</i> 344 : 1246752.
918	Pritchard DJ, Fa JE, Oldfield S, Harrop SR (2012). Bring the captive closer to
919	the wild: redefining the role of ex situ conservation. <i>Oryx</i> 46 : 18–23.
920	Rahbek C (1993). Captive breeding – a useful tool in the preservation of
921	biodiversity? Biodivers Conserv 2: 426-37.
922	Redford KH, Jensen DB, Breheny JJ (2012). Integrating the captive and the
923	wild. <i>Science</i> 338 : 1157–8.
924	Rodríguez A, Calzada J (2015). Lynx pardinus. The IUCN Red List of
925 026	Threatened Species. <i>http://dx.doi.org/102305/IUCNUK2015-</i>
926 927	2RLTST12520A50655794.en. Rodríguez A. Dolibes M (1992). Current range and status of the Iberian luny.
941	Rodríguez A, Delibes M (1992). Current range and status of the Iberian lynx

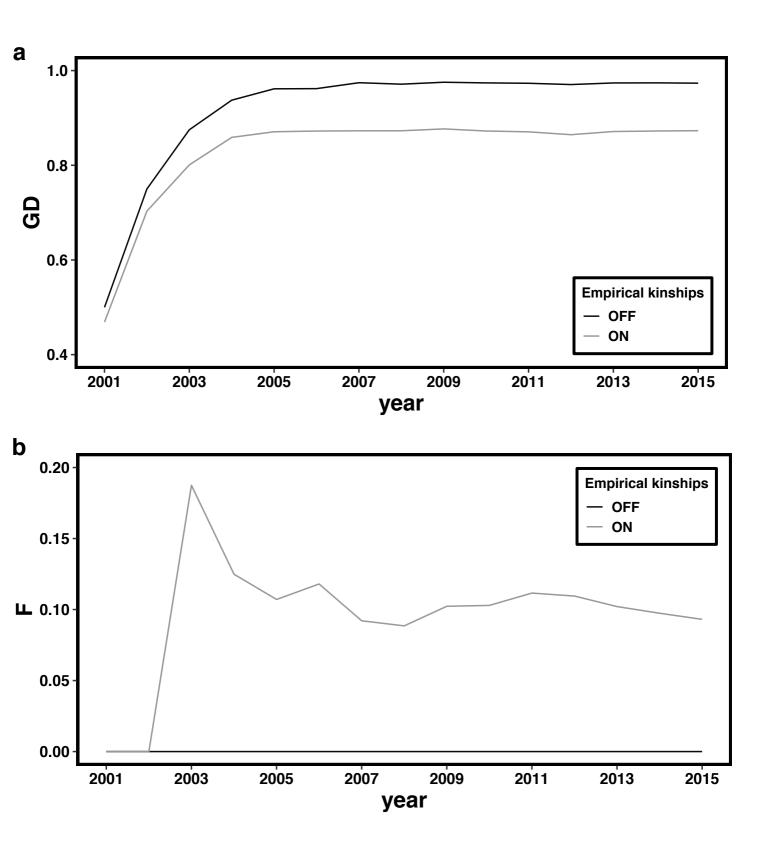
928	Felis pardina Temminck, 1824 in Spain. <i>Biol Conserv</i> 61 : 189–96.
929	Rodríguez A, Delibes M (2002). Internal structure and patterns of contraction
930	in the geographic range of the Iberian lynx. <i>Ecography (Cop)</i> 25 : 314–28.
931	Ruiz-López MJ, Gañán N, Godoy JA, Del Olmo A, Garde J, Espeso G, et al. (2012).
932	Heterozygosity-fitness correlations and inbreeding depression in two
933	Critically Endangered mammals. <i>Conserv Biol</i> 26 : 1121–9.
934	Russello MA, Amato G (2007). On the horns of a dilemma: molecular
935	approaches refine ex situ conservation in crisis. <i>Mol Ecol</i> 16 : 2405–6.
936	Ryder O, Miller W, Ralls K, Ballou JD, Steiner CC, Mitelberg A, <i>et al.</i> (2016).
937	Whole genome sequencing of California condors is now utilized for
938	guiding genetic management. In: International Plant and Animal Genome
939	XXIV Conference, 8-13 January 2016, San Diego, CA, p.
940	Sambrook J, Russell DW (2006). Purification of nucleic acids by extraction
941	with phenol:chloroform. <i>Cold Spring Harb Protoc</i> 2006 : pdb.prot4455.
942	Schäfer F, Reiners TE (2017). Long term vs short term impact of founder
943	relatedness on gene diversity and inbreeding within the European
944	Endangered Species Programme (EEP) for the Nepalese red panda
945	(Ailurus f. fulgens). <i>J Zoo Aquarium Res</i> 5 : 86–91.
946	Seal US, Foose TJ, Ellis S (1994). Conservation Assessment and Management
947	Plans (CAMPs) and Global Captive Action Plans (GCAPs). In: Olney PJ,
948	Mace G, Feistner A (eds) Creative conservation: interactive management
949	<i>of wild and captive animals</i> , Springer Netherlands: Dordrecht, pp 312–25.
950	Simón MA, Gil-Sánchez JM, Ruiz G, Garrote G, Mccain EB, Fernández L, <i>et al.</i>
951	(2012). Reverse of the decline of the Endangered Iberian lynx. <i>Conserv</i>
952	<i>Biol</i> 26 : 731–6.
953	Snyder NFR, Derrickson SR, Beissinger SR, Wiley JW, Smith TB, Toone WD, <i>et</i>
954	<i>al.</i> (1996). Limitations of captive breeding in endangered species
955	recovery. <i>Conserv Biol</i> 10 : 338–48.
956 957	Templeton A (1986). Coadaptation and outbreeding depression. In: Soule M
957 958	(ed) <i>Conservation biology. The science of scarcity and diversity</i> , Sinauer Assoc.: Sunderland, MA, pp 105–21.
958 959	The R Core Team (2015). R: a language and environment for statistical
960	computing. R Foundation for Statistical Computing, Vienna.
961	The SSC Re-introduction Specialist Group (1995). IUCN/SSC guidelines for re-
962	introductions. In: Forty-first meeting of the IUCN Council, Gland, p.
963	Tokarska M, Marshall T, Kowalczyk R, Wójcik JM, Pertoldi C, Kristensen TN, <i>et</i>
964	<i>al.</i> (2009). Effectiveness of microsatellite and SNP markers for parentage
965	and identity analysis in species with low genetic diversity: the case of
966	European bison. <i>Heredity (Edinb)</i> 103 : 326–32.
967	Toro MA, Caballero A (2005). Characterization and conservation of genetic
968	diversity in subdivided populations. <i>Philos Trans R Soc B Biol Sci</i> 360 :
969	1367–78.
970	Vargas A, Breitenmoser C, Breitenmoser U (2009). <i>Iberian lynx ex situ</i>
971	<i>conservation: an interdisciplinary approach.</i> Fundación Biodiversidad in
972	collaboration with: International Union for Conservation of Nature,
973	Species Survival Commission (IUCN /SSC) Cat Specialist Group: Madrid.
974	Vargas A, Rivas A, Sánchez I, Martínez F, Godoy JA, Roldán E, <i>et al.</i> (2009).

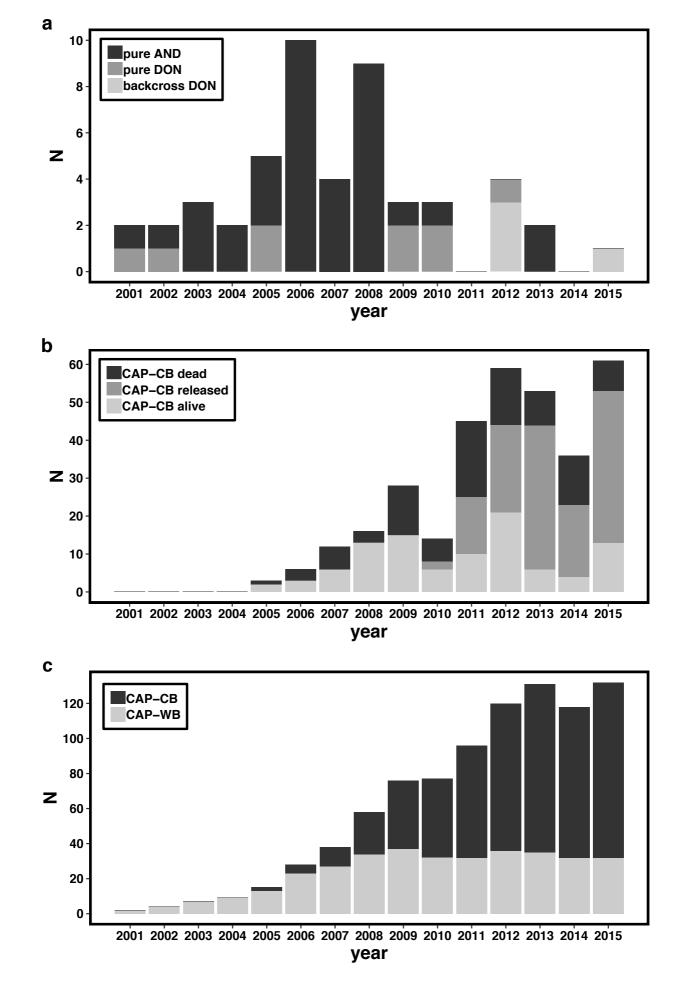

975 976 977 978 979 980 981 982 983 984 985 986 985 986 987 988 989 989 989	 Iberian lynx conservation breeding program - update. <i>Cat News</i> 50: 17. Vargas A, Sánchez I, Martínez F, Rivas A, Godoy JA, Roldán E, <i>et al.</i> (2008). The Iberian lynx Lynx pardinus conservation breeding program. <i>Int Zoo Yearb</i> 42: 190–8. Wahlund S (1928). Zusammensetzung von populationen und korrelationserscheinungen vom standpunkt der vererbungslehre aus betrachtet. <i>Hereditas</i> 11: 65–106. Weir BS, Cockerham CC (1984). Estimating F-statistics for the analysis of population structure. <i>Evolution</i> 38: 1358–70. Wilson EO (1992). <i>The diversity of life</i>. Belknap Press: Cambridge. Witzenberger KA, Hochkirch A (2011). Ex situ conservation genetics: a review of molecular studies on the genetic consequences of captive breeding programmes for endangered animal species. <i>Biodivers Conserv</i> 20: 1843–61.
992	
993	Figure Legends
994	Fig. 1. Comparison of the number of alleles (in parentheses: number of alleles after removing singletons)
995	between each captive wild-born set (CAP-WB) and its respective source population (FRL-WB). Left: Doñana
996	population (DON); right: Andújar population (AND). Four admixed CAP-WB-DON individuals were
997	excluded.
998	
999	Fig. 2. Relatedness between pairs of CAP-WB individuals. Different shades of grey depict comparison within
1000	the AND subset, within the DON subset, and between DON and AND individuals. CAP-WB: captive wild-born
1001	individuals; DON: Doñana; AND: Andújar.
1002	
1003	Fig. 3. Evolution of diversity and inbreeding statistics over time for each year's CAP-CB births (cohorts
1004	approach). a: observed heterozygosity (H $_0$) and expected heterozygosity (H $_E$); dashed lines represent the
1005	theoretical maximum H_E (OPT), and each FRL-WB population's H_E . b: fixation index (F_{1S}); the dashed line
1006	indicates F15 = 0. DON: Doñana; AND: Andújar.
1007	
1008	Fig. 4. Evolution of diversity statistics over time for each year's total population (census approach). a:
1009	observed heterozygosity (H $_0$); dashed lines represent the theoretical maximum H $_{\rm E}$ (OPT) and each FRL-WB
1010	population's H_E . b: expected heterozygosity (H_E), with the same dashed lines as in a. c: fixation index (F); the
1011	dashed line indicates F_{IS} = 0. CAP: captive population; CAP-CB: captive-born individuals; CAP-WB: captive
1012	wild-born individuals; FRL-WB: free-living wild-born individuals; DON: Doñana; AND: Andújar.

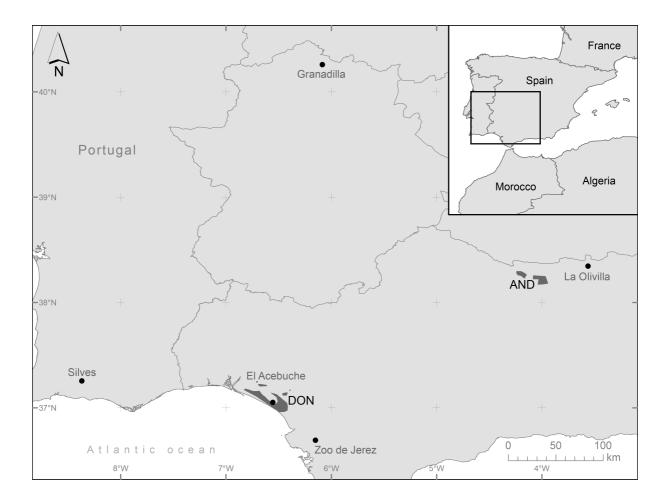

1013	
1014	Fig. 5. Evolution of pedigree-based diversity and inbreeding statistics over time when enabling (ON) or not
1015	enabling (OFF) the empirical kinship matrix. a: genetic diversity (GD); b: inbreeding coefficient (F).
1016	
1017	
1018	Supplementary Figure Legends
1019	Supplementary Fig. S1. Evolution of the captive population size (N). a: yearly CAP-WB recruitments grouped
1020	by ancestry: pure AND, pure DON and backcross DON (DON x F1). b: yearly CAP-CB births broken down into
1021	three categories: dead (individuals that died before the 1st of November of the year in which they were
1022	born), released (individuals alive on the 1st of November that were eventually released from captivity), and
1023	alive (individuals alive on the 1st of November that were not later released). c: total number of CAP alive
1024	and still in captivity on the 1st of November of each year. CAP: captive individuals; CAP-CB: captive-born
1025	individuals; CAP-WB: captive wild-born individuals.
1026	
1027	Supplementary Fig. S2. Map of the Southern Iberian Peninsula showing the distribution area of the two
1028	remnant populations (AND & DON, in dark grey) as well as the location of the main breeding facilities (black
1029	dots). AND: Andújar; DON: Doñana.
1030	
1031	Supplementary Fig. S3. Theoretical distribution of H_E with varying contributions of AND (relative to DON).
1032	The theoretical maximum H_{E} value of 0.54 (dashed horizontal line) is attained when AND:DON proportions
1033	are 0.64:0.36 (dashed vertical line). H $_{\rm E}$: expected heterozygosity; AND: Andújar; DON: Doñana.
1034	
1035	Supplementary Fig. S4. Evolution of the proportions of captive wild-born individuals from Andújar (CAP-
1036	WB-AND; straight line) and actual contributing founders from AND (dashed line). CAP-WB: captive wild-
1037	born individuals; AND: Andújar; AND OPT: optimal proportion of AND founders. Proportions for captive
1038	wild-born individuals from Doñana (CAP-WB-DON) are complementary to these.
1039	
1040	Supplementary Fig. S5. Percentage of relationships between pairs of CAP-WB individuals that fell within the
1041	following categories: related (classified by ML-RELATE as any combination of HS, FS and PO), unrelated
1042	(classified by ML-RELATE as U), and ambiguous (both U and any other kinship category included in the
1043	95% confidence set). Left: pure CAP-WB-DON; right: CAP-WB-AND. CAP-WB: captive wild-born individuals;
1044	DON: Doñana; AND: Andújar.

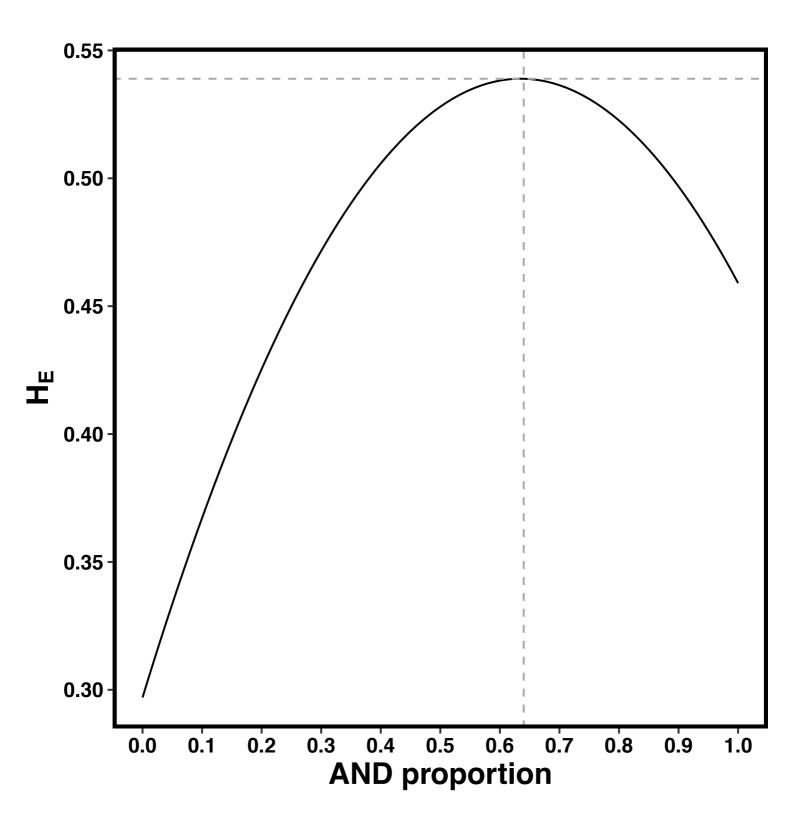

1045

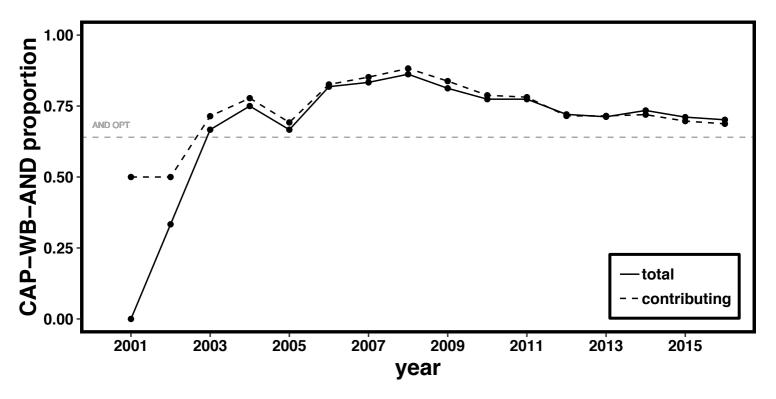

- 1046 Supplementary Fig. S6. Diagram of the genetic structure among the main breeding facilities that comprise
- 1047 the Iberian lynx *ex situ* programme, measured as FST values [99% CI].

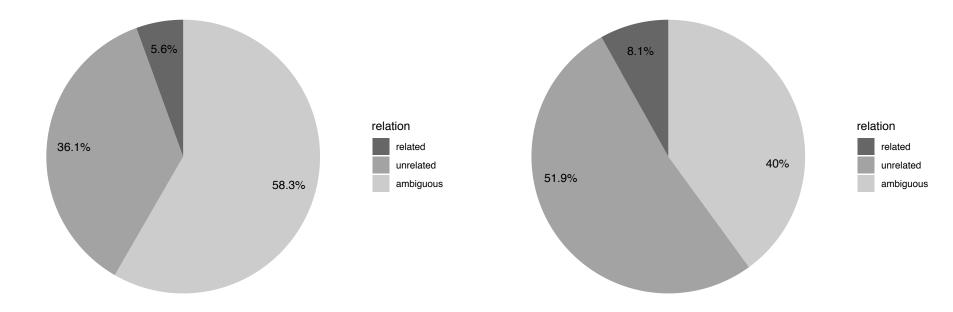

1048



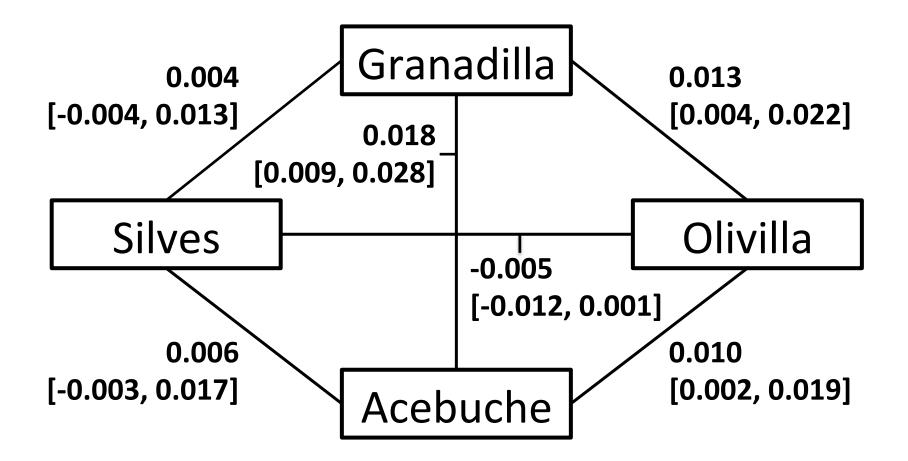





Supplementary Fig. S1. Evolution of the captive population size (N). a: yearly CAP-WB recruitments grouped by ancestry: pure AND, pure DON and backcross DON (DON x F1). b: yearly CAP-CB births broken down into three categories: dead (individuals that died before the 1st of November of the year in which they were born), released (individuals alive on the 1st of November that were eventually released from captivity), and alive (individuals alive on the 1st of November that were not released later). c: total number of CAP alive and still in captivity on the 1st of November of each year. CAP: captive individuals; CAP-CB: captive-born individuals; CAP-WB: captive wild-born individuals.


Supplementary Fig. S2. Map of the Southern Iberian Peninsula showing the distribution area of the two remnant populations (AND & DON, in dark grey) as well as the location of the main breeding facilities (black dots). AND: Andújar; DON: Doñana.

Supplementary Fig. S3. Theoretical distribution of H_E with varying contributions of AND (relative to DON). The theoretical maximum H_E value of 0.54 (dashed horizontal line) is attained when AND:DON proportions are 0.64:0.36 (dashed vertical line). H_E expected heterozygosity; AND: Andújar; DON: Doñana.


Supplementary Fig. S4. Evolution of the proportions of total captive wild-born individuals from Andújar (CAP-WB-AND; straight line) and actual contributing founders from AND (dashed line). CAP-WB: captive wild-born individuals; AND: Andújar; AND OPT: optimal proportion of AND founders. Proportions for captive wild-born individuals from Doñana (CAP-WB-DON) are complementary to these.

CAP-WB-DON relationships

CAP-WB-AND relationships

Supplementary Fig. S5. Percentage of relationships between pairs of CAP-WB individuals that fell within the following categories: related (classified by ML-RELATE as any combination of HS, FS and PO), unrelated (classified by ML-RELATE as U), and ambiguous (both U and any other kinship category included in the 95% confidence set). Left: pure CAP-WB-DON; right: CAP-WB-AND. CAP-WB: captive wild-born individuals; DON: Doñana; AND: Andújar.

Supplementary Fig. S6. Diagram of the genetic structure among the main breeding facilities that comprise the Iberian lynx ex situ programme, measured as FST values [99% CI].