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Abstract15

The topology of natural fracture networks is inherently linked to the structure of the fluid16

velocity field and transport therein. Here we study the impact of network density on flow17

and transport behaviors. We stochastically generate fracture networks of varying den-18

sity and simulate flow and transport with a high fidelity Discrete Fracture Network (DFN)19

model, that fully resolves network topology at the fracture scale. We study conservative20

solute trajectories in great detail with Lagrangian particle tracking and find that as frac-21

ture density decreases, solute channelization to large local fractures increases, thereby22

reducing solute plume spreading. Furthermore, in sparse networks mean particle travel23

distance increases and local network features, such as negative velocity zones, become24

increasingly important for transport. As the network density increases, network statis-25

tics homogenize and such local features have a reduced impact. We quantify local topo-26

logical influence on transport behavior with an effective tortuosity parameter, which mea-27

sures the ratio of total advective distance to linear distance at the fracture scale; large28

tortuosity values are correlated to slow velocity regions. These large tortuosity - slow ve-29

locity regions delay downstream transport and enhance tailing on particle breakthrough30

curves. Finally, we predict transport with an upscaled, Bernoulli spatial Markov random31

walk model and parameterize local topological influences with a novel tortuosity param-32

eter. Bernoulli model predictions improve when sampling from a tortuosity distribution,33

as opposed to a fixed value as has previously been done, suggesting that local network34

topological features must be carefully considered in upscaled modelling efforts of frac-35

ture network systems.36

1 Introduction37

In subsurface low permeability rocks, fractures form complex networks that con-38

trol fluid flow and transport of dissolved solutes and other compounds. The inherent het-39

erogeneous structure of natural fracture networks is characterized by a broad range of40

lengths, spanning from the aperture roughness to the full network scale (Bonnet et al.,41

2001). At the network scale, the topological properties set the flow field structure (de42

Dreuzy et al., 2012; Frampton et al., 2019; Makedonska et al., 2016), meaning velocity43

at the in-fracture scale is highly correlated (Kang, Le Borgne, et al., 2015; J. Hyman et44

al., 2019) and sub fracture scale features are less important. Complex network topolo-45

gies naturally result in a very broadly distributed velocity field, which influences asso-46
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ciated transport processes. Specifically, this broad distribution manifests in anomalous47

transport, i.e. transport which cannot be adequately described with an upscaled effec-48

tive Fickian advection dispersion equation (ADE) (Cushman, 2013; Le Borgne et al., 2008a;49

Dentz & Bolster, 2010; Becker & Shapiro, 2000, 2003; Kang, Le Borgne, et al., 2015);50

anomalous characteristics can be observed on concentration breakthrough curves and in-51

clude early arrival of tracer and enhanced late time breakthrough tailing. Hence, accu-52

rately parameterizing network topology in transport models remains critical for many53

applications of scientific and practical interest, including CO2 sequestration (Pacala &54

Socolow, 2004), geothermal energy (Barbier, 2002) and hydrocarbon extraction (J. D. Hy-55

man, Jiménez-Mart́ınez, et al., 2016).56

Discrete fracture network (DFN) models are a common method for simulating flow57

and transport through fractured media (Cacas et al., 1990; de Dreuzy et al., 2004; Bog-58

danov et al., 2007). Recent advances in computational technologies have enabled sim-59

ulation of three-dimensional (3D) DFNs, where the network structure, and features such60

as local circulation zones (Park et al., 2003), which are not possible in 2D representa-61

tions, can be studied in detail. In the DFN approach, fractures are explicitly represented62

as lower dimensional structures, enabling accurate representation of the network struc-63

ture, e.g., geometry and topology, and the corresponding flow field. The flow field within64

an individual fracture is typically highly correlated, commonly causing solute velocity65

to display persistent, low variability behavior over the in-fracture scale; consequently,66

the greatest Lagrangian accelerations occur at fracture intersections (Kang, Le Borgne,67

et al., 2015; J. Hyman et al., 2019). As the fracture density increases, solute encounters68

more intersections on average and the velocity correlation scale decreases. Furthermore,69

strong preferential flow paths form within interconnected networks of large fractures and70

channel a significant portion of mass, enabling solute to persist at high velocities for dis-71

tances greater than the single fracture scale (Kang, Dentz, et al., 2015; Kang et al., 2019).72

This channelization becomes enhanced in sparse networks, where particles encounter fewer73

intersections, enabling them to persist on single fractures for longer distances. Resolv-74

ing all these intra-network features in 3D DFN models is still computationally costly, and75

so upscaled modeling approaches, which account for network variability through effec-76

tive parameter schemes, while maintaining a parsimonious framework, present an attrac-77

tive alternative. However, how to properly parameterize network properties, such as ve-78
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locity correlation and geometry, and incorporate them properly into such effective up-79

scaled models remains an open challenge and area of active research.80

Continuous time random walk (CTRW) and time domain random walk (TDRW)81

models (Berkowitz et al., 2006; Noetinger et al., 2016) provide natural frameworks to up-82

scale transport in media with spatially variable flow properties (Berkowitz & Scher, 1997;83

S. Painter & Cvetkovic, 2005; Dentz et al., 2016; Comolli & Dentz, 2017; Puyguiraud84

et al., 2019b). In these approaches, a solute plume is conceptualized as an assembly of85

idealized solute particles who transition through time and space by sampling the local86

flow velocities. The velocity series sampled along a particle trajectory is modeled as spa-87

tial Markov processes of uncorrelated (Berkowitz & Scher, 1997; Berkowitz et al., 2006)88

or correlated subsequent velocities (Le Borgne et al., 2008a, 2008b; Kang et al., 2011;89

Bolster et al., 2014; Dentz et al., 2016; Morales et al., 2017; Sherman et al., 2018). The90

velocity Markov chain is characterized by a transition matrix, which characterizes how91

solute velocity transitions over fixed spatial increments, and has been demonstrated to92

accurately capture transport in porous media (Le Borgne et al., 2008b; De Anna et al.,93

2013; Kang et al., 2014) and fracture networks (Kang et al., 2011; Kang, Le Borgne, et94

al., 2015; Kang, Dentz, et al., 2015; Kang et al., 2016). The transition matrix can be de-95

termined empirically by sampling velocity transitions along particle trajectories (Le Borgne96

et al., 2008b), inverse modelling algorithms applied to experimental concentration pro-97

files (Sherman et al., 2017, 2018), or by parametric models given by analytical Markov98

models (Kang, Le Borgne, et al., 2015; Kang, Dentz, et al., 2015; Dentz et al., 2016; Morales99

et al., 2017; Hakoun et al., 2019). Here we focus on the CTRW implementation that mod-100

els the series of particle velocity magnitudes as a Bernoulli process, (Dentz et al., 2016;101

Holzner et al., 2015; Massoudieh et al., 2017; Carrel et al., 2018; J. Hyman et al., 2019;102

Puyguiraud et al., 2019a, 2019b; Kang et al., 2019), meaning a particle’s speed persists103

from the previous step if a weighted coin lands heads and is re-sampled if it lands tails.104

This probability is often found by assuming velocity transitions at a constant rate, in-105

versely proportional to a correlation distance (Dentz et al., 2016; J. Hyman et al., 2019).106

In this framework, particle motion along a tortuous pathline is projected onto stream-107

wise distance using the concept of tortuosity, which measures the ratio between the av-108

erage trajectory length and streamwise distance (Koponen et al., 1996; Ghanbarian et109

al., 2013). However, heterogeneity of the network enables particles to experience a dis-110

tribution of trajectory lengths, which is not accounted for by an average tortuosity value.111
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In this paper, we use high-fidelity numerical simulations of flow and transport through112

3D DFNs to study the influence of fracture density on transport behavior. All other net-113

work attributes are kept constant across the different network realizations. We observe114

that in sparse networks, single fractures become increasingly important, resulting in en-115

hanced flow channelization and reduced spreading of the solute plume. Furthermore, we116

observe that the mean advective travel distance from inlet to outlet increases with de-117

creasing density. In all networks, the local effective tortuosity is broadly distributed and118

related to low velocity regions, which in turn give rise to late time tailing in network scale119

breakthrough curves. Hence network topology and density play an important role in net-120

work scale transport. We capture local topological effects in the CTRW framework by121

sampling from a tortuosity distribution as well as sampling from a tortuosity-velocity122

joint distribution. We compare the upscaled model performance against high fidelity DFN123

simulations. The proposed CTRW implementation provides insights on the relationship124

between local topological effects and network scale transport behavior.125

2 Numerical Simulations126

In this section, we describe our modeling methodology for simulating and analyz-127

ing flow and transport in subsurface fracture networks.128

2.1 Discrete Fracture Networks129

We use the high-fidelity three-dimensional discrete fracture network modeling suite130

dfnWorks (J. D. Hyman, Karra, et al., 2015) to generate each DFN, solve the steady-131

state flow equations and simulate transport therein using particle tracking. dfnWorks132

combines the feature rejection algorithm for meshing (fram) (J. D. Hyman et al., 2014),133

the LaGriT meshing toolbox (LaGriT, 2013), the parallelized subsurface flow and reac-134

tive transport code pflotran (Lichtner et al., 2015), and an extension of the walk-135

about particle tracking method (Makedonska et al., 2015; S. L. Painter et al., 2012).136

fram is used to generate three-dimensional fracture networks. LaGriT is used to cre-137

ate a computational mesh representation of the DFN in parallel. pflotran is used to138

numerically integrate the governing flow equations. walkabout is used to determine139

pathlines through the DFN and simulate solute transport. Details of the suite, its abil-140

ities, applications, and references for detailed implementation are provided in J. D. Hy-141

man, Karra, et al. (2015).142
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2.1.1 Network Generation143

Fractures are represented as planar discs whose radii r are sampled from a trun-144

cated power law distribution with upper and lower cutoffs (ru; r0) and exponent α:145

pr(r) =
α

r0

(r/r0)−1−α

1− (ru/r0)−α
. (1)146

We consider an exponent of 1.8, a lower cut off of 1 m and upper cut off of 10 m. We147

non-dimensionalize length scales by the minimum fracture size r0; r′ = r/r0. Each DFN148

is generated in a cubic domain with sides of dimensionless length 50. Fracture apertures149

are positively correlated to the fracture radii via a power-law relationship150

b = γrβ , (2)151

where β = 0.5 [-] and γ = 5.0×10−4 [L1−β ] are parameters based on field data (Svensk152

Kärnbränslehantering AB, 2010). This correlation between fracture size and aperture153

is a common assumption in DFN models (Bogdanov et al., 2007; de Dreuzy et al., 2002;154

Frampton & Cvetkovic, 2010; J. D. Hyman, Aldrich, et al., 2016; Joyce et al., 2014; Well-155

man et al., 2009).156

We consider a single fracture family whose centers are uniformly distributed through-157

out the domain. The domain is slightly enlarged during the generation phase, and then158

reduced to the 50 meter cube once target densities have been achieved. This procedure159

limits boundary effects near the edge of the domain, where otherwise non-uniform den-160

sities occur. The orientations of fractures follow a Fisher distribution,161

f(x;µ, κ) =
κ exp(κµTx)

4π sinh(κ)
, (3)162

sampled using Wood’s algorithm (Wood, 1994). In (3), µ is the mean direction vector,163

which can be expressed in terms of spherical coordinates, θ and φ, and κ ≥ 0 is the con-164

centration parameter that determines the degree of clustering around the mean direc-165

tion. Values of κ approaching zero represent a uniform distribution on the sphere while166

larger values generate small average deviations from the mean direction. We set κ =167

0.1 so that fracture orientations are uniformly random; it is a disordered network, which168

means there is not preferred direction of flow due to fracture orientation.169

We generate three sets of networks, each with a different density. Density of the170

fractures networks is measured using a dimensionless version of the percolation param-171

eter p defined by de Dreuzy, Davy, and Bour (2000). The dimensionless form is p′ = p/pc,172
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where pc is the critical percolation density value (the minimum number of fractures) such173

that there is almost surely a connected cluster of fractures than spans the whole domain174

(Berkowitz & Balberg, 1993; Bour & Davy, 1997, 1998; Sahimi, 1994). An advantage of175

p′ is that it provides a constant measure of density with respect to the percolation thresh-176

old (de Dreuzy et al., 2012). For the domain size and truncated power law distribution177

parameters, pc = 766 fractures, we select three dimensionless densities, p′ = 3, p′ =178

5, and p′ = 10. We generate 10 independent networks at each density. Figure 1 shows179

one sample from each of the sets. On the left is one network from the p′ = 3 samples,180

in the middle is a network from the p′ = 5 samples, and one network from the p′ =181

10 samples is shown in the right sub-figure. Fractures are colored by their radius, which182

ranges from r′ = 1 to r′ = 10.183

Figure 1. One DFN sample from each of the sets (left) p′ = 3, (middle) p′ = 5, and (right)

p′ = 10. Fractures are colored by their size, with larger fractures having warmer colors.

184

185

2.1.2 Network Characterization186

The selected densities result in networks with different geometric and topological187

properties. Table 1 reports the requested number of fractures to achieve target densi-188

ties along with the final number in the network used for flow simulation. Fractures that189

are part of a cluster that do not connect between inflow and outflow boundaries, and there-190

fore do not contribute to flow and transport through the medium, are removed from the191

domain after generation. As the density increases, the difference between the requested192

and final number of fractures, i.e. the number of fractures removed from the domain rel-193

ative to the requested value, decreases, indicating that the networks are better connected194

at higher density.195
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We measure the network connectivity using a graph-based approach (J. D. Hyman196

et al., 2018; Huseby et al., 1997), where vertices in the graph correspond to fractures in197

the DFN and there is an edge between those vertices if the corresponding fractures in-198

tersect in the DFN. We augment the graph to include source and target vertices, cor-199

responding to the inflow and outflow boundaries, and provide a topological point of ref-200

erence with respect to inflow and outflow boundaries within the graph. For every frac-201

ture that intersects the inflow boundary, an edge is added between the vertex in the graph202

corresponding to that fracture and the vertex representing the inflow boundary; likewise203

for the outflow boundary. Similar graph-theoretical approaches have been used for a va-204

riety of studies concerning fractured media including topological characterization of net-205

works (Andresen et al., 2013; Hope et al., 2015; Huseby et al., 1997; J. D. Hyman & Jiménez-206

Mart́ınez, 2018) and backbone identification (Aldrich et al., 2017; J. D. Hyman et al.,207

2017; Rizzo & de Barros, 2017; Valera et al., 2018). The utility of this graph-based ap-208

proach is that topological properties of the networks can be queried and characterized209

in a formal mathematical framework while retaining physical interpretation.210

We begin with local topological attributes of the networks and a specific focus on211

the number of intersections on each fracture, which we refer to as the fracture degree and212

denote as d. Within the context of our graph representation, this value is the degree of213

corresponding nodes in the graph. The mean of the distribution of fracture degree d̄ is214

another definition of dimensionless density detailed in (Mourzenko et al., 2005) and is215

provided in Table 1. The observed mean values are relatively close to one another, ≈ 2216

with slightly higher values observed at higher densities. We also include the variance of217

the degree distributions to show that the range of fracture degrees in the networks broad-218

ens as density increases. Physically, these values indicate that a typical fracture connects219

to 2-3 other fractures in all networks, but as the density of the network increases there220

are more fractures with many intersections. The degree of a fracture is positively cor-221

related to fracture radius, with a correlation coefficient of ≈ 0.8 for all networks. Hence,222

larger fractures are better connected than smaller ones, which is a result of individual223

fracture geometry. Recall, that the distributions of fracture radii follow a power-law dis-224

tribution, which implies that there are numerous small fractures with few connections225

along with fewer large ones with many intersections. However, these observations do not226

inform us if larger fractures are connected to numerous larger fractures or to smaller ones.227

To explore this, we can compute the assortativity coefficient P of the sets, quantified us-228

–8–



manuscript submitted to Please set Journal Name by using \journalname

ing the Pearson correlation coefficient (Newman, 2002, 2003), which ranges between -229

1 and 1. Values greater than 0 indicate correlation between vertices of similar degree,230

while values less than 0 indicate correlation between vertices of different degrees. In all231

cases, the value is less than 0, which indicates the networks exhibit disassortative mix-232

ing. There is a slight correlation between the density and P, where higher density re-233

sults to less disassortativity. In combination, these values show that well-connected larger234

fractures intersect with smaller fractures that have fewer intersections.235

We also investigate one global topological quantity that measures the robustness236

of the network. The node connectivity of a graph (nc) is the fewest number of nodes that237

needs to be removed from a network to disconnect source and target. In terms of the DFN,238

it is the fewest number of fractures that need to be removed to disconnect inflow and239

outflow boundaries. For the lowest density sets, the average nc is close to 1 indicating240

that the flow must channelize through a single fracture being constrainted by the net-241

work structure. In contrast, the highest density set has an average of close to 30, which242

means that flow through that network will be far less constrained by the network struc-243

ture. In conjunction, these values indicate that the higher density networks are much244

better connected than the lower density ones.245

In the next section, we describe flow and transport simulations in these networks246

and discuss how these structural properties influence the flow field therein.247

Table 1. Network Characterization: Number of Fractures (# F), Dimensionless connected net-

work density p′, Mean fracture degree d̄, Variance of fracture degree σ(d), assortativity coefficient

P, node connectivity nc

248

249

250

Set p′ # F # F̂ (Nonisolated) d̄ σ(d) P nc

P3 3 2300 220.10 (±87.46) 2.20 (±0.06) 3.50 (±0.41) -0.26 (±0.06) 1.20 (±0.40)

P5 5 3600 1339.90 (±130.13) 2.32 (±0.03) 4.93 (±0.22) -0.18 (±0.03) 6.90 (±1.30)

P10 10 7600 4069.30 (±46.32) 2.65 (±0.03) 9.77 (±0.47) -0.12 (±0.01) 29.60 (±2.97)
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2.2 Flow and Transport Simulation251

In the DFN methodology there is no interaction between flow within the fractures252

and the surrounding matrix. We consider the flow of a Newtonian fluid, in our case wa-253

ter, at Reynolds number Re < O(1) and thus assume Stokes flow within each fracture.254

Mass conservation along with Darcy’s equation, which governs momentum, are used to255

form an elliptic partial differential equation for the steady-state distribution of pressure256

within the network257

∇ ·
(
b3(x)∇P

)
= 0 , (4)258

where b is the fracture aperture, which is uniform within a fracture but varies between259

fractures, cf. (2), and ∇P is the local pressure gradient. Flow through each network is260

created by applying a pressure difference of 1 MPa across the domain along the x-axis261

and no-flow boundary conditions are applied along lateral boundaries. For simplicity,262

the effects of gravity are not considered in these simulations. Equation (4) is numerically263

integrated using a two-point flux finite-volume scheme implemented in PFLOTRAN264

that ensures local mass conservation within fracture planes and at fracture intersections265

to obtain pressure values and volumetric fluxes throughout the domain. The Eulerian266

velocity field u(x) is reconstructed using obtained values of pressures P and volumet-267

ric flow rates (Makedonska et al., 2015; S. L. Painter et al., 2012) which is spatially vari-268

able within each plane. Also, we consider the distribution of velocity magnitude ve(x) =269

‖u(x)‖ throughout the entire domain, i.e. the Eulerian velocity distribution is defined270

as271

ψe(v) =
1

Ve

∫
Ωe

dxδ[v − ve(x)], (5)272

where Ωe is the flow domain and Ve its volume.273

The transport of a nonreactive conservative solute plume through each network is274

simulated using an ensemble of purely advective particles, denoted as Ω. The pressure275

gradient is imposed along the x axis, and therefore the primary flow direction is also along276

the x axis. The initial positions of particles (a) along the inlet plane x = 0 are deter-277

mined using a flux-weighted injection condition so that the number of particles is pro-278

portional to the local incoming volumetric flow rate (Kreft & Zuber, 1978; Frampton &279

Cvetkovic, 2009; J. D. Hyman, Painter, et al., 2015). The trajectory x(t; a) of a parti-280

cle starting at a at time t = 0 is given by the advection equation281

dx(t; a)

dt
= vt(t; a), x(0; a) = a, (6)282

283
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where the Lagrangian velocity vt(t; a) is given by the Eulerian velocity u(x)284

vt(t; a) = u[x(t; a)]. (7)285

At fracture intersections, we adopt a complete mixing rule, which means that the prob-286

ability to exit an outgoing fracture is determined by the flux (Kang, Dentz, et al., 2015;287

Sherman et al., 2019).288

The length `(t; a) of the trajectory at a time t is given by289

d`(t; a)

dt
= vt(t,a). (8)290

where the Lagrangian velocity magnitude is vt(t,a) = |vt(t,a)|. The pathline length,291

`, is used to parameterize the spatial and temporal coordinates of the particle. In terms292

of `, the space-time particle trajectory is293

dx(`; a)

d`
=

v`(`; a)

v`(`; a)
(9a)294

dt(`; a)

d`
=

1

v`(`,a)
(9b)295

296

where the space-Lagragian velocity is v`(`,a) = u[x(`; a)] and its magnitude v`(`,a) =297

|v`(`,a)|.298

Across each ensemble of M particles, denoted Ωa, we compute the distribution of299

velocities, correlation of velocity along pathlines, and tortuosity. The distribution of the300

Lagrangian velocity magnitude v`(`) sampled equidistantly at very fine spatial increments301

along pathlines is given by302

ψ̂`(v, `) =
1

M

∫
Ωa

daδ[v − v`(`,a)], (10)303

which we refer to as space Lagrangian.304

We also calculate properties of particles at successive control planes xi perpendic-305

ular to the primary flow direction and equally spaced with distance ∆l = 1. Note here306

the sampling frequency is much coarser than the one used in the equation 10. The dis-307

tribution of velocities sampled by particles at these control planes is given by308

ψl(v, xi) =
1

M

∫
Ωa

daδ[v − v`(xi,a)] . (11)309

The PDF of velocity magnitudes in the injection domain is given by ψ0(v) = ψ̂`(v, ` =310

0), which corresponds to our flux-weighted initial conditions and relates the ψl(v, x1) to311
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ψe(v). We primarily consider a global Lagrangian velocity distribution ψl(v) that is the312

aggregate of ψl(v, x1) across all control planes.313

We define the first arrival time τ(xi; a) of a particle at a control plane located at314

xi to be315

τ(xi; a) = t[λ(xi,a); a], λ(xi,a) = inf{`|xi(`; a) ≥ xi}. (12)316
317

At each control plane, individual particle breakthrough times are combined to provide318

the distribution of first passages times across the ensemble319

Ψ(t;xi) =
1

M

∫
Ωa

daH[t− τ(xi; a)] (13)320

which we call the breakthrough curve. Here H(t) is the Heaviside function and equa-321

tion 13 is the CDF of solute first passage times at a control plane.322

Additionally, we measure tortuosity statistics. A search of the literature reveals var-323

ious definitions of tortuosity, e.g. geometric, hydraulic, and electrical, all of which have324

been used to study different subsurface properties, i.e. subsurface structure, conductiv-325

ity, solute travel time, and solute dispersion (Ghanbarian et al., 2013). In this study, we326

focus on a flow-dependent tortuosity, as it is naturally compatible with Lagrangian ob-327

servations. We define an effective tortuosity between two control planes at xi and xj (xj <328

xi) as the pathline distance traveled by a particle between the control planes ∆`i,j(a) =329

|λ(xi; a)−λ(xj ; a)| divided by the linear distance between those control planes ∆xi,j =330

|xi − xj |331

χ(xi,j ; a) =
∆`i,j(a)

∆xi,j
. (14)332

Note with this definition, particles are permitted to leave the observation window via333

backflow in the DFN, i.e. a particle may cross control plane xj more than once before334

reaching xi. The distribution of effective tortuosity across a particle ensemble is335

ψ(χi,j) =
1

M

∫
Ωa

daδ[χi,j − χi,j(a)] . (15)336

For most of our analysis we consider ∆x = 1 for all pairs of subsequent control planes337

and suppress the subscripts, χ −→ χi+1,i. The conventional definition of flow tortuos-338

ity of the ensemble is 〈χ(x)〉 = 〈χx,0〉 where x is the linear distance traveled through339

the domain from the inlet and angled brackets denote an average over the ensemble of340

particles. Under ergodic conditions, the asymptotic tortuosity is given by (Koponen et341
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al., 1996)342

χ∞ = lim
x→∞

〈χ(x)〉 =
〈ve〉
〈u1〉

. (16)343

This can be understood as follows: under ergodic conditions, the mean arrival time at344

x1 is given by 〈τ(x)〉 = x/〈u1〉, where 〈u1〉 is the average Eulerian velocity in the mean345

flow direction. At the same time, we have that 〈τ(x)〉 = 〈λ(x,a)〉/〈ve〉. Equating the346

two gives (16).347

In all cases, one hundred thousand particles are injected and tracked through each348

network. Increasing the number of particles beyond these counts did not influence up-349

scaled quantities of interest.350

3 Velocity Field and Particle Trajectory Observations351

In this section, we investigate the relationship between network and flow proper-352

ties, both Eulerian and Lagrangian.353

3.1 Eulerian Properties354

The fracture intensity [m−1] (total fracture surface area per unit volume), which355

is commonly referred to as P32 (Dershowitz & Herda, 1992) and computed as:356

P32 =

∑
f ·Sf
V

(17)357

is a measure of how much surface area is in a domain. In (17), Sf is the fracture sur-358

face area and V is the total size of the domain. While P32 provides a compact value that359

can be compared across networks, it is also useful when compared to the amount of the360

domain that is actively flowing within a single network, which can be measured using361

the flow channeling density indicator dQ (Maillot et al., 2016):362

dQ =
1

V
·

(
∑
f ·Sf ·Qf )2

(
∑
f ·Sf ·Q2

f )
. (18)363

In (18) Qf is the total flow exchanged by a fracture f with its neighbors. Comparing364

(17) with (18) suggests that dQ can be thought as a measure of active or flowing P32.365

The flow channeling indicator is a measure of the portion of the total surface area where366

there is significant flow, which can be quantified using the ratio dQ/P32. Table 2 pro-367

vides mean values of P32, dQ, and dQ/P32 for the networks. As the number of fractures368

in the network increases with prescribed density, so do all of the observed values. The369
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increase of P32 is an obvious and direct consequence of increasing the number of frac-370

tures in the network. However, increases of dQ/P32 indicates that flow is less channel-371

ized with increasing network density. Recall that the higher density networks are bet-372

ter connected, cf. Table 1, which here is seen as a homogenizer of the flow field within373

the network.374

Table 2. Network Characterization: P32 [-], Flow Channeling Indicator dQ, Percentage of the

network flowing dQ/P32

375

376

Set P32 dQ dQ/P32

P3 0.15 (±0.06) 0.05 (±0.02) 0.38 (±0.09)

P5 0.63 (±0.06) 0.27 (±0.04) 0.43 (±0.05)

P10 1.34 (±0.02) 0.80 (±0.03) 0.60 (±0.02)

3.2 Velocity Distributions377

Figure 2 displays the mean of the velocity distributions averaged over all realiza-378

tions for the fluxed weighted ψe(v) (crosses), ψ̂`(v) (triangles) and ψl(v) (squares) for379

the each network density with 95% confidence intervals for ψe(v) shaded gray. In all cases380

velocities are normalized by the mean P3 global Lagrangian velocity 〈v〉P3
l . Under er-381

godic conditions and for a sufficiently large injection volume and flow domain, the steady382

space Lagrangian PDF ψ`(v) = lim`→∞ ψ̂`(v, `) and the Eulerian velocity PDFs are re-383

lated through flux-weighting384

ψ`(v) =
vψe(v)

〈ve〉
, (19)385

as shown in Dentz et al. (2016); Comolli and Dentz (2017); Kang, Dentz, Le Borgne, Lee,386

and Juanes (2017). Near the PDF peaks all the distributions are in good agreement. In-387

terestingly, ψl(v) displays lower probability values than ψ̂`(v) in the intermediate veloc-388

ity regime ([10−3, 10−1]) for all network densities, suggesting low velocity regions are un-389

der sampled with control planes spaced by distance 1 (the minimum fracture radius). As390

the network density increases, the PDF peak shifts towards higher velocities and mean391

particle velocity in the direction of primary flow increases. Additionally, the width of the392

distribution for the flux weighted Eulerian velocity distribution increases as network den-393

sity decreases; note the P10 network has a sharpened peak relative to the P3 network.394
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Furthermore, the size of the 95% confidence intervals increase with network sparsity be-395

cause the associated increased flow channelization means single fractures have greater396

influence on transport behavior and the effects of such fractures vary significantly across397

network realizations.398

In dense networks, velocity statistics homogenize across realizations because both399

network connectivity and flow dispersion increase. Notice that PDF peaks of Eulerian400

and Lagrangian velocity distributions increasingly deviate as network sparsity increases,401

suggesting that ergodic assumptions become more valid with increasing fracture density.402

This behavior is expected as increasing fracture density means that the network is more403

connected and flow is less channelized, i.e. an increased dQ/P32 value, indicating a greater404

proportion of the domain is sampled by solute particles.405
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Figure 2. The velocity distributions for each fracture network density averaged over all

network realizations. Black crosses are flux-weighted Eulerian, red triangles are the global Lan-

grangian, and blue squares are Lagrangian sampled along control planes. As fracture density

increases, the peak of velocity distribution shifts right (increases). Shaded areas show 95% confi-

dence intervals for the Eulerian distributions.

406

407

408

409

410

3.3 Tortuosity411

The complex geometry of the fracture networks means that the tortuosity distri-417

bution is spatially dependent, i.e. transport behavior is dependent on the local topol-418

ogy, which may vary greatly across the network. Figure 3 shows the evolution of the mean419

tortuosity through space averaged over all realizations. We calculate mean tortuosity at420

control plane xi with coordinate x as 〈χ(x)〉 = 〈λ(xi; a)/x〉. The mean tortuosity has421
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Figure 3. The mean tortuosity calculated as the total travel advective distance divided by the

total linear x distance traveled. As network density increases, mean particle trajectories become

less tortuous because the denser network probabalistically directs them in direction of primary

flow. Shaded areas give 95% confidence intervals across the mean. Stars show ergodic tortuosity

values calculated from Eulerian flow field.

412

413

414

415

416

lower values near the injection plane because the inlet boundary condition directs all flow422

into the domain, thereby decreasing the presence of negative velocity regimes near the423

inlet. Once a sufficient distance from the inlet is reached, memory of the boundary ef-424

fects has sufficiently diminished and the mean tortuosity asymptotically approaches a425

constant value.426

The mean tortuosity at the domain outlet is 〈χ(50)〉 = 2.21, 1.98, 1.62 for the P3, P5, P10427

networks respectively. As network density increases, the mean pathline particle travel428

distance decreases. Such behavior is expected because in denser networks, more flow can429

align directly with the pressure gradient and such flow paths have lower tortuosity on430

average. Additionally, in a denser network, particles encounter more fracture intersec-431

tions, which preferentially directs them to high velocity flow paths aligned with the pri-432

mary flow direction. As the network density increases, this asymptotic limit is reached433

more rapidly because network statistics are more spatially homogeneous and large fluc-434

tuations in tortuosities become less probable. The stars in Figure 3 show the asymptotic435
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Eulerian tortuosity values χ∞ = 2.7, 2.1, 1.6 for the P3, P5, P10 networks. Note that436

as the fracture density increases, the asymptotic Eulerian and Lagrangian values show437

closer agreement, suggesting, as before, that the sampling volume required for ergodic438

behavior decreases.439

Figure 4. Mean effective tortuosity distributions for the P3 (blue), P5(red) an P10 (yellow)

networks. ∆l is 2% the entire network length. Effective tortuosity is calculated from the total

travel distance between successive control planes. As network density increases, the maximum

tortuosity value decreases, because particles in more connected networks encounter more fracture

intersections, which preferentially direct particles to flow paths aligned with x and limits highly

tortuous paths. Shaded areas show 95% confidence intervals.

440

441

442

443

444

445

Figure 4 shows the effective tortuosity distribution averaged over all network re-451

alizations for each network density. The effective tortuosity values can be surprisingly452

large, with values of χ > 50 for the P10 networks and χ > 125 for the P3 networks,453

meaning the total particle travel distance between the first crossings of successive con-454

trol planes can be up to 2 orders of magnitude larger than the linear x distance. One455

reason for such large effective χ values is that the 3D topology enables the velocity field456

to transport particles counter to the mean pressure gradient. These negative velocity re-457

gions are important because it enables particle transport in the opposite direction of pri-458

mary flow and act as a ”trapping” mechanism, causing long travel times between suc-459
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Figure 5. A single sample particle pathline through three dimensional space from a P3

network realization is shown on the left. Colors correspond to log of velocity magnitude. This

particle trajectory was selected because it displays a highly tortuous pathline. The top right

subfigure shows the x coordinate vs total pathline distance for the particle’s time series and the

bottom right subfigure shows χ values over x with observation windows of size 1.

446

447

448

449

450

cessive first crossings of control planes. It is important to note that these large values460

are partially attributed to how tortuosity is defined here and the size of the sampling win-461

dow ∆l. We refer readers interested in more details related to the wide range of tortu-462

osity definitions to the review by Ghanbarian et al. (2013).463

To visually illustrate this, Figure 5 (left) shows a single particle’s trajectory through464

three-dimensional space with colors corresponding to velocity magnitude. The selected465

particle trajectory is from a P3 network and is chosen specifically as it has one of the466

highest observed tortuosities. The top right subfigure displays the x coordinate versus467

total pathline distance for the particle’s trajectory and the bottom right subfigure shows468

the effective tortuosity at each sampled control plane for the same single particle tra-469

jectory. Observe that the particle’s streamwise position actually may decrease as it ad-470

vances along the trajectory, demonstrating the presence of a negative velocity zone and471

resulting in a large local effective tortuosity, χ >> 1. As fracture density increases, the472

influence of negative velocity zones diminish because particles have increased probabil-473
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ity of reaching a fracture intersection and escaping anti-primary flow direction velocity474

paths. Figure 4 shows that the P3 network PDFs have the largest effective χ values and475

most pronounced tailing behavior, suggesting network density plays an important role476

in effective tortuosity. Note that although local χ can be very large with maximum ef-477

fective χ of 140, 150, 51 for the P3, P5, P10 networks respectively, the maximum total478

χ50,0 are only 5.2, 4.8, 3.2 for the P3, P5, P10 networks, demonstrating that localized479

fracture and flow properties significantly impact domain-scale particle trajectories.480
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Figure 6. Effective tortuosity for single P3 and P10 realization. Colors correspond to log of

tortuosity. Values are sorted from highest to lowest tortuosity. In the P3 network, tortuosity

statistics are heavily spatially dependent, and this dependency homogenizes as the network’s

fracture density increases (right).

481

482

483

484

To further demonstrate the dependence of local tortuosity on network geometry,485

we plot local tortuosity through space for every particle in a single realization of a P3486

network (left) and P10 network (right), Figure 6. Colors correspond to the logarithm487

of local tortuosity values and for each observation window values are sorted from small-488

est to highest, so that similar tortuosity values are grouped together and appear as bands,489

i.e. the y axis displays a local tortuosity value for each particle. The banded color struc-490

ture alternating between dark and light colors in the P3 network reflects the network491

heterogeneity. Dark color bands are regions of the network where nearly all the parti-492

cles feel effective tortuosity values close to the mean tortuosity. Bright colors are regions493

of the network where tortuosity values are all larger than the mean. Note that near ∆x =494

30 approximately 18% of particles (the orange colored region) experience local tortuos-495

ity values greater than 10. This suggests that a significant proportion of particles enter496

negative velocity/recirculation zones when traversing this particular section of the net-497
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work and thus its effects should be included in upscaled frameworks, as it delays network498

scale transport.499

The observed effective tortuosity evolution in the P10 network (Figure 6) tells a500

very different story. The increased fracture density of the P10 network means Lagrangian501

statistics across fixed spatial increments are more similar than in the P3 network. There-502

fore, we do not observe as pronounced color bands as in the P3 case. Instead, the tor-503

tuosity statistics are more spatially homogeneous. This behavior is expected because as504

the fracture density increases, flow channelization decreases, thereby homogenizing net-505

work statistics through space.506

3.4 Velocity and Tortuosity507

Figure 7. The joint distribution of effective local velocity and tortuosity averaged over all net-

work realizations. Colors correspond to log probabilities. In all network densities, faster velocities

have smaller tortuosities. As velocity decreases, the distribution of effective tortuosity widens.

508

509

510

We investigate the relationship between local effective tortuosity and particle ve-511

locity. Figure 7 shows joint velocity-tortuosity PDFs averaged over all network realiza-512

tions for each network density. Note here that velocity corresponds to an effective ve-513

locity in the direction of primary flow, i.e. the pathline distance traveled between suc-514

cessive control planes divided by the corresponding transition time. For all network den-515

sities, particles with high velocities have small tortuosity values. This is expected because516

a lower χ means that a particle’s advective distance is relatively small, thereby decreas-517

ing the time required to travel a fixed x-increment. Additionally for all network densi-518

ties, the distribution width of local tortuosity values increases with decreasing velocity.519

Again, this is expected because it takes particles a relatively longer time to travel rel-520
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atively longer distances, thereby causing lower effective velocities for high χ values. Note521

the majority of particle tortuosities, even at low velocities are close to the mean tortu-522

osity value (observed as the yellow band near χ = 1). However, there also exists large523

tortuosity values χ > 10 with relatively slow velocities v/〈v〉P3
l < 1. Particles with524

these slow velocity - high tortuosity pairings produce large travel times that can be or-525

ders of magnitude larger than the mean travel time. We hypothesize that these pairings526

manifest as late time tailing observed on breakthrough curves and therefore must be ac-527

counted for in upscaled transport modeling frameworks, i.e. a mean tortuosity value does528

not effectively represent this velocity-tortuosity correlation structure.529

3.5 Breakthrough Curves530

Figure 8. The top row shows mean CDF breakthrough curves at 15 (black), 30 (green), 50

(red) for the P3, P5, P10 networks. The gray shade shows 95% confidence intervals across real-

izations. The bottom row shows mean complementary CDFs, highlighting late time breakthrough

behavior.

531

532

533

534

We inject solute into the domain with a flux-weighted pulse injection at the inlet535

of each network realization and breakthrough time for each particle is measured at each536

control plane. Figure 8 shows the mean breakthrough curves for each network density537

at three control planes 15, 30, 50. The top row shows cumulative distributions (CDF) of538
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breakthrough times and the bottom rows shows the complementary cumulative distri-539

bution function (CCDF), which highlights tailing behavior. As the fracture density in-540

creases, mean breakthrough time decreases, which is consistent with the increased mean541

velocity observed in Eulerian and Lagrangian velocity fields. Furthermore, as the frac-542

ture density increases, the uncertainty among network realizations for a given density543

decreases, shown by a decrease in the 95% confidence intervals (gray). This again demon-544

strates that Lagrangian statistics homogenize as the network density increases and er-545

godic assumptions become more valid.546

4 Bernoulli Continuous Time Random Walk (CTRW)547

Here we introduce a Bernoulli CTRW upscaled model, which is used to predict trans-548

port behavior. Bernoulli predictions are compared and validated with the dfnWorks549

high fidelity simulations. In this study, we parameterize the Bernoulli CTRW by sam-550

pling the Lagrangian velocity magnitudes for all particles at control planes spaced ∆l =551

1 in the x-direction. The particle velocity distribution ψl(v) corresponds to velocities along552

particle pathlines and not the x-directional velocity. In such a framework, pathline dis-553

tances are considered via a tortuosity parameter χ, which typically has been assumed554

as constant over the entire network (J. Hyman et al., 2019; Kang et al., 2019). Local ef-555

fective tortuosities, however, are broadly distributed in the studied fracture networks and556

it remains unanswered whether accounting for this distribution affects model prediction557

capabilities. Here, we compare predictions of a Bernoulli CTRW with a fixed χ, as typ-558

ically done in past literature, with those provided by a modified-Bernoulli CTRW that559

considers the global distribution of χ values.560

Effective particle transport through fracture networks is modeled with a Bernoulli561

CTRW. Like other CTRWs, at each model step particles jump a fixed distance ∆l in the562

x-direction with velocity v, which is sampled from a distribution ψl(v). Hence, particle563

motion through time and space is characterized with a Langevin equation:564

xn+1 = xn + ∆l tn+1 = tn +
∆l

vn+1
(20)565

The Bernouli CTRW framework assumes that Lagrangian velocity evolves at a constant566

spatial rate, thereby imposing velocity correlation on particle motion. Specifically, a Bernoulli567

process dictates particle velocity transitions; a particle at model step n+1 will continue568

with its velocity from the previous step n with probability P or sample a new velocity569
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from a global velocity distribution ψl(v) with probability 1 − P . Velocity for particle570

i at model step n+ 1 is determined as follows:571

vin+1 =

v
i
n P

ψl(v) 1− P
(21)572

In this study P can be thought of as the probability that a particles remains on573

the same fracture over distance ∆l, which can be calculated from particle trajectory data.574

Let there be M control planes perpendicular to the primary flow direction and equally575

spaced by ∆l. Then P is defined as:576

P = 〈 1

M

M∑
m=1

Ifm+1=fm〉, (22)577

where f denotes the fracture id, I is an indicator function that returns unity if a par-578

ticle persists on the same fracture over successive control planes, and the angle brack-579

ets denote the average over the entire particle plume. In fracture network systems, a par-580

ticle’s current velocity is closely related to the local fracture, and transitioning fractures581

can result in abrupt particle acceleration, suggesting that setting 1−P equal to the prob-582

ability of changing fractures is appropriate for a Bernoulli framework. The fracture per-583

sistent probability P values for a ∆l = 1 are 0.79, 0.77, and 0.75, for P3, P5, and P10584

networks respectively. An equivalent P can be recovered from the Eulerian flow field and585

network structure.586

4.1 Fixed χ Bernoulli587

The simplest Bernoulli CTRW framework considered assumes that tortuosity for588

each particle jump is constant. A tortuosity parameter accounts for mean pathline dis-589

tance, which effectively increases the travel time of each particle jump in the Langevin590

time equation (20):591

tn+1 = tn +
〈χ〉∆l
vn+1

(23)592

Here, the mean tortuosity 〈χ〉 = 〈χ50,0〉, i.e. the mean total advective tortuosity mea-593

sured at the network outlet. Therefore, at every model step, all particles travel the same594

distance 〈χ〉∆l, but travel at different velocities which are sampled from equation 21. The595

mean tortuosity averaged over all realizations is 〈χ〉 = 2.21, 1.98, 1.62 for the P3, P5, P10596

networks respectively. This mean tortuosity Bernoulli CTRW framework acts as a bench-597

mark model upon which we build.598

–23–



manuscript submitted to Please set Journal Name by using \journalname

4.2 Random χ Bernoulli599

As discussed in §3.3, the network geometry and presence of negative velocity zones600

means that local particle pathline distances follow a broad distribution spanning orders601

of magnitude. Therefore, when the local tortuosity differs greatly from the mean tortu-602

osity, travel times may not be accurately represented. We modify the Bernoulli CTRW603

travel time equation to consider the broad χ distribution:604

tn+1 = tn +
χn∆l

vn+1
, χn ∈ ψ(χ) (24)605

where χn is a random sample from ψ(χ), the global effective tortuosity distribution for606

each network realization. ψ(χ) is found by calculating the total pathline distance of each607

particle over successive equally spaced control planes of ∆l. At each model step and for608

every particle, we sample a separate velocity according to (21). The corresponding travel609

time for that step depends on both the velocity and tortuosity. Note that when a veloc-610

ity persists over multiple model steps, the corresponding χ values are re-sampled and611

therefore independent of velocity.612

4.3 Correlated χ Bernoulli613

Finally, we modify the Bernoulli framework to consider the correlation structure614

between local velocity and local tortuosity. As observed in Figure 7, the effective veloc-615

ity is highly correlated to the effective tortuosity. High velocities typically have local tor-616

tuosity values less than or equal to the mean, while slower velocities have a wide distri-617

bution of possible tortuosity values. Naturally, the largest travel times for a particle jump618

occurs when the velocity is slow and the effective tortuosity is large. We account for this619

correlation structure by conditioning tortuosity on particle velocity:620

tn+1 = tn +
χn+1∆l

vn+1
, χn ∈ ψ(χ|vn) (25)621

To condition the local tortuosity on velocity in a discrete framework, we divide the622

velocity distribution into classes. In this study 100 logarithmically spaced classes, span-623

ning 6 orders of magnitude, are used. Each velocity class has a corresponding distribu-624

tion of effective tortuosity values, which is determined from the joint velocity-tortuosity625

pdf in Figure 7. We calculate this joint pdf by generating a velocity-tortuosity pair ev-626

ery time a particle crosses a control plane. The effective velocity for a particle is calcu-627

lated as ∆l/∆τ , where ∆τ is the elapsed time between successive control plane first pas-628
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sage times; the effective tortuosity is then determined from the total advective travel dis-629

tance ∆l in lapsed time ∆t, χ = ∆`/∆l. Each measured velocity, and therefore also630

tortuosity, is then binned by velocity class. At every model step we sample a particle ve-631

locity, as done in the other Bernoulli frameworks. This sampled velocity is binned and632

then an effective tortuosity from that same class is sampled. If the velocity of a parti-633

cle persists from the previous model step, we still sample a new tortuosity value. Note634

that we sample from the point Lagrangian velocity distribution, not the effective veloc-635

ity shown in Figure 7, and therefore assume the effective and point velocities share the636

same correlation structure with tortuosity.637

5 Results and Discussion638

The role of tortuosity in a Bernoulli CTRW model framework is explored by com-639

paring predicted breakthrough curves with the high fidelity dfnWorks simulations. For640

each network realization the Bernoulli CTRW and dfnWorks represents the solute plume641

with the same number of particles. Bernoulli CTRWs are initialized with the inlet flux642

weighted Lagrangian velocity distribution. The three variants of the Bernoulli framework,643

fixed χ, randomly sampled χ, and velocity correlated χ, are all tested. We parameter-644

ize the Bernoulli models with the point Lagrangian velocity distribution ψl(v) and the645

effective χ distribution ψ(χ). Control planes are spaced at distance increments of ∆l =646

1 and perpendicular to the primary flow direction. We predict breakthrough curves at647

15, 30 and 50. We report our findings in non-dimensional form, where length is relative648

to r0, the minimum fracture length, and time is relative to τ∗ = 50/〈v〉P3
l , the time to649

traverse the network if traveling at the mean P3 Lagrangian velocity.650

5.1 Breakthrough Curves651

Figure 9 shows Bernoulli CTRW breakthrough curve predictions, averaged over all660

P5 network realizations, at three downstream control planes 15, 30 and 50. The three661

Bernoulli models, fixed χ (blue), random χ (green), and velocity correlated χ (red) are662

compared with the dfnWorks measured values (black dots). Notice that the mean χ663

framework under-predicts concentration at earlier times (CDF < 0.5) at all distances.664

Sampling randomly from ψ(χ) shifts the breakthrough curves left and correlating veloc-665

ity and χ causes a further shift left, meaning increased concentration at earlier times.666

Such a shift occurs because sampling from a χ distributions allows particle travel dis-667
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Figure 9. Mean BTC for P5 networks. dfnWorks -black, classic Bernoulli - blue, Random

Tortuosity Bernoulli-green, Velocity-Tortuosity correlated Benroulli-red. Introducing random

tortuosity decreases peak arrival time because particles now sample tortuosities less than the

mean. Similarly, tailing is slightly increased because we now sample high tortuosities, which leads

to larger breakthrough times. Correlating velocity with tortuosity further increases concentration

of early arrivals, as fast particles now probablistically sample tortuosities less than the mean.

Tailing increases because slow particles have increased probability of sampling high tortuosities

resulting in larger breakthrough times. 95% confidence intervals for dfnWorks are in gray.

652

653

654

655

656

657

658

659

tances to be less than the mean χ, thereby enabling particles to travel less distance for668

breakthrough and increasing concentration at early times. Furthermore, correlating ve-669

locity with χ preferentially pairs fast velocities with small χ values, which again results670

in faster arrival times and increases concentration at early times, compared with the mean671

χ framework. At distance 15, the correlated χ model best captures early time arrival;672

all the Bernoulli frameworks sufficiently capture the bend in the CDF observed near CDF673

values in range [0.8,1]. For a distance 50, the correlated χ framework again best captures674

early time arrival and most accurately portrays the observed bending behavior for CDF675

values in the range [0.8, 1].676

Model performance is also assessed through breakthrough curve tailing analysis.682

Figure 10 displays complementary cumulative distribution functions (CCDFs) for all tested683

Bernoulli frameworks: CCDFs are shown at 15 (black), 30 (green) and 50 (red) for dfn-684

Works (dots) and the Bernoulli frameworks (solid lines). The mean and random χ frame-685

works both underestimate tailing at x = 30 and x = 50, while sufficiently capturing686

tailing for x = 15, which is consistent with the CDF observations. The opposite is true687
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Figure 10. The mean CCDF for P5 for the fixed χ, random χ, and correlated χ Bernoulli

models. Dots are dfnWorks, solid lines are CTRW predictions. CCDF are shown 15 (black),

30 (green), and 50 (red) from the inlet. The correlated tortuosity formulation provides best

predictions of tailing behavior at 50 because slow velocity-high tortuosity paths are accounted

for.

677

678

679

680

681

for the correlated χ framework, where it accurately predicts tailing at distance 30 and688

50, but overpredicts tailing at 15. The correlated χ framework overestimates tailing at689

x = 15 because the tortuosity distribution has yet to be fully developed, as demonstrated690

in Figure 3 which shows that at x = 15 mean tortuosity has yet to reach an asymp-691

totic limit. The correlated χ framework samples from the global ψ(χ|v), meaning that692

the slowest velocity - largest tortuosity value pairs can be selected at any distance, even693

though they have yet to occur in the dfnWorks simulation at this distance. These pairs694

generate large travel times, which cause an overestimation of tailing behavior at distances695

near the inlet, where such pairs have yet to be realized. However, by x = 30, the mean696

tortuosity has asymptotically leveled off, and the tailing predictions of the correlated χ697

framework improve because large travel times have been realized in the network, i.e. the698

ergodic assumption has become valid.699

The observed model performance suggests that negative velocity and stagnation700

zones must be accurately captured in the Bernoulli framework for proper representation701

of tailing. Such behavior is represented by correlating velocity and χ, because a non in-702

significant number of particles traverse large distances at slow velocities, which gener-703

ate large travel times that affect late time tailing that is only captured if the velocity -704

tortuosity correlation structure is imposed. Predictions from the random χ framework705
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do not capture this late time tailing, demonstrating that simply considering the full tor-706

tuosity distribution alone is insufficient as it does not account for the correlation struc-707

ture.708

5.2 The Role of Fracture Density on Bernoulli CTRW Predictions709

We investigate the role of fracture density within a network on solute transport.710

The role of fracture denisty is assessed via analysis of breakthrough curves, particle to-711

tal advective travel distances, and particle spreading. We compare Bernoulli CTRW pre-712

dictions with observations from dfnWorks simulations. CTRW predictions for differ-713

ent network densities are quantitatively assessed with a Kullback-Leibler error metric.714

5.2.1 Comparison of Bernoulli Model Predictions715

In BTC predictions, we observe the same trends discussed previously for the P3723

and P10 networks, that is sampling ψ(χ) increases concentration at early times and sam-724

pling ψ(χ|v) increases concentration at both early and late times relative the other tested725

frameworks. Figure 11 displays mean breakthrough curve predictions at x = 50 for the726

P3 and P10 cases. In the sparsest P3 networks, it is not obvious which Bernoulli frame-727

work offers the best prediction capability, as they all are qualitatively similar. As frac-728

ture density decreases, the network’s spatial heterogeneity increases and the ergodic as-729

sumption upon which the Bernoulli model is built becomes less valid. As a result the im-730

portance of accounting for tortuosity as we do also lessens. When fracture density in-731

creases such as in the P10 cases, the global tortuosity distribution becomes representa-732

tive of the local distribution because the velocity and network statistics across space ho-733

mogenize. Consequently, sampling from a χ distribution in the Bernoulli frameworks en-734

hances breakthrough curve predictive capability and correlating χ with velocity further735

increases model accuracy at both late and early times.736

5.2.2 Advective Distance Distribution737

The impact of fracture density is further assessed by comparing the distribution742

of total advective travel distance measured in dfnWorks with predictions made by the743

modified Bernoulli frameworks; note λ(x50; a) gives particle pathline distances from net-744

work inlet to outlet. Such a prediction was not possible in the previous fixed χ frame-745
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Figure 11. Mean CDF and CCDF BTC for P3 and P10 networks at x = 50 for dfnWorks

-black, fixed χ Bernoulli - blue, Random χ Bernoulli-green, correlated χ Benroulli-red. Intro-

ducing random tortuosity shifts arrival times left because particles now sample tortuosities less

than the mean. Similarly, tailing is slightly increased because we now sample high tortuosities,

which leads to larger breakthrough times. Correlating velocity with tortuosity further increases

concentration of early arrivals, as fast particles now preferentially sample tortuosities less than

the mean. 95% confidence intervals for dfnWorks are shown in gray.

716

717

718

719

720

721

722

work because every particle travels the same distance after n model steps, λ(xn) = n〈χ〉∆l.746

Figure 12 shows the travel distance distributions at x = 50.747

As the fracture density within the network increases, the variance and mean of the748

observed total advective distance distribution decreases, as well as the variation among749

network realizations. Increasing the fracture density reduces flow channelization, mean-750

ing particles sample more fractures and their respective trajectories homogenize. As a751

result, the Bernoulli models better predict the distance distribution in denser networks,752

as sampling effective tortuosities exhibit decreased variance across space. Additionally,753

we observe that skewness of the distribution decreases in denser networks and the mean754
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Figure 12. The total advective travel distance [λ(x50;a)] distribution at the domain outlet

x = 50 for dfnWorks (black), the random χ Bernoulli model (green), and correlated χ Bernoulli

model (red). The dashed black line represents the total particle travel distance for a mean χ

Bernoulli framework. 95% confidence intervals for dfnWorks are shown in gray.

738

739

740

741

tortuosity more closely aligns with the peak value. This suggests that using a mean tor-755

tuosity model becomes more reasonable for representing advective travel distances in very756

dense networks.757

In the sparse P3 networks, the total advective distance distribution is not accu-758

rately predicted because the network topology has an increased role on particle trajec-759

tories, and this topology is not properly represented with the proposed Bernoulli frame-760

works. In these sparse networks, single large fractures have a significant influence on trans-761

port; particles tend to persist on these large fractures for longer distances than in the762

denser networks because they encounter less fracture intersections. Therefore, the ori-763

entation of these preferential fractures significantly impacts particle travel distances, and764

local effective tortuosities for particles on these fractures remains relatively constant over765

the fracture scale. The proposed Bernoulli frameworks do not account for this spatial766

correlation structure of tortuosity and thus fail to accurately predict the travel distance767

distributions.768

–30–



manuscript submitted to Please set Journal Name by using \journalname

10
-2

10
-1

τ∗

10
-2

10
0

10
2

M
S
D

P3

10
-2

10
-1

τ∗

10
-2

10
0

10
2

P5

10
-2

10
-1

τ∗

10
-2

10
0

10
2

P10

DFNWORKS

Random χ

Correlated χ

Figure 13. The averaged Mean Square Displacement (MSD) for the random χ (green) and

correlated χ (red) Bernoulli models are compared with dfnWorks simulations (black). Gray

shaded region shows 95% confidence intervals of dfnWorks.

770

771

772

5.2.3 Mean Square Displacement769

We study particle spreading in the longitudinal direction with mean square displace-773

ment (MSD).774

MSD(t) =
1

N

N∑
i=1

[xi(t)− 〈x(t)〉]2 (26)775

with N being the total number of particles. Figure 13 compares predicted MSD from776

the Bernoulli models with dfnWorks simulations. Naturally, the plume spreads over777

time as the network’s topology and corresponding flow field cause particles to experience778

a wide range of velocities, thereby stretching the plume. Spreading is enhanced in dense779

networks where the many fractures and intersections create a more dispersed flow field,780

allowing the solute plume to easily spread in all spatial directions. Notice that there ex-781

ists two spreading regimes in the P5 and P10 networks, with a break in MSD slope oc-782

curring near τ∗ = 0.03. At early times (τ∗ < 0.03) MSD ∼ t1.7. Then at later times783

(τ∗ > 0.03) the spreading rate decreases and MSD ∼ t1.5. A particle traveling at the784

mean velocity for time τ∗ = 0.03 will traverse a distance of approximately 2 and 3 for785

the P5, P10 networks, which is similar to the mean fracture radius of 1.9. This suggests786

early solute spreading is controlled by single fractures that intersect the domain inlet,787

and once solute has traveled a sufficient distance and transitioned from the inlet frac-788

tures, network-scale topology plays an increasing role in solute spreading. Note that in789

the P3 networks, MSD is much more variable across realizations and spreading is con-790

trolled by single large fractures which dominate transport behavior and therefore a break791

in MSD slope is not clearly observed.792

–31–



manuscript submitted to Please set Journal Name by using \journalname

We predict MSD with the Bernoulli models and find the same repeating trend; the793

Bernoulli predictions are very accurate in dense networks and model performance sig-794

nificantly decreases in the sparse P3 networks. In the sparsest networks, the network struc-795

ture drives transport. This structure is highly heterogeneous and the Bernoulli frame-796

work, built on the assumption of ergodicity, does not effectively represent this hetero-797

geneity at earlier times, causing the model to fail. When the fracture density increases,798

the network statistics homogenize and can be effectively represented with a tortuosity799

distribution. Note that the correlated χ Bernoulli framework predicts enhanced spread-800

ing relative to the random χ framework. The correlated χ preferentially pairs fast ve-801

locity with low tortuosity and slow velocity with high tortuosity, meaning fast particles802

advect downstream very quickly relative to slow particles. This discrepancy in veloci-803

ties stretches the plume, leading to a higher MSD. This behavior is probabilisticaly less804

likely with the random χ framework because the velocity-tortuosity correlation is not805

considered; therefore MSD is lower.806

Note that MSD behavior is predicted with a Bernoulli model with a reduced jump807

size ∆l = 1/10 instead of ∆l = 1, as done with other figures. Smaller jump sizes en-808

able solute spreading to be estimated at earlier times.809

5.2.4 Error Metric: Kullback-Leibler810

We more formally evaluate the performance of each Bernoulli framework through816

the Kullback-Leibler divergence. This metric quantifies the similarity between two PDFs,817

i.e. breakthrough curves in pdf form. The Kullback-Leibler is defined as follows:818

DKL =

∫ ∞
−∞

p(t) log

(
p(t)

q(t)

)
dt. (27)819

Here p(t) and q(t) corresponds with the dfnWorks and Bernoulli CTRW breakthrough820

curves, respectively. Note that DKL = 0 when two PDFs are identical and increases821

as the expectation of the logarithmic difference increases. We calculate DKL for each net-822

work realization at x = 15, 30, 50.823

Figure 14 shows DKL, averaged over all realizations, at the different control planes.824

Colors correspond to the three Bernoulli frameworks, fixed χ (black), random χ (green),825

and correlated χ (red). Shapes identify the three network densities, P3 (circles), P5 (squares),826

and P10 (triangles). First notice that for the P5 and P10 networks, red is always be-827

low green, which is always below black, meaning that the correlated and random χ frame-828
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Figure 14. The mean Kullback-Leibler metric for each Bernoulli method; fixed χ (black), ran-

dom χ (green), and correlated χ (red) for each network realization; P3 (circle), P5 (square), and

P10 (triangle). At all distances, the random χ frameworks improves upon the fixed χ Bernoulli.

For P5 and P10 networks, the correlated Bernoulli is the best predictive model at all distances.

For the P3 network, all Bernoulli frameworks are similar.

811

812

813

814

815

work always outperform the fixed χ framework, and the correlated χ framework has the829

strongest predictive capability. In the P3 case, all model performance is nearly identi-830

cal at distance 15 and 30, with the correlated χ interestingly having slightly higher er-831

ror when compared with the other frameworks. As noted previously, the correlated χ832

decreased performance is related to the spatial dependency of tortuosity statistics, mean-833

ing that the ergodic assumption is not valid. Once the statistics have fully evolved to834

the global distribution at distance 50, the correlated χ model outperforms the other mod-835

els, which is expected since the full global distribution is now equivalent to the sample836

distribution.837

A few general trends become apparent upon further examination of Figure 14.838
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• As the distance from the injection plane increases, the Bernoulli model performance839

improves. For each realization, the Bernoulli CTRW is parameterized with the global840

Lagrangian velocity PDF, meaning that at the exit control plane, particles in dfn-841

Works have fully sampled the entire velocity distribution used to parameterize842

the model. At upstream control planes, the global pdf has yet to be realized, thereby843

decreasing predictive accuracy as the distribution becomes more spatially depen-844

dent.845

• Bernoulli model predictions improve as network density increase. Decreasing net-846

work density makes Lagrangian statistics more spatially variant, as was observed847

in Figure 6. Hence if the local Largangian statistics significantly differ from the848

global statistics, the model prediction accuracy suffers.849

These two trends indicate that Lagrangian ergodicity occurs in fracture networks850

after the solute plume travels a sufficient distance from the solute source and this dis-851

tance decreases with increasing fracture density. Once the ergodicity assumption holds,852

the Bernoulli CTRW model predictions will improve if the tortuosity distribution and853

tortuosity-velocity correlation structure is considered.854

5.3 Larger Scale Breakthrough Curve Predictions855

We investigate the role of tortuosity on transport behavior at larger scales by pre-860

dicting breakthrough curves at x = 100, 1000 for each network realization and for each861

Bernoulli framework considered. A benefit of the Bernoulli CTRW framework is that large862

scale transport behavior can be predicted at significantly reduced computational costs863

relative to a DFN model. Given the large scales considered in this section and associ-864

ated computational resources, dfnWorks simulations are run in a domain with lengths865

of 50 (the same ones as previously discussed) and the corresponding statistics are used866

to parameterize the Bernoulli models. This procedure assumes all fracture length scales867

that influence large scale transport are represented in the high fidelity domain with length868

50.869

Figure 15 displays the predicted mean CDF and CCDFs for each network density870

and for each Bernoulli model. The first important trend that emerges is 1) the fixed and871

random χ Bernoulli framework predictions converge for all arrival times. At the length872

scales considered here, the random χ Bernoulli model has sufficiently sampled the tor-873
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Figure 15. The mean CDF and CCDF breakthrough curves at x = 100, 1000 predicted by

each the fixed χ (blue), random χ (green), and correlated χ (red) Bernoulli CTRW. The fixed

and random χ frameworks converge at large distances. The correlated χ predictions display

enhanced tailing and a delayed arrival of peak breakthrough.

856

857

858

859

tuosity and velocity distributions such that the predicted particle trajectories are approx-874

imately equal to those predicted when only considering a fixed tortuosity. This suggests875

that randomly sampling χ does not improve breakthrough curve predictions at large dis-876

tances, once the χ distribution has undergone sufficient sampling. Previous studies have877

focused on fixed χ Bernoulli models, which are suitable when velocity and tortuosity are878

independent and predictions are made for distances where the solute plume has fully sam-879

pled the tortuosity distribution. These assumptions are violated for the scales of inter-880

est in this study and so a correlated χ framework is considered..881

The second important trend is that the correlated χ framework delays mean trans-882

port. For all network densities, correlating χ with velocity results in large travel times.883

As the distance from the injection source increases, particles have increased probabil-884

ity of sampling large travel times generated from low velocity- high χ pairs, which de-885

lays mean transport. This delayed transport is especially obvious in the CCDFs, which886

highlight breakthrough curve tailing behavior at late times. Note enhanced tailing of the887

correlated tortuosity model is observed for all fracture densities and distances from source.888
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As the fracture density and the distance from particle source increase, the observed dif-889

ference in late time tailing decreases, which is expected given that both of these factors890

homogenize Lagrangian statistics. However, even in the densest networks at the kilome-891

ter scale, we still observe significant difference in tailing between the correlated and fixed892

tortuosity CTRW models at intermediate CCDF values [0.01,1]. Interestingly, the fixed893

χ CTRW underestimated tailing for this same CCDF regime in the fracture networks894

studied by (J. Hyman et al., 2019), although their networks had higher density. This again895

shows that the velocity-tortuosity correlation structure is important for breakthrough896

tailing, as slow velocity large χ regions delay solute transport. Therefore, parameteri-897

zation of tortuosity needs to be carefully considered if we are to develop accurate up-898

scaled models, capable of predicting late time behaviors. Treating χ as a fixed value be-899

comes more valid as network density and distance from source increase, but as we see900

here, may not be valid for many typical scales of study.901

6 Discussion902

Here, we consider fracture networks of three different densities with radii sampled903

from a truncated power law distribution and investigate the influence of fracture den-904

sity on flow and transport. As the fracture density increases flow channelization decreases905

and network connectivity increases. These changes in flow and topological properties cause906

significant differences in particle trajectories:907

1. As connectivity increases the mean advective travel distance decreases, i.e. χ∞908

decreases, because solute encounters more fracture intersections where they are909

preferentially directed to high discharge channels which are aligned with the pres-910

sure gradient.911

2. Local tortuosity statistics become spatially independent as fracture density increases.912

3. The distribution of local effective tortuosities χ display greater variance and in-913

creased probability for large χ values in sparse networks.914

4. Increased flow channelization in sparse networks results in decreased spreading of915

the solute plume.916

5. Increasing the fracture density increases the mean Eulerian velocity magnitude,917

which in turn decreases the mean particle breakthrough time.918
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We predict breakthrough curves with a correlated CTRW framework that assumes919

a spatial Markov process. The traditional spatial Markov model assumes travel time statis-920

tics across successive control planes are spatially stationary, which is clearly not satis-921

fied in sparse networks where network topology is spatially variant (Figure 6). Hence we922

opt to upscale transport via a Bernoulli CTRW framework, which also assumes solute923

trajectories follow a spatial Markov process, while allowing velocity statistics to evolve924

from an initial to steady distribution. Past applications of the Bernoulli CTRW frame-925

work assume a constant tortuosity parameter at each model step, which effectively de-926

lays transport. However we demonstrate that local tortuosity values span a wide distri-927

bution and are correlated with velocity. Using this fact, we investigate how relaxing the928

fixed tortuosity value improves breakthrough curve predictions and better captures the929

local effects induced by the network structure.930

The tortuosity value in the Bernoulli framework is relaxed in two novel ways 1) at931

every model step local tortuosity is sampled from a global distribution, and 2) at every932

model step local tortuosity is correlated with the velocity field. Both of these methods933

allow the distribution of particle distances to be estimated, which was previously not pos-934

sible in a Bernoulli framework. In both cases, we assume Lagrangian ergodicity, as con-935

sistent with the Bernoulli framework, meaning the modified models only will improve936

model performance if tortuosity distributions are stationary. We find that both meth-937

ods improve breakthrough curve predictions as quantified with Kullback-Leibler diver-938

gence.939

Method 1, sampling from an uncorrelated tortuosity distribution, decreases the mean940

breakthrough time relative to a fixed tortuosity model. Sampling from the global dis-941

tribution enables particles to have tortuosity values less than the mean, allowing par-942

ticles to travel less distance and traverse the domain at increased effective velocity val-943

ues. This framework is thus better suited for capturing early time breakthrough than944

a mean tortuosity framework. However, large tortuosity values are correlated with low945

velocities and sampling randomly from a global distribution does not capture this cor-946

relation, which is important for tailing behavior.947

We account for correlation by modifying the Bernoulli framework to sample from948

a joint velocity-tortuosity distribution. We show that this framework adequately cap-949

tures both early and late time tailing of breakthrough curves and offers significant im-950
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provement over a mean tortousity Bernoulli framework for the P5 and P10 networks,951

where ergodic assumptions are valid, but predictions remain relatively unchanged for the952

sparse P3 networks, where ergodicity may not be valid. Hence, in fractured media trans-953

port is a function of the network structure and flow field, and ergodic assumptions (for954

a fixed control volume) are more reasonable as fracture density increases.955

Finally, we use the upscaled CTRW models to predict transport through larger do-956

mains, in this case the kilometer scale (which is cost prohibitive with the fully DFN re-957

solved models). We find that at these scales, breakthrough predictions of the random958

χ and fixed χ frameworks converge because the χ distribution has undergone sufficient959

sampling, thereby minimizing effects of large χ values. The correlated χ framework, how-960

ever, predicts enhanced tailing, demonstrating local stagnation zones and areas of neg-961

ative velocity have an important impact on transport behavior, even at such large scales.962

This suggests that incorporating the local topological influences of a network must be963

considered in an upscaled framework for accurate model predictions.964

The results of this study demonstrate that local network topology, i.e. tortuosity,965

is important for network scale transport and we can parameterize such effects in upscaled966

modeling frameworks. However, in this study such parameterizations were derived from967

high fidelity models that required Lagrangian particle tracking statistics. How to param-968

eterize the modified Bernoulli models from field observations remains unclear and requires969

further investigation, although detailed geostatical measures may aid in that regard (Ceriotti970

et al., 2019). Furthermore, the conclusions of this study are drawn from networks with971

only three percolation lengths and where fracture radii are sampled from a power law972

distribution, and so our conclusions may not reflect universal behavior. Despite these973

considerations, we learn from model predictions that tortuosity plays an important role974

in transport and by coupling the distribution of network topology statistics with a spa-975

tial Markov model, we can faithfully portray transport in the fractured media consid-976

ered here.977
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Svensk Kärnbränslehantering AB. (2010). Data report for the safety assessment SR-1224

site (TR-10-52) (Tech. Rep.). Svensk Kärnbränslehantering AB.1225
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