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Abstract

We investigate the effects of geological stress on fluid flow and tracer transport in natural frac-

ture networks. We show the emergence of non-Fickian (anomalous) transport from the inter-

play among fracture network geometry, aperture heterogeneity, and geological stress. In this

study, we extract the fracture network geometry from the geological map of an actual rock out-

crop, and we simulate the geomechanical behavior of fractured rock using a hybrid finite-discrete

element method. We analyze the impact of stress on the aperture distribution, fluid flow field

and tracer transport properties. Both stress magnitude and orientation have strong effects on

the fracture aperture field, which in turn affects fluid flow and tracer transport through the sys-

tem. We observe that stress anisotropy may cause significant shear dilation along long, curved

fractures that are preferentially oriented to the stress loading. This, in turn, induces preferen-

tial flow paths and anomalous early arrival of tracers. An increase in stress magnitude enhances

aperture heterogeneity by introducing more small apertures, which exacerbates late-time tail-

ing. This effect is stronger when there is higher heterogeneity in the initial aperture field. To

honor the flow field with strong preferential flow paths, we extend the Bernoulli Continuous

Time Random Walk model to incorporate dual velocity correlation length scales. The proposed

upscaled transport model captures anomalous transport through stressed fracture networks, and

agrees quantitatively with the high-fidelity numerical simulations.

1 Introduction

Fractures are ubiquitous in subsurface rocks, and fluid flow and mass transport in frac-

tured media control many important subsurface processes and engineering applications. One

attractive way of modeling fractured media is using a discrete fracture network (DFN) approach (Berkowitz

& Scher, 1997; Cacas, Ledoux, de Marsily, et al., 1990; Huseby, Thovert, & Adler, 2001; Juanes,

Samper, & Molinero, 2002; Koudina, Garcia, Thovert, & Adler, 1998; Molinero, Samper, &

Juanes, 2002; Park, de Dreuzy, Lee, & Berkowitz, 2001). DFN models represent fractures as

discrete entities and enable the study of the effects of fracture geometrical properties on fluid

flow and transport explicitly. Fluid flow and transport in DFNs has been the subject of many

investigations over the past decades, and recent advances in computational power have enabled

more detailed flow and transport studies in complex three-dimensional (3D) DFNs with mul-

tiscale heterogeneity (Benedetto, Berrone, Borio, Pieraccini, & Scialò, 2016; J. Hyman & Jiménez-

Martı́nez, 2018; J. D. Hyman, Dentz, Hagberg, & Kang, 2019; Maillot, Davy, Le Goc, Dar-
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cel, & De Dreuzy, 2016; Makedonska, Painter, Bui, Gable, & Karra, 2015; Viswanathan et al.,

2018).

Recent studies have shown that the multiscale heterogeneity of fracture media—from sin-

gle fracture-scale roughness to fracture network-scale heterogeneity—induces anomalous (non-

Fickian) transport (Cardenas, Slottke, Ketcham, & Sharp, 2007; Edery, Geiger, & Berkowitz,

2016; Kang, Dentz, Le Borgne, Lee, & Juanes, 2017; Kang, Le Borgne, Dentz, Bour, & Juanes,

2015; L. Wang & Cardenas, 2014). Anomalous transport is widely observed from laboratory

experiments in packed beds (Kandhai et al., 2002; Moroni, Kleinfelter, & Cushman, 2007),

sand columns (Levy & Berkowitz, 2003) and rock samples (Bijeljic, Mostaghimi, & Blunt,

2011; Kang et al., 2014; Porta, Bijeljic, Blunt, & Guadagnini, 2015; Scheven, Verganelakis,

Harris, Johns, & Gladden, 2005) to field scale experiments (Garabedian, LeBlanc, Gelhar, &

Celia, 1991; Kang, Le Borgne, et al., 2015; Le Borgne & Gouze, 2007). The key features of

anomalous transport are early arrival of tracers, long tailing of tracers, and non-Gaussian plume

shapes, and these features cannot be properly captured by a traditional advection-dispersion

formulation. Predicting anomalous transport is critically important for various engineering ap-

plications including subsurface contaminant transport, geological nuclear waste disposal and

carbon sequestration.

Fractures are always subjected to in-situ stresses, which can modify fracture network prop-

erties. In-situ stresses are often variable in space and time as a result of the superposition of

far-field stresses and local perturbations. The far-field stresses related to plate-driving forces

are typically uniform over the lithospheric scale (Zoback, 1992), while local perturbations may

be induced by the presence of geological structures such as fractures (Lei & Gao, 2018), het-

erogeneity in elastic properties, and changes in pore pressure from fluid injection and extrac-

tion. The resulting spatially-variable stress field may lead to a heterogeneous distribution of

fracture apertures due to the strong dependence of fracture deformation on normal/shear load-

ings (Bandis, Lumsden, & Barton, 1983; N. Barton, Bandis, & Bakhtar, 1985). Starting from

the seminal work by Witherspoon, Wang, Iwai, and Gale (1980), great efforts have been de-

voted to investigating the coupled effects between stress and fluid flow in fractured rocks (Bagh-

banan & Jing, 2008; Figueiredo, Tsang, Rutqvist, & Niemi, 2015; Latham et al., 2013; Lei,

Latham, & Tsang, 2017; Liu, Li, Jiang, & Yu, 2018; Ma, Wang, Li, & Chen, 2019; Min, Rutqvist,

Tsang, & Jing, 2004; Oda, 1986; Pyrak-Nolte & Morris, 2000; Raven & Gale, 1985; Rutqvist

& Stephansson, 2003; Zhang & Sanderson, 1996). The permeability tensor was observed to
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be highly sensitive to both fracture network properties (e.g., aperture, length, density, and ori-

entation) and the in-situ stress conditions (e.g., magnitude and direction).

A few recent studies have investigated the role of stress on solute transport in fracture

networks (Jing, Min, Baghbanan, & Zhao, 2013; Nick, Paluszny, Blunt, & Matthäi, 2011; Rutqvist,

Leung, Hoch, Wang, & Wang, 2013; Z. Wang et al., 2014; Zhao, Jing, & Neretnieks, 2010;

Zhao, Jing, Neretnieks, & Moreno, 2011; Zhao et al., 2013), and have shown that geological

stress can be a key determinant for the transport of solutes. These effects were investigated

systematically for the first time by Zhao et al. (2011). They found that, for fracture networks

with constant initial apertures and under moderate stress anisotropy, an increase in stress mag-

nitude leads to a delay in solute arrival times, whereas, at higher stress anisotropy, shear can

give rise to preferential flow paths by dilating fractures, thereby leading to early arrival of so-

lutes. These previous studies analyze stress effects on solute transport on the basis of tracer

breakthrough curves and tracer mean arrival times. Moreover, the role of heterogeneity in the

initial aperture remains unexplored. This limits our fundamental understanding of the links among

stress, fracture network geometry, fracture aperture distribution, flow and transport—something

that we address here for the first time. Through high-fidelity numerical modeling of fluid flow

and transport through stressed fracture networks, we show that geological stress can induce

anomalous transport in fracture networks, and we elucidate the underlying mechanisms respon-

sible for this behavior. We also propose a parsimonious upscaled model that can capture anoma-

lous transport through stressed fracture networks for the first time.

In a recent study, we have shown that confining stress can lead to anomalous transport

in single rough fractures (Kang, Brown, & Juanes, 2016), but an analysis of the impact of stress

on anomalous transport at the fracture-network scale is still lacking. Here, we extend the study

of stress effects on anomalous transport to the fracture-network scale, which is critical for im-

proving our fundamental understanding of subsurface processes and for quantitative assess-

ments in many subsurface engineering applications (C.-F. Tsang, 1991).

We conduct our analysis on a two-dimensional fracture network obtained from the map-

ping of an actual outcrop. To study the effects of aperture variability, we consider two differ-

ent initial settings, with either constant or variable initial aperture field. We then perform nu-

merical modeling of geomechanics under different stress magnitudes and orientations, and model

flow and tracer transport in stressed DFNs to address the effects of varying stress on anoma-

lous transport. To focus on stress effects on fracture flow and transport, we do not consider
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matrix diffusion in this study. Finally, we develop a parsimonious upscaled transport model

based on the analysis of Lagrangian velocity statistics.

2 Methodology

2.1 Natural fracture network

The natural fracture network used in this study is based on a limestone outcrop (18 m

× 8 m) located at the southern margin of the Bristol Channel Basin, UK (Figure 1) (Belayneh,

2004). Belayneh and Cosgrove (2004) created the 2D fracture pattern using a window sam-

pling approach. First, the limestone outcrop was marked with a grid having a spacing of about

1 m. Then, a number of photographs were taken at a fixed height above the ground and rec-

tified for perspective distortions before assembly. Finally, individual fractures were manually

traced from the constructed digital map.

The thin-bed limestone (0.01 m thick) is sandwiched between impervious shales, and

dissected by two sets of stratabound, vertically dipping fractures. The E-W striking set that

formed in an early stage contains laterally persistent fractures, which tend to arrest the later

developed N-S striking set consisting of short fractures. This natural fracture network exhibit-

ing a hierarchical, ladder pattern has been used as an analogue to the subsurface system for

studying single-phase flow, multiphase flow, solute transport and thermal conductivity (Edery

et al., 2016; Geiger, Cortis, & Birkholzer, 2010; Geiger & Emmanuel, 2010; Lei, Wang, Xi-

ang, & Latham, 2017; Matthäi & Belayneh, 2004; Matthäi, Nick, Pain, & Neuweiler, 2010).

In this paper, we represent the system with a two-dimensional (2-D) DFN (Geiger et al., 2010),

and use this fracture network to explore the impact of geological stress on single-phase flow

and transport behavior.

The material properties of the fractured limestone are assumed to be as follows (N. Bar-

ton et al., 1985; Lama & Vutukuri, 1978): the bulk density is 2700 kg/m3, the Youngs mod-

ulus is 30.0 GPa, the Poissons ratio is 0.27, the internal friction coefficient is 0.6, the tensile

strength is 4.0 MPa, the cohesive strength is 8.0 MPa, the mode I and II energy release rates

are 20.0 and 100.0 J/m2, respectively, the residual friction coefficient is 0.6; the properties of

rough fractures are based on a laboratory fracture sample of length l0 = 0.2 m, such that the

joint roughness coefficient JRC0 = 15 and the joint compressive strength JCS0 = 120 MPa.

We assume that the initial apertures a0 (under no stress loading) follow a lognormal dis-

tribution with a mean value of 1 mm and a variance of 0 (i.e. constant aperture scenario) or
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Figure 1. An 18 m by 8 m fracture network mapped at the limestone exposure at the south margin of the

Bristol Channel Basin, UK (Belayneh, 2004).

1 (i.e. variable aperture scenario). We randomly assign the lognormally-distributed aperture

values to different fracture sections (or links) that connect adjacent intersection nodes, such

that each link has an assigned initial aperture value but different links may have different val-

ues in the variable aperture case. The use of lognormal distribution is supported by many pre-

vious field observations and modeling studies (Bonnet et al., 2001; Cacas, Ledoux, Marsily,

et al., 1990; de Dreuzy, Davy, & Bour, 2001; Dverstorp & Andersson, 1989; Long & Billaux,

1987; Neuman & Di Federico, 2003; Pyrak-Nolte, Montemagno, & Nolte, 1997; Snow, 1970).

Here, we focus on the aperture variability effect, and do not explore the complex correlation

between fracture apertures and other properties such as length and orientation. We impose ef-

fective far-field principal stresses orthogonally to the fracture network, and explore a range of

different stress scenarios, including the reference case (Sx = Sy = 0), two isotropic stress

conditions (Sx = Sy = 5, 15 MPa), and two anisotropic stress conditions (Sx = 5 MPa,

Sy = 15 MPa, and Sx = 15 MPa, Sy = 5 MPa). The stress scenarios explored here may

represent the condition at a depth around 500 m, which is a typical depth for nuclear waste

disposal sites and shallow mineral mining sites.

2.2 Geomechanical model

We simulate the geomechanical behavior of fractured rocks using the finite-discrete el-

ement method (FDEM) (Munjiza, 2004), which can capture the deformation of intact rocks,

displacement of pre-existing fractures and propagation of new cracks (Lei, Latham, & Tsang,

2017; Lei et al., 2014). We explicitly resolve each fracture as a discrete entity, which permits

analyzing the impact of geological stress and fracture geometrical properties on fluid flow and

transport. The FDEM model represents a 2-D fractured rock using a fully discontinuous mesh
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of three-node triangular finite elements linked by four-node broken (representing discontinu-

ities) or unbroken (representing rock matrix) joint elements (Lei, Latham, & Xiang, 2016). The

motions of linear-elastic, constant-strain finite elements are governed by Newton’s second law:

Mẍ+ Fint = Fext = Fl + Fb + Fc, (1)

where M is the lumped nodal mass matrix, x is the vector of nodal displacements, Fint are

the internal nodal forces induced by the deformation of finite elements, Fext are the external

nodal forces consisting of external loads Fl contributed by boundary and body forces, cohe-

sive bonding forces Fb caused by the deformation of unbroken joint elements, and contact forces

Fc generated by the contact interaction via broken joint elements.

To capture the nonlinear deformation of natural rough fractures under normal and/or shear

loadings, an empirical joint constitutive model has been implemented into the FDEM frame-

work (Lei et al., 2016). The compression-induced fracture closure is characterized by a hy-

perbolic relation (Bandis et al., 1983):

ηn =
σnηm

kn0ηm + σn
, (2)

where ηn is the current compression-induced closure (mm), σn is the effective normal stress

(MPa), kn0 is the initial normal stiffness (MPa/mm), and ηm is the maximum allowable clo-

sure (mm). The values of kn0 and ηm are estimated using (Bandis et al., 1983):

kn0 = −7.15 + 1.75JRC + 0.02× JCS
a0

, (3)

ηm = −0.1032− 0.0074JRC + 1.1350×
(

JCS
a0

)−0.2510
, (4)

where a0 is the initial aperture (mm), JRC is the joint roughness coefficient and JCS is the

joint compressive strength (MPa). Both JRC and JCS are scale-dependent (Bandis, Lumsden,

& Barton, 1981) and their field-scale values, i.e. JRCn and JCSn, are estimated using the scal-

ing laws (N. Barton et al., 1985):

JRCn = JRC0

(
lij
l0

)−0.02JRC0

, (5)
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JCSn = JCS0

(
lij
l0

)−0.03JCS0

, (6)

where lij is the field-scale effective fracture length (i.e. size of the link connecting adjacent

intersection nodes i and j), JRC0 and JCS0 are based on the laboratory sample of length l0.

A rough fracture under shear displacement tends to dilate and the increment of dilational

displacement is given by (Olsson & Barton, 2001):

dηs = − tanφmobdε, (7)

where dηs is the increment of normal displacement caused by shear dilation, dε is the incre-

ment of shear displacement, and φmob is the mobilized dilation angle given by (Olsson & Bar-

ton, 2001):

φmob =
1

ζ
JRCmob log10

(
JCSn

σn

)
, (8)

with the damage coefficient ζ given by (N. Barton & Choubey, 1977):

ζ =
JRCn

12 log10

(
JCSn

σn

) + 0.70, (9)

The mobilized joint roughness coefficient JRCmob is related to the ratio of the current

shear displacement ε to the peak shear displacement εp (N. Barton et al., 1985), which is given

by:

εp =
lij
500

(
JRCn

lij

)0.33

, (10)

The increment of total normal displacement under combined normal and shear loadings

is thus derived as:

dη = dηn + dηs, (11)

such that the mechanical aperture a is further calculated as (Lei et al., 2016):

a =

 a0 + o, o ≥ 0,

a0 − η, o < 0,
(12)
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where o is the separation of the opposite walls when the fracture is under extension, and η is

the accumulative closure when the fracture is under compression. The hydraulic aperture, i.e.

the equivalent aperture for laminar flow through fractures, is assumed equal to the mechan-

ical aperture (Baghbanan & Jing, 2008; Matthäi & Belayneh, 2004; Min et al., 2004; Nick et

al., 2011; Paluszny & Matthai, 2010).

2.3 Flow and transport model

2.3.1 Flow

We model laminar, incompressible fluid flow through the fracture network, and use the

cubic law (Witherspoon et al., 1980) to describe fluid flow in each individual fracture. We con-

sider flow through fractures only, and disregard fracture-matrix interactions, in order to focus

on geomechanical effects on flow and transport through the fracture network. The flow rate

between nodes i and j is given by:

Qij = W
ρgaij

3

12µ

hj − hi
lij

, (13)

where W is the thickness of the limestone bed, lij the length and aij the hydraulic aperture

of the fracture connecting nodes i and j, hi is the hydraulic head at node i, ρ is the water den-

sity, g is gravitational acceleration, µ is the water viscosity. We impose mass conservation con-

straint at each node i,
∑
j Qij = 0. The hydraulic head values at every node can be obtained

by solving the mass conservation equation with the cubic law (13), which gives a linear sys-

tem of equations. The average fluid flow velocity through each fracture link is obtained by di-

viding the flow rate by the fracture cross-sectional area,

uij =
Qij
Waij

. (14)

We study a uniform flow setting by imposing constant hydraulic head values at the left

and right boundaries and imposing no-flow conditions at the top and bottom boundaries of the

fracture network. This gives a mean flow direction from left to right across the domain. The

heterogeneity of the flow field can be quantified with the probability density function (PDF)

of the Eulerian velocity, which can be obtained by sampling velocity values at every link weighted

by the link length,
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pe(u) =

∑
i>j lijδ(u− |uij |)∑

i>j lij
, (15)

where Nl is the number of links, δ is the Dirac delta function, and the overbar (·) de-

notes the average over all realizations of a given scenario.

2.3.2 Transport

We model passive solute transport with particle tracking simulations. Once we obtain

the velocity fields, we run particle tracking simulations to derive transport statistics. We sim-

ulate advective transport of a passive tracer where each tracer particle moves with the aver-

age velocity at each link. We inject particles at the left (inlet) boundary with flux-weighted

probability, which means that the number of particles injected at each inlet node is proportional

to the flow rate at that inlet node. We inject 105 particles for constant initial aperture cases,

and 104 particles into each realization for the heterogeneous initial aperture cases. We con-

sider 20 realizations for each heterogeneous scenario.

At fracture intersections, we apply a complete mixing rule, which is the most commonly

used particle routing rule at intersections (Berkowitz & Scher, 1997; Kang, Dentz, Le Borgne,

& Juanes, 2015; Park et al., 2001; Willmann, Lanyon, Marschall, & Kinzelbach, 2013). The

complete mixing rule assumes that fluids are well mixed at intersections and the probability

of a particle exiting through an outgoing link is proportional to the flow rate through that link.

The complete mixing rule implies that local Péclet number at each intersection is small enough

that diffusion can homogenize the concentration field. The choice of the mixing rule can have

a major impact on transverse spreading, but was shown to have a negligible effect on longi-

tudinal spreading (Kang, Dentz, et al., 2015; Park et al., 2001; Sherman, Hyman, Bolster, Make-

donska, & Srinivasan, 2019). In this study, we limit our analysis to longitudinal spreading and

therefore the choice of a particular mixing rule at intersections does not affect our conclusions.

The average solute spreading behavior is quantified with the first passage time distribu-

tion which is also known as breakthrough curve (BTC). BTC is the PDF of particle arrival times

at a control plane located at certain distance x = xc. We fix the control plane to the outlet

(right boundary). The BTC, f(τ, xc), is obtained by averaging particle arrival times over par-

ticles and realizations,
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f(τ, xc) = 〈δ(τ − tc)〉, (16)

where tc is the particle arrival time at the control plane xc. Note that the angular brackets 〈·〉

denote the average over all particles, and the overbar denotes the ensemble average over all

realizations of a given scenario.

3 Results

We present the modeling results of geomechanical deformation, fluid flow and solute trans-

port in the natural fracture networks. We first discuss the cases where the fracture network is

associated with a constant initial aperture field (i.e. the variance of initial aperture PDF is 0),

and then discuss the cases of a variable initial aperture field (i.e. the variance of initial aper-

ture PDF is 1) for which an ensemble of 20 realizations is used. Note that both cases have an

identical initial mean aperture of 1 mm.

3.1 Constant initial aperture case

3.1.1 Geomechanical deformation

The spatial maps of aperture values for the fracture networks under different far-field

stress loading conditions are shown in Figure 2. When Sx = Sy = 0 MPa, all fractures have

aperture values equal to the prescribed initial value of 1 mm (Figure 2a). If the fractured rock

is isotropically stressed, the fractures mainly experience normal deformation and the aperture

field is fairly homogeneous (Figure 2b-c). As the stress magnitude is increased to 5 MPa, all

fractures are closed under the isotropic compression and exhibit apertures significantly smaller

than the initial value (Figure 2b). If the stress load is further increased to 15 MPa, fractures

tend to be more closed but less sensitive to the enhanced compression (note the similar aper-

ture maps between Figure 2b and 3c), due to the nonlinear normal deformation behavior of

rough fractures, Equation (2). If the fractured rock is anisotropically stressed, differential stresses

will be accommodated in the fractured rock, which may trigger shear deformation along some

of the fractures with preferential orientation and good connectivity. For example, if Sx = 15

MPa and Sy = 5 MPa (Figure 2d), some of the through-going fractures of the E-W set, which

exhibit curved traces and are oriented (or partially oriented) obliquely to the direction of the

maximum principal stress, i.e. Sx, are significantly sheared and dilated with their apertures be-

ing larger than the inital value. However, if Sx = 5 MPa and Sy = 15 MPa (Figure 2e),
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the aperture field is fairly homogeneous, because the E-W fracture set of good connectivity

is not preferentially oriented to the direction of the maximum principal stress, i.e. Sy. The N-

S set that may be preferentially oriented to the direction of the maximum principal stress is

also prevented from sliding due to the constraint of the rock matrix.

We compare the distributions of fracture apertures under different loading conditions based

on aperture PDFs (Figure 3). Without any stress loading, the fracture network is associated

with a constant aperture value of 1 mm (Figure 3). With an increase of the isotropic stress mag-

nitude, the mean value of fracture apertures decreases, and there is some spread in the aper-

ture distribution due to the scale-dependence of fracture properties (i.e. JRCn and JCSn in Equa-

tions (5)-(6)) such that different links with distinct lengths exhibit slightly different closure be-

haviors. It can also be seen that the fracture closure is more sensitive to stress when the stress

magnitude is low, as predicted by the hyperbolic relation between normal stress and fracture

closure, Equation (2). Note that the PDFs of different non-zero isotropic stresses exhibit a sim-

ilar Gaussian-like distribution. However, if the fractured rock is anisotropically stressed, the

two cases exhibit very different shapes for the aperture PDF (Figure 3b). When Sx = 5 MPa

and Sy = 15 MPa, the PDF has a small spread around its mean value, which is smaller than

the initial value of 1 mm due to the closure of fractures. Further, the N-S and E-W fracture

sets tend to have similar aperture values due to their little sensitivity to stress under high stress

loading, such that the PDF has a unimodal form. In contrast, when Sx = 15 MPa and Sy =

5 MPa, the aperture PDF exhibits two regimes: a Gaussian-like distribution regime for small

aperture values due to the compression-induced fracture closure, and a broad distribution regime

at larger aperture values due to shear dilation-induced large apertures. This broad regime fol-

lows an exponential distribution with a rate parameter of about 5 and exhibits aperture val-

ues significantly larger than their initial value of 1 mm.

3.1.2 Flow field

We obtain the flow rate distribution by solving the linear system of equations obtained

by combining the mass conservation constraint with the cubic law (Equation (13)). The flow

velocity is then obtained according to Equation (14). To facilitate the comparison, we normal-

ize velocity values with the mean velocity value of the zero stress loading case (i.e. Sx = Sy =

0 MPa). As shown in Figure 4, the E-W horizontal fracture set shows significantly higher flow

velocity compared to the N-S vertical set. This is because the horizontal fracture set is aligned

with the mean flow direction. With the increase of isotropic stress magnitude (Figure 4b-c),

12



[mm]

(a) 

(b) 

(c) 

(d) 

(e) 

S x = S y = 0

S x = 5 MPa , S y = 15 MPa

S x = 15 MPa , S y = 5 MPaS x = S y = 5 MPa

S x = S y = 15 MPa

0.5

1

1.5

2

Figure 2. Spatial maps of aperture values at various geomechanical stress conditions for constant initial

aperture cases. (a) When Sx = Sy = 0 MPa, all fractures have aperture values identical to the prescribed

initial value of 1 mm. (b) Isotropic stress condition with the stress magnitude 5 MPa. (c) Isotropic stress

condition with the stress magnitude 15 MPa. (d) Anisotropic stress condition with Sx = 15 MPa and Sy = 5

MPa. (e) Anisotropic stress condition with Sx = 5 MPa and Sy = 15 MPa.

0.7 0.8 0.9 1
aperture [mm]

10-1

100

101

102

pr
ob

ab
ilit

y 
de

ns
ity

1 1.5 2 2.5 3
aperture [mm]

10-3

10-2

10-1

100

101

102

pr
ob

ab
ilit

y 
de

ns
ity

(a) (b)

1

5

S x = S y = 5 MPa

S x = S y = 15 MPa S x = 5 MPa , S y = 15 MPa

S x = 15 MPa , S y = 5 MPa

S x = S y = 0 S x = S y = 0

Figure 3. Aperture PDFs for constant initial aperture cases. (a) The isotropic stress conditions. (b) The

anisotropic stress conditions.

13



the flow velocity is significantly reduced due to the compression-induced normal closure of

fractures. For the anisotropic far-field stress loading, the flow field is very heterogeneous when

Sx = 15 MPa and Sy = 5 MPa due to the pronounced shear dilation along some of the frac-

tures (Figure 4d), but still fairly homogeneous when Sx = 5 MPa and Sy = 15 MPa (Fig-

ure 4e) due to the lack of shear dilation.

We further analyze the impact of geological stress on velocity fields with the Eulerian

velocity PDFs, Equation (15). As shown in Figure 5a, the PDF for the case of no stress load-

ing exhibits a clear bimodal shape. The left peak corresponds to the regime of low flow ve-

locities through the N-S set of short fractures, whereas the second peak represents the regime

of high flow velocities accommodated by the E-W set of through-going fractures (aligned with

the mean flow direction). If the fractured rock is isotropically stressed, the bimodal PDF shape

is maintained but the velocity magnitude decreases as the stress level increases (Figure 5a).

Due to the nonlinear normal deformation behavior of rough fractures, the difference between

the isotropic 5 MPa case and the isotropic 15 MPa case is small (fracture deformation becomes

insensitive to stress variation when the stress level is high enough). If the fractured rock is anisotrop-

ically stressed, the case of Sx = 5 MPa, Sy = 15 MPa shows similar behavior as those un-

der isotropic stress loadings, but the case of Sx = 15 MPa, Sy = 5 MPa shows a signifi-

cantly broadened velocity PDF. The dual modal form remains but the velocity magnitude can

be much larger than that under no stress loading (Figure 5b inset). This is a noteworthy ob-

servation that indicates the interplay between fracture network geometry and stress condition

can lead to anomalously fast flow paths.

3.1.3 Transport behavior

We run particle tracking simulations to obtain transport properties. The focus in this study

is the longitudinal spreading and we quantify it with BTCs, Equation 16. For isotropic stress

conditions, the stress-induced fracture closure simply delays the arrival times of particles and

has a minor impact on longitudinal spreading (Figure 6(a)). For the anistropic stress condi-

tion with Sx = 15 MPa and Sy = 5 MPa, we observe an anomalously early arrival of trac-

ers and the longitudinal spreading is considerably enlarged (Figure 6b), as a result of shear

dilation-induced preferential flow paths. However, if Sx = 5 MPa and Sy = 15 MPa, the

fracture deformation is governed by normal closure and thus the effect of stress loading mainly

causes retarded particle arrivals (Figure 6b), like in the isotropic stress conditions.
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Figure 6. Breakthrough curves at the outlet for constant initial aperture cases. (a) BTCs for isotropic stress

conditions. (b) BTCs for anisotropic stress conditions. Tracer arrival times are normalized with the peak

arrival time of the zero stress loading case.

3.2 Variable initial aperture case

3.2.1 Geomechanical deformation

The spatial maps of aperture values for the variable initial aperture case under differ-

ent far-field stress conditions are shown in Figure 7. Note that the initial aperture distribution

follows a lognormal distribution with a mean value of 1 mm and a variance of 1. The initial

aperture map shows highly variable aperture values (Figure 7a), such that the stress-induced

aperture variation is not easy to discern. A qualitative visual comparison suggests an overall

decrease of apertures as the stress magnitude increases in most stress conditions (Figure 7b,c,e),

but aperture increase seems to occur along some E-W oriented fractures in the case of Sx =

15 MPa and Sy = 5 MPa (Figure 7d). The effect the aperture increase on flow and trans-

port is analyzed in Sections 3.2.2 and 3.2.3.

The stress effect on aperture distribution is evident from the PDFs of fracture apertures

(Figure 8). For isotropic stress conditions, aperture values decrease as the stress magnitude in-

creases (Figure 8a) due to the compression-induced fracture closure, similar to those in the

constant initial aperture case (Figure 3a). However, the width of the distribution of log-apertures

increases considerably as the stress level increases (Figure 8a, inset), which is different from

that of the constant initial aperture case. This is because fractures with large initial apertures
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are more compliant than those with small initial apertures, as revealed by Equations (3)-(4).

Thus, the aperture PDFs under loading conditions broaden towards small velocities as a re-

sult of the significant closure of initially large apertures (with low stiffness) and slight closure

of initially small apertures (with high stiffness).

For the anisotropic stress conditions, apertures also reduce due to the dominant normal

closure effect. When Sx = 15 MPa and Sy = 5 MPa, the compression-induced aperture de-

crease is compromised by the shear dilation-induced aperture increase (Figure 8b). However,

the accumulation of small aperture values is evident in both anisotropic cases (Figure 8b, in-

set). To further elucidate this phenomenon, we remove all the fractures with apertures larger

than 0.1 mm and only show those with apertures less than 0.1 mm in Figure 9. As the stress

level increases, more apertures smaller than 0.1 mm clearly appear due to the closure of frac-

tures with initial apertures larger than 0.1 mm. On the other hand, the fractures with very small

initial apertures, e.g. close to 0.01 mm, are more resistant to normal compression with less

closure accommodated. Note that the small aperture values are randomly distributed and do

not show correlated spatial organization.

3.2.2 Flow

The normalized fluid flow velocity fields through the fracture network under different

far-field stress conditions are shown in Figure 10. We normalize the velocity values using the

mean velocity in the case of zero stress loading (i.e. Sx = Sy = 0 MPa). A heterogeneous

flow pattern characterized by significant flow localizations emerges in the network under no

stress loading (Figure 10a) due to the prescribed initial aperture variability. When the fracture

deformation is dominated by normal closure (Figure 10b,c,e), the velocity magnitude is greatly

reduced due to the increased compressive stress. However, if shear deformation is dominant,

as is the case when Sx = 15 MPa and Sy = 5 (Figure 10d), anomalously large flow veloc-

ities occur in some of the W-E fractures that are considerably sheared and dilated.

The impact of stress loading on the flow field is further analyzed based on the Eulerian

velocity PDF (Equation 15). As shown in Figure 11, the Eulerian velocity PDF follows a trun-

cated power-law distribution with an exponential cut-off in the large velocity regime. Due to

the large initial aperture heterogeneity, no bimodal distribution is found (in contrast with the

case of constant initial aperture case, Figure 5). For isotropic stress conditions, the probabil-

ity of small velocities increases as the stress level increases, and the power-law scaling of the
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aperture cases. (a) Initial aperture field at Sx = Sy = 0 MPa shows strong aperture heterogeneity. (b)

Isotropic stress condition with the stress magnitude 5 MPa. (c) Isotropic stress condition with the stress mag-

nitude 15 MPa. (d) Anisotropic stress condition with Sx = 15 MPa and Sy = 5 MPa. (e) Anisotropic stress

condition with Sx = 5 MPa and Sy = 15 MPa.
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Figure 10. Normalized flow velocity fields for variable initial aperture cases. Velocity values are nor-

malized with the mean velocity of the variable initial aperture case under the zero stress loading (i.e.

Sx = Sy = 0 MPa).

small velocity values is sensitive to the stress loading (Figure 11a). The fracture network un-

der anisotropic stress conditions also shows an increased fraction of small velocities. Further-

more, large velocity values in the case of Sx = 15 MPa, Sy = 5 are larger than those in

the no stress condition (Figure 11b, inset) due to the shear dilation-induced aperture increase

along some of the E-W fractures. The velocity PDFs show that the interplay between fracture

network geometry and stress conditions can significantly impact both fast and slow velocities.

3.2.3 Transport

We study the effective transport properties of the stressed fracture network based on the

longitudinal spreading, quantified by the BTC analysis. For isotropic stress conditions (Fig-

ure 12a), an increased stress magnitude not only delays the arrival time of particles due to the

compression-induced reduction of apertures, but also promotes the late-time tailing phenomenon
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Figure 11. Eulerian velocity PDFs for variable initial aperture cases. (a) Isotropic stress conditions. inset:

semilogy plot. (b) Anisotropic stress conditions. inset: semilogy plot showing the shear dilation-induced high

velocity values for Sx = 15 MPa and Sy = 5 MPa case.

caused by the accumulation of small apertures. For anistropic stress conditions, if Sx = 5

MPa and Sy = 15 MPa, a similar stress-dependent transport behavior is observed. However,

if Sx = 15 MPa and Sy = 5 MPa, we observe an anomalously early arrival of tracers and

the longitudinal spreading significantly increases due to the strong preferential flow channels

produced by the shear dilation effect (Figure 12b).

We consider that the accumulation of small apertures in the stressed fracture network

results in the emergence of small velocities and the late-time tailing behavior, while the shear

dilation-induced large apertures along some through-going fractures lead to spatially correlated

preferential flow paths and the anomalously early arrival feature. The origin of anomalous trans-

port can also be understood as the interplay between velocity distribution and velocity corre-

lation (Kang, Le Borgne, et al., 2015; Le Borgne, Dentz, & Carrera, 2008). The late-time tail-

ing is caused by the broadening of velocity distribution towards small velocity values. The frac-

tures providing small velocities for fluid flow act as trapping zones, which tend to delay the

migration of particles. On the other hand, the anomalously early arrival is caused by the spa-

tially correlated large velocity values along the E-W fractures that connect the inlet to the out-

let with large openings. Tracers that are transported through these preferential flow paths main-

tain velocity correlation that leads to early arrivals. To confirm the underlying mechanisms of
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Figure 12. Breakthrough curves at the outlet for variable initial aperture cases. (a) BTCs for isotropic stress

conditions. (b) BTCs for anisotropic stress conditions. Tracer arrival times are normalized with the peak

arrival time of the zero stress loading case.

the observed transport behaviors, we construct an effective average transport model (Dentz,

Kang, Comolli, Le Borgne, & Lester, 2016; Kang et al., 2017) in the following section.

4 Effective stochastic transport model

In this section, we first analyze particle velocities along their trajectories (Lagrangian

velocity statistics), and then construct a parsimonious stochastic transport model that effec-

tively captures the interplay between Lagrangian velocity distribution and velocity correlation.

4.1 Space-Lagrangian velocity statistics

We determine the space-Lagrangian velocity PDF ψs(v) by sampling particle velocities

equidistantly with a lag of ∆s = 0.5 m along all particle trajectories and among all realiza-

tions (Dentz et al., 2016; Kang et al., 2017). The chosen lag distance ∆s is sufficiently smaller

than the characteristic velocity correlation length scale λc (see section 4.1.2 for details). From

now on, we refer to ψs(v) as the velocity distribution.
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Figure 13. Lagrangian velocity distributions, ψs(v). (a) ψs(v) for the isotropic stress conditions with con-

stant initial aperture. (b) ψs(v) for the anisotropic stress conditions with constant initial aperture. (c) ψs(v)

for the isotropic stress conditions with variable initial aperture. (d) ψs(v) for the anisotropic stress conditions

with variable initial aperture.
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4.1.1 Velocity distributions

For the constant initial aperture cases, the increase in the isotropic stress magnitude causes

a simple translation of the velocity distribution towards lower velocities (Figure 13(a)). Increase

in the isotropic stress magnitude does not change the shape or variance of the velocity distri-

butions. For anisotropic stress conditions, when the through-going fractures of the E-W set

are sheared (Sx = 15 MPa and Sy = 5 MPa), we observe the emergence of fast velocities

(Figure 13(b)). For Sx = 5 MPa and Sy = 15 MPa case, the effects of stress on the veloc-

ity distribution is similar to the isotropic stress conditions.

The impact of geological stress on velocity distribution is much more dramatic for the

variable initial aperture cases. The increase in the isotropic stress magnitude broadens the ve-

locity distribution, and has a significant impact on the scaling of small velocities (Figure 13(c)).

For anisotropic stress conditions, when the principal fracture orientation is aligned with the

maximum stress orientation (Sx = 15 MPa and Sy = 5 MPa), we observe both the emer-

gence of fast velocities and significant change in the scaling of the small velocities (Figure 13(d)).

The shear-dilation induced preferential channels causes the emergence of fast velocities. For

Sx = 5 MPa and Sy = 15 MPa case, the impact of stress on velocity distribution is similar

to the isotropic stress conditions. The major difference between the constant initial aperture

cases and the variable initial aperture cases is in the low-velocity values. For the cases with

initial aperture heterogeneity, the increase in the stress magnitude significantly broadens the

velocity distribution towards small velocities and changes the scaling of small velocities. This

is due to the nonlinear normal deformation behavior of rough fractures, as discussed in sec-

tion 3.2.1.

4.1.2 Velocity correlation lengths

We now analyze the spatial velocity correlation along particle trajectories, which may

be sensitive to the initial velocity (Le Borgne et al., 2008). The velocity correlation length con-

ditioned on the initial velocity is determined through the convergence of the conditional La-

grangian velocity PDF ψ(v, s|v0) towards a steady-state distribution (Le Borgne, de Dreuzy,

Davy, & Bour, 2007). If the velocity field is ergodic, ψs(v,∞|v0) = ψs(v) as defined above.

The conditional distribution ψs(v, s|v0) is obtained by sampling particle velocities at a dis-

tance s from the inlet for all the particles that have an initial velocity in a certain interval [v0, v0+

∆v]. In order to quantify the convergence, we follow Le Borgne et al. (2007) and consider
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the distribution pα(α, s|α0) of the logarithm of velocity α = ln(v) conditioned on an ini-

tial α in [α0, α0+∆α0]. The α range is divided into 5 equiprobable velocity classes for the

constant initial aperture cases and 10 equiprobable bins for the variable initial aperture cases.

The number of velocity classes chosen provides a meaningful resolution with low noise level.

We have confirmed that the velocity correlation length is not sensitive to the number of ve-

locity classes. The PDF of log-velocity α is given in terms of ψs(v, s|v0) by

pα(α, s|α0) = exp(α)ψs[exp(α), s| exp(α0)]. (17)

First, we confirm that pα(α, s|α0) for s � λc is independent from α0 and converges

toward pα(α) = exp(α)ψs[exp(α)]. To determine the rate of convergence toward the asymp-

totic Lagrangian velocity distribution, we calculate the mean absolute difference between pα(α, s|α0)

and pα(α)

C(s|α0) =

∫ ∞
−∞
|pα(α, s|α0)− pα(α)| dα, (18)

The conditional characteristic correlation length is obtained by integrating the correla-

tion function over distance:

`c(v0) =

∫ ∞
0

C(s| ln v0)

C(0| ln v0)
ds, (19)

The conditional correlation lengths are shown in Figure 14. The estimated correlation

lengths are significantly larger than the average fracture link length of 0.26 m. For isotropic

stress conditions with constant initial aperture, the velocity correlation length is not sensitive

neither to the stress magnitude nor the initial velocity (Figure 14(a)). A noticeable difference

only emerges for the Sx = 15 MPa and Sy = 5 MPa , where the velocity correlation length

is two times larger for the highest velocity bin (Figure 14(b)). The trend is similar for hetero-

geneous initial aperture cases. We observe a slight increase in correlation length towards large

velocity for isotropic stress conditions but the change is not significant (Figure 14(c)). The sig-

nificant increase in velocity correlation length towards large velocity bins is also observed for

the Sx = 15 MPa and Sy = 5 MPa case (Figure 14(d)).
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It is interesting to note that the velocity correlation length is larger for constant initial

aperture cases compared with heterogeneous initial aperture cases. The smaller velocity cor-

relation for the heterogeneous initial aperture is due to the emergence of a more heterogeneous

velocity field which leads to strong velocity fluctuations than for the constant initial aperture

case. This leads to more heterogeneous particle velocity trajectory, which induces a reduction

in velocity correlation. A similar trend has been observed in the recent publication by Kang

et al. (2016). Also, the effective correlation length is not very sensitive to the stress conditions,

except for the Sx = 15 MPa and Sy = 5 MPa case. This is more evident from Figure 15,

where velocity values are normalized with the mean velocity of their respective stress scenario

cases. It is clear that the overall velocity correlation structure is similar for different stress con-

ditions except for the Sx = 15 MPa and Sy = 5 MPa case.

4.1.3 Tortuosity

Due to the heterogeneous velocity field (Figure 10), particle trajectories can be tortu-

ous and the actual travelled distance of a particle (pathline) is in general larger than the lin-

ear travel distance (longitudinal distance in this study). The ratio between pathline length and

linear distance is quantified by tortuosity, χ, which can be defined as

χ(xl) =
〈λ(xl)〉
xl

, (20)

where λ(xl) is the length of a particle travel path when a particle first arrives at a linear (lon-

gitudinal) distance xl. The tortuosity for the different stress conditions is shown in the inset

of Figure 14(a). As expected, the tortuosity of the constant initial aperture cases (red line) is

significantly smaller than the tortuosity of the heterogeneous initial aperture cases (blue line).

The tortuosity in general increases as the stress magnitude increases because the velocity field

becomes more heterogeneous due to the significant increase in small aperture values. The tor-

tuosity of Sx = 15 MPa and Sy = 5 MPa case is significantly smaller than any other stress

conditions (Figure 14(a) inset). This can be attributed to the effect of shear dilation that causes

straight preferential flow paths (Figure 10(f)).

4.2 Bernoulli Continuous Time Random Walk model

We now construct an effective transport model that captures the interplay between ve-

locity distribution and velocity correlation of the fracture-network system, as exhibited by the
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Figure 14. Lagrangian velocity correlation length, `c(v0), as a function of conditioning initial velocity

class. (a) `c(v0) for isotropic stress conditions with constant initial aperture. Inset: tortuosity for the five

stress scenarios (Sx = Sy = 0 MPa, Sx = Sy = 5 MPa, Sx = Sy = 15 MPa, Sx = 15 & Sy = 5 MPa,

Sx = 5 & Sy = 15 MPa). The length of each blue error bar represents ± one standard deviation. (b) `c(v0)

for anisotropic stress conditions with constant initial aperture. (c) `c(v0) for isotropic stress conditions with

variable initial aperture. (d) `c(v0) for anisotropic stress conditions with variable initial aperture.
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Figure 15. Normalized velocity fields for variable initial aperture cases. Velocity values are normalized

with the mean velocity of the respective stress scenario.

direct numerical simulations of particle transport. Recent studies on transport through porous

and fracture media at various spatial scales have shown that particle velocities sampled equidis-

tantly in space form a Markov process (Bolster, Méheust, Le Borgne, Bouquain, & Davy, 2014;

Kang et al., 2016, 2014, 2017; Le Borgne et al., 2008; Sund, Bolster, & Benson, 2016). We

model the velocity series {vn} as a Markov-chain, which is a valid modeling framework for

capturing the evolution of the space-Lagrangian velocities when there is a finite velocity cor-

relation length. In this framework, the n–step transition probability rn(v|v′) satisfies the Chapman–

Kolmogorov equation (Risken, 1996)

,

rn(vn|v0) =

∫
dvkrn−k(vn|vk)rk(vk|v0). (21a)

The velocity process is fully characterized in terms of the one-step transition PDF r1(v|v′)

and the steady state PDF ψs(v) of the space-Lagrangian velocity. Consequently, the evolution

of the space-Lagrangian velocity PDF ps(v, sn) is given by

28



ps(v, sn) =

∫
dv′r1(v|v′)ps(v′, sn−1). (21b)

The Markov chain is modeled here by a Bernoulli process, in which the velocity may

persist with probability a = exp(−∆s/`c) and change randomly to a velocity drawn from

the steady state PDF ψs(v). Note that the steady state space–Lagrangian velocity PDF, ψs(v),

can also be determined by flux-weighting the Eulerian velocity PDF (Dentz et al., 2016), and

the model predictions with the space–Lagrangian velocity PDF and the flux-weighted Eule-

rian velocity PDF should be the same (Kang et al., 2017). The Bernoulli process is charac-

terized by the transition PDF (Dentz et al., 2016; Kang, Le Borgne, et al., 2015)

r1(v|v′) = aδ(v − v′) + (1− a)ps(v), (22)

This transition PDF is thus fully determined by the single parameter `c, which is esti-

mated by taking average over the conditional correlation length:

`c =
1

Nc

Nc∑
i=1

`c(αi), (23)

where Nc is the number of velocity classes and αi is the logarithmic velocity range of the class

i. In this modeling framework, effective particle motion along the trajectory is described by

sn+1 = sn + ∆s, tn+1 = tn +
∆s

vn
. (24)

The velocity transitions are determined from the Markovian velocity process (21). Note

that the {vn} process describes equidistant velocity transitions along particle trajectories. To

arrive at the control plane at xl, particles travel the pathline distance of s(xl) = χ(xl)xl to

honor tortuosity of the pathlines. The prediction with the Bernoulli Continuous Time Random

Walk (CTRW) model is shown in Figure 16(a)-(d). The model accurately predicts all the BTCs

except for the 15 MPa-5 MPa case, for which there is significant preferential flow. We hypoth-

esize that the discrepancy comes from the significantly larger velocity correlation length for

large velocity bins (Figure 14). To test this hypothesis, we introduce in the Bernoulli model
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two effective velocity correlation lengths, `h for high velocity classes and `l for the other ve-

locity classes. Thus, the probability to remain in a high velocity is ah = exp(−∆s/`h) and

al = exp(−∆s/`l) for the remaining classes. The transition probability can then be writ-

ten as

r1(v|v′) = a(v′)δ(v − v′) + [1− a(v′)]ps(v), (25)

where a(v′) = ah for v′ ≥ vt and a(v′) = al for v′ < vt with vt the threshold velocity

value that defines large velocity classes. More specifically, for the stress condition of 15 MPa-

5 MPa, the velocity class 5 defines the high-velocity threshold for the constant initial aperture

case, and the velocity classes between 8 and 10 define the high-velocity threshold for the het-

erogeneous initial aperture case. We take the average correlation lengths for large velocity classes

and for the rest of the velocity classes, respectively, to obtain the two correlation lengths. The

predictions with the dual correlation length model is shown in Figure 16(e)(f). The dual cor-

relation model better captures both early and late arrivals , showing its ability to properly ac-

count for the correlation structure for the cases with significant shear dilation.

5 Discussions and Conclusions

In this study, we have shown how the interplay between fracture properties (aperture dis-

tribution and network geometry) and geological stress conditions controls flow and transport

in 2D natural fracture networks. We have demonstrated that the geological stress can induce

anomalous transport in natural fracture networks. Increase in stress magnitude broadens the

aperture PDF towards small apertures, which significantly increases the probability of having

small velocity values. Stress-induced broadening of velocity distribution is especially signif-

icant when there is initial aperture variability. This is due to the nonlinear normal deforma-

tion behavior of rough fractures (Bandis et al., 1983). For anisotropic stress conditions, we

show that the orientation between the maximum principal stress and the long fractures is crit-

ical. Significant shear dilation occurs when the long fractures are preferentially oriented with

respect to the maximum principal stress and accommodate sliding of rough fracture walls (Bagh-

banan & Jing, 2008; Liu et al., 2018; Olsson & Barton, 2001; Zhao et al., 2011). In summary,

the interplay between fracture geometry, aperture heterogeneity and geological stress is shown

to induce the emergence of small apertures that causes late-time tailing and the shear dilation

that causes anomalously early arrival of particles.
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Figure 16. BTCs from direct numerical simulations (solid line) and model predictions (dashed line). Tracer

arrival times are normalized with the peak arrival time of the zero stress loading case. (a) BTC predictions for

isotropic stress conditions with constant initial aperture. (b) BTC predictions for anisotropic stress conditions

with constant initial aperture. (c) The model predictions for Sx = 15 MPa and Sy = 5 MPa case with constant

initial aperture. The prediction with dual correlation length shows improved prediction. (d) BTCs predictions

for isotropic stress conditions with variable initial aperture. (e) BTCs predictions for anisotropic stress condi-

tions with variable initial aperture. (f) The model predictions for Sx = 15 MPa and Sy = 5 MPa case with

variable initial aperture. The prediction with dual correlation length shows improved prediction.
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The key observations made in this study are indeed consistent with previous laboratory

experiments and field studies. First, the observed response of the fracture network with respect

to the stress magnitude is consistent with laboratory studies that showed the reduction in frac-

ture permeability with the increase in normal stress (N. Barton et al., 1985; Pyrak-Nolte & Mor-

ris, 2000; Y. W. Tsang & Witherspoon, 1981), and field observations that showed the decrease

in rock permeability with the increase of formation depth (Achtziger-Zupančič, Loew, & Mariéthoz,

2017; Rutqvist, 2015; Rutqvist & Stephansson, 2003). Second, the significant shear dilation

of the preferentially-oriented fractures is consistent with laboratory studies that have shown

an increase in fracture permeability due to shear-induced dilation (Lee & Cho, 2002; Olsson

& Barton, 2001; Yeo, de Freitas, & Zimmerman, 1998), and field observations that have shown

that only a small proportion of fractures are conductive (Follin et al., 2014; C.-F. Tsang & Neretnieks,

1998) due to the associated critically stressed state (C. A. Barton, Zoback, & Moos, 1995).

Shear dilation as a means of enhancing permeability of naturally fractured reservoirs to stim-

ulate production has also been recognized by geothermal and petroleum industries (Deichmann

& Giardini, 2009; Evans et al., 1999; Rahman, Hossain, & Rahman, 2002). However, most

of the existing laboratory and field studies on stress effects are limited to fluid flow measure-

ments. Therefore, experimental studies involving transport measurements are much needed.

The effects of geological stress on particle transport are apparent from the space-Lagrangian

velocity statistics that determine tracer transport. For constant initial aperture cases, the increase

in the stress magnitude simply translates velocity distributions towards low velocity values and

does not impact effective tracer spreading behavior. The emergence of fast velocities is ob-

served only in the case with Sx = 15 MPa and Sy = 5 MPa. This is due to the shear-dilation-

induced preferential flow paths. For variable initial aperture cases, geological stress has a dra-

matic impact on both early and late-time arrival of tracers. An increase in the stress magni-

tude significantly broadens velocity distributions towards small velocities and also changes the

scaling of small velocities. For the case with Sx = 15 MPa and Sy = 5 MPa, we clearly

observe the emergence of both large velocities and small velocities. Lagrangian velocity cor-

relation lengths are not very sensitive to geological stress conditions except for the Sx = 15

MPa and Sy = 5 MPa case. In this case, preferential paths induced by shear-dilation signif-

icantly increase velocity correlation lengths for high velocities. The effect of preferential paths

is also apparent from the decreased tortuosity for Sx = 15 MPa and Sy = 5 MPa case.

We have presented the Bernoulli CTRW model that incorporates the essential features

of the space-Lagrangian velocity statistics. The model is shown to successfully capture anoma-
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lous transport in natural fracture networks under various stress conditions. The model with a

single effective velocity correlation length accurately captures tracer breakthrough curves ex-

cept for the Sx = 15 MPa and Sy = 5 MPa case. The agreement between model predic-

tions and direct numerical simulations indicates that the simple velocity correlation model can

capture the dominant velocity correlation structure in natural fracture networks unless there

is a strong channeling caused by shear dilation. We extended the velocity correlation model

to have dual correlation lengths: one for the fast, correlated velocities and the other for less

correlated velocities. The dual correlation length model was shown to capture effective spread-

ing behavior of the Sx = 15 MPa and Sy = 5 MPa case. The anomalously early arrival is

caused by spatially correlated fast flow paths, and late-time tailing is caused by the emergence

of small velocities that are spatially randomly distributed. This gives two distinct velocity cor-

relation lengths, which is confirmed from the conditional velocity correlation functions.

Applying this modeling framework in the field requires the PDF of the Eulerian veloc-

ity magnitude (a flow attribute) and the velocity correlation as inputs, which are often not avail-

able a priori. However, the model can indeed also be parameterized from available field data

such as tracer breakthrough curves (Kang, Le Borgne, et al., 2015), which can be used to es-

timate the parameters in a functional approximation of the velocity PDF. Regarding the cor-

relation length, the effective transport behavior can be predicted based on a single (average)

correlation length in many situations (Kang et al., 2017; Kang, Le Borgne, et al., 2015; Puyguiraud,

Gouze, & Dentz, 2019).

This study highlights the critical importance of incorporating geomechanical analysis in

DFN simulations in order to more accurately derive aperture distributions and model flow and

transport processes. The conventional approaches that neglect the effects of geological stress

state may lead to an underestimation of aperture heterogeneity and flow channelization. The

findings in this study have important implications for many subsurface technologies. For ex-

ample, fractured rocks around nuclear waste disposal sites can be under strongly anisotropic

stress loadings such that some preferentially-oriented fractures may establish preferential path-

ways for radionuclide migration—an effect that cannot be predicted without considering the

geomechanical effects. The coupled geomechanics–flow–transport analysis would also help

improve the design of fractured aquifer remediation strategies by more precisely predicting the

contaminant transport in geologically stressed heterogeneous fractured media. The topic of cou-

pled stress-flow-transport is not only critical for the subsurface technologies but also for nat-

ural processes such as topographic stress-controlled bedrock weathering. Topographic and tectonic-
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stress-induced fractures are known to be one of the dominant mechanisms for the deep crit-

ical zone weathering (Clair et al., 2015; Riebe, Hahm, & Brantley, 2017). The modeling frame-

work in this study can be extended to study how tectonics influence deep critical zone archi-

tecture.

Like any modeling work, this study is based on assumptions that conceptualize the prob-

lem. First, this work did not consider matrix diffusion. This should not affect our main con-

clusions for the Bristol Channel since the effects of matrix diffusion on transport is negligi-

ble (Edery et al., 2016). However, this is not necessarily true for all geological settings. In ad-

dition, this work studied 2D fracture system, and there could be important 3D effects. While

several studies have investigated fluid flow in stressed 3D fracture networks (Garipov, Karimi-

Fard, & Tchelepi, 2016; Lei, Wang, et al., 2017; McClure, Babazadeh, Shiozawa, & Huang,

2016), the effects of geological stress on tracer transport through 3D fracture networks remain

to be investigated. A recent study has shown that the Bernoulli CTRW model can capture par-

ticle transport through 3D fracture networks (J. D. Hyman et al., 2019), and the natural ex-

tension of this study will be the effects of geological stress on particle transport through stressed

3D fracture networks. Finally, since fracture network properties and in-situ stress conditions

can vary widely from location to location, additional studies are required to obtain more gen-

eral conclusions.
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Matthäi, S. K., & Belayneh, M. (2004). Fluid flow partitioning between fractures and a per-

meable rock matrix. Geophys. Res. Lett., 31, L07602.
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